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1 Discrete Markov chains
In this lecture, we begin our exploration of algorithms for sampling from distributions. We specifi-
cally give tools for designing and analyzing Markov chain Monte Carlo algorithms, whose strategy
for producing samples from a target stationary distribution π is to run a random walk which con-
verges, in appropriate senses which we will make formal, to π. We focus this lecture on the discrete
Markov chain setting, where our goal is to produce a sample from a distribution π supported on
[d], which we view as a set of states that the random walk can take on.

A discrete Markov chain is specified by its transition matrix P ∈ Rd×d≥0 ; we view random walks and
transition matrices interchangeably. We let Pi: denote the distribution of one step of the random
walk starting at the state i ∈ [d]. This means Pij is the probability that a random walk starting
at i ∈ [d] moves to j ∈ [d], so Pi: ∈ ∆d, the probability simplex in Rd, for all i ∈ [d]. One pleasing
consequence of viewing the random walk transitions as matrices is we can easily compute the
evolution of distributions over [d], when taking steps according to P. To see this, let µ ∈ ∆d, and
observe that if we randomly choose a starting state i ∈ [d] proportional to µ, then the probability
we end up at state j ∈ [d] after taking one step of the random walk given by P is∑

i∈[d]

µiPij =
[
P>µ

]
j
.

Iterating on this calculation shows that the transition matrix given by taking k ∈ N steps of the
random walk in a row is Pk. We additionally observe that P1d = 1d since all rows of P are in ∆d,
so 1d is a right eigenvector of P with eigenvalue 1. This implies that there is a corresponding left
eigenvector π>, also of eigenvalue 1, which means π>P = π>. In other words, π is a stationary
distribution for P, which means that choosing an initial state according to π and taking one step
preserves the distribution π. We have shown that a stationary distribution always exists.

A natural follow-up question is: when is the stationary distribution (i.e. left eigenvector with
eigenvalue 1) unique? If our goal is to use P to induce a target distribution π, then we should at
least be sure our algorithm is well-posed, i.e. there are not two different target distributions π, π′
we could converge to. Towards this end, we aim to develop a better understanding of spectral
properties of P. We begin with a simple proof that the spectrum is bounded.

Lemma 1. If P ∈ Rd×d≥0 is a transition matrix with eigenvalue-eigenvector pair (λ, v), then |λ| ≤ 1.

Proof. By definition, ‖Pv‖∞ = |λ|‖v‖∞.1 However, we also know that ‖P‖∞→∞ = 1, since the
∞→∞ norm is the largest `1 norm of a row, and P is also a transition matrix. Therefore,

|λ| ‖v‖∞ = ‖Pv‖∞ ≤ ‖v‖∞ =⇒ |λ| ≤ 1.

To understand when there is a unique eigenvalue with magnitude 1, we turn to the Perron-Frobenius
theorem [Per07, Fro12], a famous result in matrix analysis which says that any square matrix which
is entrywise positive has a unique largest eigenvalue, that eigenvalue is real, and the corresponding
eigenvector has positive entries. The Perron-Frobenius theorem and Lemma 1 immediately imply

1We define the `∞ norm for complex vectors to be the largest magnitude of any entry.
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that for any P which is entrywise nonnegative, i.e. all transitions have positive probability, there
is a unique stationary distribution of the corresponding random walk. More generally, we require
the following definition to characterize uniqueness of stationary distributions.

Definition 1 (Irreducibility and aperiodicity). Let P ∈ Rd×d≥0 be a transition matrix.

1. We say P is irreducible if for all (i, j) ∈ [d]× [d], there exists k ∈ N such that Pk
ij 6= 0.2

2. We say P is aperiodic if for all i ∈ [d], {k ∈ N | Pk
ii 6= 0} has greatest common divisor 1.3

We now prove uniqueness of stationary distributions for irreducible and aperiodic transitions.

Proposition 1. Let P ∈ Rd×d≥0 be an irreducible and aperiodic transition matrix. Then, P has a
unique left eigenvector with eigenvalue 1 which is entrywise positive, and all other eigenvalues of
P have magnitude < 1.

Proof. We assert that for some k ∈ N, Pk is entrywise positive. Note that any eigenvector-
eigenvalue pair (λ, v) for P induces an eigenvector-eigenvalue pair for Pk. Moreover, Pk has a left
eigenvector with eigenvalue 1, because Pk

1d = 1d, and left and right eigenvectors come in pairs
corresponding to eigenvalues. This eigenvalue is unique by Lemma 1 and the Perron-Frobenius
theorem, which also guarantees that the corresponding eigenvector is entrywise positive.

It remains to prove our earlier assertion. We sketch a proof, deferring details to Proposition 1.7,
[LPW09]. The key technical claim we require is that any S ⊆ N which is relatively prime and
closed under addition (i.e. s, t ∈ S =⇒ s + t ∈ S) contains all but finitely many elements of N.4
Assuming this is true, let Si := {k ∈ N | [Pii]

k 6= 0} for all i ∈ [d]. Then, Si is relatively prime
by aperiodicity, and it is closed under addition, since [Ps+t]ii ≥ [Ps]ii[P

t]ii.5 By applying our key
technical claim, it follows that

⋂
i∈[d] Si also contains all but finitely many elements of N. Next,

irreducibility implies that for every (i, j) ∈ [d] × [d], there is some rij such that [Prij ]ij > 0, and
[Pk]ij is positive as long as k = rij + k′, for some k′ such that Pk′

ii is positive. Therefore, there is
some k ∈ N such that Pk is entrywise positive, proving our assertion.

