
CS395T: Continuous Algorithms, Part XIII
Stochastic calculus

Kevin Tian

1 Drift-diffusion processes
In this lecture, we introduce the tools required to study a framework for sampling algorithm design
based on discretizing drift-diffusion processes, which is able to exploit different structural aspects
of the target density compared to the previous few lectures (for example, an appropriate notion of
well-conditionedness for densities). We adopt a dual perspective of such processes, viewing them as
both a stochastic evolution in particle space (i.e. a particle in Rd following a stochastic trajectory),
as well as a deterministic evolution in density space (i.e. an evolving measure in P(Rd), the set of
probability densities on Rd which are absolutely continuous with respect to the Lebesgue measure).
This perspective lets us adopt a rich set of analytical tools on both Rd and P(Rd) to analyze the
convergence and bound the discretization error of the resulting algorithms.

We mention that this section is largely structured to briefly set up the mathematical tools to
rigorously study stochastic calculus, and most of the formalism can be ignored on a first read in
the later sections. We start by introducing Itô calculus, beginning with Brownian motion.

Definition 1 (Brownian motion). We define Brownian motion in Rd, denoted by {Bt}t≥0, to be
a stochastic process, i.e. a random sequence of points in Rd indexed by t ≥ 0 (thought of as time),
satisfying the following properties.

1. B0 = 0d.

2. {Bt}t≥0 is continuous with probability 1.

3. For all k ∈ N and all {ti}ki=0 ⊂ R≥0 with t0 = 0 < t1 < . . . < tk, all of the random variables
Bti+1

−Bti for 0 ≤ i ≤ k − 1, are mutually independent.

4. For all 0 ≤ s ≤ t, Bt −Bs is distributed as N (0d, (t− s)Id).

For an existence proof of Brownian motion, see Chapter 7 of [Dur10]. The probability space
that Brownian motion is defined on, as well as all stochastic processes we will study, is denoted
{Ft}t≥0, a filtration satisfying Fs ⊆ Ft for all 0 ≤ s ≤ t. We say that Brownian motion is a
stochastic process adapted to the filtration {Ft}t≥0. Informally, we can think of Ft as containing
the information of the randomness used up to time t, i.e. the realizations of the random Brownian
motion, so the inclusion condition means that more information is always available later in time.

To give some intuition for the properties of Brownian motion, we prove the reflection principle.

Lemma 1 (Reflection principle). Let {Bt}t≥0 be Brownian motion in R. For all t ≥ 0 and a > 0,

Pr

[
sup

0≤s≤t
Bs ≥ a

]
= 2 Pr [Bt ≥ a] .

Proof. Let τ ≥ 0 be a random stopping time1 corresponding to the first time the Brownian motion
1A stopping time τ adapted to a filtration {Ft}t≥0 is a random variable in R≥0, such that for all t ∈ R≥0, the

event τ ≤ t is measurable with respect to Ft. In other words, we can determine whether the event defining τ has
occurred using information in Ft, e.g. the first time an {Ft}t≥0-measurable event occurs is a stopping time.
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reaches a, i.e. τ is the random variable equal to inf{s | Bs = a}. By independence of increments,

Pr

[
sup

0≤s≤t
Bs ≥ a

]
= Pr

[
sup

0≤s≤t
Bs ≥ a and Bt ≥ a

]
+ Pr

[
sup

0≤s≤t
Bs ≥ a and Bt < a

]
= Pr [Bt ≥ a] + Pr

[
sup

0≤s≤t
Bs ≥ a and Bt −Bτ < 0

]
= Pr [Bt ≥ a] +

1

2
Pr

[
sup

0≤s≤t
Bs ≥ a

]
,

as sup0≤s≤tBs ≥ a implies that τ ≤ t, so Bt − Bτ < 0 with probability 1
2 regardless of the

realization of τ ≤ t. Rearranging the above display gives the claim.

Brownian motion is an example of a continuous martingale with respect to {Ft}t≥0. To define
this, recall that a martingale {xt}t≥0 adapted to a filtration {Ft}t≥0 satisfies the property that

E [xt | Fs] = xs for all 0 ≤ s ≤ t.

A useful property of martingales is that by Jensen’s inequality, for all convex ϕ and 0 ≤ s ≤ t,

Eϕ(xt) = E [E [ϕ(xt) | Fs]] ≥ Eϕ(xs).

One consequence of the martingale property (see Chapter 7.5, [Dur10]) is that for all bounded
stopping times τ , Exτ = x0. We are now ready to introduce the Itô integral, which is defined with
respect to a continuous process {ht}t≥0 ⊂ Rd×d adapted to {Ft}t≥0.2 We can view {ht}t≥0 as a
“reweighting” of Brownian motion, and we correspondingly define the Itô integral

xt :=

∫ t

0

hsdBs,

which is a continuous martingale adapted to {Ft}t≥0. In particular, this means that

E

[∫ t

s

hudBu | Fs
]

= 0 for all 0 ≤ s ≤ t.

It is useful to view the Itô integral as a stochastic process indexed by t. For example, choosing
ht = Id for all t gives that xt = Bt is simply Brownian motion.

An important characteristic of a stochastic process {xt}t≥0 is its quadratic variation, defined by

[x]t = lim
‖P‖gap→0

|P |∑
k=1

∥∥xtk − xtk−1

∥∥2
2
, (1)

the limit over meshes P = {tk}k∈|P | ⊂ [0, t] where ‖P‖gap = maxk∈|P | |tk − tk−1|, and t|P | = t and
t0 := 0. One can formally verify that when xt is an Itô integral driven by {ht}t≥0, we have that

[x]t =

∫ t

0

‖hs‖2F ds, (2)

thought of as the “total variance” accumulated thus far throughout the process. For example, if
{Bt}t≥0 is 1-dimensional Brownian motion then [B]t = t. The quadratic variation is useful in
the context of a characterization known as the Dambis-Dubins-Schwarz theorem [Dam65, DS65],
which says that in one dimension, all continuous martingales {xt}t≥0 are distributionally identical
to a time-changed Brownian motion {Bτ(t)}t≥0, where we let q(t) := [x]t be the quadratic variation
at time t. So, all continuous martingales in R are characterized by their quadratic variation.

Intuitively, the expression (2) holds because of the heuristic “dB2
t = dt,” which makes sense in

one dimension and can be extended to higher dimensions straightforwardly. This is because an
infinitesimal advancement of Brownian motion (at timescale dt) behaves like N (0, dt), so its square

2Formally, the continuity of {ht}t≥0 is not necessary, and it just needs to be progressive, a strengthening of being
adapted that implies stopped processes are measurable. All of the Itô integrals that we encounter will be continuous
and adapted processes, so we do not make this distinction for simplicity.
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has expectation dt. Formalizing this intuition and using the martingale property of Itô integrals to
deal with “cross-terms” establishes equivalence of the quadratic variation definitions (1) and (2).

Relatedly, we mention that one of the most important properties of the Itô integral is the Itô
isometry, which holds if the right-hand side below is finite:

E

[∥∥∥∥∫ t

0

hsdBs

∥∥∥∥2
2

]
= E

[∫ t

0

‖hs‖2F ds
]
.

The handling of cross-terms when expanding the above expression is handled analogously to the
intuition for (2), and the Itô isometry then follows by taking total expectations on both sides.

Remark 1. Much of the previous discussion can in fact be substantially generalized via the formal-
ism of local martingales and localizing sequences. Specifically, while martingales have Exτ = x0 for
all stopping times τ , a local martingale {xt}t≥0 adapted to {Ft}t≥0 is a stochastic process satisfying
the weaker property that there is a sequence of stopping times {τn}n∈N such that limn→∞ τn →∞
with probability 1, where xmin{t,τn} is a martingale for all n ∈ N.3 These stopping times are called
a localizing sequence, and are used to formalize Itô integrals, which as previously mentioned can
be extended to handle progressive integrands, also through the machinery of localizing sequences.
Localizing sequences are useful as a way to handle undesirable behavior as t → ∞, for rigorously
defining key concepts in stochastic calculus by using Itô integrals.4

We also mention that Itô integrals are not the only method of formalizing a theory of stochastic
calculus. In particular, the Stratonovich integral is a popular alternative in physics. Loosely
speaking, the distinction is that the Stratonovich integral is defined with respect to a “midpoint”
rule (familiar from Riemann integration), whereas the Itô integral is defined with respect to left
endpoints. The key difference useful for our purposes is that the definition of the Itô integral makes
it a martingale, whereas the Stratonovich integral is not in general. For the remainder of the
lecture, we specialize Itô integrals to the setting of continuous adapted {ht}t≥0.

Next, we define drift-diffusion processes on Rd, adapted to the same filtration {Ft}t≥0 that Brown-
ian motion is adapted to. Informally, drift-diffusion processes can be thought of as modeling the de-
terministic and stochastic components in the time-evolution of a random particle. A drift-diffusion
process {xt}t≥0 on Rd is driven by a vector-valued function µ : Rd → Rd and a matrix-valued
function σ : Rd → Rd×d, and captured by the stochastic differential equation (SDE)

dxt = µ(xt)dt+ σ(xt)dBt. (3)

In principle, SDEs can be defined with respect to any progressive process (not just functions µ
and σ of xt), but (3) suffices for our purposes. We say such a stochastic process {xt}t≥0 is a
drift-diffusion process, sometimes also called an Itô process, and we write it in integral form as

xt = x0 +

∫ t

0

µ(xs)ds+

∫ t

0

σ(xs)dBs.

