
CS395T: Continuous Algorithms, Part X
Interior-point methods

Kevin Tian

1 Self-concordance
In Part III, we developed the mirror descent algorithm, which associated a convex set X with a
regularizer ϕ : X → R, satisfying certain compatible regularity conditions with the geometry of
X . Specifically, in analyzing mirror descent we assumed that X was bounded with respect to a
norm ‖·‖, and that ϕ was strongly convex in the same norm. In this lecture, we explore a different
way of designing optimization algorithms which cater to the geometry of a constraint set. As we
will see, the geometric viewpoint we develop is somewhat more explicitly tied to the function ϕ,
which induces a “local geometry” pointwise in X through the curvature of its Hessian ∇2ϕ. The
benefit of this characterization is that we have strong control of the local behavior of ϕ, enabling
us to develop algorithms with significantly improved convergence behavior in small neighborhoods.
As a payoff of building this viewpoint, in Sections 3 and 4 we introduce interior-point methods, a
landmark algorithmic framework which has been highly influential in both the theory and practice
of linear programming, as well as solving other structured convex programs.1

We now make this intuition formal. Throughout, we let X ⊆ Rd be an open convex set, and we let
ϕ : X → R be a barrier function, which means that ϕ(x)→∞ as x approaches the boundary of the
closure of X . We begin with a one-dimensional definition of self-concordance, the key structural
assumption on ϕ which gives us the aforementioned local control.

Definition 1 (Self-concordance in R). Let X ⊆ R be convex and open, and let ϕ : X → R be
three-times differentiable and a barrier function. We say ϕ is a self-concordant barrier for X if

|ϕ′′′(x)| ≤ 2 (ϕ′′(x))
3
2 for all x ∈ X .

We observe that Definition 1 implies that ϕ is convex, as ϕ′′ ≥ 0 pointwise on X . To give a
motivating example, consider ϕ(x) := − log(x), on X := R>0. Clearly ϕ explodes as x → 0, the
boundary of X . Moreover, a simple computation shows

|ϕ′′′(x)| =
∣∣∣∣ 2

x3

∣∣∣∣ , ϕ′′(x) =
1

x2
, (1)

so indeed ϕ is a self-concordant barrier for X . For a list of one-dimensional self-concordant barrier
functions for various constraint sets, we refer the reader to Lemma 5.38, [LV23]. One crucial aspect
of Definition 1 is that it is affine-invariant: if ϕ is a self-concordant barrier for X ⊆ R, then for any
a, b ∈ R, ϕ(a ·+b) is a self-concordant barrier for aX + b := {ax+ b | x ∈ X}.

We now move on to defining a multivariate extension of Definition 1.

Definition 2 (Self-concordance). Let X ⊆ Rd be convex and open, and let ϕ : X → R be three-
times differentiable and a barrier function. We say ϕ is a self-concordant barrier for X if, letting
T(x) := ∇3ϕ(x) and H(x) := ∇2ϕ(x) for notational simplicity,

−2 ‖v‖H(x) H(x) � T(x)[v, ·, ·] � 2 ‖v‖H(x) H(x) for all x ∈ X , v ∈ Rd.

To demystify Definition 2, we provide the following equivalent, more intuitive definition.
1For example, Karmarkar’s interior-point method [Kar84] appeared on the cover of the New York Times [Gle84].

1

Lemma 1. In the setting of Definition 2, ϕ is a self-concordant barrier for X iff for all v ∈ Rd, x ∈
X , the restriction ϕv,x(t) = ϕ(x+ tv) is self-concordant for all t ∈ R such that x+ tv ∈ X .

Proof. If Definition 2 holds, then ϕv,x is indeed self-concordant, since this is implied by

|T(x+ tv)[v, v, v]| ≤ 2 ‖v‖
3
2

H(x+tv) ,

which is true by assumption. On the other hand, suppose all the one-dimensional restrictions are
self-concordant. This means that for all x ∈ X , the trilinear form T̃ whose action is given by

T̃[u, v, w] = T
[
H−

1
2u,H−

1
2 v,H−

1
2w
]
, for T := T(x), H := H(x),

satisfies T̃[v, v, v] ≤ 2 for all ‖v‖2 ≤ 1, since this is equivalent to T[v, v, v] ≤ 2 ‖v‖3/2H . Similarly,
the condition in Definition 2 is equivalent to T̃[u, v, v] ≤ 2 for all ‖u‖2 , ‖v‖2 ≤ 1. The conclusion
follows because for every symmetric trilinear form T̃, it is the case that T̃[u, v, w] is maximized over
‖u‖2 , ‖v‖2 , ‖w‖2 ≤ 1 by some triplet with u = v = w (for a proof, see Section 2.3, [Nem04]).

One useful aspect of Definition 2 is that it satisfies composition properties.

Lemma 2. Let X ,X ′ ⊆ Rd be convex and open, and let ϕ, φ be three-times differentiable and
barrier functions for X ,X ′ respectively.

1. If ϕ, φ are self-concordant barriers for X ,X ′ respectively, then ϕ + φ is a self-concordant
barrier for X ∩ X ′.

2. If ϕ is a self-concordant barrier for X , for any A ∈ Rd×n, b ∈ Rd, the function ϕA,b(y) :=
ϕ(Ay + b) is a self-concordant barrier for Y := {y ∈ Rn | Ay + b ∈ X}.