In order to continue our analysis of the spectra of transition matrices, it is helpful at this juncture
to introduce an alternative viewpoint, where we equate transition matrices with graphs.

Definition 2 (Graph-induced matrices). Let G = (V,E,w) be a weighted graph on vertices V and
directed edges E ⊂ V × V , where w ∈ RE>0 gives the weight of each edge. We let DG denote the
out-degree matrix of G, which is the diagonal matrix satisfying [DG]vv =

∑
u∈V w(v,u). We let AG

denote the adjacency matrix of G, where [AG]uv = w(u,v) for all (u, v) ∈ E.

A key observation is that any weighted directed graph G = (V,E,w) in the sense of Definition 2
is naturally identified with a transition matrix on states [d], where d = |V | and we equate vertices
v ∈ V with states i ∈ [d] in an arbitrary but consistent way. To see this equivalence, consider

P := D−1
G AG. (1)

Note that the ith row6 of P is the outgoing weights from the ith vertex, normalized by the out-
degree of the vertex. It is straightforward to check that this implies P is a transition matrix. This
equivalence has a simple interpretation: one step of the random walk induced by G starting from
a vertex chooses an outgoing edge proportional to its weight. To see that this equivalence goes
both ways, every transition matrix can be simply modeled by a graph such that every out-degree
is 1 (i.e. it has IV as an out-degree matrix), and an adjacency matrix given by P>.

This equivalence is particularly interpretable when G is an undirected graph, meaning A>G = AG

(for every edge (u, v), there is an edge (v, u) with equal weight). In this case (and assuming
irreducibility and aperiodicity), we have the following straightforward characterization.

2In other words, regardless of the starting state, there is positive probability of visiting every other state.
3In other words, the iteration counts where it is possible to return to the starting state are relatively prime.
4For a proof, see Lemma 1.30, [LPW09].
5The probability that a random walk cycles from i to i in s+ t steps is at least the probability that it cycles in

the first s steps, times the probability it cycles in the last t steps.
6We will interchange states of a Markov chain and vertices of a corresponding graph in the rest of the lecture.
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Lemma 2. Let G = (V,E,w) be a weighted graph, and (following Definition 2) suppose A>G = AG

and DG = diag (dG). Then defining P as in (1), and supposing P is irreducible and aperiodic
with unique stationary distribution π, we have

π =
dG
‖dG‖1

.

Proof. This follows from a direct computation:

π>P =

(
dG
‖dG‖1

)>
D−1
G AG =

1

‖dG‖1
1
>
V AG =

d>G
‖dG‖1

= π>.

The third equality above used that A>G1V gives the in-degrees of each vertex, but this is exactly
the out-degrees dG of every vertex as well because A>G = AG.7

Lemma 2 shows that the stationary distribution of a random walk corresponding to an undirected
graph is proportional to the vertex degrees. The notion of undirectedness in graphs is closely
related to a concept in Markov chain theory known as reversibility, which we next define.

Definition 3 (Reversible Markov chain). We say that a Markov chain associated with a transition
matrix P ∈ Rd×d≥0 is reversible (or, P is reversible) if it has stationary distribution π, and

πiPij = πjPji for all (i, j) ∈ [d]× [d]. (2)

Note that if we prove (2) holds for a transition matrix P and any π ∈ ∆d, then π is stationary,
because the probability we end up at i after taking one step from a distribution initialized via π is∑

j∈[d]

πjPji =
∑
j∈[d]

πiPij = πi. (3)

Just as every Markov chain can be identified with a directed graph via (1), every reversible Markov
chain is naturally identified with an undirected graph. To see this, consider a graph G with out-
degrees π and adjacency matrix AG = ΠP, which induces P via (1). Then, (2) implies

[AG]ij = πiPij = πjPji = [AG]ji ,

i.e. G is undirected. Similarly, starting from an undirected graph G, the corresponding transition
matrix (1) satisfies (2), which is verifiable by undoing the above sequence of derivations with the
observation that π is proportional to the diagonal elements of DG via Lemma 2.

We next observe that for an arbitrary (potentially non-reversible) transition matrix P, and a target
π ∈ ∆d, there is a simple modification to P proposed by [MRR+53, Has70] called the Metropolis-
Hastings rule, which forces P to both be reversible and to have stationary distribution π.

Lemma 3 (Metropolis-Hastings). Let P ∈ Rd×d≥0 be a transition matrix, and for π ∈ ∆d, denote
the modified transition matrix P̃ ∈ Rd×d≥0 by8

P̃ij = Pij min

(
1,
πjPji

πiPij

)
for all (i, j) ∈ [d]× [d] with i 6= j, (4)

and such that {P̃ii}i∈[d] are chosen so P̃ is a transition matrix. Then π is stationary for P̃.