To establish existence and uniqueness of SDE solutions, the following characterization is helpful.
We defer a proof to [Øk03]; the intuition for this result is similar to that for the Picard-Lindelöf
theorem for establishing existence and uniqueness for the solution of ordinary differential equations
(ODEs), which can be proven by defining an appropriate fixed-point iteration.

Proposition 1 (Theorem 5.2.1, [Øk03]). Suppose, for a SDE of the form (3), that µ and σ both
have a finite Lipschitz constant (with respect to ‖·‖2 and ‖·‖F, respectively). Then for all t ≥ 0,
there exists a unique solution xt to the SDE for every realization of Ft. Moreover, xt is square-
integrable in the sense that E

∫ t
0
‖xs‖22 ds <∞.

We conclude the section with the most useful property of drift-diffusion processes when performing
computations: a stochastic calculus generalization of the chain rule.

3One example which may help see the difference is the “sticky Brownian motion” in R, which is Brownian motion
until the first time −1 is reached, and is stuck at −1 henceforth. This is not a martingale, because the stopping
time τ when −1 is first reached is adapted to {Ft}t≥0, but E[xτ ] = −1. However, it is a local martingale.

4For instance, every bounded local martingale is a martingale, so the distinction is only due to limiting behavior.
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Proposition 2 (Itô’s lemma). Let f : Rd → R be twice-differentiable, and suppose that {xt}t≥0 is
a drift-diffusion process following the SDE (3). Then the stochastic process {f(xt)}t≥0 is also a
drift-diffusion process, and follows the SDE

df(xt) =

(
〈∇f(xt), µ(xt)〉+

1

2

〈
∇2f(xt), σ(xt)σ(xt)

>〉) dt+ 〈∇f(xt), σ(xt)dBt〉 .

More generally, if {xt}t≥0 follows the SDE

dxt = µtdt+ σtdBt,

where {µt, σt}t≥0 ⊂ Rd × Rd×d are continuous stochastic processes adapted to the same filtration
{Ft}t≥0 as {Bt}t≥0 ⊂ Rd, then {f(xt)}t≥0 is a stochastic process following the SDE

df(xt) =

(
〈∇f(xt), µt〉+

1

2

〈
∇2f(xt), σtσ

>
t

〉)
dt+ 〈∇f(xt), σtdBt〉 .

We note that there is also a generalization of Proposition 2 to the more complicated setting where
f is a time-dependent function, but we will not require it. The proof of Proposition 2 follows from
a similar calculation as used to show the quadratic variation formula (2) holds, e.g. formalizing our
aforementioned “dB2

t = dt” argument. For example, a Taylor expansion gives that for vanishing
η, and approximating xt+η ≈ xt + ηµ(xt) +

√
ησ(xt)ξ for ξ ∼ N (0d, Id),5

df(xt) ≈ f(xt+η)− f(xt)

≈ 〈∇f(xt), ηµ(xt) +
√
ησ(xt)ξ〉+

〈
∇2f(xt), ησ(xt)ξξ

>σ(xt)
>〉

≈ η
(
〈∇f(xt), µ(xt)〉+

〈
∇2f(xt), σ(xt)σ(xt)

>〉)+ 〈∇f(xt), σ(xt) · (
√
ηξ)〉 .

We used the approximation ξξ> = Id in the last line, and dropped all terms of lower order than
η. Unlike in the standard chain rule, there is an additional second-order component that persists,
because ‖√ηξ‖22 scales with η, explaining the presence of the additional term in Proposition 2.

A particular drift-diffusion process of significant interest is the Langevin diffusion. Letting V :
Rd → R be a twice-differentiable function, the associated Langevin diffusion is the SDE

dxt = −∇V (xt)dt+
√

2dBt, (4)

i.e. we take µ = −∇V and σ =
√

2Id in (3). Intuitively, (4) can be thought of as a noisy gradi-
ent flow, with a deterministic drift −∇V (xt)dt (making function value progress) and a diffusion
component

√
2dBt. For the SDE (4), Itô’s lemma (Proposition 2) yields

df(xt) = (−〈∇f(xt),∇V (xt)〉+ ∆f(xt)) dt+
√

2 〈∇f(xt), dBt〉 , (5)

where ∆ is the Laplacian operator given by the formula

∆f(x) = Tr
(
∇2f(x)

)
. (6)

Remark 2. There is a connection between the Laplacian operator defined in (6) and the Laplacian
matrix associated with a graph, defined in Definition 5, Part II. At a high level, the Laplacian LG
of an unweighted path graph G acts on each indicator vector ev for a vertex v of G, with neighbors
u,w, by computing LGev = 2ev−eu−ew, i.e. it computes the difference between a vertex value and
“averages” around its neighbors. Similarly, the Laplacian operator ∆ computes a difference of a
function value with an average in a small neighborhood, which is best-understood in one dimension:

ηf ′′(x) ≈ f ′(x+ η)− f ′(x)

≈ f(x+ η)− f(x)− f(x) + f(x− η) = f(x+ η) + f(x− η)− 2f(x).

5Note that √ηξ has covariance matrix ηId, as required by Definition 1 for advancing time by η.
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2 Markov semigroups
We now take a dual view on stochastic differential equations, by assuming that x0 is drawn from
a density π0 ∈ P(Rd), and associating each time t ≥ 0 with a density πt ∈ P(Rd) corresponding
to the density of xt (called its law), which evolves from x0 following a drift-diffusion process (3).
That is, while the evolution of xt is stochastic, the evolution of its distribution can be viewed as a
deterministic process following a partial differential equation (PDE) derived from (3).

To introduce this equation and its analysis, we first give some definitions from Markov semigroup
theory, which studies “continuous-time Markov chains” such as drift-diffusion processes through
the evolution of functions. For a drift-diffusion process {xt}t≥0, we define an associated Markov
semigroup {Pt}t≥0, which acts on an appropriate set of functions f : Rd → R via the definition

Ptf(x) := E [f(xt) | x0 = x] . (7)

Formally, when an SDE (3) has a stationary density π? : Rd → R≥0, i.e. drawing x0 ∼ π? yields xt
distributed according to π? for all t ≥ 0, an appropriate set of functions is

L2(π?) :=

{
f : Rd → R |

∫
f(x)2π?(x)dx <∞

}
. (8)

For brevity, we assume that all functions discussed in this section are sufficiently smooth6 and
in L2(π?); all arguments can be formalized for a broader family of functions in L2(π?) by taking
appropriate limits with an approximating sequence of smooth functions.

The Markov (memoryless) property of stochastic processes, including drift-diffusion processes, says
that for 0 ≤ s ≤ t, xt is independent of Fs given xs. Because drift-diffusion processes are Markov,
the law of iterated expectations shows that for all s, t ≥ 0,

Pt+sf = PtPsf = PsPtf for all f : Rd → R, (9)

and P0 is clearly the identity operator, which justifies calling {Pt}t≥0 a semigroup. In fact, (9)
shows that it is additionally a commutative semigroup, which will be used later.

Next, given a Markov semigroup {Pt}t≥0, we define the associated generator L which also acts on
functions f : Rd → R via the following definition (which holds pointwise on Rd):

Lf := lim
η→0

Pηf − f
η

. (10)

The generator commutes with all elements of the semigroup {Pt}t≥0, due to the property (9).

Lemma 2. For all t ≥ 0 and f : Rd → R, we have pointwise on Rd,

∂

∂t
Ptf = LPtf = PtLf. (11)

Proof. By using the commutativity property in (9),

LPtf = lim
η→0

Pη − P0

η
Ptf = lim

η→0

Pt+ηf − Ptf
η

= lim
η→0

Pt
Pη − P0

η
f = PtLf

holds pointwise in Rd. The conclusion follows since d
dtPtf = limη→0

Pt+ηf−Ptf
η by definition.

The expression (11) is sometimes called Kolmogorov’s backward equation, a name which is perhaps
best justified by also introducing Kolmogorov’s forward equation. Let π0 ∈ P(Rd) be a density.
Because of the definition (7), we have that for all f : Rd → R,

Ef(xt) =

∫
Ptf(x)π0(x)dx =

∫
f(x)P ∗t π0(x)dx,

6When we say a function in this lecture is smooth, we mean that it has continuous derivatives of all orders.
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where P ∗t is the adjoint operator to Pt.7 This means that πt, the law of xt, is given by P ∗t π0, so
P ∗t is formally the operator which advances π0 forward by time t. In other words, if we want to
understand the density πt, i.e. the law of xt, we should aim to understand P ∗t . Indeed, appropriately
taking adjoints of Lemma 2 yields Kolmogorov’s forward equation,

∂

∂t
P ∗t π0︸ ︷︷ ︸
=πt

= L∗P ∗t π0 = P ∗t L∗π0, (12)

so P ∗t and L∗ also commute for all t ≥ 0. In the case of drift-diffusion processes, there is in fact a
convenient formula for P ∗t , enabling us to write a PDE for density evolution. We first remind the
reader of the multivariate integration by parts formula, which holds for any differentiable function
f : Rd → R and vector field v : Rd → Rd with sufficiently fast decay at infinity,8∫

〈v(x),∇f(x)〉 dx = −
∫
f(x)(∇ · v)(x)dx, (13)

where ∇· is the divergence operator of a vector-valued function (for example, ∇ ·∇ = Tr∇2 = ∆).

