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Abstract

The performance of electrical networks is monitored by
expensive Phasor Measurement Units (PMUs). It is eco-
nomically beneficial to determine the optimal placement
and the minimum number of PMUs required to effectively
monitor an entire network. This problem has a graph the-
ory model involving power dominating sets in a graph. A set
S of vertices in a graph is called a power dominating set if
every vertex and every edge in the graph is “observed” by
S according to a set of observation rules. The power dom-
ination number of a graph is the minimum cardinality of a
power dominating set of the graph. In this paper, the power
domination number is determined for hypercubes Qn with
n = 2k, where k is any positive integer.

Keywords: Dominating set, power dominating set, zero
forcing set, hypercube

1. Introduction

The performance of electrical networks is monitored by
expensive Phasor Measurement Units (PMUs). It is eco-
nomically beneficial to determine the optimal placement
and the minimum number of PMUs required to effectively
monitor an entire network. The network monitoring prob-
lem, as introduced in [3], asks for as few PMUs as possi-
ble to be put in the network system. In 2002, Haynes et al
[8] formulated this network monitoring problem as a varia-
tion of the domination problem in graph theory.

We will follow the notation from [11]. All graphs G =
(V,E) considered are finite and simple. For a vertex u, the
open neighborhood of u, denoted by N(u), contains all
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neighbors of u in G. The closed neighborhood of u, de-
noted by N [u], contains all neighbors of u as well as u it-
self; that is, N [u] = N(u) ∪ {u}. A set S ⊂ V is a domi-
nating set in G if every vertex outside of S has at least one
neighbor in S. The domination number of G, denoted by
γ(G), is the minimum cardinality of a dominating set of G.
The power domination problem is a variation of the domi-
nation problem. A set S of vertices in G is called a power
dominating set if every vertex and every edge in G is “ob-
served” after repeatedly applying the following Observation
Rules [8]:

0. Any vertex of S is observed, and any edge incident to
at least one vertex in S is observed.

1. Any vertex that is incident to an observed edge is ob-
served.

2. Any edge joining two observed vertices is observed.

3. If a vertex is incident to a total of k > 1 edges and if
k − 1 of these edges are observed, then all k of these
edges are observed.

In other words, all observed vertices can be obtained from
S as follows. First all vertices in the closed neighborhood
of S are observed. Then repeatedly apply Observation Rule
3 to observe more and more new vertices until no new ver-
tices in G are observed. If the final set of observed vertices
is V (G), then S is a power dominating set. The power dom-
ination number of G, denoted by γp(G), is the minimum
cardinality of a power dominating set of G.

It is known that the power domination number is
NP-complete even when restricted to bipartite graphs and
chordal graphs [8], to planar graphs and circle graphs
[6], and to split graphs [6, 10]. On the other hand, the
power domination problem has efficient linear time algo-
rithms for trees [8], for graphs with bounded treewidth
[9], for interval graphs if the interval ordering of the
graph is provided [10], and for block graphs [12]. The
power domination number of block graphs has been fur-
ther studied in [2]. Upper bounds on the power domination
number for a connected graph with at least three ver-
tices and a connected claw-free cubic graph are presented
in [13]. Closed formulas for the power domination num-
ber of grid graphs are obtained in [5], and formulas for
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direct product and strong product of path graphs are ob-
tained in [4]. In this paper, we study the power domination
problem for hypercube Qn and prove the following theo-
rem.

THEOREM 1.
2n−1

n
≤ γp(Qn) ≤ 2n−blog2 nc−1.

In particular, if n = 2k for some positive integer k, then

γp(Qn) = 2n−k−1.

In Section 2, we study the domination problem for hyper-
cubes. In Section 3, we find a connection between a power
dominating set and a zero forcing set in a graph. Theorem 1
is proved in Section 4. Finally a conjecture on the power
domination number of hypercubes is presented.