Proof. We verify (2) holds for P̃, which implies π is stationary by (3). To see (2), we compute

πiP̃ij = Pij min

(
πi,

πjPji

Pij

)
= min (πiPij , πjPji) = Pji min

(
πj ,

πiPij

Pji

)
= πjP̃ji.

In general, the Metropolis-Hastings correction (4) may change the support of the associated graph’s
adjacency matrix. However, under mild conditions, e.g. Pji > 0 iff Pij > 0, the support of the
adjacency matrix is unchanged, so the correction (4) preserves irreducibility and aperiodicity.

7We remark that this proof generalizes to Eulerian graphs, i.e. graphs which have equal in-degrees and out-degrees
for every vertex (but are not necessarily undirected).

8Alternatively, P̃ takes a step according to a proposal P, and accepts the move with a probability in [0, 1].
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2 Mixing times
Beyond simple characterizations such as Lemma 2, why do we insist on reversibility as a desirable
property for Markov chains? One reason is that the resulting matrix P is similar to a symmetric
matrix, via the characterization (1): for any G identified with a reversible transition matrix P,

D
1
2

GPD
− 1

2

G = D
− 1

2

G AGD
− 1

2

G =
(
D
− 1

2

G AGD
− 1

2

G

)>
, (5)

where the last equation used that graphs corresponding to reversible Markov chains are undirected.
This means that the spectral theorem applies to P, which gives us powerful algebraic tools to
analyze its convergence. Before stating a such a convergence result, we first give a brief digression
on the total variation distance, a natural measure of the convergence of sampling algorithms.

Definition 4 (Total variation distance). For two distributions P,Q on the same continuous sample
space Ω, we define their total variation distance (where we overload P,Q to denote the respective
probability density functions) by

DTV(P,Q) :=
1

2

∫
ω∈Ω

|P (ω)−Q(ω)| dω.

When Ω is discrete, we analogously let

DTV(P,Q) =
1

2

∑
ω∈Ω

|P (ω)−Q(ω)| .

The total variation distance enjoys the following characterizations (see Section 4.1, [LPW09]).

Fact 1. For two distributions P,Q, on the same sample space Ω, we have the following equivalent
characterizations of DTV(P,Q).

1. DTV(P,Q) = supA⊆Ω Prω∼P [ω ∈ A]− Prω∼Q[ω ∈ A].

2. DTV(P,Q) = infγ∈Γ(P,Q) Pr(ω,ω′)∼γ [ω 6= ω′], where Γ(P,Q) is the set of all couplings of
(P,Q), i.e. distributions γ on Ω×Ω such that for (ω, ω′) ∼ γ, the marginal distribution of ω
is P , and the marginal distribution of ω′ is Q.

The coupling characterization in Fact 1 is particularly useful when composing sampling algorithms,
because it can be handled via the union bound. For example, suppose we first run a sampling
algorithm A to approximately produce a sample from a distribution π up to total variation distance
ε, and then given the output of A, we run another algorithm A′ which approximately samples from
π′ up to total variation distance ε′, provided it was initialized with π. By using Fact 1, we can
bound the total variation distance between A′ ◦A to π′, by first coupling the output of A to π, and
then pretending A′ was initialized with π, which happens except with probability ε under some
coupling. The overall failure probability of the best coupling is then upper bounded by ε+ ε′.

We mention that the optimal coupling γ in the second part of Fact 1 is the one that, with probability
1−DTV(P,Q), returns (ω, ω) for ω ∈ Ω sampled with probability

min{P (ω), Q(ω)}∫
ω′∈Ω

min{P (ω′), Q(ω′)}dω′
=

min{P (ω), Q(ω)}
1−DTV(P,Q)

,

and otherwise returns (ω′, ω′′) for an arbitrary coupling of the densities

P (ω′)−min{P (ω′), Q(ω′)}∫
ω∈Ω

(P (ω)−min{P (ω), Q(ω)})dω
=
P (ω′)−min{P (ω′), Q(ω′)}

DTV(P,Q)
,

P (ω′′)−min{P (ω′′), Q(ω′′)}∫
ω∈Ω

(P (ω)−min{P (ω), Q(ω)})dω
=
Q(ω′′)−min{P (ω′′), Q(ω′′)}

DTV(P,Q)
.

The marginal density of the first coordinate is then min{P,Q}+P −min{P,Q} = P , and similarly
the second marginal is distributed as Q. In the above calculations, we used that∫

ω∈Ω

(P (ω)−min{P (ω), Q(ω)}) dω = 1−
∫
ω∈Ω

min{P (ω), Q(ω)}dω

=

∫
ω∈Ω

(Q(ω)−min{P (ω), Q(ω)}) dω,
(6)
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and therefore

DTV (P,Q) =
1

2

∫
ω∈Ω

|P (ω)−Q(ω)|dω =
1

2

∫
ω∈Ω

(max{P (ω), Q(ω)} −min{P (ω), Q(ω)}}) dω

=
1

2

(∫
ω∈Ω

(P (ω)−min{P (ω), Q(ω)}) dω +

∫
ω∈Ω

(Q(ω)−min{P (ω), Q(ω)}) dω
)
.