Proof. To see the first claim, fix x ∈ X ∩X ′, v ∈ Rd, and consider the one-dimensional restrictions
ϕv,x, φv,x as defined in Lemma 1. We have for all t such that x+ tv ∈ X ∩ X ′,∣∣ϕ′′′v,x(t) + φ′′′v,x(t)

∣∣ ≤ ∣∣ϕ′′′v,x(t)
∣∣+
∣∣φ′′′v,x(t)

∣∣
≤ 2

(
ϕ′′v,x(t)

) 3
2 + 2

(
φ′′v,x(t)

) 3
2 ≤ 2

(
ϕ′′v,x(t) + φ′′v,x(t)

) 3
2 ,

since (a + b)3/2 ≥ a3/2 + b3/2 for all a, b ≥ 0. To see the second claim, again consider a one-
dimensional restriction [ϕA,b]v,x, such that

[ϕA,b]v,x(t) = ϕ ((Ax+ b) + tAv) .

It hence suffices to show that for all v, x such that Ax+ b ∈ X ,

|T[Av,Av,Av]| ≤ 2 ‖Av‖
3
2

H ,

for T := ∇3ϕ(Ax+b+tAv), H := ∇2ϕ(Ax+b+tAv), which follows via Lemma 1 with v ← Av.

We will give an application of Lemma 2 to the setting where X is a polytope {x ∈ Rd | Ax ≤ b} at
the end of the section. In the remainder of the section, unless otherwise specified, we fix an open,
convex X ⊆ Rd, and let ϕ be a self-concordant barrier for X . We also let T(x) := ∇3ϕ(x) and
H(x) := ∇2ϕ(x) for shorthand, and abbreviate the quadratic norm2 in the Hessian and its dual:

‖v‖x := ‖v‖H(x) , ‖v‖x,∗ := ‖v‖H(x)† , for all x ∈ X , v ∈ Rd.

We next develop a crucial implication of Definition 2: in appropriate local neighborhoods, we can
capture the behavior of ϕ using a quadratic model in ∇2ϕ. To make this more precise, we introduce
the following definition of a local neighborhood around a point x ∈ X induced by ‖·‖x.

Definition 3 (Dikin ellipse). Let ϕ be a self-concordant barrier for convex, open X ⊆ Rd, and let
r ≥ 0. We define the Dikin ellipse at x ∈ X by

Ex(r) := {y ∈ X | ‖y − x‖x ≤ r} .
2If H(x) is degenerate, i.e. it has a kernel, then ‖·‖H(x) is technically only a seminorm, rather than a norm.

2

We are now ready to state and prove the key local regularity condition imposed by self-concordance.

Lemma 3. Let ϕ be a self-concordant barrier for convex, open X ⊆ Rd. If ‖y − x‖x < 1,

(1− ‖y − x‖x)
2
H(x) � H(y) � 1

(1− ‖y − x‖x)
2 H(x).

Proof. Let v := y − x, xt := x+ tv, and φ(t) := ‖v‖2xt
. Then, by self-concordance,

|φ′(t)| = |T(xt) [v, v, v]| ≤ 2 ‖v‖3xt
= 2φ(t)

3
2 . (2)

Rearranging shows that for t ∈ [0, 1],∣∣∣∣∣ ddt 1√
φ(t)

∣∣∣∣∣ ≤ 1 =⇒ 1√
φ(t)

≥ 1√
φ(0)

− t =⇒ φ(t) ≤ φ(0)(
1− t

√
φ(0)

)2 .

Next, for any u ∈ Rd, let ψ(t) := ‖u‖2xt
. By a variant of the calculation (2), where we obtain a

trilinear form applied to (v, u, u,), we have |ψ′(t)| ≤ 2
√
φ(t)ψ(t), so that∣∣∣∣ ddt logψ(t)

∣∣∣∣ ≤ 2
√
φ(t) ≤

2
√
φ(0)

1− t
√
φ(0)

=⇒
∣∣∣∣log

ψ(1)

ψ(0)

∣∣∣∣ ≤ ∫ 1

0

2
√
φ(0)

1− t
√
φ(0)

dt = 2 log

(
1

1−
√
φ(0)

)
.

Rearranging and using
√
φ(0) = ‖y − x‖x gives the result, since ψ(1) = ‖u‖2y and ψ(0) = ‖u‖2x.

Lemma 3 shows that as long as y is in the interior of Ex(1), H(y) approximates H(x) up to a
constant. In other words, the Hessian of ϕ is multiplicatively stable within Dikin ellipses of radius
1. Because of the barrier property of ϕ, i.e. ϕ → ∞ when approaching the boundary of X , this
also implies that the interiors of all Dikin ellipses Ex(1) are contained in X .

We introduce one additional parameterization of self-concordant functions, which is important in
applications because it gives us control of how the minimizers of self-concordant barriers change
under multiplicative perturbations. In particular, in Sections 2 and 3 we will use the norm of the
gradient as a potential measuring the optimality of iterates for minimizing self-concordant barrier
functions. The following definition bounds the worst-case gradient norm over a set.

Definition 4 (ν-self-concordance). In the setting of Definition 2, for ν ≥ 0, we say ϕ is a ν-self-
concordant barrier for X if it is a self-concordant barrier for X , and

(∇ϕ(x)) (∇ϕ(x))
> � νH(x) for all x ∈ X .

An equivalent characterization to Definition 4 when H(x) is full rank is simply that

‖∇ϕ(x)‖x,∗ ≤
√
ν for all x ∈ X .

