
CS395T: Continuous Algorithms, Part VI
Polynomial approximations

Kevin Tian

1 Motivation
In this lecture, we study the following guiding question.

Problem 1. Given S ⊆ R and a function f : S → R, what can we say about

min
p∈Pk

sup
x∈S
|f(x)− p(x)|, where Pk := {p | p is a degree-k′ ≤ k polynomial}?

Furthermore, what can we say about a p which approximately achieves the above minimum (e.g.
how does it behave outside S, and can we algorithmically implement it stably)?

Note that Problem 1 is stated in terms of additive error (e.g. |f(x)− p(x)| ≤ ε for all x ∈ S), but
in different situations other forms of error tolerance may be more appropriate. For example, if f
is nonnegative we may ask for multiplicative error guarantees such as |f(x)− p(x)| ≤ εf(x) for all
x ∈ S. One of the most clear motivations for solving Problem 1 is the following observation.

Observation 1. Let p(x) =
∑k
i=0 cix

i be a degree-k polynomial, let M ∈ Sd×d, and let v ∈ Rd.
We can compute p(M)v in time O(Tmv(M) · k), where p(M) :=

∑k
i=0 ciM

i.

Proof. Just plan ahead!

In the rest of this section, we will see applications where the fundamental question, and source of
ingenuity in algorithm design, is of the form in Problem 1. In all the cases, the goal is to avoid
applying a matrix function f(M) by using Observation 1 and a polynomial p instead.

1.1 Minimizing convex quadratics
Consider solving a linear regression problem of the form

min
x∈Rd

F (x) :=
1

2
‖Ax− b‖22 =

1

2
‖b‖22 + min

x∈Rd

1

2
x>Kx− x>v, where K := A>A, v := A>b. (1)

This is a canonical convex optimization problem, where convexity follows from ∇2F (x) = K � 0d.
Hence, a natural approach is to use a gradient method. Observe that

∇F (x) = Kx− v,

and therefore any algorithm which produces iterates {xt}t≥0 that are in the span of the algorithms’
previous iterates and their gradients, initialized at x0 a multiple of v, must have

xt ∈ Span
{
v,Kv,K2v, . . . ,Ktv

}
=: Kt. (2)

We call Kt the order-(t + 1) Krylov subspace generated by (K, v), and such methods are corre-
spondingly called Krylov methods or Krylov iteration. Notice that

Kt = {p (K) v | p is a degree-k′ ≤ k polynomial} .

However, assuming K is full-rank for simplicity, we also have a closed-form solution x? to (1),
because ∇f(x?) = 0 =⇒ x? = K−1v, so it suffices to form and solve a linear system in K in
time O(ndω−1). Krylov iterations are precisely trying to approximately compute x? = K−1v with

1

elements of Kt, to avoid this matrix inversion. Now suppose1 that the eigenvalues of K are in [1, κ],
and consider a multiplicative variant of Problem 1, for f(x) = x−1, S ∈ [1, κ]. That is, suppose

|f(x)− p(x)| ≤ εf(x) for all x ∈ [1, κ] (3)

for a polynomial p of degree k(ε) which we can explicitly apply. Then by decomposing by
eigenspaces, it is a straightforward computation that∥∥p(K)v −K−1v

∥∥
K

= ε
∥∥K−1v

∥∥
K
,

which is a reasonable error metric in the high-precision regime of ε. The famous conjugate gradient
method in numerical linear algebra solves (1) by applying the best p satisfying (3). As we derive
at the end of Section 4, there exist p of degree-≈

√
κ which achieve this guarantee, which we know

is tight from the lower bound on well-conditioned optimization in Section 4, Part II.

This is an example of a more general strategy known as the Lanczos method or Lanczos iteration,
which is a generic reduction from approximately applying a matrix function to some explicit O(t)-
dimensional computations associated with an order-t Krylov subspace. We informally summarize
its guarantees here, based on a recent analysis in finite-precision arithmetic.