Finally, (6) showed that the two quantities in the final expression above are equal, so they both are
DTV(P,Q). We are now ready to give our first convergence analysis on random walks, measured
in total variation. Our proof relies on the spectral theorem applied to our transition matrix P.

Theorem 1 (Spectral convergence of random walks). Let P ∈ Rd×d≥0 be a reversible, irreducible,
and aperiodic transition matrix with stationary distribution π, let Π := diag (π), and let ε ∈ (0, 1).
Let {λi}i∈[d] be the eigenvalues of Π

1
2 PΠ−

1
2 in nondecreasing order, with 1 = λ1 > λ2. Then for

any µ ∈ ∆d, we have

DTV

((
Pk
)>
µ, π

)
≤ ε, if k ≥ log 1

max(|λ2|,|λd|)

(
1

2εmini∈[d] πi

)
.

Proof. By Proposition 1, we have that |λi| < 1 for all i 6= 1, and all eigenvalues of P̃ := Π
1
2 PΠ−

1
2

are real because P̃ is symmetric via reversibility of P. Next, observe that if we let {vi}i∈[d] be the
eigenvectors of P̃ sorted the same way as {λi}i∈[d], so that v1 =

√
π where

√
· is entrywise,

Pk = Π−
1
2 P̃kΠ

1
2 = Π−

1
2

∑
i∈[d]

λiviv
>
i Π

1
2 = 1dπ

> +

d∑
i=2

λki

(
Π−

1
2 vi

)(
Π

1
2 vi

)>
.

Therefore, for all (i, j) ∈ [d]× [d], we have by our lower bound on k,

[
Pk
]
ij
− πj =

√
πj
πi

d∑
`=2

λk` [v`]i[v`]j ≤ |λ`|k
πj√
πiπj

≤ max (|λ2|, |λd|)k

min`∈[d] π`
· πj ≤ 2επj . (7)

Finally, we compute the jth coordinate of (Pk)>µ− π:

∣∣∣[(Pk)>µ
]
j
− πj

∣∣∣ =

∣∣∣∣∣∣
∑
i∈[d]

[
Pk
]
ij
µi

− πj
∣∣∣∣∣∣ ≤ 2επj ,

using (7). The conclusion follows by summing the above display over j ∈ [d], since ‖π‖1 = 1.

The takeaway from Theorem 1 is that if all eigenvalues of P are contained in the range [−1 +
ρ, 1− ρ] for some ρ > 0, then the random walk achieves ε total variation from π from an arbitrary
starting distribution, after ≈ 1

ρ log(dε ) steps, assuming the stationary distribution π places at least
a polynomially-small amount of weight on every state. To make Theorem 1 more interpretable, a
common strategy is to assume that P is lazy, i.e. there is a transition matrix P such that

P =
1

2
(Id + P′). (8)

If P′ is irreducible and aperiodic, so is P because the support of the relevant graph has not
changed. In this case, it is further straightforward to check via the characterizations (1), (5)
that the eigenvalues of P are the average of the eigenvalues of P′ (which are all in (−1, 1] by
Proposition 1) and the eigenvalues of Id, so they all lie in (0, 1]. In this case, the convergence rate
in Theorem 1 can be restated as achieving ε total variation when

k ≈ 1

1− λ2
log

(
1

εmini∈[d] πi

)
.

As we will see in a later lecture, this matches the expected behavior of the power method applied
to P to compute a leading eigenvector. The quantity 1− λ2 is referred to as a spectral gap in this
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context; the further λ2 is separated from 1, the faster the random walk mixes. The matrix (8) is
called lazy because in each iteration, it chooses to skip the iteration with probability 1

2 .
9

Finally, we mention that the linear convergence rate of Theorem 1 is a more generic phenomenon
than the proof belies. That is, constant total variation guarantees can always be boosted to ε
distance at a log 1

ε overhead, even without the reversibility assumption or any spectral characteri-
zation.10 We now illustrate this phenomenon with the following formal definition.

Definition 5 (Mixing time). Let P ∈ Rd×d≥0 be an irreducible and aperiodic transition matrix with
stationary distribution π. For any ε ∈ (0, 1), we define τmix(ε), the ε-mixing time of P, to be the
smallest integer k ∈ N such that11

max
µ∈∆d

DTV

((
Pk
)>
µ, π

)
≤ ε. (9)

If ε = 1
4 , we call this the mixing time of P for short.

As an application of the coupling characterization of DTV in Fact 1, note that if (9) holds for a
value of k, then it also holds for any k′ ≥ k. To see why, there is a coupling γk ∈ Γ((Pk)>µ, π) that
sets i = i′ except with probability ε, for (i, i′) ∼ γ. Now consider the coupling of Γ((Pk′)>µ, π)
which first draws (i, i′) ∼ γk, and then advances (i, i′) in the same way according to P for k′ − k
steps if i = i′, and otherwise arbitrarily applies P for k′ − k steps. The output distribution has
marginals ((Pk′)>µ, π) since P>π = π, so it is a valid coupling, and preserves i = i′ with at least
the same probability as before, so the total variation remains bounded by ε.