Proposition 3 (Fokker-Planck equation). Let {xt}t≥0 follow the drift-diffusion process (3) from
x0 ∼ π0 ∈ P(Rd). Then for all t ≥ 0, denoting the law of xt by πt, we have

∂

∂t
πt(x) = −∇ · (µ(x)πt(x)) +

1

2

∑
i,j∈[d]

∂2

∂xi∂xj

[
σ(x)σ(x)>πt(x)

]
ij

for all x ∈ Rd. (14)

Proof. We first compute using Proposition 2 that for smooth f : Rd → R, and xt following (3),

dEf(xt) =

(
〈∇f(xt), µ(xt)〉+

1

2

〈
∇2f(xt), σ(xt)σ(xt)

>〉) dt,

where we drop the martingale term 〈∇f(xt), σ(xt)dBt〉 because it vanishes in expectation. There-
fore, by the definition (10) of L, we have

Lf(x) = 〈∇f(x), µ(x)〉+
1

2

〈
∇2f(x), σ(x)σ(x)>

〉
, (15)

so for all probability densities π ∈ P(Rd) (which must decay to zero as x→∞),∫
f(x)L∗π(x)dx =

∫
Lf(x)π(x)dx

=

∫ (
〈∇f(x), µ(x)〉+

1

2

〈
∇2f(x), σ(x)σ(x)>

〉)
π(x)dx

=

∫ (
−f(x)∇ · (µ(x)π(x))− 1

2

〈
∇f(x),∇ · (σ(x)σ(x)>π(x))

〉)
dx

=

∫
f(x)

−∇ · (µ(x)π(x)) +
1

2

∑
i,j∈[d]

∂2

∂xi∂xj

[
σ(x)σ(x)>π(x)

]
ij

 dx,

where we repeatedly applied the multivariate integration by parts formula (13). Because this holds
for all test functions f and densities π ∈ P(Rd), this means that pointwise,

L∗π(x) = −∇ · (µ(x)π(x)) +
1

2

∑
i,j∈[d]

∂2

∂xi∂xj

[
σ(x)σ(x)>π(x)

]
ij
,

and the conclusion follows because ∂
∂tπt = L∗πt by Kolmogorov’s forward equation (12).

7The adjoint to an operator P on a Hilbert space is denoted P ∗, and satisfies 〈Pf, g〉 = 〈f, P ∗g〉. Here, the
relevant Hilbert space is sufficiently regular functions on Rd, and the inner product is 〈f, g〉 =

∫
f(x)g(x)dx.

8The decay lets us discard the “boundary term” which typically arises in integration by parts formulas.
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At this point, it is helpful to do an example. Consider the Langevin dynamics (4), where σ(x) =√
2Id for all x ∈ Rd, so that σ(x)σ(x)> = 2Id, so the formula (14) reads

∂

∂t
πt(x) = ∇ · (∇V (x)πt(x)) + ∆πt(x). (16)

The contribution of the component ∆πt(x) is the heat equation, and by going back through the
calculations, we can check that it arose because of the presence of Brownian motion

√
2dBt in

(4). Intuitively, this component is because of the dissipation of heat, where each point contributes
symmetrically to its surroundings. On the other hand, the∇·(∇V (x)πt(x)) term is the contribution
of the drift, and combining characterizes the stationary distribution of the Langevin dynamics.

Theorem 1 (Langevin diffusion stationarity). Suppose that V : Rd → R is differentiable and∫
exp(−V (x))dx < ∞. Then, a stationary distribution for the Langevin dynamics (4) is given by

the density π? : Rd → R≥0 satisfying π? ∝ exp(−V ).

Proof. By the definition of the stationary distribution, we have that ∂
∂tπt vanishes pointwise when

πt = π?. By reparameterizing U := − log π?, i.e. π? ∝ exp(−U), (16) gives that pointwise

0 = −∇ · (∇V (x)π?(x) +∇π?(x)) = −∇ · ((∇V (x)−∇U(x))π?(x)) ,

which is solved by setting U = V up to addition by a universal constant.

In general, it is not necessarily the case that the zero vector field v is the only solution to ∇·(vπ?) =
0 pointwise, but we will soon give conditions (in Section 5) under which π? ∝ exp(−V ) is the unique
stationary distribution for the Langevin dynamics. We pause here to draw some analogies between
spectral graph theory, introduced in Part XI, and the developments of this section. Intuitively, L
plays the role of an infinitesimal transition operator from functions to functions, and its adjoint acts
on probability densities. By solving Kolmogorov’s forward equation (12), we should heursitically
expect the distribution πt to follow the law

πt = exp (tL∗)π0.

Advancing time for t = 1 units, this means that the state evolution of πt roughly follows πt+1 =
exp(L∗)πt ≈ (id+L∗)πt, so exp(L∗) acts like the discrete-time transition operator. We also expect
that as t → ∞, πt → π? (the stationary distribution of the semigroup {Pt}t≥0), so if we view L∗
as an infinite-dimensional operator, it should have a leading eigenfunction of π? with eigenvalue 0
(so its exponential has eigenvalue 1), and if π? is unique, then all other eigenvalues of L∗ should
be negative (so that they rapidly decay with time after exponentiation). To formalize this spectral
characterization of L (which in the spectral graph theory case only made sense when the transition
operator was reversible), it is helpful to introduce the analogous definition for Markov semigroups.

Definition 2. Let {Pt}t≥0 be a Markov semigroup with generator L, and stationary distribution
π? ∈ P(Rd). We say {Pt}t≥0 is reversible if for all f, g ∈ L2(π?), following notation (8),∫

Lf(x)g(x)π?(x)dx =

∫
Lg(x)f(x)π?(x)dx.

In the spectral graph theory case, the transition operator P = D−1G AG corresponded to a degree-
normalized adjacency matrix of a graph G, so reversibility corresponded to DGP = P>DG, or
alternatively D

1
2

GPD
− 1

2

G being a symmetric matrix. In this case, the stationary distribution was
∝ dG, the degrees of G. Analogously, we can interpret the condition in Definition 2 as saying

“ 〈Lf,diag (π?) g〉 = 〈diag (π?) f,Lg〉 ⇐⇒ L∗diag (π?) = diag (π?)L,”

which also justifies the definition being an integration with respect to π?, since we need to conjugate
the generator by π? to make it truly self-adjoint. If we let f = 1E and g = 1E′ be indicators of
subsets E and E′ of Rd, integrating Definition 2 for time t implies that∫

Pt1E(x)1E′(x)π?(x)dx =

∫
Pt1E′(x)1E(x)π?(x)dx

=⇒ Pr
x0∼π?

[x0 ∈ E′, xt ∈ E] = Pr
x0∼π?

[xt ∈ E′, x0 ∈ E] .
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This holds for all events E,E′, so we can verify that (x0, xt) has the same joint distribution as
(xt, x0). This can be interpreted as the fact that the reversed-time Markov semigroup, i.e. that
which follows (12) but flips time, induces the same evolutions as the original Markov semigroup.

Finally, we wish to formalize our earlier intuition of a “spectral gap” driving all functions orthogonal
to π? rapidly to zero, so that the transition operator only preserves the stationary distribution.
By using Jensen’s inequality with the definition (7), observe that for all functions f ∈ L2(π?),

(Ptf(x))2 = E [f(xt) | x0 = x]
2 ≤ E

[
f(xt)

2 | x0 = x
]

= Pt(f
2)(x), for all x ∈ Rd. (17)

Moreover, the above inequality is tight only when f is a constant function, corresponding to L
having a constant right eigenfunction (just as graph transition operators had a right eigenfunction
of 1V ). Our hope is to establish a quantitative variant of (17), where the inequality is strict for
all other functions. When {Pt}t≥0 is reversible with stationary distribution π?, we introduce the
carré du champ operator Γ, and its integral E (called the Dirichlet energy), defined as follows:

Γ(f, g)(x) := −f(x)Lg(x), E(f, g) :=

∫
Γ(f, g)(x)π?(x)dx, (18)

so that the reversibility assumption in Definition 2 gives E(f, g) = E(g, f). As we explore in
Section 5, the question of a spectral gap in (17) is really about understanding the spectrum of the
symmetric operator E . To be more concrete, we conclude the section by working out E explicitly
when {Pt}t≥0 is the Markov semigroup of the Langevin diffusion (4).

Lemma 3. Following notation (18), if {Pt}t≥0 is the Markov semigroup corresponding to the
Langevin diffusion (4) and

∫
exp(−V (x))dx <∞, then for π? ∈ P(Rd) satisfying π? ∝ exp(−V ),

E(f, g) =

∫
〈∇f(x),∇g(x)〉π?(x)dx for all f, g ∈ L2(π?).