When H(x) is degenerate, ν-self-concordance imposes both the above condition and that ∇ϕ(x) ∈
Span(H(x)) pointwise. Namely, while self-concordance shows that X is locally “large” when viewed
through the local norm induced by H(x) (since it contains the interior of Ex(1)), i.e. it lower bounds
the size of X in this local norm, ν-self-concordance further upper bounds X in the direction of
∇ϕ(x). This property was called “explosure” in [Nem04], which we now formalize.

Lemma 4. Let ϕ be a ν-self-concordant barrier for convex, open X ⊆ Rd. If v ∈ Rd, x ∈ X satisfy
〈∇ϕ(x), v〉 > 0, then for all t ≥ ν

〈∇ϕ(x),v〉 , we have x+ tv 6∈ X .

Proof. For all t ≥ 0, define xt := x+ tv, φ(t) := 〈∇ϕ(xt), v〉, and φ′(t) = H(xt)[v, v]. We observe
that ν-self-concordance implies that φ(t)2 ≤ νφ′(t), so that

d
dt

(
− 1

φ(t)

)
≥ 1

ν
=⇒ − 1

φ(t)
≥ − 1

φ(0)
+
t

ν
=⇒ φ(t) ≥ νφ(0)

ν − tφ(0)
.

Now, if xt ∈ X , φ(t) is bounded, so the above inequality implies ν−tφ(0) > 0, and rearranging yields
the conclusion, by taking the contrapositive of the desired claim and using φ(0) = 〈∇ϕ(x), v〉.

3

Lemma 4 shows that if v is a vector with unit size when measured in the direction of ∇ϕ(x), then
x+νv is no longer in the set X . In other words, there is a limit to how much we can perturb points
by their gradients ∇ϕ(x) while not leaving X , and ν-self-concordance parameterizes the maximum
perturbation. We next give an analogous composition property of Definition 4, extending Lemma 2.

Lemma 5. Let X ,X ′ ⊆ Rd be convex and open, and let ϕ, φ be three-times differentiable and
barrier functions for X ,X ′ respectively.

1. If ϕ, φ are ν-self-concordant and µ-self-concordant barriers for X ,X ′ respectively, then ϕ+φ
is a (ν + µ)-self-concordant barrier for X ∩ X ′.

2. If ϕ is a ν-self-concordant barrier for X , for any A ∈ Rd×n, b ∈ Rd, the function ϕA,b(y) :=
ϕ(Ay + b) is a ν-self-concordant barrier for Y := {y ∈ Rn | Ay + b ∈ X}.

Proof. We proved all the properties required in Lemma 2, except for the gradient norm bound
required by Definition 4, which we prove presently. For the first claim, for any u ∈ Rd,

|〈∇ϕ(x) +∇φ(x), u〉| ≤ |〈∇ϕ(x), u〉|+ |〈∇φ(x), u〉|

≤
√
ν · ∇2ϕ(x)[u, u] +

√
µ · ∇2φ(x)[u, u]

≤
√
ν + µ ·

√
∇2ϕ(x)[u, u] +∇2φ(x)[u, u],

where the last line used the Cauchy-Schwarz inequality. Squaring then gives the desired (ν + µ)-
self-concordance of ϕ+ φ. For the second claim, ν-self-concordance of ϕA,b is equivalent to

(A∇ϕ(x)) (A∇ϕ(x))
> � νAH(x)A>,

which follows from ν-self-concordance of ϕ.

To give a motivating example tying together this section, and to introduce some calculations which
will be used in Section 4, we finally give a self-concordant barrier over a polytope.

Lemma 6. Let A ∈ Rn×d have rows {ai}i∈[n], let b ∈ Rn, and define the polytope

X := {x | Ax < b} .

Then ϕ is an n-self-concordant barrier for X , where

ϕ(x) := −
∑
i∈[n]

log
(
bi − a>i x

)
. (3)

Proof. To establish that Definition 2 holds for this choice of ϕ, we first observe that letting Y :=
Rn>0, applying the first property in Lemma 2 shows that −

∑
i∈[n] log(yi) is a self-concordant barrier

for Y, because − log(y) is a self-concordant barrier for R>0 as shown by (1). Therefore, applying
the second property in Lemma 2 shows that ϕ is a self-concordant barrier for X , under the affine
transformation y = b−Ax which sends X to Y. We can establish the bound ν = m in Definition 4
using a similar argument, where we apply Lemma 5 in place of Lemma 2.

We instead present a more direct calculation, to introduce some useful computations specialized
to (3). Letting ϕ be as in (3) and x ∈ X , we derive3

∇ϕ(x) = A>S−1
x 1n, ∇2ϕ(x) = A>S−2

x A,

where sx := b−Ax, S := diag (sx) .
(4)

Then, we have the desired n-self-concordance from the following calculation: for any v ∈ Rd,

(〈v,∇ϕ(x)〉)2
=
〈
1n,S

−1
x Av

〉2 ≤ n∥∥S−1
x Av

∥∥2

2
= n∇2ϕ(x)[v, v].

3The definition of the variable sx in (4) corresponds to the slack variables on x ∈ X , i.e. sx = b−Ax captures
how close the constraints Ax ≤ b are to being violated.