We now quantitatively strengthen this argument. To do so, we introduce the notation

∆(k) := max
i∈[d]

DTV

((
Pk
)>
ei, π

)
, ∆(k) := max

(i,j)∈[d]×[d]
DTV

((
Pk
)>
ei,
(
Pk
)>
ej

)
. (10)

Lemma 4. Let P ∈ Rd×d≥0 be an irreducible and aperiodic transition matrix with stationary distri-
bution π. Following notation (10), ∆(k) ≤ ∆(k) ≤ 2∆(k) for all k ∈ N.

Proof. The upper bound on ∆(k) is immediate because the total variation distance satisfies the
triangle inequality, which can be seen by applying the second characterization in Fact 1.12

For the lower bound, we use the first characterization in Fact 1. Let A ⊆ [d], and note that∑
a∈A

∑
j∈[d]

[
Pk
]
ja
πj =

∑
a∈A

πa,

by stationarity of π for Pk. Therefore,∣∣∣∣∣∑
a∈A

[(
Pk
)>
ei

]
a
− πa

∣∣∣∣∣ =

∣∣∣∣∣∣
∑
a∈A

∑
j∈[d]

πj

([(
Pk
)>
ei

]
a
−
[(

Pk
)>
ej

]
a

)∣∣∣∣∣∣
≤
∑
j∈[d]

πjDTV

((
Pk
)>
ei,
(
Pk
)>
ej

)
≤ ∆(k).

Taking the maximum over all possible A proves that ∆(k) ≤ ∆(k).

We also observe that ∆ decays at a linear rate.

Lemma 5. Let P ∈ Rd×d≥0 be an irreducible and aperiodic transition matrix with stationary distri-
bution π. Following notation (10), ∆(s+ t) ≤ ∆(s)∆(t) for all s, t ∈ N.

9This does not qualitatively change the algorithm, but facilitates simpler analyses.
10Of course, the spectral characterization helps us achieve constant DTV in the first place.
11By convexity of the `1 norm, the maximum is achieved by µ deterministically choosing a state.
12Given three distributions P,Q,R, first draw a sample from Q, and then draw conditional samples from P | Q,

R | Q from their joint distributions prescribed by the optimal couplings. This gives a coupling of (P,Q,R), where
the total probability that the samples from (P,R) disagree is ≤ DTV(P,Q) +DTV(Q,R) by a union bound.
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Proof. Let {ωk}k≥0 be a random sequence of states in [d] evolving according to P from ω0 = i, and
similarly let {ω′k}k≥0 evolve according to P from ω′0 = j. Note that for any A ⊆ [d] and s, t ∈ N,

Pr[ωs+t ∈ A] = Eωs [Pr[ωs+t ∈ A | ωs]] ,

by the law of iterated expectations. Therefore, letting γ be a coupling of ωs and ω′s achieving
Pr(ωs,ω′

s)∼γ [ωs 6= ω′s] ≤ ∆(s), we can bound

Pr[ωs+t ∈ A]− Pr[ω′s+t ∈ A] = Eωs [Pr[ωs+t ∈ A | ωs]]− Eω′
s

[
Pr[ω′s+t ∈ A | ω′s]

]
≤ E(ωs,ω′

s)∼γ
[∣∣Pr[ωs+t ∈ A | ωs]− Pr[ω′s+t ∈ A | ω′s]

∣∣ · 1ωs 6=ω′
s

]
≤ E(ωs,ω′

s)∼γ
[
∆(t) · 1ωs 6=ω′

s

]
≤ ∆(t) ·∆(s).

In the second inequality, we viewed ωs+t and ω′s+t as the results of t-step random walks initialized
at ωs and ω′s respectively. The conclusion follows by taking the maximum over all possible A.

We conclude with our generic boosting of mixing times to high accuracy.

Corollary 1. Let P ∈ Rd×d≥0 be an irreducible and aperiodic transition matrix with stationary
distribution π. For all ε < 1

4 ,

τmix(ε) ≤ τmix

(
1

4

)⌈
log2

(
1

ε

)⌉
.

Proof. Let k := τmix( 1
4 ), so by definition, ∆(k) ≤ 1

4 . Lemma 4 then shows ∆(k) ≤ 1
2 , so ∆(k ·

dlog2( 1
ε )e) ≤ ε by repeatedly using Lemma 5. The claim follows by using Lemma 4 once more.

Corollary 1 shows that for discrete Markov chains, the qualitative challenge is establishing a bound
on τmix(ε) for constant ε, because this also implies a bound for all smaller ε at logarithmic overhead.
Interestingly, although Corollary 1 continues to hold for continuous sample spaces, the definition of
τmix( 1

4 ) is often too stringent, since an initialization at a single point mass does not induce a finite
relative density to the target distribution, making bounding the convergence rate challenging.13
Nonetheless, we will see an analog of Corollary 1 in the continuous sampling setting as well.