Theorem 1 ([MMS18], informal). There is an algorithm (the Lanczos method) which takes as
input A ∈ Sd×d with ‖A‖op = poly(d), k ∈ N, ε ∈ (0, 1) and a function f whose domain contains
[λmin(A) − ε, λmax(A) + ε] and whose range is poly(d). The algorithm takes time Õ(Tmv(A) · k),
uses O(log(dε)) bits of precision, and returns y satisfying ‖f(A)x− y‖2 ≤ O(k · δk + ε) ‖x‖2, where

δk := min
p∈Pk−1

(
max

x∈[λmin(A)−ε,λmax(A)+ε]
|p(x)− f(x)|

)
.

Theorem 1 is a bit of a mouthful, but roughly it says the Lanczos method returns y which approx-
imates f(A)x as well as p(A)x, where p is the best approximation to f in Pk−1 (up to a k factor
in the accuracy, and some ε factors which the bit complexity depends polylogarithmically on).
Indeed, Theorem 1 competes up to an O(k) factor with the “gold standard” of Krylov methods,

‖f(A)x− p(A)x‖2 ≤ ‖f(A)− p(A)‖op ‖x‖2 ≤ δk ‖x‖2 .

Here, we used the definition of δk (for any ε > 0) to bound ‖f(A)− p(A)‖op ≤ δk by considering
each eigenvalue separately. So, we can bound the performance of the Lanczos method simply by
proving existence of p ∈ Pk−1 which approximates f well, without calculating p. This alleviates
much of the computational burden associated with approximate solutions to Problem 1. For the rest
of the lecture, we use Theorem 1 as an excuse to not discuss the computation of the approximating
polynomials we construct. In many applications the polynomial we wish to apply is explicit, which
lets us avoid the tedium of Theorem 1 (and shave off low-order polylogarithmic runtime terms).

For convenience, we give a sketch of the proof of Theorem 1 under exact arithmetic in Section 5.

1.2 Principal component analysis
Consider the problem of approximating the top right singular vector of a matrix A ∈ Rn×d, or
the top eigenvector of K := A>A, i.e. 1-PCA. The most classical method for doing so is the
power method, which samples a random Gaussian vector g ∼ N (0, Id) and applies Kmg for some
appropriately large m, and then normalizes the result. We will see a correctness analysis of the
power method in a later lecture. For now, note that Observation 1 gives us the natural strategy of
applying a lower-degree polynomial q, such that q(K) ≈ Km, as done in [MM15]. As we will see in
Lemma 1, such polynomials q of degree ≈

√
m exist, and are quite useful in algorithm design. We

note that [MM15] generalizes this result to k-PCA, using ideas inspired by the Lanczos method.

1.3 Principal component projection
Consider a denoising task, where we wish to preprocess noisy data X ∈ Rn×d by projecting it
onto a low-dimensional subspace, with projection matrix Π ∈ Rd×d. In natural statistical models,

1Suppose instead that we knew the eigenvalues are in some range [µ,L] with κ := L
µ
. We use K← 1

µ
K instead.

2

discussed in a later lecture, a reasonable choice is Π = VV> where V ∈ Rd×k is the top-k right
singular vectors of X. Suppose that we know K := X>X with eigenvalues {λi}i∈[d] satisfies
(1− γ)λk ≥ λ ≥ (1 + γ)λk+1. In other words, there is a multiplicative gap of width ≈ γ between
λk and λk+1. Here, the goal is to apply Π = f(K), where f : [0,∞)→ R satisfies

f(x) =

{
1 x ≥ λk
0 x ≤ λk+1

.

Now consider the solution to a ridge regression problem,

x?λ := (K + λId)
−1

Kx.