4

2 Newton’s method
In this section, we analyze an algorithm for optimizing self-concordant barriers ϕ when initialized
at a point which is already close to the minimizer. Intuitively, this is possible in a Dikin ellipse
centered at the minimizer of ϕ, because Lemma 3 shows that in this local region the Hessian of ϕ
is multiplicatively stable, and hence can be used as a preconditioner for gradient descent in this
region (Section 1, Part VIII), where the function is well-approximated by a quadratic.

We demonstrate this phenomenon formally by analyzing gradient descent in an appropriate norm.
Specifically, consider a step of Newton’s method, where we take a step

x′ ← argminx

{
ϕ(x) + 〈∇ϕ(x), x′ − x〉+

1

2η
‖x′ − x‖2∇2ϕ(x)

}
,

where we make the tautological assumption that x′ stays in Ex(1) for now, such that ∇2ϕ(x′) ≈
∇2ϕ(x) so the approximation above is a reasonable model for how ϕ(x′) behaves, by a second-order
Taylor expansion. By directly computing the minimizer, this suggests using

x′ ← x− η
(
∇2ϕ(x)

)†∇ϕ(x) (5)

as our update. Now to fulfill our earlier assumption that x′ ∈ Ex(1), we need ‖x′ − x‖2x to be small,
which by a direct computation (up to rescaling by η factors) is:

‖∇ϕ(x)‖2x,∗ =
(
∇2ϕ(x)

)†
[∇ϕ(x),∇ϕ(x)] . (6)

We call the quantity in (6) the Newton decrement, and it often serves as a potential function for
analyzing the progress made by Newton’s method (5). We first show the aforementioned intuition
regarding stability of ∇2ϕ along (5) holds true, if the initial Newton decrement is small.

Lemma 7. Let ϕ be a self-concordant barrier for convex, open X ⊆ Rd. If x ∈ X has ‖∇ϕ(x)‖x,∗ ≤
∆, then letting x′ be defined as in (5), if η∆ < 1,

(1− η∆)
2
H(x) � H(xλ) � 1

(1− η∆)
2 H(x),

where xλ := (1− λ)x+ λx′ for all λ ∈ [0, 1].

Proof. This immediately follows from Lemma 7 with y ← xλ, using

‖xλ − x‖x ≤ η ‖∇ϕ(x)‖x,∗ ≤ η∆.

Note that for constant η, Lemma 7 shows that the condition number of H(xλ) relative to H(x),
for xλ on the line along the Newton’s method update, is 1 +O(∆). This suggests that in principle
(e.g. as Lemma 1, Part VIII would suggest), we should be able to decrease our current distance to
the optimizer by a multiplicative O(∆) factor, which improves when ∆ is already small. We show
this is indeed the case for the Newton decrement, in the following more general analysis.

Lemma 8. Let ϕ : X → R be twice-differentiable, where X ⊆ Rd is convex. Let H ∈ Sd×d�0 and
x ∈ Rd, and suppose ∇ϕ(y) ∈ Span(H) for all y ∈ X . Defining xλ := x − ληH†∇ϕ(x) for all
λ ∈ [0, 1] and some η > 0, suppose that for 0 < µ ≤ L, we have

xλ ∈ X , µH � ∇2ϕ(xλ) � LH, for all λ ∈ [0, 1]. (7)

Then, for x′ := x− ηH†∇ϕ(x),

‖∇ϕ(x′)‖H† ≤ max (|1− ηµ| , |1− ηL|) ‖∇ϕ(x)‖H†

Proof. By the fundamental theorem of calculus,

∇ϕ(x′)−∇ϕ(x) =

∫ 1

0

∇2ϕ(xλ)(x1 − x0)dλ = −η
∫ 1

0

∇2ϕ(xλ)H†∇ϕ(x)dλ.

5

Next, by rearranging the above display and left-multiplying by H
†
2 , we have

H
†
2∇ϕ(x′) =

(
Id − η

∫ 1

0

H
†
2∇2ϕ(xλ)H

†
2 dλ

)
H

†
2∇ϕ(x).

We further have, by using (7) and letting ΠSpan(H) be the projection matrix onto Span(H),

ηµΠSpan(H) � η
∫ 1

0

H
†
2∇2ϕ(xλ)H

†
2 dλ � ηLΠSpan(H)

=⇒
∥∥∥∥ΠSpan(H) − η

∫ 1

0

H
†
2∇2ϕ(xλ)H

†
2 dλ

∥∥∥∥
op
≤ max (|1− ηµ| , |1− ηL|) .

The conclusion follows by combining the above two displays and taking `2 norms, where we use
∇ϕ(x) ∈ Span(H), and ‖H

†
2∇ϕ(x)‖2 = ‖∇ϕ(x)‖x,∗, ‖H

†
2∇ϕ(x′)‖2 = ‖∇ϕ(x′)‖x,∗.

By combining Lemmas 7 and 8, we finally give our analysis of Newton’s method (6).

Proposition 1. Let ϕ be a ν-self-concordant barrier for convex, open X ⊆ Rd and for ν > 0. If
x ∈ X has ‖∇ϕ(x)‖x,∗ ≤ ∆ < 1

5 , then letting x′ be defined as in (5) with η = 1, we have

‖∇ϕ(x′)‖x′,∗ ≤ 4∆2.