2. Domination of Hypercubes

The vertex set of the n-dimensional hypercube Qn is
V (Qn) = {(a1, . . . , an) : ai = 0 or 1}, and two ver-
tices (a1, . . . , an) and (b1, . . . , bn) in Qn are adjacent iff∑

i |ai − bi| = 1. We may also view each vertex of Qn

as an n-dimensional vector over F2. Thus throughout this
section all matrix addition and multiplication are performed
over F2, that is, 1 + 1 = 0. We use rank A to denote the
rank of a matrix A over F2, and use dim S to denote the di-
mension of a vector space S over F2.

Example 1. The matrix equation

[
1 0 1
0 1 1

]
·



x1

x2

x3


 =

[
0
0

]

has the solution set {(0, 0, 0)T , (1, 1, 1)T } which corre-
sponds to a two-vertex dominating set for Q3.

Example 2. The matrix equation



1 0 0 1 0 1 1
0 1 0 1 1 0 1
0 0 1 0 1 1 1


 ·




x1

...
x7


 =




0
0
0




has the solution set


x1

x2

x3

x4

x5

x6

x7




= span








1
1
0
1
0
0
0




,




0
1
1
0
1
0
0




,




1
0
1
0
0
1
0




,




1
1
1
0
0
0
1








,

which corresponds to a dominating set of 16 (= 24) ver-
tices for Q7.

LEMMA 1. If n = 2k − 1 for some positive integer k, then
γ(Qn) = 2n/(n + 1) = 2n−k.

The lemma was mentioned without proof in [7, Page
279]. We provide the following proof to make this paper
self-contained.

Proof. Recall that the number of non-empty subsets of
{1, . . . , k} is exactly n (= 2k − 1). So, as suggested by
Examples 1 and 2, we may define A to be the k by n ma-
trix such that the n columns of A are the indicator vectors of
all n non-empty subsets of {1, . . . , k}. We consider the ma-
trix equation

Ax = 0,

where x ∈ Fn
2 and 0 is the all 0’s vector in Fk

2 . (See Exam-
ples 1 and 2 for the cases n = 3 and 7, respectively.) Let S
be the solution set of the above matrix equation. Then

dim S = n− rank A = n− k,

and thus |S| = 2n−k. We want to show that S is a minimum
dominating set for Qn.

Claim 1: Any non-zero vector x in S has at least three
non-zero entries.

Proof of Claim 1. Since A has no zero column, no x in S
has exactly one non-zero entry. Since all columns of A are
distinct, no x in S has exactly two non-zero entries.

Claim 2. Any two vectors in S has Hamming distance at
least three.

Proof of Claim 2. Let x1 and x2 be any two distinct vec-
tors in S. Then

A (x1 − x2) = Ax1 −Ax2 = 0,

and thus (x1 − x2) is a non-zero vector in S. By Claim 1,
(x1 − x2) has at least three non-zero entries; that is, x1 and
x2 have Hamming distance at least three.

Claim 3. S is a dominating set of Qn.
Proof of Claim 3. By Claim 2, N [x1] ∩ N [x1] = ∅ for

any distinct x1 and x2 in S. Thus

|N [S]| := |∪x∈SN(x)| = ∑
x∈S |N(x)| = (1 + d(x))|S|

= (n + 1)2n−k = 2n = |V (Qn)|,

which implies that S is a dominating set of Qn.
Claim 4. S is a minimum dominating set of Qn.
Proof of Claim 4. Since each vertex in Qn can dominate

(n+1) vertices, any dominating set of Qn contains at leave
2n/(n + 1) (= 2n−k) vertices. Since |S| = 2n−k, Claim 4
follows from Claim 3. Therefore

γ(Qn) = |S| = 2n−k.
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3. Zero Forcing Set

In this section, we derive a connection between a power
dominating set and a zero forcing set in a graph. To define a
zero forcing set in G, one needs to start with the following
Color-Change Rule [1].

Color-Change Rule. Let each vertex of G be colored ei-
ther white or black. If a vertex u is a black vertex of G and
exactly one neighbor v of u is white, then change the color
of v to black.

