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1 Basic definitions
Privacy is a major legal and ethical consideration when designing algorithms in the age of big data.
When not carefully quantified, purportedly “private” algorithms can be susceptible to a variety of
creative breaches (see e.g. the first lecture of [Kam20] , which gives many such examples of privacy
attacks on the taxi industry, a challenge by Netflix, neural networks memorizing user data, genomic
studies, a group insurance commission, etc.) Many of these examples share common themes, such
as exploiting side information or low sample sizes in group summary statistics.

Perhaps surprisingly, it is possible to give a meaningful mathematical definition of privacy that
provides provable guarantees against such attacks. Moreover, the source of security in this definition
is information-theoretic, rather than computational as is commonly the case in cryptography (e.g.
based on the conjectured hardness of solving a computational task). This definition has even
recently been deployed in practice by aspects of the U.S. census data collection. The purpose of
this lecture is to describe differential privacy and how to use it to design private algorithms.

Definition 1 (Differential privacy). Let n ∈ N, ε ∈ R≥0, and δ ∈ [0, 1]. Let M : Sn → Ω be a
mechanism (i.e. a randomized algorithm) which acts on a dataset of n elements of S, and returns
an outcome in a sample space Ω. We sayM satisfies (ε, δ)-differential privacy (or,M is (ε, δ)-DP)
if for all neighboring datasets D,D′ ∈ Sn, i.e. datasets which differ only on one entry,

Pr [M(D) ∈ A] ≤ exp(ε) Pr [M(D′) ∈ A] + δ, for all A ⊆ Ω. (1)

If δ = 0, we sayM satisfies ε-differential privacy (or,M is ε-DP) for short.

In particular, we often think of S as a set of individuals from a population whose privacy we are
trying to protect, so that the input to a mechanism is a set of n individuals from S. The case of
(ε, δ)-DP with δ = 0 is sometimes called pure DP, whereas δ > 0 is called approximate DP.

Remark 1. Typically when designing (ε, δ)-differentially private algorithms, we wish for the addi-
tive parameter δ to be very small (e.g. polynomially small in the dataset size), whereas even constant
values of ε provide strong privacy guarantees. Roughly speaking, this is because δ is often treated
as a “failure probability” on ε-DP holding (akin to failure probabilities in randomized algorithms);
with probability ≈ δ, there are no guarantees on the behavior of the algorithm. For instance, the
algorithm could output some answer that is blatantly nonprivate with this probability, such as all of
the features of some element in the database. Due to this asymmetry between the ε and δ parame-
ters, we often aim for algorithms whose runtime or sample complexity scales polylogarithmically in
1
δ , whereas in many cases a polynomial dependence on 1

ε is unavoidable. In Section 2, we develop
another notion of privacy which provides smooth tradeoff curves between the ε and δ parameters,
so that the probability of a blatantly nonprivate event is bounded “at every scale.”

One basic consequence of Definition 1 is that it generalizes straightforwardly to two datasets at
arbitrary Hamming distance (i.e. the number of elements which differ between the two datasets).

Lemma 1. LetM : Sn → Ω be (ε, δ)-DP, and let D,D′ have Hamming distance k. Then,

Pr [M(D) ∈ A] ≤ exp(kε) Pr [M(D′) ∈ A] + δ · exp(kε)− 1

exp(ε)− 1
, for all A ⊆ Ω.

Proof. Note that there is a sequence D0 = D,D1, . . . Dk = D′ such that each pair of Di−1, Di are
neighboring (for all i ∈ [k]). Iteratively applying (1) and simplifying yields the claim.

1



We remark that for small values of ε� 1
k , we have exp(kε)−1

exp(ε)−1 ≈
kε
ε = k.

To gain some intuition for (1), note that it is closely-related to our definition of the total variation
distance (Definition 4, Part XI). Indeed, because we can always view the outcome of a randomized
algorithm as a distribution (where the particular distribution depends on the input), suppose that
instead we claimed that DTV(M(D),M(D′)) ≤ ε, for all neighboring datasets D,D′. This would
imply that the outcomesM(D),M(D′) are stable in the following sense (by Fact 1, Part XI):

Pr[M(D) ∈ A] ≤ Pr[M(D′) ∈ A] + ε, for all A ⊆ Ω. (2)

Instead of the additive stability afforded by total variation distance bounds, differential privacy (1)
asks for a multiplicative notion of stability. That is, small-probability events according to running
an algorithm on one dataset should not become much larger according to a neighboring dataset.

Another motivation for the definition (1) is from the perspective of “plausible deniability.” Suppose
you design an experiment to learn a truth about the world, e.g. whether smoking causes cancer,
by collecting statistics from n individuals. If we are to trust this experiment’s conclusion, the
outcome should not particularly depend on whether a particular individual was included. On the
other hand, a patient’s medical history is sensitive, and it is preferable that an auditor who only
looks at the released statistics from the experiment (and not the dataset itself) should not be able
to determine whether an individual was included. Definition 1 provides such a guarantee: indeed,
(1) states no outcome is significantly more likely whether or not a patient is included. To formalize
our argument that (1) guarantees plausible deniability, we provide the following intuitive claim.

Lemma 2. Let F : Ω → Ω′ be an arbitrary, potentially randomized, function. If M : Sn → Ω is
(ε, δ)-DP, then so is F ◦M : Sn → Ω′.

Proof. We first prove this when F is a deterministic map f . Let A′ ⊆ Ω′ be a fixed event, and
let A := f−1(A′) denote the set of outcomes ω ∈ Ω such that f(ω) ∈ A′. Then for neighboring
D,D′ ∈ Sn, the fact thatM is (ε, δ)-DP guarantees

Pr [f (M (D)) ∈ A′] = Pr [M (D) ∈ A]

≤ exp(ε) Pr [M (D′) ∈ A] + δ = exp(ε) Pr [f(M(D′)) ∈ A′] + δ.