Proof. Recall from the calculation (15), specialized to the Langevin diffusion (4), that

E(f, g) = −
∫
Lf(x)g(x)π?(x)dx

=

∫
〈∇f(x),∇V (x)〉 g(x)π?(x)dx+

∫
∆f(x)g(x)π?(x)dx

=

∫
〈∇f(x),∇V (x)〉 g(x)π?(x)dx+

∫
〈∇f(x),∇(g · π?)(x)〉dx

=

∫
〈∇f(x),∇V (x)〉 g(x)π?(x)dx−

∫
〈∇f(x),∇V (x)〉 g(x)π?(x)dx

+

∫
〈∇f(x),∇g(x)〉π?(x)dx =

∫
〈∇f(x),∇g(x)〉π?(x)dx,

as claimed. The third line above used integration by parts (13) (with ∆f = ∇ · (∇f)), and the
fourth line used that π?(x) = exp(−V (x))

Z for a universal normalizing constant Z, so that

−∇V (x)π?(x) = −∇V (x) · exp(−V (x))

Z
= ∇

(
exp(−V (x))

Z

)
= ∇π?(x).

Notice in particular that when f or g is a constant function, then E(f, g) = 0 by Lemma 3, so
the constant function is an eigenfunction of E . The question of a spectral gap then corresponds
to characterizing the eigenvalues of all eigenfunctions of E orthogonal to the constant function
(which is exactly the space where probability densities are allowed to evolve, since they must stay
densities). Lemma 3 also justifies the name “carré du champ,” which is French for “square of a
field.” Here, we mean the vector field ∇f , which is relevant because E(f, f) =

∫
‖∇f(x)‖22 π?(x)dx.

Further, Lemma 3 proves that E(f, g) = E(g, f), so the Langevin diffusion is indeed reversible.

Remark 3. Markov semigroup theory extends to the discrete setting as well, where a continuous-
time Markov chain is governed by a matrix specifying transition probabilities for a continuous-
time jump process. The continuous-time analog of the “transition matrix” is a family of matrices
{exp(tL)}t≥0 for a generator matrix L, specifying transition probabilities after t time has passed.
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3 Optimal transport
In this section, we take a brief digression to introduce a notion of distance between probability
measures in P(Rd), which is important for measuring convergence rates of stochastic processes to
their stationary distribution. We begin by defining the relevant distance we will consider.

Definition 3 (Wasserstein distance). Let µ, π ∈ P(Rd) have finite second moments, i.e. Ex∼µ[‖x‖22] <

∞,Ex∼π[‖x‖22] <∞. We define the Wasserstein distance between µ and π by

W2(µ, π) := inf
γ∈C(µ,π)

√∫
‖x− y‖22 γ(x, y)dxdy, (19)

where C(µ, π) is the set of all couplings of µ and π (see Fact 1, Part XI).

In other words, the squared distance W 2
2 (µ, π) is induced by the coupling γ which minimizes

the expected squared distance between (x, y) ∼ γ. More generally, there is also a family of p-
Wasserstein distances Wp(µ, π), which generalize Definition 3. In fact, historically it was the W1

distance which was first considered by Monge in the 1700s (who only considered a restricted set
of deterministic mappings x → y), and later Kantorovich during World War II (who introduced
the more general coupling definition), who were interested in the transportation of resources. The
study of optimization problems of the form in Definition 3 is hence called optimal transport. For an
extended introduction to optimal transport and its applications, we recommend the text [Vil08];
for a somewhat briefer summary of some of the key technical tools, see [MG10].

One useful observation for our purposes is the fact that W2 induces a metric on

P2(Rd) :=

{
π ∈ P(Rd) |

∫
‖x‖22 π(x)dx <∞

}
,

the set of densities with finite second moment. Hence, it yields a distance on P2(Rd).

Lemma 4. For all µ, ν, π ∈ P2(Rd), we have W2(µ, π) ≤W2(µ, ν) +W2(ν, π).

Proof. Let γµ,ν ∈ C(µ, ν) be the optimal coupling of µ, ν realizing the valueW2(µ, ν), and similarly
let γν,π ∈ C(ν, π) realize the value W2(ν, π). We first claim that there exists a joint distribution
(x, y, z) ∼ γµ,ν,π on Rd × Rd × Rd, such that the marginal distribution of (x, y) is γµ,ν , and the
marginal distribution of (y, z) is γν,π. To see this, we can first draw y ∼ ν, and then draw x and z
from the conditional distributions of γµ,ν | y and γν,π | y, respectively.

Next, the marginal distribution of (x, z) for (x, y, z) ∼ γµ,ν,π is a valid coupling of µ, π, so

W2(µ, π) ≤

√∫
‖x− z‖22 γµ,ν,π(x, y, z)dxdydz

≤

√∫
(‖x− y‖2 + ‖y − z‖2)

2
γµ,ν,π(x, y, z)dxdydz

≤

√∫
‖x− y‖22 γµ,ν,π(x, y, z)dxdydz +

√∫
‖y − z‖22 γµ,ν,π(x, y, z)dxdydz

=

√∫
‖x− y‖22 γµ,ν(x, y)dxdy +

√∫
‖y − z‖22 γν,π(y, z)dydz = W2(µ, ν) +W2(ν, π).

The second line used the triangle inequality, and the inequality in the third line follows by squaring
both sides and bounding cross-terms. The last line used our construction of γµ,ν,π.

We mention that while Lemma 4 shows W2 obeys the triangle inequality, it is not necessarily the
case that W2(µ, π) = 0 =⇒ µ = π. However, this conclusion is true except for on a set of measure
zero, so we will treat W2 as a genuine metric under this set of equivalence classes.

We conclude the section by introducing the fundamental theorem of optimal transport, and provid-
ing a brief proof sketch. This result gives a remarkable characterization of the optimal transport
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coupling γ inducing W2, and establishes that strong duality holds for the corresponding problem.
Specifically, note that C(µ, π) is a convex subset of the probability measures on Rd × Rd (since
taking convex combinations does not affect marginals), and further

1

2
W 2

2 (µ, π) = inf
γ∈C(µ,π)

∫
1

2
‖x− y‖22 γ(x, y)dxdy (20)

is a linear optimization problem over C(µ, π) (i.e. the objective above is linear in γ). Therefore, we
may consider its Lagrangian dual, which is derived via

inf
γ∈C(µ,π)

∫
1

2
‖x− y‖22 γ(x, y)dxdy

= inf
γ∈P2(Rd×Rd)

sup
f∈L1(µ)

g∈L1(π)

∫
1

2
‖x− y‖22 γ(x, y)dxdy +

∫
f(x)µ(x)dx−

∫
f(x)γ(x, y)dxdy

+

∫
g(y)π(y)dy −

∫
g(y)γ(x, y)dxdy,

where L1(π) is the set of functions with finite expectation with respect to π (analogously to (8)).
The role of f and g above is to enforce the marginal constraints in the unconstrained problem over
γ, forcing γ ∈ C(µ, π) at optimality. Now, if strong duality holds, the above expression equates to

sup
(f,g)∈D(µ,π)

∫
f(x)µ(x)dx+

∫
g(y)π(y)dy,

where D(µ, π) :=

{
(f, g) ∈ L1(µ)× L1(π) | f(x) + g(y) ≤ 1

2
‖x− y‖22 for all x, y ∈ Rd

}
.

(21)

We think of D(µ, π) as the set of dual feasible potentials (f, g) inducing the dual optimization
problem. Incredibly, under mild conditions strong duality does hold, and we also have a complete
characterization of the optimal coupling γ ∈ C(µ, π) and the optimal dual potentials (f, g).

Proposition 4 (Brenier’s theorem). If µ, π ∈ P2(Rd), the values of (20) and (21) are equal (i.e.
strong duality holds), and both values are realized, respectively by γ? ∈ C(µ, π) and (f?, g?) ∈
D(µ, π). Moreover, there exists a unique convex function ϕ : Rd → R ∪ {∞} such that

f?(x) =
1

2
‖x‖22 − ϕ(x), g?(y) =

1

2
‖y‖22 − ϕ

∗(y),

and the optimal coupling γ? is supported only on points (x, y) where y ∈ ∂ϕ(x).

We remark that Alexandrov’s theorem tells us that convex functions are differentiable almost
everywhere, so the support is almost surely of the form (x,∇ϕ(x)). In other words, the optimal
transport plan from µ to π realizing W 2

2 is actually a unique deterministic mapping ∇ϕ, which
sends x ∼ µ to ∇ϕ(x) ∼ π, except on a measure-zero subset. As a sanity check, we indeed have

f?(x) + g?(y) =
1

2
‖x‖22 − ϕ(x) +

1

2
‖y‖22 − ϕ

∗(y)

=
1

2
‖x‖22 +

1

2
‖y‖22 − ϕ(x)− ϕ∗(∇ϕ(x)) =

1

2
‖x− y‖22 ,

for all (x, y) = (x,∇ϕ(x)) in the support of γ?, where we recall from Corollary 1, Part III, that

ϕ(x) + ϕ∗(∇ϕ(x)) = 〈∇ϕ(x), x〉 = 〈y, x〉 .

Therefore, all of the constraints in D(µ, π) are tight for the optimal dual potentials (f?, g?). The
induced convex function ϕ is often called a Brenier potential, and much of Proposition 4 was
established by the works [Bre87, Bre91]. The proof of Proposition 4 is a bit tedious for this brief
exposition; a summary of it can be found in Section 1.3 of [Che24]. However, we mention one
crucial step of the proof which may be of broader interest to the reader.

