Notation for CS395T: Continuous Algorithms

Kevin Tian

General notation. We use $[d]$ to denote the set $\{i \in \mathbb{N} \mid i \leq d\}$. We let $\iota:=\sqrt{-1}$ denote the imaginary unit. We use $s \sim_{\text {unif. }} S$ to denote a uniform sample from the set S. When S is a subset of T clear from context, we let $S^{c}:=T \backslash S$ denote its complement. When v is a vector, we refer to its $i^{\text {th }}$ coordinate by v_{i}, and if the vector has a subscript e.g. it is a variable v_{t}, we denote this by $\left[v_{t}\right]_{i}$. We use $\bar{\sim}, \gtrsim$, and \lesssim to hide universal constants, e.g. $x \lesssim y$ means there is a universal constant C such that $x \leq C y$. We use $\mathbb{1}_{d}$ and \mathbb{O}_{d} to denote the all-ones and all-zeroes vectors of dimension d respectively. We use \widetilde{O} to hide polylogarithmic factors in problem parameters for simplicity. ${ }^{1}$ We let $\operatorname{supp}(x)$ denote the support of a vector $x \in \mathbb{R}^{d}$, i.e. the subset of coordinates $i \in[d]$ where $x_{i} \neq 0$. For $x \in \mathbb{R}$, we let $\operatorname{sign}(x):=1$ if $x \geq 0$, and otherwise we let $\operatorname{sign}(x):=-1$.

Norms. We let $\|\cdot\|$ denote a norm on \mathbb{R}^{d}. For a norm $\|\cdot\|$ on \mathbb{R}^{d}, we let $\|\cdot\|_{*}$ denote the dual norm. When applied to a vector or matrix argument, $\|\cdot\|_{p}$ denotes the ℓ_{p} or Schatten- p norm respectively. For $x \in \mathbb{R}^{d}$ and $r>0$, if $\|\cdot\|$ is a norm on \mathbb{R}^{d}, we let $\mathbb{B}_{\|\cdot\|}(x, r):=\left\{x^{\prime} \in \mathbb{R}^{d} \mid\left\|x^{\prime}-x\right\| \leq r\right\}$ denote the associated ball around x. When $\|\cdot\|$ is omitted, we always assume $\|\cdot\|=\|\cdot\|_{2}$, and when x is omitted, we always assume $x=\mathbb{O}_{d}$. For a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $p, q \geq 1$, we define

$$
\|\mathbf{A}\|_{p \rightarrow q}:=\max _{\|x\|_{p} \leq 1}\|\mathbf{A} x\|_{q} .
$$

Sets. We let χ_{S} be the $0-\infty$ indicator of a set S, such that

$$
\chi_{S}(x)=\left\{\begin{array}{ll}
0 & x \in S \\
\infty & x \notin S
\end{array} .\right.
$$

For a set $S \subseteq \mathbb{R}^{d}$ and $\lambda \in \mathbb{R}$, we write $\lambda S:=\{\lambda x \mid x \in S\}, S^{c}:=\left\{x \in \mathbb{R}^{d} \mid x \notin S\right\}$, and $\operatorname{Vol}(S)$ denotes the volume (Lebesgue measure) of S in \mathbb{R}^{d}. We denote the Minkowski sum of sets by \oplus, i.e. $A \oplus B:=\{x \mid x=y+z, y \in A, z \in B\}$. We use $\operatorname{Conv}(S)$ to mean the convex hull of a set S, and $\operatorname{relint}(S)$ to mean the relative interior of S. For $S \subseteq \mathbb{R}^{d}$, we let $\Pi_{S}(x):=\operatorname{argmin}_{x^{\prime} \in S}\left\|x-x^{\prime}\right\|_{2}$ denote the Euclidean projection of x to S.

Functions. When f is a function on $x \in \mathcal{X}$, we sometimes use \cdot in place of the argument x to denote the function itself, e.g. $\|\cdot\|$ denotes the function which, when evaluated at x, returns $\|x\|$. When integrating a function f without specifying a domain of integration, we always mean the entire domain of f. We use ∇^{k} to denote the $k^{\text {th }}$ derivative tensor of a k-times differentiable multivariate function, e.g. ∇f is the gradient of differentiable $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$. In one dimension this is denoted $f^{(k)}$.