Proof. Let H ← ∇2ϕ(x) and η ← 1 in the context of Lemma 8, which is valid because ν-self-
concordance implies ∇ϕ(x) ∈ Span(H(x)), and Span(H(·)) does not change within the Dikin
ellipse Ex(1) due to Lemma 3. Lemma 7 then shows that (7) holds with L = (1 − ∆)−2 and
µ = (1−∆)2. Therefore, Lemma 3 implies

‖∇ϕ(x′)‖x,∗ ≤
2∆−∆2

(1−∆)2
‖∇ϕ(x)‖x,∗ .

The claim follows from H(x′)† � (1−∆)−2H(x) and (2∆−∆2)(1−∆)−3 ≤ 4∆ for ∆ ∈ (0, 1
5).

Proposition 1 shows that the rate of improvement of the Newton decrement potential, when iter-
ating (5) for self-concordant ϕ, is proportional to the initial Newton decrement ‖∇ϕ(x)‖x,∗ itself,
if it was already small. This rate of convergence is sometimes called quadratic by the continuous
optimization community, similar to the discussion of linear convergence rates in Section 4, Part II.

Remark 1. Proposition 1 gives one way to use stability of the Hessian of a convex function to
bound the progress of Newton’s method (5). Beyond the multiplicative stability afforded by self-
concordance via Lemma 7, another common assumption is that the Hessian of our objective is
Lipschitz (analogous to Lipschitzness of the gradient, i.e. Definition 3, Part II), which is an additive
stability assumption. A natural algorithm called the cubic-regularized Newton’s method, which
builds upon our smooth gradient descent intuition from Section 3, Part III, and uses a third-order
regularization of a second-order Taylor expansion, was analyzed in [NP06, Nes08]. These results
were subsequently generalized to Lipschitzness of the pth-order derivative [Nes21], and accelerated
to obtain near-optimal dependence on the iteration count in the convergence rate [MS13, GDG+19].
Finally, all extraneous logarithmic factors were removed in the recent works [CHJ+22, KG22]. For
a more detailed exposition on these and related results, we refer the reader to Chapter 11, [Sid23].

3 Interior-point methods
In this section, we give a simple algorithmic framework for minimizing linear functions c>x over
an open convex set X ⊆ Rd, assuming that X admits a self-concordant barrier ϕ. Our strategy is
to consider a family of regularized objectives and their minimizers,4

ϕc,t(x) :=
1

t
c>x+ ϕ(x), x?c,t := argminx∈X {ϕc,t(x)} , for t ≥ 0. (8)

4Although X is open, because ϕ is a barrier for X , we can restrict our domain of consideration to a closed subset
of X , so the minimizer exists from compactness.

6

Note that as t → 0, x?c,t approaches the desired minimizer of c>x over X . On the other hand, as
t → ∞, x?c,t approaches the minimizer of ϕ. The set {x?c,t}t≥0 is then an interpolation between
these two extremes, and is called the central path, see e.g. [Gon92] for more on this perspective.

The key idea of path following interior-point methods is to alternate steps which track the central
path closely via Newton updates, and steps which decrement the t parameter to advance along
the central path. Specifically, we implement this by taking a point x which is close to x?c,t for a
given value of t (as measured by its Newton decrement), decreasing t (which potentially increases
the Newton decrement due to the changed objective), and then taking a step of Newton’s method
to improve the Newton decrement. As we will see, the maximum amount we can change t by per
iteration is closely related to the ν parameter in Definition 4, as shown in the following.

Theorem 1 (Path following interior-point method). Let ϕ be a ν-self-concordant barrier for
convex, open X ⊆ Rd where ν ≥ 1.5 Suppose that we have x0 ∈ X , t0 ∈ R>0 such that
1
t0
‖c‖x0,∗ + ‖∇ϕ(x0)‖x0,∗ ≤ 1

16 . Then for any ε > 0, we can compute a point x̂ such that

‖c+ ε∇ϕ(x̂)‖x̂ ≤ ε,

using T evaluations to ∇ϕ and ∇2ϕ, and T linear system solves in d× d matrices, for

T = O

(√
ν log

t0
ε

)
.

Proof. We define a sequence {xk, tk}k≥0, where we iteratively define tk+1 ← (1− 1
48
√
ν

)tk until we
reach tk = ε. In each iteration k+1, we then take one Newton step from xk using the self-concordant
barrier ϕc,tk+1

to obtain xk+1, maintaining the invariant that in all iterations k,

‖∇ϕc,tk(xk)‖xk,∗ ≤
1

16
.

This invariant holds at initialization, i.e. k = 0, by assumption. We proceed by induction: suppos-
ing the above invariant holds in iteration k, by the triangle inequality,∥∥∇ϕc,tk+1

(xk)
∥∥
xk,∗

=

∥∥∥∥ 1

tk+1
c+∇ϕ(xk)

∥∥∥∥
xk,∗

≤ 1

1− 1
48
√
ν

∥∥∥∥ 1

tk
c+∇ϕ(xk)

∥∥∥∥
xk,∗

+

1
48
√
ν

1− 1
48
√
ν

‖∇ϕ(xk)‖xk,∗

≤ 1

1− 1
48
√
ν

· 1

16
+

1

48− 1√
ν

≤ 1

8
.

Therefore, taking one Newton iteration as in Proposition 1 to define xk+1 yields the invariant in
iteration k + 1. The conclusion follows because we only need O(

√
ν log t0

ε) iterations until tk = ε,
and then we can multiply the definition of the Newton decrement by ε to obtain the claim.