Fact 1 ([Roc70]). If S ⊆ Rd × Rd is cyclically monotone, i.e. for all n ∈ N and all permutations
σ : [n]→ [n], we have for all {(xi, yi)}i∈[n] ⊆ S,∑

i∈[n]

〈xi, yi〉 ≥
∑
i∈[n]

〈
xi, yσ(i)

〉
, (22)
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then there exists a convex function ϕ : Rd → R ∪ {∞} such that

S ⊆
{

(x, y) | x ∈ Rd, y ∈ ∂ϕ(x)
}
.

One can check that pairs (x, ∂ϕ(x)) do indeed induce cyclically monotone sets, which follows from
monotonicity of convex gradients (see Definition 2, Part IV). The characterization in Proposition 4
then follows because optimal transport plans induce cyclically monotone subsets. Indeed, if (22)
did not hold for some pairs {(xi, yi)}i∈[n] in the support of the transport plan, then we could
improve the W 2

2 objective by pairing up the transported points differently:∑
i∈[n]

〈xi, yi〉 ≤
∑
i∈[n]

〈
xi, yσ(i)

〉
=⇒

∑
i∈[n]

‖xi − yi‖22 ≥
∑
i∈[n]

∥∥xi − yσ(i)∥∥22 .
Remark 4 (Caffarelli’s contraction theorem). Under further structural assumptions on the mea-
sures µ, π in Definition 3, one can say more about the optimal transport map ∂ϕ described in Propo-
sition 4. For example, a famous result by [Caf00] states that if µ ∝ exp(−V ) and π ∝ exp(−W )
where V is L-smooth9 and W is m-strongly convex, then the optimal transport map is induced by
a differentiable convex function ϕ which is

√
L/µ-smooth. For a short proof of this fact and a

generalization to entropic variants of optimal transport, see [CP23].

We conclude this section with our first convergence analysis for the Langevin dynamics, albeit
in continuous time (which does not give an implementable algorithm). We will later analyze a
discretized version of the following result. Before stating our claim, we require one definition.

Definition 4 (Strong logconcavity). We say π ∈ P(Rd) is µ-strongly logconcave if π ∝ exp(−V )
for V : Rd → R ∪ {∞}, such that V is µ-strongly convex.

For instance, the multivariate normal distribution N (m,Σ) for m ∈ Rd, Σ ∈ Sd×d�0 , whose density
is ∝ exp(− 1

2 ‖· −m‖
2
Σ−1), is µ-strongly logconcave for any value of µ > 0 with Σ−1 � µId.

Theorem 2 (Wasserstein convergence of Langevin dynamics). Let {xt}t≥0 follow the Langevin
dynamics (4) with stationary distribution π?, and assume that π? is µ-strongly logconcave. For all
t ≥ 0, the law of xt, denoted πt ∈ P(Rd), satisfies

W 2
2 (πt, π

?) ≤ exp (−2µt)W 2
2 (π0, π

?) .

Proof. Let γt be a coupling of (πt, π
?) defined as follows. Let γ?0 be the coupling of (π0, π

?) which
realizes W 2

2 (π0, π
?), draw (x0, x

?
0) ∼ γ?0 , and advance both points using the Langevin dynamics

(4), sharing the same copy of Brownian motion {Bs}0≤s≤t. It is clear that the marginals of γt are
(πt, π

?) respectively (the latter because π? is stationary for (4)). Moreover, letting {(xs, x?s)}s∈[0,t]
be advanced through (4) using the same copy of Brownian motion, so (xt, x

?
t ) ∼ γt,

d
ds

(xs − x?s) = ∇V (x?s)−∇V (xs)

=⇒ d
ds
‖xs − x?s‖

2
2 = −2 〈∇V (xs)−∇V (x?s), xs − x?s〉 ≤ −2µ ‖xs − x?s‖

2
2

=⇒ ‖xt − x?t ‖
2
2 ≤ exp (−2µt) ‖x0 − x?0‖

2
2 .

Above, the second inequality used Gronwall’s inequality (Fact 1, Part II), and the first inequality
used that strong convexity of V implies (e.g. by adding Eq. (9), Part II with x, x′ interchanged)

〈∇V (x)−∇V (x′), x− x′〉 ≥ µ ‖x− x′‖22 for all x, x′ ∈ dom(V ).

Finally, because γt is a coupling of (πt, π
?) (so it has no better objective value for (19) than the

optimal coupling), we conclude that

W 2
2 (πt, π

?) ≤ E(xt,x?t )∼γt

[
‖xt − x?t ‖

2
2

]
≤ exp (−2µt) E(x0,x?0)∼γ?0

[
‖x0 − x?0‖

2
2

]
= exp (−2µt)W 2

2 (π0, π
?).

9Here we mean smoothness in the sense of Definition 3, Part II.

11



We also give a basic initialization strategy under strong logconcavity. The following result shows
that initializing at π0 set to a point mass at x? achieves boundedW 2

2 (π0, π
?). The proof is tolerant

to approximate minimizers; finding such a point typically does not dominate the cost of running a
sampler (as state-of-the-art optimization rates are better than their sampling counterparts).

Lemma 5. Let π? ∈ P(Rd) satisfy π? ∝ exp(−V ), and suppose V : Rd → R ∪ {∞} is µ-strongly
convex and minimized at x?. Then,

Ex∼π?
[
‖x− x?‖22

]
≤ 2d

µ
.

Proof. Shifting V by a constant so
∫

exp(−V (x))dx = 1, using 〈∇V (x), x− x?〉 ≥ µ
2 ‖x− x

?‖22
which follows from strong logconcavity where V (x) <∞,10 and integrating by parts (using (13)),

Ex∼π?
[
‖x− x?‖22

]
=

∫
‖x− x?‖22 exp (−V (x)) dx

≤ 2

µ

∫
〈∇V (x), x− x?〉 exp (−V (x)) dx

=
2

µ

∫
(∇ · (· − x?))(x) exp (−V (x)) dx =

2

µ

∫
Tr(Id) exp(−V (x))dx =

2d

µ
.

Theorem 2 has the appealing property of giving a linear rate of convergence, but the convergence
guarantee is in the Wasserstein distanceW2, which may be less flexible in downstream applications.
For instance,W2 is typically incomparable to the total variation distance DTV, and when designing
sampling algorithms to be used as subroutines (i.e. to be called multiple times), DTV guarantees
are preferable because they compose under the union bound. In Section 5, we introduce techniques
for proving convergence of the Langevin dynamics and other stochastic differential equations in
stronger error metrics such as the KL divergence (which implies bounds on DTV by Pinsker’s
inequality, as well as bounds on W2 under appropriate conditions discussed in Section 5).

4 Probability densities as a Riemannian manifold

4.1 Riemannian manifolds
In this section, we build upon our development of optimal transport to present a view of the space
of square-integrable probability densities P2(Rd) as a differentiable (in particular, Riemannian)
manifold. It is first helpful to give some brief description of what differentiable manifolds are, and
the sorts of calculations we can expect to arise from manipulating them. We informally do so here,
focusing on presenting only the relevant material in a way that motivates the calculations specific
to P2(Rd). For a more extended discussion on these topics, we suggest [Vis18] as a resource for
learning about Riemannian manifolds in a way that is accessible to a computer science audience,
as well as [dC92] for a more rigorous treatment from a mathematical perspective.

Roughly speaking, a manifoldM is a topological space such that every p ∈M has a open neighbor-
hood Up that “looks like” Euclidean space. Formally, in the finite-dimensional setting this means
that there is a homeomorphism between Up and an open set in Rk. In many applications, this is
interesting because M is actually a subset of a higher-dimensional Euclidean space (e.g. Rd for
d ≥ k). A canonical example is the surface of the unit sphere in R3, which is a 2-dimensional man-
ifold (because neighborhoods of points are homeomorphic to balls in R2). This definition extends
straightforwardly to Hilbert spaces, which are inner product spaces (possibly of infinite dimension)
that generalize Euclidean space. For instance, L2(Rd), the set of all square-integrable functions in
Rd (i.e. f : Rd → R such that

∫
f(x)2dx <∞) is a Hilbert space equipped with the inner product

〈f, g〉 :=

∫
f(x)g(x)dx.

10When V : Rd → R is unconstrained so that ∇V (x?) = 0d by first-order optimality, the constant factor can be
sharpened by using 〈∇V (x)−∇V (x?), x− x?〉 ≥ µ ‖x− x?‖22.
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In particular, note that P2(Rd) is a subset of the space of square-integrable functions, and indeed
we will view it as a manifold embedded in L2(Rd). We now mention some definitions tailored to
a specific family of manifolds which is convenient for calculation purposes, namely Riemannian
manifolds. In a Riemannian manifold M, every point p ∈ M has an associated tangent space
TpM. Informally, this should be viewed as the set of all possible “local velocities” of curves
on M passing through p. Notice that we treat points on M (which should be thought of as
representing position) differently than elements of a tangent space TpM (which should be thought
of as representing velocities). Also, in general elements of TpM and TqM for p, q ∈ M, p 6= q
are not directly comparable (e.g. we cannot simply add or subtract them directly, since they live
in different spaces). To compare them, we should first transport TpM to TqM in an appropriate
way along the manifold, which is done using a construction called the Levi-Civita connection. We
will not explicitly describe this connection in the remainder of the lecture for brevity’s sake, but
mention this caveat to caution the reader when performing calculations on manifolds.