Matrices. We denote matrices in capital boldface letters. We let \mathbf{I}_{d} denote the $d \times d$ identity matrix, and $\mathbf{0}_{m \times n}$ be the $m \times n$ all-zeroes matrix; we write $\mathbf{0}_{d}:=\mathbf{0}_{d \times d}$ for short. We let $\mathbb{S}^{d \times d}$ be the set of symmetric $d \times d$ matrices, which we equip with \preceq, the Loewner partial ordering (i.e. $\mathbf{A} \preceq \mathbf{B}$ implies $\mathbf{B}-\mathbf{A}$ is positive semidefinite). We also let $\mathbb{S}_{\succeq \mathbf{0}}^{d \times d}$ denote the subset of $d \times d$ positive semidefinite matrices, and $\mathbb{S}_{\succ \mathbf{0}}^{d \times d}$ are the $d \times d$ positive definite matrices. The number of nonzero entries of a matrix \mathbf{A} is denoted $\mathrm{nnz}(\mathbf{A})$. We let $\mathcal{T}_{\text {mv }}(\mathbf{A})$ be the time it takes to compute $\mathbf{A} v$ for an arbitrary vector $v ;{ }^{2}$ note that $\mathcal{T}_{\mathrm{mv}}(\mathbf{A})=O(\operatorname{nnz}(\mathbf{A}))$, and if $\mathbf{A} \in \mathbb{R}^{m \times n}$ is given by a rank- k

[^0]decomposition $\mathbf{A}=\mathbf{U V}^{\top}$, we have $\mathcal{T}_{\mathrm{mv}}(\mathbf{A})=O((m+n) k)$. We let $\omega \approx 2.372$ be the current matrix multiplication exponent, i.e. we can multiply two $d \times d$ matrices in $O\left(d^{\omega}\right)$ time. When $\mathbf{M} \in \mathbb{S}^{d \times d}$ has eigendecomposition $\mathbf{M}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{\top}$ and f is a real-valued function whose domain contains the spectrum of \mathbf{M}, we overload $f(\mathbf{M}):=\mathbf{U} f(\boldsymbol{\Lambda}) \mathbf{U}^{\top}$ where $f(\boldsymbol{\Lambda})$ is applied entrywise on the diagonal. We reserve $\|\cdot\|_{\mathrm{op}},\|\cdot\|_{\mathrm{tr}}$, and $\|\cdot\|_{\mathrm{F}}$ for the operator norm, trace norm, and Frobenius norm of a matrix (a.k.a. the $\infty-1$-, and 2 -Schatten norms). When \mathbf{T} is a k-way tensor operating on inputs $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$, we write $\mathbf{T}\left[v_{1}, v_{2}, \ldots, v_{k}\right]$ to mean the resulting scalar from this operation. When we drop some set of $\ell \in[k]$ of the inputs (with ordering clear from context), we mean the ℓ-way tensor operating on the remaining inputs, e.g. $\mathbf{T}\left[v_{1}\right]$ is a $(k-1)$-way tensor. For example, $\mathbf{M}[u, v]=u^{\top} \mathbf{M} v$ when \mathbf{M} is a matrix, and $\mathbf{M}[u]=\mathbf{M}^{\top} u$. We let $\operatorname{Span}(\mathbf{A})$ denote the span of the columns of \mathbf{A}, and $\operatorname{rank}(\mathbf{A})$ denote its rank.

Probability. Expectations of random variables, denoted \mathbb{E}, are always taken with respect to all randomness used to define the variable unless otherwise specified. For a scalar random variable Z we let $\operatorname{Var}[Z]:=\mathbb{E}\left[Z^{2}\right]-(\mathbb{E} Z)^{2}$ denote its variance. When \mathcal{E} is an event on a probability space clear from context, we let $\mathbf{1}_{\mathcal{E}}$ denote the random $0-1$ variable which is 1 iff \mathcal{E} occurs. When μ is a probability density, we write $x \sim \mu$ to denote a sample from this density. We denote the support of a distribution \mathcal{D}, i.e. all values samples from \mathcal{D} can take on, by $\operatorname{supp}(\mathcal{D})$. When f is a nonnegative integrable function, we write $\mu \propto f$ to mean the density taking on values $\frac{f}{Z}$, where $Z=\int f(x) \mathrm{d} x$ is the normalizing constant. We let $\mathcal{N}(\mu, \boldsymbol{\Sigma})$ denote the multivariate Gaussian distribution with specified mean $\mu \in \mathbb{R}^{d}$ and covariance $\boldsymbol{\Sigma} \in \mathbb{S}_{\succeq \mathbf{0}}^{d \times d}$. For two distributions P, Q, we let $\Gamma(P, Q)$ denote the set of couplings of P and Q.

[^0]: ${ }^{1}$ This usage of \widetilde{O} (without declaring what polylogarithmic factors are hidden) is somewhat controversial in the community, but it significantly saves on space for some very hairy theorem statements. I promise I will declare if anything particularly nefarious is being hidden by \widetilde{O}; otherwise, it should be reasonable from context clues.
 ${ }^{2}$ If $\mathbf{A} \in \mathbb{R}^{n \times d}$, we usually assume for simplicity that $\mathcal{T}_{\mathrm{mv}}(\mathbf{A})=\Omega(n+d)$, as we must at least process the input and write down the output. If \mathbf{A} has all-zero columns or rows, we can first drop them and reduce the dimension.