We comment on the initialization and termination conditions (i.e. choices of x0, t0, ε) in the special
case of linear programming in the following Section 4, but note that in many applications, t0

ε
is polynomially-bounded in relevant problem parameters, and a corresponding feasible x0 can
be found in polynomial time. Moreover, at least three different barrier functions in the literature
[NN94, Hil14, Fox15, BE19] have been constructed for arbitrary open convex sets X ⊆ Rd achieving
ν = O(d).6 In principle, this shows that linear optimization over any convex set in Rd can be
performed in ≈

√
d iterations, each assuming access to the gradient and Hessian of an appropriate

barrier function. In fact, because optimization of arbitrary (potentially nonlinear) functions f can
be phrased as linear optimization over the epigraph epi(f), i.e. minimize t such that (x, t) ∈ epi(f),
this implies a similar result for nonlinear convex optimization. Of course, we have not discussed the
computational complexity of accessing these O(d)-self concordant barriers, which is not known to be
performable exactly in polynomial time for any of the aforementioned constructions. Nonetheless,
we describe in Section 4 how these ideas and more have led to a revolution in the theoretical
complexity of linear programming over the last decade.

5This assumption is without loss of generality, since if ν < 1, ϕ is also a 1-self-concordant barrier, and running
this proof with ν ← 1 instead uses only a logarithmic number of iterations.

6Two of these have since been improved to satisfy ν = d, with no additional constant [LY21, Che23]. This is
optimal and the hypercube is a tight instance, as shown in Proposition 2.3.6, [NN94].

7

Remark 2. The path following interior-point method described in Theorem 1 is sometimes called
a short step interior-point method, because it chooses a small update to the t parameter in each
iteration to maintain approximate centrality (i.e. a Newton decrement of constant size). There
are other frameworks for designing interior-point methods which can perform better in practice,
however, by exploiting the fact that the worst-case analysis of how approximate centrality measures
change need not apply in every iteration, so one can sometimes make more progress by using a
more adaptive algorithm. Examples include long step, predictor-corrector, and potential reduction
interior-point methods. For more on these frameworks, we refer the reader to [NN94, Ye98].

4 Linear programming
In this section, we provide a short discussion on how the ideas in Section 3 have improved the
runtime of solving linear programs in a constraint matrix A ∈ Rn×d, with n ≥ d, over the past
decade. We note that all algorithms in this section run in weakly-polynomial time, i.e. they incur
logarithmic dependence on a final precision parameter, rather than returning exact solutions. It is
a well-known open problem (see e.g. Smale’s 9th problem [Sma98]) to determine whether general
linear programming is solvable in strongly-polynomial time. For an exposition on the state-of-
the-art exact solvers and the parameters their runtimes depend on, we defer to [DNV20]. For the
remainder of the section, we focus primarily on the following linear program:

min
x∈Rd

Ax≤b

c>x. (9)

We refer to the optimal argument in (9) by x?.

Initialization and termination. In the linear programming setting, where ϕ is defined as in
(3) (and we follow the notation in (4), (8)), we first observe that it suffices to approximate x?c,t
where t is not too small in order to obtain an approximately-optimal solution. Specifically, suppose
we wish for ∆ additive suboptimality to (9). We claim it suffices to approximate x?c,t for t = ∆

2n .
To see this, for the stated value of t, the optimality condition on x?c,t shows that

c

t
= −∇ϕ(x?c,t) = −A>S−1

x?
c,t
1n

=⇒ c>
(
x?c,t − x?

)
= t
〈
S−1
x?
c,t
1n,A(x? − x?c,t)

〉
= t
〈
S−1
x?
c,t
1n, sx?

c,t
− sx?

〉
≤ tn ≤ ∆

2
,

where we used the calculation (4), and the fact that all slack variables are nonnegative in the first
inequality. Moreover, for the above value of t, it suffices to obtain an x whose Newton decrement
is bounded by a polynomial in ∆, t, and n, via directly bounding the suboptimality gap using local
strong convexity and smoothness (this is described in more detail in Chapter 12, [Sid23]).

Regarding initialization, in many combinatorial linear programs one can find an initial feasible point
x̂0; more generally this can be achieved by reparameterizing the problem with additional dimensions
in a way which does not significantly affect the objective value. Next, the key observation is that
x̂0 is the optimal point on the central path for a different cost function, ĉ := −∇ϕ(x̂0), because

x̂0 = argminx∈Rd

Ax≤b
{〈ĉ, x〉+ ϕ(x0)}

by the first-order optimality condition. Therefore, we can run the interior-point method in Theo-
rem 1 in reverse starting from t = 1, until t is a sufficiently large value that we can switch the cost
function from ĉ to c while negligibly affecting the centrality parameter (Newton decrement).

Altogether, putting together Theorem 1 with the strategies described above gives an algorithm
which requires ≈

√
n iterations, due to the self-concordance parameter bound in Lemma 6. More-

over, each iteration of the interior-point method computes slack variables Sx and performs a single
Newton step using the gradient and Hessian calculations in (4). The naïve cost of implementing
each iteration is dominated by computing the Hessian, which requires ≈ ndω−1 time.