There are two main properties of Riemannian manifolds that are convenient for our purposes.
The first is that every point p ∈ M comes with a local metric gp which can be used to per-
form calculations specific to TpM. Specifically, there is a way to assign values gp(u, v) such that
gp(u, v) = gp(v, u) for all u, v ∈ TpM, and gp(·, w) is linear in its first argument for all w ∈ TpM.
To help build intuition for this, when we view Rd as a trivial manifold in Rd, gp is simply the
standard Euclidean inner product 〈·, ·〉 pointwise, i.e. it does not change depending on p ∈ Rd

(because the space is not “curved”). Another interesting example is the Hessian manifold of a
self-concordant barrier function. For a subset K ⊆ Rd equipped with a self-concordant barrier
function ϕ : K → R (see Definition 2, Part X), we can define associated local metrics satisfying

gp(u, v) := ∇2ϕ(p)[u, v] for all p ∈ K, u, v ∈ Rd.

Note that in this example, each tangent space TpM is d-dimensional (i.e. it is not actually lower-
dimensional than its ambient space). The role of defining the local metrics gp above is to “curve
space” in a way that can helpfully guide algorithm design, e.g. the Newton’s method we analyzed in
Part X is just a discretization of a standard gradient flow from the perspective of the local metrics,
which reweight the different directions in TpM using ∇2ϕ(p).11 We can correspondingly measure
the “length” and “correlation” of elements in TpM by defining the norm and local inner product,

‖v‖p :=
√
gp(v, v), 〈u, v〉p := gp(u, v), for all u, v ∈ TpM. (23)

The second main property we need is that there is a meaningful notion of differentiability associated
with functions on the manifold, F :M→ R. We begin by defining geodesics, which informally are
length-minimizing curves alongM which do not leave the manifold. Concretely, given two points
p, q ∈M, we denote their distance along the manifold by dM(p, q), which is defined by

dM(p, q) := inf
γ:[0,1]→M

γ(0)=p,γ(1)=q

{∫ 1

0

‖γ̇(t)‖γ(t) dt
}
. (24)

We pause to explain the above formula. The infimum is taken with respect to all curves γ : [0, 1]→
M, which travel for one unit of time along M, starting from γ(0) = p and ending at γ(1) = q.
Moreover, γ̇(t) ∈ Tγ(t)M is the velocity vector of the curve at time t, whose length is measured
in the local metric ‖·‖γ(t). So, the formula (24) measures the total magnitude of the distance
accumulated over the curve, a meaningful generalization of the “length” of a curve. When the
infimum is achieved, we call the length-minimizing curve γ which realizes the value of (24) the
geodesic between p and q. Under mild conditions, geodesics actually have constant speed ‖γ̇(t)‖γ(t)
along their trajectories, so an equivalent definition is

dM(p, q) := inf
γ:[0,1]→M

γ(0)=p,γ(1)=q


√∫ 1

0

‖γ̇(t)‖2γ(t) dt

 . (25)

11A helpful example to consider is M = Rd>0, equipped with the self-concordant barrier function ϕ(p) :=

−
∑
i∈[d] log pi. In this example, ∇2ϕ(p) = diag( 1

p
), so as pi approaches any boundary of the orthant for any

coordinate i ∈ [d], space inM is curved in a way such that the weight assigned to that coordinate blows up.
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For instance, geodesics in Rd are just straight-line paths (which clearly have a constant-speed
parameterization, i.e. move along the line at a fixed speed), and geodesics along the unit sphere
example mentioned earlier follow arcs in the way that one would expect. We can now finally define
our notion of differentiability. Given a function F :M→ R, the gradient of F at p ∈M is denoted
∇MF(p) ∈ TpM, and is the element of TpM such that for all curves {γ(t)}t∈R passing through p
at time t = 0, i.e. with γ(0) = p, it holds that

∂

∂t
F(γ(t)) |t=0= 〈∇MF(p), γ̇(0)〉p . (26)

Namely, this is just the generalization of the chain rule in Rd: if x(t) is a smooth curve parameterized
by time t ∈ R, then we have d

dtf(x(t)) =
〈
∇f(x(t)), d

dtx(t)
〉
. The formula (26) extends this

definition to hold for all curves passing through p, which may not be fully comparable (due to their
different trajectories) except locally at p. In the remainder of the section, we focus on describing
how to do these calculations for an appropriate Riemannian manifold associated with P2(Rd).

4.2 Wasserstein space
The punchline of the above digression, and the developments of Section 3, is that P2(Rd) can
naturally be viewed as a manifoldM, equipped with the distance function (see (24))

dM (µ, π) := W2(µ, π), for all µ, π ∈M := P2(Rd). (27)

We call the manifold P2(Rd) (referred to as M for the remainder of this section for brevity),
equipped with the distance W2, Wasserstein space for short. Importantly, there are succinct
characterizations of tangent spaces, local metrics, geodesics, and gradients of functionals on M.
The goal of this section is to state these characterizations, as well as some rough sketches for their
proofs. For a more extended proof overview, we defer to Section 1.3 of [Che24], and we defer formal
derivations of these results to the excellent resource [AGS08].

To introduce the Riemannian structure ofM, it is helpful to first adopt a dual view on curves along
Wasserstein space, just as we did in Section 2. In particular, in Section 2 we showed that every
particle flow governed by an SDE on particles in Rd enduces a deterministic density flow alongM.
In the case of Section 2, we considered stochastic particle flows, but this connection works fine for
deterministic particle flows as well,12 summarized in the following fundamental result.

Lemma 6 (Continuity equation). Let {vt}t∈R be a family of vector fields on Rd, i.e. for all t ∈ R,
vt : Rd → Rd is a corresponding vector field. Let x0 ∼ π0 and suppose that xt follows the ODE
d
dtxt = vt(xt) for all t ≥ 0. Then πt, the law of xt, follows the following PDE pointwise on Rd:

∂

∂t
πt +∇ · (πtvt) = 0. (28)

Proof. For all test functions f : Rd → R,∫
f(x)

∂

∂t
πt(x)dx =

∂

∂t

(∫
f(x)πt(x)dx

)
=

∂

∂t
Ex∼πt [f(xt)]

= E

〈
∇f(xt),

d
dt
xt

〉
= E 〈∇f(xt), vt(xt)〉

=

∫
〈∇f(x), vt(x)〉πt(x)dx = −

∫
f(x)∇ · (vt(x)πt(x))dx,

(29)

where we used integration by parts (13) in the last line. As this holds for all f , the claim follows.

Tangent spaces. Lemma 6 suggests that if the connection between vector fields in Rd (corre-
sponding to particle flows) and curves onM (corresponding to density flows) goes both ways, then
every geodesic on M is interpretable by studying a corresponding family of vector fields which

12It is unsurprising in light of Proposition 4, which shows that Wasserstein distances are induced by deterministic
maps in particle space, that the most interesting particle flows from a geodesic perspective are deterministic.
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induces it. This viewpoint turns out to be formalizable, and in fact the relevant vector fields turn
out to be those induced by gradients of functions. More precisely, for π ∈M, the tangent space is

TπM =

{
∇ · (π∇ψ) | ∇ψ ∈

{
∇ψ | ψ : Rd → R is smooth,

∫
‖∇ψ(x)‖22 π(x)dx <∞

}}
, (30)

where S denotes the closure of a set S.13 In other words, when moving along the manifold M
(following a trajectory in density space), the resulting movement in particle space is induced by a
vector field given by the gradient of a smooth function, or a limit of such gradients. Moreover, each
curve {πt}t∈R ∈M has a time derivative ∂

∂tπt given by a continuity equation (28), parameterized
by a family of vector fields {vt}t≥0, such that vt = ∇ψt for a function ψt : Rd → R almost surely.

We have already seen two pieces of evidence suggesting this should be the case. First, vector fields
in Wasserstein space yield W2 distances between probability distributions (27), and we know that
“shortest paths” (i.e. optimal transport plans) are given by gradient vector fields from Brenier’s
theorem, Proposition 4. Second, when performing the computation in (29) to derive the continuity
equation, the vector field vt only interacts with gradients of functions ∇f . So, projecting vt into the
subspace of function gradients14 decreases its norm measured in the local metric, without affecting
the continuity equation (28). To give an example, we showed that the Langevin dynamics (4) induce
a curve in Wasserstein space given by the Fokker-Planck equation (16), i.e. ∂

∂tπt = ∇·(πt∇V )+∆πt
pointwise. This is consistent with (30), as it gives the continuity equation

∂

∂t
πt = ∇ · (πt∇V +∇πt) = ∇ · (πt(∇V +∇ log πt))

= ∇ ·
(
πt∇ log

πt
π?

)
∈ TπtM.

(31)

We now mention some additional calculations relevant to Wasserstein space.

Local metrics. First, the way to define the local metric (following notation (23)) between ∇ ·
(π∇ψ),∇ · (π∇ϕ) ∈ TπM for smooth functions ψ,ϕ : Rd → R is the formula

〈∇ · (π∇ψ),∇ · (π∇ϕ)〉π :=

∫
〈∇ψ,∇ϕ〉π(x)dx. (32)

For elements of TπM which are obtained by taking the limit of smooth gradients, we similarly
define their inner product in the local metric by taking limits of the above formula.