The main benefit to using x?λ in place of Πx is computational, as regularizing by λId improves
problem conditioning, compared to computing Π which can be expensive. Furthermore, ridge
regression can be thought of as a soft proxy for explicit projection. Notice that this solution can
also be rewritten as x?λ = f(K)x, where

f(a) =
a

a+ λ
for all a ≥ 0.

Additionally, f takes the range [0,∞) to [0, 1], and in particular f(λk) = 1
2 + Ω(γ) and f(λk+1) =

1
2 − Ω(γ), by assumption. This shows that K′ = (K + λId)

−1K, our initial approximation to Π,
can be significantly boosted in approximation quality. Indeed, it suffices to compute p(K′)x, where
p is a polynomial which sends [1

2 +Ω(γ), 1] to values near 1, and [0, 1
2 −Ω(γ)] to values near 0 (with

arbitrary behavior in the gap around 1
2). Interestingly, [FMMS16] shows that in various settings,

this gives a principal component projection algorithm which does not need to explicitly form an
approximation to V, bypassing principal component analysis.

1.4 Matrix multiplicative weights
We now briefly introduce the central topic of next lecture. The matrix multiplicative weights
algorithm is a ubiquitous tool in modern algorithm design, as an abstraction of semidefinite pro-
gramming. It also captures regret minimization over Y ⊆ Sd×d, the set of positive semidefinite
trace-1 matrices, which is often helpful in quantum computing. The algorithm maintains an iterate

Y ∝ exp (S) ,

for S a running sum of “gain matrices” given to the algorithm, where the constant of proportionality
ensures Tr(Y) = 1. Here, the key computational challenge is simulating approximate matrix-vector
access through exp(S), when S ∈ Sd×d is explicit. The naïve strategy applies eigendecomposition
and practical implementations take Ω(d3) time as a result. Instead, one can apply Problem 1
and ask for a polynomial approximation to exp. Due to how frequently the matrix multiplicative
weights algorithm appears in applications, approximating exp is a central theme of the lecture.

1.5 Jackson’s theorem
Finally, we mention one application in statistics (rather than linear algebra) the author of these
notes is particularly fond of.2 The earth mover’s (a.k.a. 1-Wasserstein) distance between two
distributions P and Q, supported on a set S with distance function d : S×S → R≥0, is defined as:

EMD(P,Q) := inf
γ∈Γ(P,Q)

∫
d(x, x′)dγ(x, x′). (4)

Here, Γ(P,Q) is the set of couplings of P,Q, which are joint distributions supported on S × S
whose marginals agree with P and Q. It turns out that by viewing EMD as a linear program
(with marginal constraints on the decision variable γ), and taking a dual, we arrive at another
characterization of EMD. We state the following well-known result without proof.

Fact 1. For any distributions P , Q supported on a set S with distance function d : S × S → R≥0

such that d(x, y) = ‖x− y‖ for some norm ‖·‖, following the definition (4),

EMD(P,Q) = sup
g∈G

∫
g(x)(P (x)−Q(x))dx, where G := {g : S → R | g is 1-Lipschitz in ‖·‖} .

2This was the subject of my first paper in graduate school.

3

This is an opportunity to introduce a powerful tool in approximation theory (proof in e.g. [vP15]).

Theorem 2 (Jackson). Suppose f : S → R is k-times differentiable, and |f (k)| ≤ L everywhere in
S. There are constants c, C such that if k ≤ cd, there is a degree-d polynomial p such that

sup
x∈S
|f(x)− p(x)| ≤ L ·

(
C

d

)k
.

Note that Theorem 2 states that L-Lipschitz functions admit approximations by degree-d polyno-
mials with additive approximation quality O(Ld). Combined with Fact 1, Theorem 2 proves that
any two distributions P , Q which agree on their first O(1

ε) moments must have EMD(P,Q) ≤ ε.
This is because EMD(P,Q) =

∫
g(x)(P (x)−Q(x))dx =

∫
(g(x)− p(x))(P (x)−Q(x))dx ≤ ε.