8

Reducing the iteration count. The first recent progress made towards significantly improv-
ing the framework discussed previously was achieved by [LS14] (and subsequently simplified and
improved in [LS19]), who showed that there is an efficiently computable barrier for polytopes with
self-concordance parameter ≈ d, up to logarithmic factors. Recall from the discussion following
Theorem 1 that such a result was known to be achievable for arbitrary convex sets, but the cor-
responding barrier may not be efficiently computable. The [LS14] barrier was based on an `p
generalization of the leverage scores introduced in Section 3, Part VIII, which are used to reweight
the constraints in the uniformly-weighted barrier in Lemma 6. These reweighting coefficients can
be interpreted as local importance scores on the constraints, and are based on `p generalizations
of leverage scores called Lewis weights [Lew78], which were introduced to the theoretical computer
science community by [CP15]. Importantly, the runtime of each iteration of the [LS14] interior-
point method is also dominated by computation and inversion of an appropriate Hessian matrix.
This result generically improved the iteration complexity of linear programming from ≈

√
n to

≈
√
d, which can be a significant savings when there are many more constraints than variables.

Reducing the cost per iteration. The next sequence of developments in improving the run-
time of linear programming was based on an idea from [Vai89], who noticed that because all of the
Newton’s method steps were based on closely-related matrices of the form A>S−2

k A for a diagonal
slack matrix Sk computed in each iteration, as long as Sk does not multiplicatively change signif-
icantly over the course of an iteration, the previous inverse can still be used as a preconditioner
in the next iteration. Moreover, even if a few slack variables change by a large amount in a given
iteration, low-rank update formulas such as the Sherman-Morrison-Woodbury identity (a gener-
alization of Eq. (16), Part VIII) can be used to speed up the cost of recomputing a new inverse
matrix. The key technical difficulty in executing this plan is to carefully trade off how often these
large slack moves occur, how to detect the large changes, and how often the inverse is partially
recomputed. These ideas were refined in [LS15, CLS19], derandomized in [vdB20], and slightly
improved in [JSWZ21] in certain regimes of the matrix multiplication exponent. As a result of
these efforts, we now know how to solve linear programs in time ≈ max(n, d)ω for any value of
ω > 2 + 1

18 , matching the cost of square matrix multiplication up to polylogarithmic overhead.

The frontier. The current state-of-the-art linear programming solver in theory, for general lin-
ear programs with n � d, is due to [vdBLL+21] (improving upon [vdBLSS20]), which achieved a
runtime of ≈ nd+ d2.5. To see why this runtime is surprising, the mere cost of computing a single
matrix-vector product through A (let alone matrix-matrix products or matrix inversions) in each
of
√
d iterations is at least nd1.5, which is already larger than the stated runtime if implemented

naïvely. This runtime bottleneck was sidestepped by using a careful combination of data struc-
tures, including a heavy-hitters data structure which detects the aforementioned large coordinate
moves requiring a partial recomputation of an inverse matrix for Newton’s method. Finally, we
mention that similar techniques have since been used to speed up the state-of-the-art in related
problems solvable using interior-point methods, such as structured empirical risk minimization
[LSZ19] and semidefinite programming [JKL+20, HJS+22]. For a detailed exposition on these and
other advanced techniques in algebraic methods for algorithm design, see [vdB22].

9

Source material
Portions of this lecture are based on reference material in [NN94, LV23, Sid23], as well as the
author’s own experience working in the field.

References
[BE19] Sébastien Bubeck and Ronen Eldan. The entropic barrier: Exponential families,

log-concave geometry, and self-concordance. Math. Oper. Res., 44(1):264–276, 2019.

[Che23] Sinho Chewi. The entropic barrier is n-self-concordant. pages 209–222, 2023.

[CHJ+22] Yair Carmon, Danielle Hausler, Arun Jambulapati, Yujia Jin, and Aaron Sidford.
Optimal and adaptive monteiro-svaiter acceleration. In Advances in Neural Informa-
tion Processing Systems 35: Annual Conference on Neural Information Processing
Systems 2022, NeurIPS 2022, 2022.

[CLS19] Michael B. Cohen, Yin Tat Lee, and Zhao Song. Solving linear programs in the
current matrix multiplication time. In Proceedings of the 51st Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2019, pages 938–942. ACM, 2019.

[CP15] Michael B. Cohen and Richard Peng. lp row sampling by lewis weights. In Proceedings
of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC
2015, pages 183–192. ACM, 2015.

[DNV20] Daniel Dadush, Bento Natura, and László A. Végh. Revisiting tardos’s framework
for linear programming: Faster exact solutions using approximate solvers. In 61st
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020, pages
931–942. IEEE, 2020.

[Fox15] Daniel F. J. Fox. A schwarz lemma for kähler affine metrics and the canonical potential
of a proper convex cone. Annali di Matematica Pura ed Applicata, 194:1–42, 2015.

[GDG+19] Alexander V. Gasnikov, Pavel E. Dvurechensky, Eduard Gorbunov, Evgeniya A.
Vorontsova, Daniil Selikhanovych, César A. Uribe, Bo Jiang, Haoyue Wang, Shuzhong
Zhang, Sébastien Bubeck, Qijia Jiang, Yin Tat Lee, Yuanzhi Li, and Aaron Sidford.
Near optimal methods for minimizing convex functions with lipschitz p-th derivatives.
In Conference on Learning Theory, COLT 2019, volume 99 of Proceedings of Machine
Learning Research, pages 1392–1393. PMLR, 2019.

[Gle84] James Gleick. Breakthrough in problem solving. The New York Times, 1984.

[Gon92] Clóvis C. Gonzaga. Path-following methods for linear programming. SIAM Rev.,
34(2):167–224, 1992.

[Hil14] Roland Hildebrand. Canonical barriers on convex cones. Math. Oper. Res., 39(3):841–
850, 2014.