Geodesics. For two probability densities in Wasserstein space, π, µ ∈ M, we can characterize
the geodesic γ : [0, 1]→M joining π = γ(0) and µ = γ(1) as follows. Let (x0, x1) be drawn from
the optimal coupling c inducing W 2

2 (π, µ), which exists and is unique by Proposition 4. Then, the
density γ(t) ∈ M is given by the law of (1 − t)x0 + tx1. This result states that the geodesic γ is
(in particle space) traced out by the straight-line interpolation within the optimal coupling, and a
simple calculation using the formulas (25), (32) shows that indeed,

dM(π, µ) =

√∫
‖x0 − x1‖22 c(x0, x1)dx0dx1 = W2(π, µ),

as claimed. This geodesic is also called McCann’s displacement interpolation.

Gradients. Finally, for a functional F :M→ R,15 we compute its Wasserstein gradient∇MF(π)
(i.e. its gradient over the differentiable manifold M in the sense of (26)), at a point π ∈ M, as
follows. Let {πt}t∈R ⊂ M be an arbitrary smooth curve satisfying π0 = π. By the discussion
following Lemma 6, there is a family of functions {ψt : Rd → R}t∈R, such that

∂

∂t
πt = ∇ · (πt∇ψt), for all t ∈ R. (33)

13Formally, the closure here is with respect to the vector topology induced by the Hilbert space L2(π).
14Square-integrable gradients of smooth functions form a subspace within the Hilbert space L2(π), because this

space is closed under linear combinations (i.e. a∇f + b∇g is the gradient of af + bg).
15Following the literature, we call functions defined over M “functionals,” as they are functions of functions.

Indeed, points inM are probability densities, which are functions from Rd → R.
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Moreover, the element ∇MF(π) is an element of TπM, so it is identifiable with a gradient ∇ψ
for ψ : Rd → R following (30). Let us further suppose that the functional F satisfies the following
assumption: for any smooth curve {πt}t∈R ∈M, we have

∂

∂t
F(πt) |t=0=

∫
(δF(π)(x))

(
∂

∂t
πt(x) |t=0

)
dx, (34)

for a scalar-valued function δF(π) : Rd → R. We will see an example of a functional F satisfying
(34) shortly; the function δF(π) is called the first variation of F at π. Continuing, we see that

∂

∂t
F(πt) |t=0 =

∫
(δF(π)(x)) (∇ · (π∇ψ0) (x)) dx

= −
∫
〈∇δF(π)(x),∇ψ0(x)〉π(x)dx = 〈∇ · (−π∇δF(π)),∇ · (π∇ψ0)〉π .

The first equation used (33), the second was integration by parts (13), and the last used our local
metric formula (32). Comparing the above display with the definition of the manifold gradient in
(26), we see that whenever (34) holds for a functional F , the manifold gradient is simply given by

∇MF(π) = ∇ · (−π∇δF(π)) ≡ −∇δF(π). (35)

We use the above notation to mean −∇δF(π) is the vector field followed in particle space pointwise,
inducing a density flow of the form ∂

∂tπt |t=0= ∇· (−π∇δF(π)) for curves {πt}t∈R passing through
π0 = π (see Lemma 6). To give an example, suppose that V : Rd → R satisfies

∫
exp(−V (x))dx <

∞, and let π? ∈ P(Rd) be the density with π? ∝ exp(−V ). Finally, consider the functional

F(π) := DKL (π‖π?) , for all π ∈M. (36)

We begin by computing the first variation of F , in the sense of (34). Observe that

∂

∂t
F(πt) =

∂

∂t

(∫
πt(x) log

(
πt(x)

π?(x)

)
dx
)

=

∫ (
log

(
πt(x)

π?(x)

)
+ 1

)(
∂

∂t
πt(x)

)
dx

=

∫
log

(
πt(x)

π?(x)

)(
∂

∂t
πt(x)

)
dx+

∂

∂t

∫
πt(x)dx

=

∫
log

(
πt(x)

π?(x)

)(
∂

∂t
πt(x)

)
dx,

(37)

since
∫
πt(x)dx = 1 for all πt ∈M. Therefore, comparing (37) to (34) shows that

∇δF(π)(x) = ∇ log

(
π(x)

π?(x)

)
= ∇V (x) +∇ log π(x), (38)

up to a universal additive constant. In other words, following (35), the negated manifold gradient
of the functional F = DKL(·‖π?) at π ∈M is the vector field given pointwise by ∇V +∇ log π.

Perhaps surprisingly (as first observed by the landmark result of [JKO98]), this is the same gradient
field induced by the continuity equation of the Langevin dynamics, as computed in (31)! Therefore,
following the gradient flow along M, i.e. defining ∂

∂tπt = −∇MF(πt), is equivalent to a particle
flow governed by the Langevin dynamics. We summarize this observation as follows.

Theorem 3 ([JKO98]). Let π? ∈ P2(Rd) satisfy π? ∝ exp(−V ) for V : Rd → R, and let F(π) :=
DKL(π‖π?) for π ∈ P2(Rd). Drawing x0 ∼ π0 for a density π0 ∈ P(Rd), and letting πt be the law
of xt for {xt}t≥0 following the Langevin dynamics (4), the curve {πt}t≥0 follows the curve

∂

∂t
πt = −∇MF(πt),

where ∇M is the manifold gradient defined in (26), and M is the Riemannian manifold given by
P2(Rd) equipped with the distance function W2. In other words, the Langevin dynamics in particle
space induce the gradient flow of the KL divergence to π? in the space of measures.
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We conclude this section with one additional manifold gradient formula, applied to the functional

F(π) :=
1

2
W 2

2 (π, π?),

for a target density π? ∈M. The manifold gradient in this case is induced by the vector field

∇MF(π)(x) ≡ x−∇ϕ(x),

where (x,∇ϕ(x)) ∈ C(π, π?) for x ∼ π is the coupling inducing W 2
2 (π, π?).

(39)

This is intuitive along geodesics, given our earlier discussion of McCann’s displacement interpola-
tion and following (34); more generally we defer proving (39) to [Vil08], Theorem 23.9.

5 Functional inequalities
In this section, we introduce functional inequalities, which characterize certain spectral properties
of a Markov semigroup. As a first example, we define and interpret the Poincaré inequality.

Definition 5 (Poincaré inequality). We say that π? ∈ P(Rd) satisfies a Poincaré inequality with
constant CPI if for all differentiable f ∈ L2(π?),

Varπ? [f ] ≤ CPI

∫
‖∇f(x)‖22 π

?(x)dx, (40)

where

Varπ? [f ] :=

∫ (
f(x)−

∫
f(y)π?(y)dy

)2

π?(x)dx.

We now explain how Definition 5 has a natural interpretation as providing a spectral gap on the
Dirichlet energy operator E defined in (18). Recall from Lemma 3 that when E corresponds to the
Langevin dynamics (4) with stationary density π?, we have E(f, g) =

∫
〈∇f(x),∇g(x)〉π?(x)dx

for f, g ∈ L2(π?), so that the right-hand side of (40) is simply CPI · E(f, f). Moreover, we know
that constant functions are vanishing eigenfunctions of E , since they have pointwise zero gradients.
Hence, viewing L2(π?) as a Hilbert space with the inner product 〈f, g〉 =

∫
f(x)g(x)π?(x)dx (and

defining ‖f‖2 := 〈f, f〉), the condition (40) is equivalent to the statement that

E(f, f)

‖f‖2
≥ 1

CPI
for all f ∈ L2(π?) with 〈f, c〉 = 0,

where c is any constant-valued function. This is precisely imposing a spectral gap on the operator
E , since it bounds its second-smallest eigenvalue. As we will see, we can formally use Poincaré
inequalities to bound the decay of any eigenfunctions orthogonal to constant functions to derive
convergence to π? in the χ2 distance. We also mention that our definition (40) is specialized to the
Dirichlet energy operator E arising from the Langevin dynamics. Indeed, other reversible Markov
semigroups induce alternative compatible formulations of the Poincaré inequality, by setting the
right-hand side of (40) to the generalization of E derived in Lemma 3.

In general, the χ2 divergence between probability distributions (whose convergence proofs are facil-
itated by Poincaré inequalities, as statements about “variance decay”) dominates the KL divergence
DKL. However, in important cases of interest the initial χ2 divergence can be exponentially larger
than DKL (see discussion at the end of Section 2.2, Part XII), so we would like a means to directly
argue about the convergence of a semigroup in DKL. This “entropy decay” strengthening of the
Poincaré inequality is the log-Sobolev inequality, which we next define.

Definition 6 (Log-Sobolev inequality). We say that π? ∈ P(Rd) satisfies a log-Sobolev inequality
with constant CLSI if for all differentiable f ∈ L2(π?),

Entπ? [f2] ≤ 2CLSI

∫
‖∇f(x)‖22 π

?(x)dx, (41)

where

Entπ? [f ] :=

∫
f(x) log(f(x))π?(x)dx−

(∫
f(x)π?(x)dx

)
log

(∫
f(x)π?(x)dx

)
.
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We show that Definition 6 is indeed a strengthening of Definition 5.