Finally, we can view a randomized function F as applying f drawn from a distribution F over
deterministic functions, from which the conclusion follows from the above display and

Pr [F (M(D)) ∈ A] = Ef∼F [Pr [f(M(D)) ∈ A]]

≤ Ef∼F [exp(ε) Pr [f(M(D′)) ∈ A′] + δ] = exp(ε) Pr [F (M(D′)) ∈ A′] + δ.

In other words, Lemma 2 says that we can apply any postprocessing function to the outcome of
a differentially private mechanism, and the composed outcome continues to be private, as long as
our postprocessing is independent of the dataset D. This is intuitive, as it means we only pay a
privacy loss if we look at the dataset again before making further decisions. Lemma 2 also implies
plausible deniability: if our randomized function F aims to infer membership in a dataset D by
only using outcomes of an experiment run on D, it cannot do a good job distinguishing D and a
neighboring dataset which excludes said member, and hence fails at its inference task.

The focus of this lecture will be privacy-utility tradeoffs: how does enforcing a certain level of
differential privacy interfere with our ability to make accurate judgments, when can this be miti-
gated, and when is a utility loss necessary? As we will see, differential privacy also ends up being
quite a fundamental idea in characterizing the stability of randomized algorithms, and can be used
to obtain other strong properties of statistical algorithms. For instance, it can ensure generaliza-
tion of an algorithm used to learn about a population from samples. Intuitively, this is because
(1) implies we can replace one element of D with a fresh draw from the population (not used in
conducting the experiment), and the outcome should not change greatly. We will formalize this
notion, and additional adaptivity guarantees enjoyed by DP algorithms, in the next lecture.

To introduce privacy-utility tradeoffs, we begin with a simple example of mean estimation in [0, 1].1

1For instance, this captures the problem of the census releasing a private estimate of the proportion of residents
in a county who satisfy some property, which is an average of {0, 1} indicator variables.
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Lemma 3. Let D := {Xi}i∈[n] ⊆ [0, 1], α, ε ∈ R>0, and let X̄ := 1
n

∑
i∈[n]Xi be the empirical

mean of D. If n ≥ 2
αε , there is an ε-DP mechanismM which satisfies

EX̂∼M(D)

[∣∣∣X̂ − X̄∣∣∣] ≤ α. (3)

Proof. The mechanism is simply to return X̄ + ξ for ξ ∼ Lap(α), where Lap(b) is the Laplace
distribution on R with density function

π(ξ) =
1

2b
exp

(
−|ξ|
b

)
. (4)

The utility guarantee (3) follows immediately from the fact that Eξ∼Lap(b)|ξ| = b.2 To prove privacy,
the key observation is that for a neighboring dataset D′ = {X ′i}i∈[n] to D (so that X ′i = Xi for all
i ∈ [n] except for i = j), if we denote X̄ ′ := 1

n

∑
i∈[n]Xi, we have

∣∣X̄ − X̄ ′∣∣ =
1

n

∣∣Xj −X ′j
∣∣ ≤ 2

n
. (5)

Hence, the empirical mean of a dataset in [0, 1]n is a 2
n -sensitive statistic; moving to a neighboring

dataset can affect the true answer by at most 2
n . Now (1) follows, because for any outcome y ∈ R,

Pr [M(D) = y]

Pr [M(D′) = y]
=

exp
(
− |y−X̄|α

)
exp

(
− |y−X̄

′|
α

) ≤ exp

(
|X̄ − X̄ ′|

α

)
≤ exp

(
2

αn

)
≤ exp(ε).

The first equality used the definition of Lap(α) (4), the first inequality was the triangle inequality,
the second used our sensitivity bound (5), and the last used our assumption n ≥ 2

αε .

The strategy in Lemma 3 is an instance of the Laplace mechanism, which applies generically when
computing statistics of a dataset with bounded sensitivity. Indeed, more generally if a statistic is
∆-sensitive, we can ensure privacy by adding Lap(∆

ε ) noise; Lemma 3 used this observation with
∆ = 2

n . Unsurprisingly, it was crucial in Lemma 3 that the domain was bounded (which can often
be ensured by clipping), and that n was sufficiently large. That is, the sensitivity of an empirical
mean decays as n grows, meaning the statistic relies less on each individual (so privacy is easier).

Also, note that the problem of designing a differentially private mechanism is really just about sam-
pling from an appropriate data-dependent distribution (e.g. a Laplace distribution). There is in fact
a meta-algorithm which in some sense generalizes the Laplace mechanism, called the exponential
mechanism, which generates a sample from an appropriate Gibbs distribution ∝ exp(−V (x)). This
algorithm has intimate connections to our previous unit on sampling, see e.g. Section 3.4 of [DR14]
or Lecture 7 of [Kam20] for a general exposition, and [GLL22] for an efficient implementation.

We now ask: how do we bound the differential privacy of an algorithm which needs to access a
dataset multiple times to perform its computation, so Lemma 2 (which only applies when using a
function F that is independent of D) does not hold? For instance, we could ask for multiple linear
statistics of a dataset D (e.g. the mean, reweighted mean, subgroup mean, etc.), each of which
depends on D and loses privacy. We can model such an algorithm as a composition of mechanisms
which access the dataset once (and incur some privacy cost for doing so), and then performs some
computations not using the dataset (which incurs no privacy cost, due to Lemma 2). Therefore,
this question is about accounting for the total privacy loss of a mechanismM = Mk ◦ . . . ◦M1,
whereMi models the ith access of the dataset. We have the following composition theorem.