Now consider the problem of learning a distribution P , say supported on [0, 1], in earth mover’s
distance, up to error ε. It suffices to learn the first O(1

ε) moments of P , i.e. E[P i] for i ∈ [O(1
ε)],

from samples. Of course, we cannot exactly learn these moments due to randomness in the sampling
process, leading to the development of error-tolerant variants of Theorem 2 which allow for small
magnitudes of E[P i−Qi]. We can then produce any Q which matches our estimated moments and
attain an EMD guarantee. This strategy was followed by [KV17] to learn the spectrum of a graph,
and then by [TKV17] to learn a population of binomial random variables.

2 Chebyshev polynomials
Chebyshev polynomials (of the first kind) are perhaps the most ubiquitous tool in algorithmic
polynomial approximation. We begin with a definition. Let T0(x) := 1, T1(x) := x, and let

Tk(x) := 2xTk−1(x)− Tk−2(x) (5)

be the degree-k Chebyshev polynomial, recursively defined for k ≥ 2. The Chebyshev polynomials
have a particularly interesting interpretation on the range S := [−1, 1], which is the focus of the
rest of the lecture.3 Indeed, the identity 2 cos(θ) cos((k − 1)θ) = cos((k − 2)θ) + cos(kθ) shows

Tk(cos(θ)) = cos(kθ) for all θ ∈ [−π, π]. (6)

As a result of (6), |Tk(x)| ≤ 1 for all x ∈ [−1, 1]. Moreover, Chebyshev polynomials form an
orthogonal basis with respect to an appropriate measure on [−1, 1], in that∫ 1

−1

Tk(x)Tk′(x)
1√

1− x2
dx =

{
1 k = k′

0 k 6= k′
.

Hence, any Lipschitz function f : [−1, 1]→ R has a unique decomposition

f(x) =

∞∑
i=0

aiTi(x) (7)

in the Chebyshev basis. We even have an explicit formula for the Chebyshev coefficients,

ai =
1

πι

∫
|z|=1

z−(i+1)f

(
1

2
(z + z−1)

)
dz. (8)

When studying polynomial approximations over [−1, 1], the orthogonality and boundedness prop-
erties of Chebyshev polynomials over this interval are extremely useful. For example, simply
truncating the decomposition (7) up to order k lets us upper bound uniform approximation qual-
ity in terms of the sizes of Chebyshev coefficients. As we explain in Section 4, these coefficients
decay exponentially in standard applications. Interestingly, in some cases this Chebyshev trun-
cation strategy is provably optimal up to a constant factor; see [AA22] for a proof in the case
f(x) = exp(Cx) for C ∈ R. We also briefly mention that Chebyshev polynomials have long-been
studied due to their extremal properties, such as the following.

3This is without loss of generality when S is an interval; additive approximations to f(·) on [a, b] are the same
as additive approximations to f(b−a

2
·+ b+a

2
) on [−1, 1]. See [TT24], Section 3.3 for an example of machinery which

extends polynomial approximations to functions defined on the union of intervals.

4

1. Chebyshev polynomials (scaled appropriately) solve Problem 1 optimally when S = [−1, 1]
and f(x) = xk+1, i.e. they are the best degree-k approximation to xk+1.

2. Let p be a degree-k polynomial such that p([−1, 1]) ⊆ [−1, 1]. Then for any y with |y| ≥ 1,
we have |p(y)| ≤ |Tk(y)|. This implies Tk uniformly grows faster outside [−1, 1] than any
polynomial p of equal degree which enjoys a similar bound |p(x)| ≤ 1 within [−1, 1].

3. Similarly, for odd k, among all degree-k polynomials p such that p([−1, 1]) ⊆ [−1, 1], Tk(x)
has the largest derivative at 0.