3 Cheeger’s inequality
Recall from Theorem 1 (and the discussion immediately following it) that for a reversible, irre-
ducible, and aperiodic transition matrix P with the lazy form (8), the goal of establishing a mixing
time bound is equivalent to lower bounding the spectral gap, 1−λ2, where λ2 is the second-largest
eigenvalue of P. In this section, we develop a combinatorial strategy to lower bound 1 − λ2,
and hence establish rapid mixing. It will help to adopt a graph-based point of view, and let
G = (V,E,w) be an undirected weighted graph such that P = D−1

G AG; recall this is without loss
of generality from the discussion after Definition 3. In this notation, we let

NG := IV −D
− 1

2

G AGD
− 1

2

G . (11)

By using the characterization (1) and rearranging, we note that we also have

NG = D
1
2

G (IV −P) D
− 1

2

G , (12)

so the second-smallest eigenvalue of NG and the second-largest eigenvalue of P sum to 1. Therefore,
to establish a spectral gap, we can equivalently lower bound the second-smallest eigenvalue of NG

(note that NG has a kernel, just as P has an eigenvector of 1). We also remark that NG =

D
− 1

2

G LGD
− 1

2

G , where LG is the Laplacian matrix introduced in Definition 5, Part II. For this
reason, NG is often called a normalized Laplacian. For the remainder of the section, we let

λ?G := λd−1 (NG) (13)

be the second-smallest eigenvalue of a normalized Laplacian, which per our discussion is also the
spectral gap of an associated random walk P, i.e. λ?G = 1− λ2(P).

To bound λ?G, we use the following combinatorial notion.
13For example, the analog of mini∈[d] πi in Theorem 1 is always 0.
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Definition 6 (Conductance). For an undirected graph G = (V,E,w), let deg(v) :=
∑

(u,v)∈E w(u,v)

denote the degree of vertex v ∈ V . For a subset S ⊆ V , let deg(S) :=
∑
v∈S deg(v), and let

∂(S) :=
∑

(u,v)∈(S×V \S)∩E

w(u,v)

denote the total weight crossing the boundary from S to V \S. We define the conductance of G by

ΦG := min
S⊆V

S 6∈{∅,V }

ΦG(S), where ΦG(S) :=
∂(S)

min (deg(S),deg(V \ S))
. (14)

To demystify the definition (14), if deg(S) ≤ deg(V \ S), then a direct calculation shows ΦG(S) is
the probability that a random walk, initialized within S according to the stationary distribution,
leaves S in one step. Cheeger’s inequality states that for all undirected graphs G,14

λ?G
2
≤ ΦG ≤

√
2λ?G. (15)

Intuitively, it is not surprising that ΦG governs the mixing time of a random walk on G, because
if ΦG is large, then no set S is a “bottleneck” in the sense that we are reasonably-likely to leave
S in a single step.15 We focus on proving the upper bound in (15), because this is the useful
inequality to establish a lower bound on the spectral gap λ?G.

16 We mention that the bound is
tight asymptotically, as witnessed by an unweighted path graph on d vertices; Hoeffding’s inequality
shows that it takes about d2 steps of a random walk to reach one end from the other, and one can
check that ΦG = Θ( 1

d ) for this graph, witnessed by including the first d
2 vertices in S.

Theorem 2 (Cheeger’s inequality). Let G = (V,E,w) be a connected undirected graph. Following
the notation (13), (14), ΦG ≤

√
2λ?G.

Proof. Let DG = diag (∆), where ∆v := deg(v) for all v ∈ V . Recall that 1V is the leading right
eigenvector of P, so following the characterization (12), the kernel of NG is spanned by

√
∆ where√

· is applied entrywise. Hence, we can characterize λ?G, the second-smallest eigenvalue of NG, by

λ?G = min
x∈RV

x⊥
√

∆

x>NGx

‖x‖22
= min
y∈RV

y⊥∆

y>LGy

y>DGy
, (16)

where LG := DG −AG is the Laplacian matrix of G. The first equality above used the min-max
eigenvalue theorem (Proposition 2, Part V), and the second changed variables

√
∆ ◦ y ← x, where

◦ denotes entrywise multiplication. We claim that for any nonzero vector y ⊥ ∆, we can produce
a random set St ⊆ V , from a family of sets St parameterized by t, such that

Et [∂(St)] ≤
√

2ρ · Et [min (deg (St) ,deg (V \ St))] , where ρ :=
y>LGy

y>DGy
. (17)

Assuming (17), for some realization St, we must have ∂(St) ≤
√

2ρ ·min(deg(St),deg(V \St)), else
this would contradict (17) by averaging over t. The realization St satisfying this inequality then
certifies ΦG ≤

√
2ρ, and the claim ΦG ≤

√
2λ?G follows by minimizing ρ over y, using (16). For the

remainder of the proof, we fix a nonzero y ∈ RV with y ⊥ ∆, and establish (17). We also assume
without loss of generality that y has coordinates indexed by i ∈ [d] sorted in increasing order (for
d := |V |), by relabeling vertices as necessary. We now construct St after two modification steps.