[HJS+22] Baihe Huang, Shunhua Jiang, Zhao Song, Runzhou Tao, and Ruizhe Zhang. Solving
SDP faster: A robust IPM framework and efficient implementation. In 63rd IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2022, pages 233–244.
IEEE, 2022.

[JKL+20] Haotian Jiang, Tarun Kathuria, Yin Tat Lee, Swati Padmanabhan, and Zhao Song.
A faster interior point method for semidefinite programming. In 61st IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2020, pages 910–918. IEEE,
2020.

[JSWZ21] Shunhua Jiang, Zhao Song, Omri Weinstein, and Hengjie Zhang. A faster algorithm
for solving general lps. In STOC ’21: 53rd Annual ACM SIGACT Symposium on
Theory of Computing, 2021, pages 823–832. ACM, 2021.

[Kar84] Narendra Karmarkar. A new polynomial-time algorithm for linear programming.
Comb., 4(4):373–396, 1984.

10

[KG22] Dmitry Kovalev and Alexander V. Gasnikov. The first optimal acceleration of high-
order methods in smooth convex optimization. In Advances in Neural Information
Processing Systems 35: Annual Conference on Neural Information Processing Systems
2022, NeurIPS 2022, 2022.

[Lew78] D. Lewis. Finite dimensional subspaces of `p. Studia Mathematica, 63(2):207–212,
1978.

[LS14] Yin Tat Lee and Aaron Sidford. Path finding methods for linear programming: Solv-
ing linear programs in Õ(

√
rank) iterations and faster algorithms for maximum flow.

In 55th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2014,
pages 424–433. IEEE Computer Society, 2014.

[LS15] Yin Tat Lee and Aaron Sidford. Efficient inverse maintenance and faster algorithms
for linear programming. In IEEE 56th Annual Symposium on Foundations of Com-
puter Science, FOCS 2015, pages 230–249. IEEE Computer Society, 2015.

[LS19] Yin Tat Lee and Aaron Sidford. Solving linear programs with sqrt(rank) linear system
solves. CoRR, abs/1910.08033, 2019.

[LSZ19] Yin Tat Lee, Zhao Song, and Qiuyi Zhang. Solving empirical risk minimization in the
current matrix multiplication time. In Conference on Learning Theory, COLT 2019,
volume 99, pages 2140–2157. PMLR, 2019.

[LV23] Yin Tat Lee and Santosh Vempala. Techniques in Optimization and Sampling. 2023.

[LY21] Yin Tat Lee and Man-Chung Yue. Universal barrier is n-self-concordant. Math. Oper.
Res., 46(3):1129–1148, 2021.

[MS13] Renato D. C. Monteiro and Benar Fux Svaiter. An accelerated hybrid proximal
extragradient method for convex optimization and its implications to second-order
methods. SIAM J. Optim., 23(2):1092–1125, 2013.

[Nem04] Arkadi Nemirovski. Lecture Notes on Interior Point Polynomial Methods in Convex
Programming. 2004.

[Nes08] Yurii E. Nesterov. Accelerating the cubic regularization of newton’s method on convex
problems. Math. Program., 112(1):159–181, 2008.

[Nes21] Yurii E. Nesterov. Implementable tensor methods in unconstrained convex optimiza-
tion. Math. Program., 186(1):157–183, 2021.

[NN94] Yurii Nesterov and Arkadi Nemirovski. Interior-Point Polynomial Algorithms in Con-
vex Programming. Society for Industrial and Applied Mathematics, 1994.

[NP06] Yurii E. Nesterov and Boris T. Polyak. Cubic regularization of newton method and
its global performance. Math. Program., 108(1):177–205, 2006.

[Sid23] Aaron Sidford. Optimization Algorithms. 2023.

[Sma98] Stephen Smale. Mathematical problems for the next century. The Mathematical
Intelligencer, 20:7–15, 1998.

[Vai89] Pravin M. Vaidya. Speeding-up linear programming using fast matrix multiplication
(extended abstract). In 30th Annual Symposium on Foundations of Computer Science,
1989, pages 332–337. IEEE Computer Society, 1989.

[vdB20] Jan van den Brand. A deterministic linear program solver in current matrix mul-
tiplication time. In Proceedings of the 2020 ACM-SIAM Symposium on Discrete
Algorithms, SODA 2020, pages 259–278. SIAM, 2020.

[vdB22] Jan van den Brand. Dynamic Algebraic Algorithms Lecture Notes. 2022.

[vdBLL+21] Jan van den Brand, Yin Tat Lee, Yang P. Liu, Thatchaphol Saranurak, Aaron Sidford,
Zhao Song, and Di Wang. Minimum cost flows, mdps, and `1-regression in nearly
linear time for dense instances. In STOC ’21: 53rd Annual ACM SIGACT Symposium
on Theory of Computing, 2021, pages 859–869. ACM, 2021.

11

[vdBLSS20] Jan van den Brand, Yin Tat Lee, Aaron Sidford, and Zhao Song. Solving tall dense lin-
ear programs in nearly linear time. In Proceedings of the 52nd Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2020, pages 775–788. ACM, 2020.

[Ye98] Yinyu Ye. Interior point algorithms - theory and analysis. Wiley-Interscience series
in discrete mathematics and optimization. Wiley, 1998.

12

	Self-concordance
	Newton's method
	Interior-point methods
	Linear programming

