
CS395T: Continuous Algorithms, Part VII
Matrix multiplicative weights

Kevin Tian

1 Quantum entropy
In this lecture, we develop the matrix multiplicative weights (MMW) algorithm, a matrix general-
ization of the multiplicative weights algorithm in Section 4, Part III, proposed by [TRW05, KW07,
AK07]. Just as multiplicative weights is a framework for regret minimization when the action set
is the probability simplex ∆d := {x ∈ Rd>0 | ‖x‖1 = 1}, MMW bounds regret over the spectraplex,

∆d×d :=
{
X ∈ Sd×d�0 | TrX = 1

}
. (1)

In other words, ∆d×d is the set of all matrices expressible as UΛU>, where U ∈ Rd×d is unitary
and diagonal Λ has elements in ∆d. By equivalently writing such an X ∈ ∆d×d as

X =
∑
i∈[d]

λiuiu
>
i , where λ ∈ ∆d and {ui}i∈[d] are columns of U,

we can instead interpret X as given by a probability distribution over the rank-one matrices uiu>i .
For the rest of the lecture, we use the notation X := ∆d×d to denote this action set, unless specified
otherwise. To apply the regret minimization techniques of Part III, we first must provide a strongly
convex regularizer in an appropriate norm over X . We choose ‖·‖ = ‖·‖1, the Schatten-1 norm,
which is just the trace when the argument is in Sd×d�0 . We also use the regularizer:

ϕ(X) := 〈X, log(X)〉 =
∑
i∈[d]

λi(X) log λi(X), (2)

where log(X) is defined as in Section 2.1, Part V. This is the spectral analog of the entropy
regularizer used in Section 4, Part III, and is hence amenable to our analysis techniques from Part
V. The function (2) is often called the quantum entropy or von Neumann entropy in the literature,
due to its fundamental role in the study of quantum information theory [NC10].

We begin by establishing regularity properties, e.g. strong convexity, of ϕ. It is helpful to first
compute the dual of ϕ. Because entropy is permutation-invariant, Lewis’s theorem (Theorem 8,
Part V) tells us that ϕ∗ agrees with its vector definition applied to the spectrum. We computed
the dual of vector entropy in Lemma 8, Part III, such that

ϕ∗(Y) := log

∑
i∈[d]

exp (λi(Y))

 = log (Tr exp(Y)) , for all Y ∈ Sd×d. (3)

By applying Lewis’s theorem again, we can also check that (paralleling Lemma 8, Part III):

∇ϕ∗(Y) =
exp(Y)

Tr exp(Y)
∈ X = ∆d×d. (4)

It is convenient to first prove smoothness of ϕ∗, because along the way, we will establish a tighter
characterization of the Hessian of ϕ∗, which is useful in several applications.

Lemma 1. Define ϕ∗ as in (3). Then for all Y,M ∈ Sd×d,

∇2ϕ∗(Y) [M,M] ≤
〈
∇ϕ∗(Y),M2

〉
≤ ‖M‖2op .
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Proof. We give a proof using the Lewis-Sendov formula (Theorem 9, Part V).1 Throughout, let
X := ∇ϕ∗(Y) ∈ X (see (4)), let λ ∈ Rd be the vector of eigenvalues of Y, and let the eigendecom-
position of Y be UΛU> where Λ = diag (λ). For y ∈ Rd, let ϕ∗vec(y) := log(

∑
i∈[d] exp(yi)) be

the vector dual of entropy, as in Lemma 8, Part III. The Lewis-Sendov formula states that

∇2r∗(Y)[M,M] = ∇2ϕ∗vec(λ)
[
diagvec

(
M̃
)
, diagvec

(
M̃
)]

+ 〈A,M ◦M〉 ,

where Aij :=


0 i = j

∇2
iiϕ
∗
vec(λ)−∇2

ijϕ
∗
vec(λ) i 6= j, λi = λj

∇iϕ
∗
vec(λ)−∇jϕ

∗
vec(λ)