Lemma 7. If π? ∈ P(Rd) satisfies a log-Sobolev inequality with constant C, it also satisfies a
Poincaré inequality with constant C.

Proof. Let f ∈ L2(π?), and without loss of generality suppose that Eπ? [f ] =
∫
f(x)π?(x)dx = 0,

else we may subtract an appropriate constant from f pointwise which does not affect the calculation
(40). Next, consider taking f ← 1 + εf in (41) for a small constant ε. We compute that

lim
ε→0

1

ε2
Entπ? [(1 + εf)2] = 2

∫
f(x)2π?(x)dx,

which follows by Lebesgue’s dominated convergence theorem, the assumption Eπ? [f ] = 0, and

(1 + εc)2 log((1 + εc)2 = 2(1 + 2εc)

(
εc− ε2c2

2

)
+O(ε3) = 2εc+ 3ε2c2,

(1 + ε2c) log
(
1 + ε2c

)
= ε2c+O(ε3).

Meanwhile, it is clear that

lim
ε→0

1

ε2

∫
‖ε∇f(x)‖22 π

?(x)dx =

∫
‖∇f(x)‖22 π

?(x)dx.

Combining in (41) and taking limits yields the conclusion.

We also mention one alternative formulation of (41), which is easier to apply in certain settings.

Lemma 8. If π? ∈ P(Rd) satisfies a log-Sobolev inequality with constant CLSI, then for any
π ∈ P(Rd) such that π

π? <∞ almost surely,

DKL (π‖π?) ≤ CLSI

2

∫ ∥∥∥∥∇ log

(
π(x)

π?(x)

)∥∥∥∥2
2

π(x)dx, (42)

where
DKL (π‖π?) :=

∫
π(x) log

(
π(x)

π?(x)

)
dx.

Proof. By plugging in f =
√

π
π? into (41), the left-hand side reads

Entπ? [f2] =

∫
π(x)

π?(x)
log

(
π(x)

π?(x)

)
π?(x)dx = DKL (π‖π?) ,

since log(
∫
π(x)dx) = log 1 = 0. Moreover, the right-hand side of (41) is

2CLSI

∫
‖∇f(x)‖22 π

?(x)dx =
CLSI

2

∫ ∥∥∥∥∇ π(x)

π?(x)

∥∥∥∥2
2

π?(x)2

π(x)
dx

=
CLSI

2

∫ ∥∥∥∥∇ log

(
π(x)

π?(x)

)∥∥∥∥2
2

π(x)dx,

and combining yields the desired (42).

The term
∫
‖∇ log( π(x)π?(x) )‖

2
2π(x)dx in the right-hand side of (42) is sometimes called the Fisher

information, an important quantity in statistics. For now, we mention that under our earlier
calculations (35) and (38), letting F(π) := DKL(π‖π?) so that F(π?) = 0, (42) alternatively reads

F(π)−F(π?) ≤ CLSI

2
〈∇MF(π),∇MF(π)〉π .

This is the functional analog of the gradient domination condition in Corollary 3, Part II which
allowed us to prove linear convergence rates for gradient flow. We will show shortly that log-Sobolev
inequalities establish a similar linear rate of decay for the KL divergence.
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5.1 Convergence from functional inequalities
We now formalize our earlier statements that the Poincaré inequality implies a linear rate of decay
on an appropriate notion of variance under the Langevin dynamics, and that the log-Sobolev
inequality implies a similar decay on the KL divergence. We begin by proving variance decay,
reminding the reader of the definition of the χ2 divergence between distributions:

χ2 (π‖π?) := Varπ?
[ π
π?

]
=

∫ (
π(x)

π?(x)

)2

π?(x)dx− 1.

Lemma 9. Let {xt}t≥0 follow the Langevin dynamics (4) with stationary distribution π?, and
assume that π? satisfies a Poincaré inequality with constant CPI. For all t ≥ 0, the law of xt,
denoted πt ∈ P(Rd), satisfies

χ2 (πt‖π?) ≤ exp

(
− 2t

CPI

)
χ2 (π0‖π?) .

Proof. It suffices to show that d
dtχ

2(πt‖π?) ≤ − 2
CPI

χ2(πt‖π?), at which point the conclusion follows
from Grönwall’s inequality (Fact 1, Part II). We compute

d
dt
χ2(πt‖π?) =

∂

∂t

∫ (
πt(x)2

π?(x)2
− 1

)
π?(x)dx

= 2

∫ (
πt(x)

π?(x)

)(
∂

∂t

πt(x)

π?(x)

)
π?(x)dx

= 2

∫ (
πt(x)

π?(x)

)(
L∗πt(x)

π?(x)

)
π?(x)dx = −2E

( πt
π?
,
πt
π?

)
,

where we used Kolmogorov’s backward equation (11) in the third equality, which implies ∂
∂tπt(x) =

L∗πt(x). Finally, using the definition (40), we have the desired

−2E
( πt
π?
,
πt
π?

)
≤ − 2

CPI
Varπ?

[ πt
π?

]
= − 2

CPI
χ2(πt‖π?),

where we recalled the formula for E specialized to the Langevin diffusion, stated in Lemma 3.

We prove a similar convergence for the KL divergence under a log-Sobolev inequality.

Lemma 10. Let {xt}t≥0 follow the Langevin dynamics (4) with stationary distribution π?, and
assume that π? satisfies a log-Sobolev inequality with constant CLSI. For all t ≥ 0, the law of xt,
denoted πt ∈ P(Rd), satisfies

DKL (πt‖π?) ≤ exp

(
− 2t

CLSI

)
DKL (π0‖π?) .

Proof. As in the proof of Lemma 9, it suffices to show that d
dtDKL(πt‖π?) ≤ − 2

CLSI
DKL(πt‖π?).

We previously computed in (38) that the KL divergence satisfies

∂

∂t
DKL (πt‖π?) =

∫
log

(
πt(x)

π?(x)

)(
L∗πt(x)

π?(x)

)
π?(x)dx = −E

( πt
π?
, log

( πt
π?

))
.

The conclusion follows analogously to Lemma 9, using (41), upon realizing

E
( πt
π?
, log

( πt
π?

))
=

∫ 〈
∇ log

(
πt(x)

π?(x)

)
,∇
(
πt(x)

π?(x)

)〉
π?(x)dx

=

∫ ∥∥∥∥∇ log

(
πt(x)

π?(x)

)∥∥∥∥2
2

π(x)dx ≥ 2

CLSI
DKL (πt‖π?) .
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5.2 Functional inequalities from strong logconcavity
We have established in Lemmas 9 and 10 that functional inequalities give us a way of proving
convergence of Markov semigroups (in relative variance, i.e. χ2, or relative entropy, i.e. DKL).
These results can be thought of as continuous-time generalizations of the spectral gap arguments
we used in the discrete-time setting, e.g. Parts XI and XII. However, we have not yet given examples
of densities which actually satisfy Definitions 5 or 6, which is the purpose of this section.

We first establish a “Hessian-reweighted” variant of (40) for logconcave densities, which streamlines
our presentation. Specifically, recall the Prékopa-Leindler inequality (Theorem 4, Part I), which
says that for λ ∈ [0, 1] and f, g, h : Rd → R with h((1−λ)x+λx′) ≥ f(x)1−λg(x′)λ for all x, x′ ∈ Rd,∫

h(x)dx ≥
(∫

f(x)dx
)1−λ(∫

g(x)dx
)λ

. (43)

The following result is known as the Brascamp-Lieb inequality [BL76], and our proof is based on
an elegant strategy from [BL00] which applies the Prékopa-Leindler inequality (43).

Proposition 5 (Brascamp-Lieb inequality). Let π? ∈ P(Rd) be logconcave, and let π? ∝ exp(−V )
where V : Rd → R is strictly convex and twice-differentiable. Then for all differentiable f ∈ L2(π?),

Varπ? [f ] ≤
∫
‖∇f(x)‖2(∇2V (x))−1 dx.

Proof.

5.3 Further consequences
In this section, we mention a few further consequences of functional inequalities which are often
useful in applications. First, we show that they imply concentration of Lipschitz functions.

Lemma 11. If π? ∈ P(Rd) satisfies a log-Sobolev inequality with constant CLSI, then for any
1-Lipschitz function f : Rd → R, we have that

Pr
x∼π?

[f(x) ≥ Eπ? [f ] + c] ≤ exp

(
− c2

2CLSI

)
for all c > 0.

Lemma 12. If π? ∈ P(Rd) satisfies a Poincaré inequality with constant CPI, then for any 1-
Lipschitz function f : Rd → R, we have that

Pr
x∼π?

[f(x) ≥ Eπ? [f ] + c] ≤ 3 exp

(
− c√

CPI

)
for all c > 0.

Lemma 13. If π? ∈ P2(Rd) satisfies a log-Sobolev inequality with constant CLSI, then

1

2CLSI
W 2

2 (π, π?) ≤ DKL (π‖π?) for all π ∈ P2(Rd).
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Source material
Portions of this lecture are based on reference material in [Øk03, AGS08, Vil08, Dur10, MG10,
vH16, Vis18, Che24], as well as the author’s own experience working in the field. We would like to
mention that much of the exposition is patterned off of the excellent resource [Che24], which we
highly recommend as a deeper dive into the topics covered in this lecture.
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