Theorem 1 (Privacy composition). Let Mi : Sn ×
∏
j∈[i−1] Ωj → Ωi for all i ∈ [k] be (ε, δ)-

differentially private mechanisms.3 Then the compositionM :=Mk ◦ . . . ◦M1 : Sn → Ωk satisfies
(kε, kδ)-differential privacy, as well as (ε′, kδ + δ′)-differential privacy for any δ′ > 0 and

ε′ :=

√
2k log

(
1

δ′

)
ε+ kε(exp(ε)− 1). (6)

2We can prove strong tail bounds on the error, e.g. ξ ∼ Lap(b) satisfies |ξ| ≤ b log( 1
δ

) with probability ≈ δ.
3We can letMi depend on the outputs of all the previous mechanisms, which live in

∏
j∈[i−1] Ωj .
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We pause to interpret Theorem 1. The first result, i.e. (kε, kδ)-DP of the composition, behaves
exactly as one would expect, and we will prove it in the special case δ = 0 shortly. For this reason
it is called basic composition in the literature. The second result, (6) is more sophisticated and
shows that if we are willing to pay a small additive error in the δ parameter, the growth in the ε
parameter is actually more like

√
k instead of the k factor given by basic composition. Intuitively,

this is because the privacy loss parameter, the logarithm of the density ratio between neighboring
datasets, behaves like a ±ε random variable. Hence, summing k times scales as

√
kε with high

probability via a Chernoff bound; formalizing this argument loses an additive term in (6). If√
kε . 1 (so the privacy of Theorem 1 is at most a constant), then this ≈ kε2 term is low-order.

On the other hand, the bound (6) is somewhat unwieldy, and to our knowledge it is not straight-
forward to state a generalization to uneven privacy parameters (e.g. ifMi is (εi, δi)-DP). For this
reason we defer a full proof to Theorem B.1, [DR14] (for basic composition) and Theorem 3.20,
[DR14] (for advanced composition). In the following Section 2, we present an alternative privacy
accounting scheme, Rényi differential privacy (RDP), which we find somewhat more flexible. As a
side effect, we will see that RDP qualitatively recovers Theorem 1 in a simple way.

As a first example, we now prove Theorem 1 in the special case k = 2, δ = 0.

Lemma 4. LetM1 : Sn → Ω1 be an ε1-DP mechanism, and letM2 : Sn ×Ω1 → Ω2 be an ε2-DP
mechanism. Then the compositionM2 ◦M1 : Sn → Ω2 is (ε1 + ε2)-DP.

Proof. Let D,D′ ∈ Sn be neighboring datasets, and let ω2 ∈ Ω2 be an arbitrary event. Then,

Pr [M2(D,M1(D)) = ω2]

Pr [M2(D′,M1(D′)) = ω2]
=

Eω1∼M1(D) [Pr [M2(D,ω1) = ω2]]

Eω1∼M1(D′) [Pr [M2(D′, ω1) = ω2]]

≤ exp(ε2) ·
Eω1∼M1(D) [Pr [M2(D,ω1) = ω2]]

Eω1∼M1(D′) [Pr [M2(D,ω1) = ω2]]
≤ exp(ε1 + ε2),

where the first inequality used that M2(·, ω1) is DP for all ω1 ∈ Ω, and the second used that
becauseM1 is DP, Pr[M1(D) = ω1] ≤ exp(ε1) Pr[M1(D′) = ω1] for all ω1 ∈ Ω.

By recursively applying Lemma 4, we give a simple proof of basic composition when δ = 0.

Corollary 1. Let Mi : Sn ×
∏
j∈[i−1] Ωj → Ωi be an εi-DP mechanism, for all i ∈ [k]. Then the

compositionM :=Mk ◦ . . . ◦M1 : Sn → Ωk is
∑
i∈[k] εi-DP.

Proof. We induct on k; the base case k = 2 is Lemma 4. Now if the statement of the corollary is
true for k ← k− 1, we can apply Lemma 4 withM1 ←Mk−1 ◦ . . . ◦M1, but extending its output
space to Ω1 ←

∏
j∈[k−1] Ωj (i.e. we concatenate the outputs of the first k− 1 mechanisms), as well

asM2 ←Mk. Induction then follows from Lemma 4 and the inductive hypothesis.

Indeed, Corollary 1 extends (a special case of) the basic composition result in Theorem 1, to hold
for a family of εi-DP mechanismsMi with unequal values of εi. We now demonstrate the power of
composition by privately computing multiple linear functions of a dataset. Specifically, we give a
private mechanism for releasing one-way marginals of a dataset D ∈ [0, 1]n×d ≡ ([0, 1]d)n. Here, we
view the samples as elements of S := [0, 1]d (e.g. n individuals each with d features), and our goal
is to privately compute empirical averages of each feature, which we call the one-way marginals.

Proposition 1 (One-way marginals). Let D := {Xi}i∈[n] ∈ ([0, 1]d)n, α, ε ∈ (0, 1), and let µ(D) ∈
[0, 1]d be the one-way marginals of D, i.e. µ(D)]j := 1

n

∑
i∈[n]Xij for all j ∈ [d]. If n ≥ 2d

αε , there
is an ε-DP mechanismM which satisfies

Eµ̂∼M(D) [|µ̂j − [µ(D)]j |] ≤ α for all j ∈ [d]. (7)

Moreover, if δ ∈ (0, 1) and n ≥ 6
√
d log 1

δ

αε , there is an (ε, δ)-DP mechanismM which satisfies (7).