λi−λj
i 6= j, λi 6= λj

for (i, j) ∈ [d]× [d],
(5)

and M̃ := U>MU. Here, diagvec is the function which takes M ∈ Sd×d and returns the diagonal
elements of M as a vector in Rd, and ◦ denotes the Hadmard (entrywise) product. Now, let
x := ∇ϕ∗vec(λ) and H := ∇2ϕ∗vec(λ). A straightforward computation yields

x =
exp(λ)

N(λ)
, H = diag (x)− xx> � diag (x) , for N(λ) :=

∑
i∈[d]

exp(λi),

where exp(λ) is entrywise. Therefore, we can bound the first term in (5):

∇2ϕ∗vec(λ)
[
diagvec

(
M̃
)
,diagvec

(
M̃
)]
≤ diag (x)

[
diagvec

(
M̃
)
, diagvec

(
M̃
)]

=
1

N(λ)

∑
i∈[d]

exp(λi)M̃
2
ii.

(6)

We proceed to the second term in (5). By applying the inequality exp(a)−exp(b)
a−b ≤ exp(a)+exp(b)

2 ,
which holds for all a, b ∈ R, we have for all i 6= j ∈ [d],

AijM̃
2
ij = (Hii −Hij) M̃2

ij = (xi − 2x2
i )M̃

2
ij

≤ xiM̃2
ij =

exp(λi) + exp(λj)

2N(λ)
M̃2

ij , if λi = λj ,

AijM̃
2
ij =

xi − xj
λi − λj

M̃2
ij =

1

N(λ)

(
exp(λi)− exp(λj)

λi − λj

)
M̃2

ij

≤ exp(λi) + exp(λj)

2N(λ)
M̃2

ij , if λi 6= λj .

(7)

Combining (6) and (7), we have the conclusion:

∇2r∗(Y)[M,M] ≤ 1

N(λ)

∑
(i,j)∈[d]×[d]

exp(λi) + exp(λj)

2
M̃2

ij

=
1

N(λ)

∑
(i,j)∈[d]×[d]

exp(λi)M̃
2
ij

=
1

N(λ)

∑
i∈[d]

exp(λi)
∑
j∈[d]

M̃2
ij =

1

N(λ)

∑
i∈[d]

exp(λi)[M̃
2]ii =

〈
diag (x) , M̃2

〉
.

In the second line, we used that M̃ is symmetric. The first conclusion follows from〈
diag (x) , M̃2

〉
=
〈
Udiag (x) U>,M2

〉
=
〈
∇ϕ∗(Y),M2

〉
,

where we applied Lewis’s theorem (Theorem 8, Part V) to show that Udiag (x) U> = ∇ϕ∗(Y).
The second conclusion then follows from the matrix Hölder inequality:〈

∇ϕ∗(Y),M2
〉
≤ ‖∇ϕ∗(Y)‖tr

∥∥M2
∥∥

op =
∥∥M2

∥∥
op = ‖M‖2op .

1This is in part to give an example of how to apply this formula, to make it seem slightly less scary.
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Remark 1. In the special case of quantum entropy, there is an alternative proof of Lemma 1 that
does not go through the Lewis-Sendov formula, due to [Nes07], which we reproduce. Using (4),

〈∇ϕ∗(Y),M〉 =
〈M, exp(Y)〉
Tr exp(Y)

,

so that

∇2ϕ∗(Y)[M,M] =

〈
M,∇

(
〈M, exp(Y)〉
Tr exp(Y)

)〉
=

〈
M,
∇ (〈M, exp(Y)〉)

Tr exp(Y)

〉
−
(
〈M, exp(Y)〉
Tr exp(Y)

)2

≤
〈

M,
∇ (〈M, exp(Y)〉)

Tr exp(Y)

〉
,

(8)
where the second line used ∇Tr exp(Y) = exp(Y) by Lewis’s theorem (Theorem 8, Part V). Next,
by using a Taylor expansion and the fact2 that ∇

〈
M,Yk

〉
=
∑k−1
i=0 YiMYk−1−i, we have

∇ (〈M, exp(Y)〉) =
∑
k≥0

1

k!
∇
(〈

M,Yk
〉)

=
∑
k≥1

k−1∑
i=0

1

k!
YiMYk−1−i,

so

〈M,∇ (〈M, exp(Y)〉)〉 =
∞∑
k=1

k−1∑
i=0

1

k!