There are entire books written about the amazing properties of Chebyshev polynomials, e.g.
[Tre19]. Even the mere fact that they admit the simple recursive definition (5) has significant
consequences (and is the basis for momentum methods in optimization, as well as the Lanczos
method in Theorem 1). To give the reader a sense of how to use Chebyshev polynomials, we go in
depth into a few of their most important applications in Sections 3 and 4.

3 Approximating monomials
The first meta-strategy we will see in constructing polynomial approximations is based on the
following cornerstone result, which gives a low-degree approximation of the monomial xk. Roughly
speaking, the meta-strategy is to first truncate the Taylor series of a function of interest, and then
apply Lemma 1 to further reduce to the degree of each monomial in the truncated Taylor series.

Lemma 1. Let k,m ∈ N. There is a degree-k polynomial p satisfying

sup
x∈[−1,1]

|p(x)− xm| ≤ 2 exp

(
− k2

2m

)
.

Proof. We reproduce an extremely elegant proof due to [SV14]. Let {Yi}i∈N be i.i.d. Rademacher
random variables, and let Dm :=

∑
i∈[m] Yi. We claim that by induction on m, E[TDm(x)] = xm,

where Tk(x) := T|k|(x) for k < 0.4 To see this,

xm+1 = xE [TDm
(x)] = E [xTDm

(x)] = E

[
TDm+1(x) + TDm−1(x)

2

]
= E

[
TDm+1

(x)
]
,

where the first equality used the inductive hypothesis, and the third used (5). Now define

p(x) := E
[
TDm(x) · 1|Dm|≤k

]
,

where 1|Dm|≤k indicates the event |Dm| ≤ k. Clearly p(x) has degree at most k by definition. To
prove the claimed approximation bound, we have for x ∈ [−1, 1],

|p(x)− xm| =
∣∣E [TDm

(x) · (1− 1|Dm|≤k)
]∣∣ ≤ ∣∣E [1|Dm|>k

]∣∣ = Pr [|Dm| > k] ,

since Chebyshev polynomials are bounded in ±1 over [−1, 1]. The conclusion follows from Hoeffd-
ing’s inequality (Fact 2, Lemma 1, and Theorem 1, Part V), i.e. Pr[|Dm| > k] ≤ 2 exp(− k2

2m).

Taking k larger than
√
m by logarithmic factors in Lemma 1 already achieves highly-accurate

approximations to xm, which can improve the degree of polynomial approximations termwise. To
illustrate, we carry out our meta-strategy when f(x) = exp(−Cx) and S = [0, 1]. In this example,
truncating the Taylor series of f at degree k gives accurate approximations when k � C, as

f(x) =

k∑
i=0

Ci

i!
xi +

∑
i>k

Ci

i!
xi,

and i! grows much faster than Ci when i � C. Using Lemma 1 to further approximate each
monomial in the Taylor expansion achieves a quadratic improvement over this strategy.

4It is straightforward to verify that (5) continues to hold under this definition.

5

Lemma 2. Let C > 0 and δ ∈ (0, 1). There is a degree-k polynomial p satisfying

sup
x∈[0,1]

| exp(−Cx)− p(x)| ≤ δ, k = O

(√
C log

1

δ
+ log

1

δ

)
.

Proof. We begin by shifting the range to [−1, 1], defining

g(y) := exp

(
−C

(
y + 1

2

))
= exp (−λ− λy) , where λ :=

C

2
.

Providing δ-approximations to g over [−1, 1] yields the conclusion by identifying x = y+1
2 , which

does not affect degrees. Next, we truncate the Taylor series of g at degree t ∈ N to be specified:

g(y) = exp (−λ)

t∑
i=0

(−λ)i

i!
yi + exp (−λ)

∑
i>t

(−λ)i

i!
yi.

Letting pk,m be the degree-k approximation of xm from Lemma 1, we define our approximation

q(y) := exp(−λ)

t∑
i=0

(−λ)i

i!
pk,i(y).