Proof. To see the first claim, we simply let Mj apply the mechanism from Lemma 3 to the jth
column, with a privacy parameter ε ← ε

d . The composition of these mechanisms is then ε-DP by
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Theorem 1 with k ← d.4 To see the second claim, we instead apply the mechanism from Lemma 3
to the jth column, with a privacy parameter ε← ε

3
√
d log 1

δ

. Then, Theorem 1 yields (ε, δ)-DP, as

√
2d log

(
1

δ

)
· ε

3
√
d log

(
1
δ

) + 2d ·

 ε

3
√
d log

(
1
δ

)
2

≤ ε,

where we used that exp(c)− 1 ≤ 2c for c ≤ 1 to bound the second term in (6).

We can see that Proposition 1 already illustrates the advantage of advanced composition over
basic composition; if we are willing to tolerate a small failure probability, we can improve the
sample complexity of privately computing d one-way marginals from ≈ d to ≈

√
d. Both of the

bounds in Proposition 1 turn out to be tight [HT10, SU16, BUV18]. Interestingly, the expected
per-coordinate guarantee in (7) can be boosted to an expected all-coordinates guarantee, i.e. of
the form Eµ̂∼M(D)[‖µ̂ − µ(D)‖∞] ≤ α, with the same sample complexities up to constant factors
as in Proposition 1 [GKM21, DK22, CLN+23], by using a careful recursive filtering scheme.5

2 Rényi differential privacy
In this section, we introduce an alternative framework for parameterizing privacy guarantees,
called Rényi differential privacy (RDP). RDP allows for somewhat simpler and tighter calculations
in many cases when working with approximate differential privacy (i.e. (ε, δ)-DP with δ > 0).
To introduce this framework, we first state the central objects used in its definition: the Rényi
divergences, a family of distances between probability distributions.

Definition 2 (Rényi divergence). For α > 1 and two distributions P,Q on the same sample space
Ω, we define their Rényi divergence of order α by6

Dα (P‖Q) :=
1

α− 1
log

(∫ (
P (ω)

Q(ω)

)α−1

P (ω)dω

)
=

1

α− 1
log

(
Eω∼P

[(
P (ω)

Q(ω)

)α−1
])

. (8)

Intuitively, the definition (8) asks for ≈ (α − 1) moments of the density ratio P
Q to be bounded.

The Rényi divergence is nonincreasing in α, which reflects this intuition; the more moments we
want to bound, the worse the bound (by Jensen’s inequality). Additionally, as α → 1 the Rényi
divergence approaches the KL divergence EQ[log P

Q ], so D1 is often used synonymously with DKL.
Another notable Rényi divergence is D2(P‖Q) = log(1 + χ2(P‖Q)), where χ2 is the chi-squared
divergence. We are now ready to define the Rényi differential privacy of a mechanism.

Definition 3 (Rényi differential privacy). Let n ∈ N, α > 1, and ρ ∈ R>0. Following notation in
Definition 1, we say that a mechanismM : Sn → Ω satisfies (α, ρ)-Rényi differential privacy (or,
M is (α, ρ)-RDP) if for all neighboring datasets D,D′ ∈ Sn,

Dα (M(D)‖M(D′)) ≤ αρ. (9)

If (9) holds for all values of α simultaneously for all neighboring datasets D,D′ ∈ Sn, we say that
M satisfies ρ-concentrated differential privacy (or,M is ρ-CDP).7

The CDP definition is appealing, because it only has one parameter. Conveniently, the ubiquitous
Gaussian mechanism in any dimension (i.e. adding Gaussian noise to a statistic) satisfies CDP. We
begin by computing the Rényi divergence between two spherical Gaussians with unequal means.

Lemma 5. Let µ ∈ Rd and σ ≥ 0. For all α ≥ 1,

Dα

(
N
(
0d, σ

2Id
)
‖N

(
µ, σ2Id

))
=
α ‖µ‖22

2σ2
.

4In this application of DP composition, each mechanism did not need to depend on the outputs of the previous
mechanisms. However, in Section 3 we give an example where the ability to handle dependences is important.

5This is surprising because the expected maximum of d Laplace random variables is ≈ log d, via a union bound.
6This definition extends straightforwardly to the discrete setting, where dω should be thought of as the counting

measure, so integration is replaced by summation over a finite set (similarly to Definition 4, Part XI).
7This naming convention was introduced by [DR16] and CDP was further developed by [BS16, BDRS18]. Our

definition of Rényi DP is slightly different than the definition in [Mir17], for consistency with the CDP definition.

5



Proof. By direct computation, for P := N (0d, σ2Id) and Q := N (µ, σ2Id),∫ (
P (x)

Q(x)

)α−1

P (x)dx =
1

(2πσ2)
d
2

∫
exp

(
−
α ‖x‖22

2σ2
+

(α− 1) ‖x− µ‖22
2σ2

)
dx

=
1

(2πσ2)
d
2

∫
exp

(
−
‖x‖22 − 2(α− 1) 〈x, µ〉 − (α− 1) ‖µ‖22

2σ2

)
dx

= exp

(
α(α− 1) ‖µ‖22

2σ2

)
· 1

(2πσ2)
d
2

∫
exp

(
−
‖x− (α− 1)µ‖22

2σ2

)
dx︸ ︷︷ ︸

=1

.

The claim follows by taking logarithms and dividing by α− 1.

Moreover, Rényi divergences satisfy monotonicity under postprocessing, analogously to Lemma 2.

Lemma 6. Let P,Q be distributions on Ω, and let F : Ω → Ω′ be an arbitrary, potentially
randomized, function. Then for all α ≥ 1,

Dα (F (P )‖F (Q)) ≤ Dα (P‖Q) ,

where F (P ) denotes the distribution of F (ω) for ω ∼ P (analogously defining F (Q)).