A vertex set Z ⊂ V of G is called a zero forcing set
if, initially all vertices in Z are colored black and the re-
maining vertices in V \ Z are colored white, then after re-
peatedly applying the above Color-Change Rule the derived
coloring of G is all black. The zero forcing number, de-
noted by Z(G), is the minimum cardinality of a zero forc-
ing set Z in G. The following lemma reveals a connection
between a power dominating set and the zero forcing num-
ber in a graph.

LEMMA 2. Let {u1, . . . , ut} be a power dominating set for
a graph G with no isolated vertices. Then

Z(G) ≤
t∑

i=1

d(ui).

Proof. Since {u1, . . . , ut} is a power dominating set for G,
by the definition of power domination, ∪t

i=1N [ui] is a zero
forcing set for G.

We may assume without loss of generality that N(ui)−
{u1, . . . , ut} 6= ∅ for each i with 1 ≤ i ≤ t. (Otherwise, if
N(ui) ⊆ {u1, . . . , ut} for some i, then ({u1, . . . , ut} − ui)
would be a smaller power dominating set for G and thus one
can prove the lemma on this smaller set instead.) For each
ui, choose vi ∈ (N(ui)− {u1, . . . , ut}). Now we want to
prove that the following set

Z := ∪t
i=1 (N [ui]− vi)

is a zero forcing set for G.
Initially all vertices in Z are colored black and the re-

maining vertices in V \ Z are colored white. Note that

(N [ui]− vi) ⊆ N [ui] ∩ Z ⊆ N [ui].

So either N [ui]∩Z = N [ui]−vi or N [ui]∩Z = N [ui]. If
N [ui]∩Z = N [ui]− vi, then ui was colored black and ex-
actly one neighbor, vi, of ui was colored white. By applying
the Color-Change Rule to ui, the vertex vi will changes its
color from white to black. So by applying the Color-Change
Rule to each ui if necessary, the set of black vertices can be
extended from Z to Z ∪ {v1, . . . , vt} = ∪t

i=1N [ui]. Since
∪t

i=1N [ui] is a zero forcing set, the set Z is a zero forc-
ing set as well. Thus

Z(G) ≤ | ∪t
i=1 (N [ui]− vi) |

≤ ∑t
i=1 |N [ui]− vi| =

∑t
i=1 d(ui).

THEOREM 2.
γp(Qn) ≥ 2n−1

n
.

Proof. Let t := γp(Qn) and {u1, . . . , ut} be a power dom-
inating set for Qn. By Lemma 2,

Z(Qn) ≤
t∑

i=1

d(ui) = n · γp(Qn).

By [1, Theorem 3.1], we have Z(Qn) = 2n−1. Thus

γp(Qn) ≥ Z(Qn)
n

=
2n−1

n
.

4. Power Domination of Hypercubes

In this section we will prove Theorem 1. The proof fol-
lows from Theorem 2 and the next theorem.

THEOREM 3. Let Qn be the n-dimensional hypercube.
Then

γp(Qn) ≤ 2n−blog2 nc−1.

Proof. Let k := blog2 nc and m := 2k − 1. By Lemma 1,

γ(Qm) = 2m−k.

Recall that n − 1 ≥ 2k − 1 = m. By an easy induction ar-
gument, one can prove that

γ (Qn−1) ≤ 2n−m−1γ(Qm) = 2n−k−1.

By Observation Rule 3, any dominating set for a copy of
Qn is always a power dominating set for Qn+1. Thus one
has γp(Qn+1) ≤ γ(Qn) and thus

γp(Qn) ≤ γ (Qn−1) ≤ 2n−k−1.

In the proof of the above theorem, we use the observa-
tion γp(Qn+1) ≤ γ(Qn). We conjecture that any minimum
dominating set for Qn always corresponds to a minimum
power dominating set for Qn+1.

CONJECTURE 1.

γp(Qn+1) = γ(Qn).
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