Observe that for y ∈ [−1, 1], by Lemma 1, we have

|g(y)− q(y)| ≤ exp(−λ)

(
t∑
i=0

λi

i!
· 2 exp

(
−k

2

2i

))
︸ ︷︷ ︸

:=T1

+ exp (−λ)
∑
i>t

λi

i!︸ ︷︷ ︸
:=T2

.

Since T1 ≤ 2 exp(−k
2

2t), choosing k &
√
t log 1

δ ensures T1 ≤ δ
2 . Similarly, it is straightforward to

check that t & max(λ, log 1
δ) suffices for T2 ≤ δ

2 . Combining with λ h C gives the claim.

Remark 1. The setting of Lemma 2 appears somewhat strange, as it concerns x ∈ [0, 1] rather
than x ∈ [−1, 1]. In applications discussed in the next lecture, this is not prohibitive as we can
simply scale x and C appropriately (e.g. x← 1 + x and C ← C

2 moves the range [−1, 1] to [0, 1]).
More importantly, the optimal polynomial approximation to exp(−Cx) on the range [−1, 0] actually
has degree-Ω(C) [AA22], nullifying the

√
C savings due to the strategy implied by Lemma 1.

Remark 2. Our strategy in establishing Lemma 2 begs the question, why not apply the monomial
approximation again (and, say, obtain a polynomial approximation of degree ≈ 4

√
C)? The issue is

that coefficients of Chebyshev polynomials rapidly blow up (Tk has leading coefficient 2k−1), and we
incur multiplicative factors in the approximation quality based on the sizes of these coefficients. For
example, approximating 2kxk to additive error δ is the same as approximating xk to the extremely
small additive error δ · 2−k, immediately washing out the gains of applying Lemma 1 again.

4 Trefethen’s theorem
In this section, we give an analysis of the Chebyshev truncation strategy from Section 2. Recall that,
following the notation (7), this strategy proposes to use p(x) =

∑k
i=0 aiTi(x) as our polynomial

approximation. This is useful when the {ai}i≥0 decay quickly, as seen in the following.

Lemma 3. Let f(x) have decomposition (7) over [−1, 1], and let p(x) :=
∑k
i=0 aiTi(x). Then

sup
x∈[−1,1]

|f(x)− p(x)| ≤
∑
i>k

|ai|.

Proof. It suffices to apply the triangle inequality and |Ti(x)| ≤ 1 for x ∈ [−1, 1].

6

For example, if we can estimate |ai| ≤ exp(−εi) for sufficiently large i, Lemma 3 shows that a
degree-≈ ε−1 polynomial approximation provides strong uniform approximations. Amazingly, for
all functions f which are analytic over a small extension of the interval [−1, 1] in the complex
plane, the {ai}i≥0 do indeed decay exponentially, as captured by the following result.

Theorem 3 ([Tre19]). Let f be analytically continuable to the interior of

Eρ :=

{
1

2
(z + z−1) | |z| = ρ

}
, the Bernstein ellipse of radius ρ,

and suppose |f(x)| ≤M for x ∈ Eρ. Then |ai| ≤ 2Mρ−i for i ≥ 1.

Proof. We briefly summarize the proof here, but refer the reader to [Tre19] for more details. Note
that for z ∈ C with |z| = 1, we can identify z in a two-to-one fashion with a point x ∈ [−1, 1]
using the formula x(z) = 1

2 (z + z−1), such that x(z−1) = x(z). We further define F (z) :=
f
(

1
2 (z + z−1)

)
= f(x(z)). Under this transformation, the formula (8) reads

ak =
1

πι

∫
|z|=1

z−(i+1)F (z)dz =
1

πι

∫
|z|=ρ

z−(i+1)F (z)dz.