Proof. As in Lemma 2, first we consider the case where f is a deterministic map. Then, letting
f−1(ω′) := {ω ∈ Ω | f(ω) = ω′} for all ω′ ∈ Ω′,

(α− 1) exp (Dα (f(P )‖f(Q))) =

∫ (∫
f−1(ω′)

P (ω)dω∫
f−1(ω′)

Q(ω)dω

)α(∫
f−1(ω′)

Q(ω)dω

)
dω′

≤
∫ (

P (ω)

Q(ω)

)α
Q(ω)dω = (α− 1) exp (Dα (P‖Q)) ,

from which the conclusion follows by monotonicity of log and division by α−1. The only inequality
was Jensen’s: letting Q |ω′ be the distribution which draws ω ∈ f−1(ω′) proportionally to Q,(∫

f−1(ω′)
P (ω)dω∫

f−1(ω′)
Q(ω)dω

)α
=

(
Eω∼Q|ω′

[
P (ω)

Q(ω)

])α
≤ Eω∼Q|ω′

[(
P (ω)

Q(ω)

)α]
=

∫
f−1(ω′)

(
P (ω)

Q(ω)

)α
Q(ω)∫

f−1(ω)
Q(ω)dω

dω,

(10)

for all ω′ ∈ Ω′. For randomized functions F which draw f ∼ F , the conclusion follows from
quasi-convexity of Rényi divergences,8 which states that if {Pf , Qf}f∈S are densities and F is a
distribution over S, and PF := Ef∼F [Pf ], QF := Ef∼F [Qf ],

Dα (PF ‖QF ) ≤ max
f∈F

(Pf‖Qf ) .

This fact can be seen as follows: because x → 1
α−1 log x is monotone, it is enough to show that

(P,Q) →
∫
P (ω)αQ(ω)1−αdω is quasiconvex in its arguments. Indeed, the scalar function on

R2
≥0, (p, q)→ pαq1−α, is jointly convex (and hence quasiconvex) in its arguments, so applying this

pointwise to p← P (ω), q ← Q(ω) yields that (P,Q)→
∫
P (ω)αQ(ω)1−αdω is quasiconvex.

The strategy of applying Jensen’s inequality to a coarsening of a probability space in (10) is
quite general, and more broadly is an example of the data processing inequality for f -divergences.
Informally, it states that convex information measures, such as Rènyi divergences, decrease when
applying a postprocessing function (i.e. “information is lost” under such a coarsening). Now,
combining Lemmas 5 and 6 bounds the CDP of the Gaussian mechanism.

8As a word of warning, Rényi divergences do not in general satisfy the stronger notion of joint convexity in its
arguments, except in the special case of α = 1 (i.e. the KL divergence is jointly convex).
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Proposition 2 (Gaussian mechanism). Let f : Sn → Rd be a d-dimensional statistic of a dataset
with `2-sensitivity bounded by ∆, i.e. for all neighboring datasets D,D′ ∈ Sn, ‖f(D)− f(D′)‖2 ≤
∆. Then the mechanism which outputs a sample from N (f(D), σ2Id) satisfies ∆2

2σ2 -CDP.

Proof. It suffices to show that for all neighboring datasets D,D′ ∈ Sn, and all α ≥ 1,

Dα

(
N
(
f(D), σ2Id

)
‖N

(
f(D′), σ2Id

))
≤ α∆2

2σ2
.

Indeed, for µ := f(D′) − f(D) and v := f(D), this follows from ‖µ‖2 ≤ ∆ and Lemmas 5 and 6
(with F (x)← x+ v), which imply

Dα

(
N (v, σ2Id)‖N (µ+ v, σ2Id)

)
≤ Dα

(
N (0d, σ

2Id)‖N (µ, σ2Id)
)
≤ α∆2

2σ2
.

Additionally, as mentioned in Remark 1, RDP naturally offers privacy tradeoff curves; for every
failure probability δ in approximate DP, RDP yields an (ε(δ), δ)-DP guarantee for some value ε(δ).
This can be viewed as giving a DP guarantee at every scale of the probability of “catastrophic fail-
ure” (i.e. with probability δ, we may violate the DP guarantee by a potentially arbitrary amount).

Lemma 7. IfM : Sn → Ω is (α, ρ)-RDP, it is also (ε(δ), δ)-DP for any δ ∈ (0, 1), where

ε(δ) := αρ+
log 1

δ

α− 1
.

Proof. Throughout, for brevity let P :=M(D) andQ :=M(D′) for neighboring databasesD,D′ ∈
Sn. By Hölder’s inequality with dual exponents (α, α

α−1 ), we have for any event A ⊆ Ω that

Pr
ω∼P

[ω ∈ A] =

∫
A

P (ω)dω ≤
(∫

A

P (ω)αQ(ω)1−αdω
) 1
α
(∫

A

Q(ω)dω
)α−1

α

= exp

(
α− 1

α
Dα (P‖Q)

)(∫
A

Q(ω)dω
)α−1

α

=

(
exp(αρ) Pr

ω∼Q
[ω ∈ A]

)α−1
α

.

Now if exp(αρ) Prω∼Q [ω ∈ A] ≤ δ
α
α−1 , it follows that Prω∼P [ω ∈ A] ≤ exp(c) Prω∼Q [ω ∈ A] + δ

for any c ∈ R. Otherwise, we have the conclusion from(
exp(αρ) Pr

ω∼Q
[ω ∈ A]

)α−1
α

= exp(αρ) Pr
ω∼Q

[ω ∈ A] ·
(

exp(αρ) Pr
ω∼Q

[ω ∈ A]

)− 1
α

≤ exp(αρ) Pr
ω∼Q

[ω ∈ A] · δ−
1

α−1 = exp

(
αρ+

log 1
δ

α− 1

)
Pr
ω∼Q

[ω ∈ A] .

We now provide some intuition for Lemma 7. First, observe that ε-DP implies that the likelihood
ratio of neighboring mechanisms is pointwise bounded by exp(ε), so plugging this into the second
formula in (8), we have that ε-DP implies (α, εα )-RDP. It would be ideal if this implication went
both ways, but pure DP (i.e. with δ = 0) is stronger than RDP; the latter requires bounds on α−1
moments of likelihood ratios, whereas the former requires bounds on all moments. To convert from
(α, ρ)-RDP to DP, we hence need to ask; what is the probability that the likelihood ratio is larger
than ε, if the expected (α− 1)th moment is ≈ αρ? If we set this failure probability to δ, Lemma 7
says we can obtain the desired approximate DP by increasing αρ to αρ +

log 1
δ

α−1 . Unsurprisingly,
the larger α is (the more moments we have control over), the smaller this increase is.

To get a feel for how to use Lemma 7 in applications, let us revisit the one-way marginals problem
in Proposition 1. For fixed ε, δ ∈ (0, 1), Lemma 7 says that we can obtain an (ε, δ)-DP mechanism
by instead designing a (α, ρ)-RDP mechanism, for

α =
3 log 1

δ

ε
, ρ =

ε

2α
=

ε2

6 log 1
δ

. (11)
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Moreover, it is straightforward to see that µ(D) ∈ Rd is a statistic of the dataset D with `2-
sensitivity at most ∆ = 2

n ·
√
d (following notation in Proposition 2), since each of the d one-way

marginals can only change by 2
n in magnitude when moving to a neighboring dataset. Hence, the

Gaussian mechanism (Proposition 2) yields ρ-CDP (and hence (α, ρ)-RDP) by taking

σ =
2∆
√

log 1
δ

ε
=

4
√
d log 1

δ

nε
=⇒ ∆2

2σ2
≤ ε2

6 log 1
δ

. (12)

Now because the Gaussian mechanism simply adds N (0, σ2) noise to each coordinate of the output,
the utility guarantee (7) holds with α ≈ σ. Hence, for a target accuracy level α,

2∆
√

log 1
δ

ε
=

4
√
d log 1

δ

nε
≤ α ⇐⇒ n ≥

4
√
d log 1

δ

αε
.

We have thus recovered Proposition 2 (with a slightly better constant) without appealing to ad-
vanced composition from Theorem 1. Indeed, this recovery of advanced composition via RDP is
generic, as derived in Corollary 1, [Mir17]. We conclude the section with a simple composition
theorem for RDP mechanisms, analogously to Lemma 4 and Corollary 1.

Lemma 8. Let α ≥ 1, and letMi : Sn ×
∏
j∈[i−1] Ωj → Ωi be an (α, ρi)-RDP mechanism, for all

i ∈ [k]. Then the compositionM :=Mk ◦ . . . ◦M1 is (α,
∑
i∈[k] ρi)-RDP.

Proof. We prove the claim when k = 2, and then the conclusion follows by performing the same
induction as in Corollary 1. For brevity, let P1 := M1(D) and Q1 := M1(D′) for neighboring
datasets D,D′ ∈ Sn, and for each ω ∈ Ω, let Pω2 :=M2(D,ω) and Qω2 :=M2(D′, ω). Then,

exp ((α− 1)Dα (M(D)‖M(D′))) ≤
∫ ∫

(P1(ω)Pω2 (ω′))
α

(Q1(ω)Qω2 (ω′))
1−α dω′dω

=

∫
(P1(ω)αQ1(ω)1−α)

(∫
(Pω2 (ω′)αQω2 (ω′)1−α)dω′

)
dω

≤ exp ((α− 1)αρ2)

∫
P1(ω)αQ1(ω)1−αdω

≤ exp ((α− 1)α(ρ1 + ρ2)) .

The first inequality used that the Rényi divergence between the distributions of (ω, ω′) is larger
than that between the distributions of only ω′ by Lemma 6, as marginalization is a postprocessing.
The other two inequalities used the RDP assumptions onM1 andM2(·, ω) for any ω ∈ Ω.

As we saw in (11), the parameter ρ in RDP can be thought of as having “units” ε2, where ε is the
privacy loss in (1).9 Because ρ grows linearly upon composition by Lemma 8, it is now unsurprising
that the privacy loss grows as ≈

√
k (with some failure probability), yielding advanced composition.

3 Differentially private optimization
We now show how to use our developments thus far to give an algorithm for a differentially private
variant of the empirical risk minimization problem introduced in Section 5, Part III, for convex
sample functions. We first formally define the optimization problem we study.

Definition 4 (DP-ERM and DP-SCO). Let ε, δ ∈ (0, 1), let P be a distribution over S, and
suppose that there is a family of L-Lipschitz, differentiable10 convex functions {f(·; s)}s∈S so each
f(·; s) : X → R is indexed by an element s ∈ S, for X ⊆ Rd, with diam(X ) ≤ R. For n ∈ N, we
receive a dataset D := {si}i∈[n] ⊆ S sampled i.i.d. ∼ P, and denote fi(·) := f(·; si) for all i ∈ [n].

1. In the differentially private empirical risk minimization (DP-ERM) problem, our goal is to
design an (ε, δ)-DP mechanism computing an approximate minimizer of the empirical risk

Ferm(x) :=
1

n

∑
i∈[n]

fi(x). (13)

9This is also suggested by Proposition 2, since ρ scales as the square of the sensitivity ∆.
10Differentiability is assumed only for simplicity; using subgradients appropriately removes this requirement.
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2. In the differentially private stochastic convex optimization (DP-SCO) problem, our goal is to
design an (ε, δ)-DP mechanism computing an approximate minimizer of the population risk

Fpop(x) := Es∼P [f(x; s)] . (14)

The problem formulation in Definition 4 is quite general, and is a common model for statistical
learning induced by a convex loss function. Indeed, as discussed in Section 5, Part III, it en-
compasses private variants of learning many popular statistical models such as linear and logistic
regression, support vector machines, as well as mean and median estimation, etc.

The optimal attainable error for DP-ERM and DP-SCO (in expectation over the randomness of
the algorithm and sampled dataset) respectively scale as

Θ

LR ·
√
d log 1

δ

εn

 , Θ

LR ·
 1√

n
+

√
d log 1

δ

εn

 . (15)

Indeed, observe that this rate for DP-ERM closely resembles the optimal error attainable for the
one-way marginals problem, as discussed after Proposition 1.11 This is no coincidence; [BST14]
attained their DP-ERM error lower bound by designing a simple construction of a hard linear
function, based on one-way marginals. The second error rate in (15) is simply the sum of the
DP-ERM lower bound and the optimal non-private SCO loss, which scales as ≈ 1√

n
(witnessed

by classical hard instances such as learning the bias of a coin, i.e. 1-d mean estimation). One
interpretation of the bound (15) is that for DP-SCO, there is no asymptotic “cost of (ε, δ)-privacy”
once we have enough samples n = Ω(

d log 1
δ

ε2 ), as the non-private SCO loss term 1√
n
then dominates.

We focus on the DP-ERM problem in this lecture, but mention that there are generic techniques
for extending DP-ERM algorithms with some error rate to DP-SCO algorithms achieving the same
error rate, up to a LR · 1√

n
additive overhead (see e.g. Theorem 5.1, [KLL21]). These techniques

are based on a reduction called iterative localization building upon [SSSS09, FKT20]; the former
work noted that strongly convex variants of ERM automatically yield generalization guarantees,
and the latter gave a reduction from strongly convex ERM to its weakly convex counterpart.

Remark 2 (One-pass algorithms). In light of the discussion in Section 5, Part III, the reader may
be surprised to find out that the reduction from SCO to ERM discussed above is not immediate.
Indeed, if there was a one-pass DP-ERM algorithm (i.e. one that only queries each sample func-
tion f(·; si) through a first-order oracle once), then generalization guarantees to Fpop are typically
straightforward. This is because we can treat sample gradients as unbiased for the population gradi-
ent ∇Fpop, since there are no dependencies between iterations (as each sample is a fresh draw from
the population). Indeed, standard one-pass stochastic gradient descent (as developed in Section 5,
Part III in the non-private setting) satisfies this property. Unfortunately, there currently does not
exist such an algorithm; existing DP-ERM algorithms which attain the optimal error in (15) take
multiple passes over the dataset, except in certain situations discussed at the end of the section.
This has been quoted as a major open problem in the area of private optimization [Tal22].

We now give a simple analysis of an optimal (multi-pass) DP-ERM algorithm, with quadratic
sample gradient complexity. Our DP-ERM algorithm is simply an instantiation of the Gaussian
mechanism in Proposition 2, applied to privatize our computation of gradients of Ferm.

Theorem 2 (DP-ERM with optimal error rates). In the setting of Definition 4, let x0 ∈ X be
arbitrary, and consider iterating

xt+1 ← argminx∈X

{
〈η (∇Ferm(xt) + ξt) , x〉+

1

2
‖x− xt‖22

}
, for 0 ≤ t < T,

where ξt ∼ N (0, σ2Id), η ←
R

L

(
2T +

32dT 2 log 1
δ

ε2n2

)− 1
2

, T ≥ n2ε2

32d log 1
δ

, σ :=
4L
√
T log 1

δ

εn
.

(16)

11The multiplicative overhead of LR is to preserve scale invariance of the optimal error.
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The mechanism which returns the average iterate x̄ := 1
T

∑
0≤t<T xt satisfies (ε, δ)-differential

privacy, and letting x? ∈ argminx∈XFerm(x),

E [Ferm(x̄)− Ferm(x?)] ≤ 8LR ·

√
d log 1

δ

εn
.

Proof. We begin with the privacy analysis. Note that the gradient of the empirical risk at any
point x ∈ X , ∇Ferm(x), is a statistic of the dataset D with `2-sensitivity ∆ := 2L

n . Indeed, for
neighboring datasets D = {si}i∈[n], D

′ = {s′i}i∈[n] where si = s′i except when i = j,∥∥∥∥∥∥ 1

n

∑
i∈[n]

∇f(x; si)−
1

n

∑
i∈[n]

∇f(x; s′i)

∥∥∥∥∥∥
2

=
1

n

∥∥∇f(x; sj)−∇f(x; s′j)
∥∥ ≤ 2L

n
, (17)

where we used the triangle inequality and L-Lipschitzness of each sample function f(·; s). There-
fore, by Proposition 2, each iteration (16) which takes as input all iterates produced by the algo-
rithm thus far, and outputs the next iterate, is a ∆2

2σ2 -CDP mechanism. By Lemma 8, the overall
mechanism which iterates (16) T times thus satisfies (α, ρ)-RDP with α set in (11), and

ρ :=
T∆2

2σ2
=

2TL2

σ2n2
≤ ε2

6 log 1
δ

,

by using our choice of σ. Since outputting the average iterate is a postprocessing of the outputs
of each iteration (16) (i.e. no further accesses to the dataset are necessary), Lemma 6 and the
calculation in (11) guarantee (ε, δ)-differential privacy of the overall mechanism.