〈
M,YiMYk−1−i〉

≤
∑
k≥1

1

(k − 1)!

〈
M2,Yk−1

〉
=
〈
M2, exp(Y)

〉
,

(9)

where we used Lemma 7, Part V in the only inequality. Lemma 1 follows from (8) and (9).

As an immediate consequence of Lemma 1 and the smoothness-strong convexity duality character-
ization in Lemma 4, Part III, we therefore have also shown the following.

Corollary 1. The quantum entropy ϕ in (2) is 1-strongly convex in ‖·‖tr over ∆d×d.

2 Matrix multiplicative weights
We now present the MMW algorithm. Given a sequence of loss matrices {Gt}0≤t<T ∈ Sd×d,
MMW minimizes regret over X := ∆d×d via mirror descent (Theorem 2 and Remark 4, Part III)
with the quantum entropy regularizer ϕ in (2). We prove some basic facts about an initialization
strategy, following a suggestion in Remark 6, Part III to use the minimizer of ϕ.

Lemma 2. Let X0 := 1
dId ∈ X .3 Then X0 minimizes ϕ over X , and Dϕ(X‖X0) ≤ ϕ(X) −

ϕ(X0) ≤ log d for all X ∈ X .

Proof. Because ϕ is a spectral function, the minimizing argument has eigenvalues agreeing with
the minimizer of vector entropy over ∆d, i.e. it has eigenvalues 1

d1d. The only such matrix in X is
1
dId. The last claim follows from Remark 6, Part III, as ϕ(X) ≤ 0 and ϕ(X0) = log(d).

By directly applying Lemma 2 and Corollary 1 in the context of mirror descent (i.e. Theorem 2,
Part III), we have the following generic regret minimization guarantee over X .

Theorem 1 (Matrix multiplicative weights). Let {Gt}0≤t<T ∈ Sd×d satisfy ‖Gt‖op ≤ L for all
0 ≤ t < T . Let X0 ← 1

dId ∈ X , and iteratively define

Xt+1 ← ∇ϕ∗(∇ϕ(Xt)− ηGt), for all 0 ≤ t < T, (10)

where ϕ is quantum entropy (2). We have

1

T

∑
0≤t<T

〈Gt,Xt −X?〉 ≤ log d

ηT
+
ηL2

2
, for all X? ∈ X .

2The easiest way to see this fact is to expand (Y + dY)k to first order.
3This matrix is also sometimes called the maximally mixed state in quantum information theory, and this lemma

is analogous to the fact that the uniform distribution minimizes (vector) entropy over the simplex.
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In particular, choosing η = 1
L ( 2 log d

T )1/2, the right-hand side is L( 2 log d
T )1/2.

We pause to interpret the updates (10). Because ϕ is a Legendre function over X , we may apply
Lemma 3, Part III to conclude that ∇ϕ and ∇ϕ∗ are inverse functions, sending X to Sd×d and
back respectively. By defining St := ∇ϕ(Xt) in each iteration, the recursion (10) is equivalent to

S0 ← 0d, St+1 ← St − ηGt for all 0 ≤ t < T. (11)

In other words, a dual view of MMW is that it maintains a scaled running sum St := −η
∑

0≤s<t Gs,
and updates its actions by using the Bregman projection induced by quantum entropy, Xt ←
∇ϕ∗(St). Recalling our earlier computation of ∇ϕ∗ in (4), we have the more explicit description

Xt ←
exp(St)

Tr exp(St)
=

exp(−η
∑

0≤s<t Gs)

Tr exp(−η
∑

0≤s<t Gs)
. (12)

This dual view turns out to give an alternative proof of the MMW regret bound in Theorem 1,
which is able to use the tighter characterization of ∇2ϕ∗ given in Lemma 1, as long as the matrices
{Gt}0≤t<T are all negative semidefinite.4 We begin with a helper lemma.