To see the latter equality, f is analytic over the interior Eρ, and x(z) is analytic and sends the
annulus ρ−1 ≤ |z| ≤ ρ to Eρ. Therefore, Cauchy’s integral theorem states that we can expand the
contour integral to the annulus and not affect the value. Finally, the conclusion follows from

|ak| ≤
1

π

∫
|z|=ρ

∣∣∣z−(i+1)F (z)
∣∣∣ dz ≤ 2πρ

π
· ρ−(i+1) ·M ≤ 2Mρ−i.

Combining Theorem 3 with Lemma 3 gives another powerful meta-strategy for polynomial approx-
imation. If we can identify an analytic continuation of f beyond [−1, 1] (i.e. to a region which
dodges poles of f), we immediately get a rate of decay on its Chebyshev coefficients. As an ex-
ample, consider Problem 1 when f(x) = x−1 and S = [1, κ], a standard setting for the application
described in Section 1.1. We first shift the range to [−1, 1], defining

g(y) := f(x(y)) =
1

x(y)
, where x(y) :=

κ− 1

2
y +

κ+ 1

2
.

The pole of f is x? = 0, so the pole of g is y? = −1 − 2
κ−1 = −1 − Θ(1

κ) for large κ. Our goal
is to find the largest Bernstein ellipse Eρ so that g is bounded on Eρ, and y? 6∈ Eρ. The major
axis of Eρ has length ρ + ρ−1,5 so letting ρ = 1 + ε, we have ρ + ρ−1 ≈ 2 + ε2. To dodge y?, we
hence need to choose ε = Θ(κ−1/2), and it is simple to check this gives M = O(1) in Theorem 3.
Applying Theorem 3 then shows |ai| decays at the rate exp(−i·κ−1/2), so degree-≈

√
κ polynomials

sharply approximate the inverse function over [1, κ]. This matches our intuition from the conjugate
gradient method, which is known to converge at a rate ∝ exp(−i ·κ−1/2) in i iterations. We remark
that the same calculation applies to any function on [1, κ] with a pole at 0, such as f(x) =

√
x.

5 Lanczos in exact arithmetic
We sketch a proof of Theorem 1 under exact arithmetic (ignoring issues of finite bit precision,
and with ε = 0). We begin by describing the algorithm and proving a correctness guarantee, and
then discuss the runtime. The Lanczos method run for k iterations produces Q ∈ Rd×k such that
Q>Q = Ik and Q spans the order-k Krylov subspace Kk−1 (defined in (2), with K← A). It then
approximates f(A)x ≈ Qf(T)Q>x, for T := Q>AQ. The key observation is:

Aix = QQ>Aix = QQ>AiQQ>x = QTiQ>x for i < k.

5One way to see this is that Eρ is the locus of points 1
2
(z+z−1) where |z| = ρ, and the major axis corresponds to

the largest magnitude on the locus. A calculation shows this occurs when z = ±ρ, and so the axis length is ρ+ρ−1.

7

The first and second equalities follow because QQ> is the orthogonal projection to a subspace
containing Aix and x, and the last equality is by repeatedly applying T = Q>AQ and Q>Q = Ik.
This immediately implies that for any polynomial p of degree ≤ k − 1, we have

p(A)x = Qp(T)Q>x.

By applying the triangle inequality and the definition of

δk := min
p∈Pk−1

(
max

x∈[λmin(A),λmax(A)]
|p(x)− f(x)|

)
,

we have for the p attaining the minimum above,∥∥f(A)x−Qf(T)Q>x
∥∥

2
≤
(
‖f(A)− p(A)‖op +

∥∥Qf(T)Q> −Qp(T)Q>
∥∥

op

)
‖x‖2

=
(
‖f(A)− p(A)‖op + ‖f(T)− p(T)‖op

)
‖x‖2 ≤ 2δk ‖x‖2 .

The equality above used orthonormality of Q, and the last inequality used the Cauchy interlacing
theorem, which states that [λmin(T), λmax(T)] ⊆ [λmin(A), λmax(A)]. Note that in exact arith-
metic, the O(k) loss in the approximation quality of Theorem 1 is improved to a factor of 2.