We now prove the utility claim. Note that each stochastic gradient ∇Ferm(xt) + ξt is unbiased for
∇Ferm(xt), and has a second moment bound (using Lipschitzness of Ferm)

E ‖∇Ferm(xt) + ξt‖22 ≤ 2 ‖∇Ferm(xt)‖22 + 2E ‖ξt‖22 ≤ 2L2 + 2σ2d = 2L2

(
1 +

16dT log 1
δ

ε2n2

)
. (18)

Applying Corollary 4, Part III with ϕ(x) := 1
2 ‖x‖

2
2 then gives

E [Ferm(x̄)− Ferm(x?)] ≤ R2

2ηT
+ ηL2

(
1 +

16dT log 1
δ

ε2n2

)

≤ LR ·

√
2

T

(
1 +

16dT log 1
δ

ε2n2

)
≤ 8LR ·

√
d log 1

δ

εn
,

(19)

where we plugged in our choices of η and T respectively in the last two inequalities.

As promised, Theorem 2 yields the optimal rate in (15). Moreover, following the discussion after
(15), if we take just enough samples n ≈ d log 1

δ

ε2 so there is no asymptotic cost of privacy, the
iteration count T in (16) scales linearly in n. Finally, note that computing ∇Ferm(xt) in each
iteration requires querying each of the n sample gradients ∇f(xt; si), so the total number of sample
gradients used is ≈ n2. Hence, Theorem 2 falls short of being a one-pass algorithm (Remark 2).

One natural direction towards improvement is to subsample each gradient ∇Ferm(xt) by randomly
outputting ∇fi(xt), for i ∼unif. [n]. In the case of non-private ERM, this immediately improves
standard stochastic gradient descent to be a one-pass algorithm, since the second moment bound
on subsampled gradients has the same scaling of O(L2) as the average dataset gradient (see (18)).
Unfortunately, this strategy increases the sensitivity of each statistic by a factor of n (correspond-
ing to (17)), so naïvely we must take a larger noise level σ which cancels out any gains from
subsampling. On the other hand, there is hope: if a mechanism first uses a subsampled dataset,
then the probability we need to pay a privacy loss should also decrease. This idea can be formalized
through a framework called privacy amplification by subsampling. One such amplification result
which applies to the Gaussian mechanism can be found in Theorem 14, [BDRS18].

Unfortunately, this amplification alone does not improve upon the query complexity in Theorem 2.
To see why, suppose that a mechanismM is ε-DP on datasets of size m = pn, but acts on an input
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dataset D ∈ Sn by first subsampling E ⊆ D by randomly including m elements of D (say, without
replacement). Then if D,D′ ∈ Sn are neighboring, the subsampled datasets E and E′ are exactly
the same except with probability p = m

n (the probability that the differing sample is included).
We should thus expect the overall privacy loss ε′ in (1) to behave like

exp(ε′) ≈ p exp(ε) + (1− p) exp(0) = 1 + p(exp(ε)− 1) ≈ exp(pε).

If all of the above calculations held, then the new privacy parameter ε′ = pε would be a factor of
p smaller, as desired. However, note that the last approximation above only holds if ε is already
sufficiently small, as otherwise exp(ε) � 1 + ε. The takeaway from this discussion is that privacy
amplification by subsampling (with probability p) only boosts the privacy loss by a factor ≈ p if
the mechanism is already O(1)-private, before applying privacy amplification. This is problematic
in the context of Theorem 1’s proof, where the amplification factor of p = 1

n turns out to exactly
cancel out the sensitivity loss factor of n in (17), leading to no overall improvement.12

Recently, the community has been able to improve on the basic analysis in Theorem 2, giving DP-
ERM and DP-SCO algorithms with substantially improved sample gradient query complexities.
For instance, it was observed in [FKT20] that under a smoothness assumption on the sample
functions f(·; s) (in addition to Lipschitzness), a one-pass algorithm in the sense of Remark 2
actually is attainable. This result was proven in two different ways (one of which uses an alternative
privacy amplification framework called privacy amplification by iteration [FMTT18]). The core idea
of both strategies is that smooth gradient steps are contractive (see Proposition 2.10, [FKT20]),
so that we can benefit from a single noise addition for many consecutive iterations, where iterates
taken with respect to neighboring datasets’ sample gradients do not drift further apart.

Using a careful combination of privacy amplification strategies and smoothening techniques, a line
of work [AFKT21, KLL21, CJJ+23] has yielded a DP-SCO algorithm which queries at most

≈ n+
(nd)

2
3

ε

sample gradients. Notably, if n� d2

ε3 is sufficiently large, the above query complexity of [CJJ+23] is
linear in n. Hence, this result shows that in addition to there being no asymptotic cost of privacy
in terms of utility (15), there is also no asymptotic cost in terms of computational complexity.
Nevertheless, the more general problem of designing a one-pass DP-SCO algorithm without further
assumptions (or showing that such an algorithm cannot exist) remains an exciting open direction.13

12More concretely, one can check that to apply amplification by subsampling with p ≈ 1
n
, i.e. a single sample

gradient per iteration, we must take the noise level σ ≈ Lε−
1
2 . Then to balance the two terms in (19) to obtain the

optimal error, we require T & n2

ε
, so we use quadratically many queries. By using a larger batch size of ≈

√
n, one

can improve upon this bound slightly [AFKT21], but this still does not result in a one-pass algorithm.
13We also remark that there are several extraneous logarithmic factors lost by the [CJJ+23] algorithm, which are

also interesting to improve (potentially via a simpler framework).
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Source material
Portions of this lecture are based on reference material in [DR14, Kam20], as well as the author’s
own experience working in the field.
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