In the first step, we observe that for any constant shift c ∈ R and z := y+ c1V , we have y>LGy =
z>LGz, because 1V is in the kernel of LG.17 Furthermore, we have for any c ∈ R,

z>DGz =
∑
i∈[d]

∆i (yi + c)
2 ≥

∑
i∈[d]

∆iy
2
i = y>DGy,

14Cheeger’s inequality was proved originally in the context of certain expansion properties of manifolds [Che69],
and the proof is actually somewhat simpler in this continuous setting. For an exposition on the relationship between
the continuous and discrete proofs of Cheeger’s inequality, we refer the reader to the blog post [Tre13].

15In contrast, for a classic example of a graph G that does have a very clear bottleneck, consider a “dumbbell
graph” consisting of two complete graphs on 1

2
|V | vertices each joined by a single edge. A random walk on a

dumbbell graph is unlikely to cross between the two complete graphs, which is reflected in its poor conductance.
16Tragically, the lower bound in (15) is actually the easier bound to prove; see Chapter 21, [Spi19].
17This can also be directly seen from the Laplacian quadratic form computed in Lemma 10, Part II.
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where the only inequality used that the left-hand side is a quadratic in c, whose first-order optimal-
ity condition 2

∑
i∈[d] ∆iyi = 2

∑
i∈[d] ∆ic implies c = 0 is the minimizer, since y ⊥ ∆. Therefore,

any shift c ∈ R will yield z = y + c1V with

z>LGz

z>DGz
≤ ρ, (18)

because the numerator stayed the same and the denominator did not decrease.

In the second step, we choose c. Let j ∈ [d] be the largest vertex index such that
∑
i∈[j] ∆i ≤

1
2 deg(V ). We pick c as a function of y, so that zj+1 = 0. We also normalize z so that z2

1 + z2
d = 1,

which is without loss of generality since scaling by a constant does not affect the ratio (18).

Now, we define the family St to be the threshold family, where for a given value of t,

St := {i ∈ [d] | zi ≤ t} .

We choose t according to the density 2|t|, over t ∈ [z1, zd]. Note that for any [a, b] ⊆ [z1, zd],

Pr[t ∈ [a, b]] =

∫ b

a

2|t|dt = sign(b) · b2 − sign(a) · a2, (19)

so that Pr[t ∈ [z1, zd]] = z2
1 + z2

d = 1 by assumption, so this is a valid probability distribution. To
finish our proof of (17), it is enough to bound Et[∂(St)] and Et[min(deg(St),deg(V \ St))].

We start with the latter. The way we chose z (via the shift c in the second step above) is so that
if t > 0, deg(St) ≤ deg(V \ St), and this inequality is reversed if t > 0.18 Thus,

Et [min(deg(St),deg(V \ St))] =
∑
i∈[d]
zi<0

∆i · Pr [zi ≤ t ≤ 0] +
∑
i∈[d]
zi≥0

∆i · Pr [zi ≥ t ≥ 0]

=
∑
i∈[d]

∆i · z2
i = z>DGz,

(20)

where we used the formula (19) twice. Next, before bounding Et[∂(St)], we make a brief observation
which follows by casework on signs: for any a, b ∈ R,

sign(a) · a2 − sign(b) · b2 ≤ |a− b| (|a|+ |b|) . (21)

Therefore,
Et [∂(St)] =

∑
(i,j)∈E
i<j

w(i,j) · Pr [zi ≤ t ≤ zj ]

=
∑

(i,j)∈E
i<j

w(i,j) ·
(
sign(zi) · z2

i − sign(zj) · z2
j

)
≤

∑
(i,j)∈E
i<j

w(i,j) · |zi − zj | (|zi|+ |zj |)

≤
√√√√ ∑

(i,j)∈E
i<j

w(i,j) · (zi − zj)
2 ·
√√√√ ∑

(i,j)∈E
i<j

w(i,j) · (|zi|+ |zj |)
2

≤
√
z>LGz ·

√
2z>DGz.

(22)

The first inequality applied (21) edgewise, the second was the Cauchy-Schwarz inequality, and the
last used the definition of LG (see Lemma 10, Part II) and the scalar inequality (a+b)2 ≤ 2a2 +2b2.
Putting together (18), (20), and (22), we finally have proved (17), which establishes our claim:

Et [∂(St)] ≤
√
z>LGz ·

√
2z>DGz ≤

√
2ρ · z>DGz =

√
2ρ · Et [min (deg(St),deg(V \ St))] .

18The event t = 0 is a measure-zero event, so we ignore it in calculations.
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By combining Theorems 1 and 2, we have shown the following.

Corollary 2. Let P ∈ Rd×d>0 be a reversible, irreducible, aperiodic and lazy transition matrix with
stationary distribution π, and let G = (V,E,w) be an weighted undirected graph such that (1)
holds. Then for any µ ∈ ∆d, we have

DTV

((
Pk
)>
µ, π

)
≤ ε, if k ≥ 2

Φ2
G

· log

(
1

2εmini∈[d] πi

)
.

One interesting consequence of the proof of Theorem 1 is a practical strategy for partitioning
a graph G into two well-connected and large components, known as a sparse cut. Specifically,
Theorem 1 takes a modification of an eigenvector of an appropriate matrix (e.g. NG) and constructs
a set St by thresholding the coordinates of y at a cutoff value t. The resulting cuts (St, V \ St) in
G are known as sweep cuts. Spectral partitioning in practice often uses variations of this strategy,
which was explicitly suggested by [SM00] and analyzed in [KVV04]. More generally, multiway
generalizations of Cheeger’s inequality and resulting spectral partitioning methods, i.e. partitions
which allow for > 2 pieces of a graph, were provided by [LGT12, KLL+13].

Corollary 2 shows that undirected graphs G which have good conductance behavior, i.e. large ΦG,
induce random walks which mix quickly. We call a graph G a φ-expander if ΦG ≥ φ, which means
that every partition of V into S, V \S has at least a φ fraction of edges of the smaller side’s degree
crossing between S and V \ S. Intuitively, these are exactly the types of graphs which have no
bottlenecks, as discussed before Theorem 1. For example, the Laplacians of expander graphs are
well-conditioned as a result of Theorem 2, which implies that the leverage scores (Definition 2,
Part VIII) of the graph edges are all bounded; this turns out to have important consequences for
the fault tolerance of expander graphs, since no single edge is too important. Moreover, expanders
have a number of additional extremely useful properties which have been exploited throughout
theoretical computer science, such as coding theory [SS96] and pseudorandomness [Vad12].

The breakthrough work of [ST14] launched a revolution in modern graph algorithms by quantifying
the realization that all graphs can in fact be decomposed into a small number of disjoint expanders,
and a small fraction of crossing edges which can then be recursed upon. We provide a simple
example of such an expander decomposition for the reader’s interest.

Proposition 2. Let G = (V,E,1E) be an undirected, unweighted graph with n := |V |, and let
φ ∈ (0, 1). There exists a partitioning of V into disjoint subsets {Vi}i∈[k] such that

⋃
i∈[k] Vi = V ,

where every induced subgraph19 G[Vi] is a φ-expander, and

|{e = (u, v) ∈ E | u ∈ Vi, v ∈ Vj , i 6= j}| ≤ 2φ log2(n)|E|.

Proof. Consider the algorithm which maintains a list L of subsets of the vertices of G, initialized
to a single element V , such that the elements of L always forms a partitioning of V into disjoint
subsets. Moreover, any time there exists U ∈ L such that G[U ] is not a φ-expander, i.e. there
exists a partition U1, U2 such that U1 ∪ U2 = U , U1 ∩ U2 = ∅, and the number edges between U1

and U2 in G[U ] is at most φ ·min(deg(U1),deg(U2)) (where degrees are measured with respect to
edges in G[U ]), we delete U from L and add U1, U2. This algorithm terminates after at most n
steps, since there are only n vertices, and at termination every piece is a φ-expander by definition.

It remains to bound the total number of edges cut by this process. We do so by a charging
argument, where every vertex in G is initialized with a potential of 0. Every time we partition U
into two pieces U1, U2 with deg(U1) ≤ deg(U2) (where again, degrees are measured with respect to
G[U ]), we add φdeg(u) to the potential of each u ∈ U1 on the smaller side, so the total potential
of all vertices always upper bounds the number of cut edges by definition. At the end of the
algorithm, each vertex can only have a maximum potential of φ log2(n) deg(u), since it can only be
on the smaller side of a cut at most log2(n) times. Summing over all vertices yields the claim.

For example, Proposition 2 shows that every undirected, unweighted graph can be partitioned into
Ω( 1

logn )-expanders and a small constant fraction of edges which cross between partition pieces.

19For U ⊆ V , we let G[U ] denote the induced subgraph onto U , i.e. the subgraph of G which keeps all edges
between vertices in U with the same weight as in G, and deletes all other edges and vertices.
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As stated, Proposition 2 is not known to be implementable in polynomial time, because the
sparsest cut problem (finding the value of ΦG or a set S witnessing it) is NP-hard, and we
do not know any polynomial-time constant factor approximations of it either. Nonetheless, by
exploiting variants of flow-cut duality, a line of research has obtained efficient algorithms for
computing polylogarithmic factor approximations to the sparsest cut in nearly-linear time, as
well as cuts achieving various tradeoffs along the approximation factor-runtime tradeoff curve
[LR99, ARV09, KRV09, OSVV08, She09]. By using local variants of these sparsest cut approxi-
mation algorithms with runtime proportional only to the size of the partition piece being isolated,
we now have expander decomposition algorithms which run in nearly-linear time and achieve the
guarantee in Proposition 2 up to a polylogarithmic factor, even for weighted graphs. The first such
example can be found in [SW19], building upon a weaker variant of this primitive from [ST14].

More generally, variants of the expander decomposition strategy that partition a potentially poorly-
behaved graph into pieces having significantly stronger local properties (e.g. good conductance),
and then recurse on the remainder, have led to many breakthroughs in classical problems in recent
years. We refer the reader to the excellent course [Sar21] for more on these techniques, as well as
the thesis [Li21] for a unified perspective on modern applications of the decomposition toolbox.
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Source material
Portions of this lecture are based on reference material in [AF02, LPW09, Spi19], as well as the
author’s own experience working in the field.
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