We now discuss the runtime of producing the approximation Qf(T)Q>x in the Lanczos method.
The most important property of Q from a computational perspective is that it is recursively
computed such that T := Q>AQ is tridiagonal, i.e. T is zero everywhere more than one entry
away from the main diagonal. Because T is tridiagonal, f(T) can be computed in O(k2) time.

The algorithm computes the {qj}j∈[k] by iteratively computing qj+1 ← Aqj , orthogonalizing it
against qj and qj−1, and then normalizing it to unit length, which takes O(Tmv(A) + d) time. By
construction, one can verify that T is tridiagonal, so we need to show Q>Q = Ik.

Assume inductively that the {qi}i∈[j] are orthogonal and span Kj−1; then, we claim Aqj ⊥ qi ⇐⇒
qj ⊥ Aqi for all i ∈ [j − 2]. This is because Aqi is in the order-(i + 1) Krylov subspace Ki, so
it is in Span({qi}i∈[j−1]), and hence Aqi ⊥ qj as claimed (by induction). Therefore, to preserve
orthogonality we only need to project out qj and qj−1 from Aqj , proving correctness.

Source material
Portions of this lecture are based on reference material in [SV14, Tre19], as well as the author’s
own experience working in the field.

8

References
[AA22] Amol Aggarwal and Josh Alman. Optimal-degree polynomial approximations for ex-

ponentials and gaussian kernel density estimation. In 37th Computational Complexity
Conference, CCC 2022, volume 234 of LIPIcs, pages 22:1–22:23. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2022.

[FMMS16] Roy Frostig, Cameron Musco, Christopher Musco, and Aaron Sidford. Principal com-
ponent projection without principal component analysis. In Proceedings of the 33nd
International Conference on Machine Learning, ICML 2016, volume 48 of JMLR Work-
shop and Conference Proceedings, pages 2349–2357. JMLR.org, 2016.

[KV17] Weihao Kong and Gregory Valiant. Spectrum estimation from samples. Annals of
Statistics, 45(5):2218–2247, 2017.

[MM15] Cameron Musco and Christopher Musco. Randomized block krylov methods for
stronger and faster approximate singular value decomposition. In Advances in Neural
Information Processing Systems 28: Annual Conference on Neural Information Pro-
cessing Systems 2015, pages 1396–1404, 2015.

[MMS18] Cameron Musco, Christopher Musco, and Aaron Sidford. Stability of the lanczos
method for matrix function approximation. In Proceedings of the Twenty-Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, pages 1605–1624. SIAM,
2018.

[SV14] Sushant Sachdeva and Nisheeth K. Vishnoi. Faster algorithms via approximation the-
ory. Foundations and Trends in Theoretical Computer Science, 9(2):125–210, 2014.

[TKV17] Kevin Tian, Weihao Kong, and Gregory Valiant. Learning populations of parameters.
In Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, pages 5778–5787, 2017.

[Tre19] Lloyd N. Trefethen. Approximation theory and approximation practice, extended edi-
tion. Society for Industrial and Applied Mathematics, Philadelphia, PA, 2019. Ex-
tended edition [of 3012510].

[TT24] Ewin Tang and Kevin Tian. A CS guide to the quantum singular value transformation.
In 2024 Symposium on Simplicity in Algorithms, SOSA 2024. SIAM, 2024.

[vP15] Tobias von Petersdorff. Amsc/cmsc 666 numerical analysis notes.
https://www.math.umd.edu/ petersd/666/amsc666notes02.pdf, 2015. Accessed:
12/10/2023.

9

	Motivation
	Minimizing convex quadratics
	Principal component analysis
	Principal component projection
	Matrix multiplicative weights
	Jackson's theorem

	Chebyshev polynomials
	Approximating monomials
	Trefethen's theorem
	Lanczos in exact arithmetic