Lemma 3. For G ∈ Sd×d�0 satisfying ‖G‖op ≤
1
2 , and all Y ∈ Sd×d,

Dϕ∗(Y + G‖Y) ≤ ‖G‖op 〈G,∇ϕ∗(Y)〉 .

Proof. Note that ϕ∗ is twice-differentiable because its vector counterpart is, by Theorem 9, Part
V. Therefore, by a Taylor expansion, we compute

Dϕ∗(Y + G‖Y) =

∫ 1

0

∫ t

0

(
d2

ds2
Dϕ∗(Y + sG‖Y)

)
dsdt

=

∫ 1

0

∫ t

0

∇2ϕ∗(Y + sG)[G,G]dsdt.

By applying Lemma 1 and the fact that G2 � ‖G‖op G for G ∈ Sd×d�0 ,

Dϕ∗(Y + G‖Y) ≤ ‖G‖op
∫ 1

0

∫ t

0

〈∇ϕ∗(Y + sG),G〉 dsdt

= ‖G‖op
∫ 1

0

(ϕ∗(Y + tG)− ϕ∗(Y)) dt

= ‖G‖op
∫ 1

0

(Dϕ∗(Y + tG‖Y) + 〈tG,∇ϕ∗(Y)〉) dt.

Next, observe that for t ∈ [0, 1],

t · d
dt
Dϕ∗(Y + tG‖Y) = t · d

dt
(ϕ∗(Y + tG)− 〈tG,∇ϕ∗(Y)〉)

= 〈tG,∇ϕ∗(Y + tG)−∇ϕ∗(Y)〉 ≥ 0,

where we used that convexity of ϕ∗ implies monotonicity of its gradient (Eq. (2), Part III). There-
fore, Dϕ∗(Y + tG‖Y) is increasing in t, so we can bound the above display further:

Dϕ∗(Y + G‖Y) ≤ ‖G‖op
∫ 1

0

(Dϕ∗(Y + G‖Y) + 〈tG,∇ϕ∗(Y)〉) dt

≤ 1

2
Dϕ∗(Y + G‖Y) +

1

2
‖G‖op 〈G,∇ϕ∗(Y)〉 .

Here, we used our assumption ‖G‖op ≤
1
2 . The conclusion follows by rearranging.

By using Lemma 3 in a dual variant of the mirror descent proof, we obtain the following.
4This restriction can be somewhat loosened; see Theorem 3.1 of [ZLO15] for a generalization of Theorem 2, which

tolerates a larger set of matrices. In the applications we consider later in the course, Theorem 2 suffices.
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Theorem 2 (Local norm MMW). In the setting of Theorem 2, suppose {−Gt}0≤t<T ∈ Sd×d�0 and
ηL ≤ 1

2 . Then, following the notation in (11),

1

T

∑
0≤t<T

〈Gt,Xt −X?〉 ≤ log d

ηT
− η

T

∑
0≤t<T

‖Gt‖op 〈Gt,Xt〉 .

Proof. Let S? := ∇ϕ(X?) throughout. Following (10), (11), recall that we have Xt = ∇ϕ∗(St) in
each iteration, so that the three-point equality of Bregman divergences (Eq. (7), Part III) shows

η 〈Gt,Xt −X?〉 = 〈St − St+1,∇ϕ∗(St)−∇ϕ∗(S?)〉
= Dϕ∗(St‖S?)−Dϕ∗(St+1‖S?) +Dϕ∗(St+1‖St)
≤ Dϕ∗(St‖S?)−Dϕ∗(St+1‖S?)− ‖G‖op 〈Gt,Xt〉 ,

where the last inequality applied Lemma 3. Telescoping as usual yields the claim, where we use
that by combining Fact 4, Part III, and Lemma 2,

Dϕ∗(S0‖S?) = Dