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General notation. We use [d] to denote the set {i ∈ N | i ≤ d}. We let ι :=
√
−1 denote the

imaginary unit. We use s ∼unif. S to denote a uniform sample from the set S. When S is a subset
of T clear from context, we let Sc := T \ S denote its complement. When v is a vector, we refer
to its ith coordinate by vi, and if the vector has a subscript e.g. it is a variable vt, we denote this
by [vt]i. We use h, &, and . to hide universal constants, e.g. x . y means there is a universal
constant C such that x ≤ Cy. We use 1d and 0d to denote the all-ones and all-zeroes vectors
of dimension d respectively. We use Õ to hide polylogarithmic factors in problem parameters for
simplicity.1 We let supp(x) denote the support of a vector x ∈ Rd, i.e. the subset of coordinates
i ∈ [d] where xi 6= 0. For x ∈ R, we let sign(x) := 1 if x ≥ 0, and otherwise we let sign(x) := −1.

Norms. We let ‖·‖ denote a norm on Rd. For a norm ‖·‖ on Rd, we let ‖·‖∗ denote the dual norm.
When applied to a vector or matrix argument, ‖·‖p denotes the `p or Schatten-p norm respectively.
For x ∈ Rd and r > 0, if ‖·‖ is a norm on Rd, we let B‖·‖(x, r) := {x′ ∈ Rd | ‖x′ − x‖ ≤ r} denote
the associated ball around x. When ‖·‖ is omitted, we always assume ‖·‖ = ‖·‖2, and when x is
omitted, we always assume x = 0d. For a matrix A ∈ Rm×n and p, q ≥ 1, we define

‖A‖p→q := max
‖x‖p≤1

‖Ax‖q .

Sets. We let χS be the 0-∞ indicator of a set S, such that

χS(x) =

{
0 x ∈ S
∞ x 6∈ S

.

For a set S ⊆ Rd and λ ∈ R, we write λS := {λx | x ∈ S}, Sc := {x ∈ Rd | x 6∈ S}, and Vol(S)
denotes the volume (Lebesgue measure) of S in Rd. We denote the Minkowski sum of sets by ⊕,
i.e. A ⊕ B := {x | x = y + z, y ∈ A, z ∈ B}. We use Conv(S) to mean the convex hull of a set S,
and relint(S) to mean the relative interior of S. For S ⊆ Rd, we let ΠS(x) := argminx′∈S ‖x− x′‖2
denote the Euclidean projection of x to S.

Functions. When f is a function on x ∈ X , we sometimes use · in place of the argument x
to denote the function itself, e.g. ‖·‖ denotes the function which, when evaluated at x, returns
‖x‖. When integrating a function f without specifying a domain of integration, we always mean
the entire domain of f . We use ∇k to denote the kth derivative tensor of a k-times differentiable
multivariate function, e.g. ∇f is the gradient of differentiable f : Rd → R. In one dimension this
is denoted f (k).

Matrices. We denote matrices in capital boldface letters. We let Id denote the d × d identity
matrix, and 0m×n be the m × n all-zeroes matrix; we write 0d := 0d×d for short. We let Sd×d

be the set of symmetric d× d matrices, which we equip with �, the Loewner partial ordering (i.e.
A � B implies B−A is positive semidefinite). We also let Sd×d

�0 denote the subset of d×d positive
semidefinite matrices, and Sd×d

�0 are the d × d positive definite matrices. The number of nonzero
entries of a matrix A is denoted nnz(A). We let Tmv(A) be the time it takes to compute Av for
an arbitrary vector v;2 note that Tmv(A) = O(nnz(A)), and if A ∈ Rm×n is given by a rank-k

1This usage of Õ (without declaring what polylogarithmic factors are hidden) is somewhat controversial in the
community, but it significantly saves on space for some very hairy theorem statements. I promise I will declare if
anything particularly nefarious is being hidden by Õ; otherwise, it should be reasonable from context clues.

2If A ∈ Rn×d, we usually assume for simplicity that Tmv(A) = Ω(n + d), as we must at least process the input
and write down the output. If A has all-zero columns or rows, we can first drop them and reduce the dimension.
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decomposition A = UV>, we have Tmv(A) = O((m + n)k). We let ω ≈ 2.372 be the current
matrix multiplication exponent, i.e. we can multiply two d × d matrices in O(dω) time. When
M ∈ Sd×d has eigendecomposition M = UΛU> and f is a real-valued function whose domain
contains the spectrum of M, we overload f(M) := Uf(Λ)U> where f(Λ) is applied entrywise on
the diagonal. We reserve ‖·‖op, ‖·‖tr, and ‖·‖F for the operator norm, trace norm, and Frobenius
norm of a matrix (a.k.a. the∞-, 1-, and 2-Schatten norms). When T is a k-way tensor operating on
inputs {v1, v2, . . . , vk}, we write T[v1, v2, . . . , vk] to mean the resulting scalar from this operation.
When we drop some set of ` ∈ [k] of the inputs (with ordering clear from context), we mean the
`-way tensor operating on the remaining inputs, e.g. T[v1] is a (k − 1)-way tensor. For example,
M[u, v] = u>Mv when M is a matrix, and M[u] = M>u. We let Span(A) denote the span of the
columns of A, and rank(A) denote its rank.

Probability. Expectations of random variables, denoted E, are always taken with respect to all
randomness used to define the variable unless otherwise specified. For a scalar random variable Z
we let Var[Z] := E[Z2] − (EZ)2 denote its variance. When E is an event on a probability space
clear from context, we let 1E denote the random 0-1 variable which is 1 iff E occurs. When µ is a
probability density, we write x ∼ µ to denote a sample from this density. We denote the support of
a distribution D, i.e. all values samples from D can take on, by supp(D). When f is a nonnegative
integrable function, we write µ ∝ f to mean the density taking on values f

Z , where Z =
∫
f(x)dx

is the normalizing constant. We let N (µ,Σ) denote the multivariate Gaussian distribution with
specified mean µ ∈ Rd and covariance Σ ∈ Sd×d

�0 . For two distributions P,Q, we let Γ(P,Q) denote
the set of couplings of P and Q.
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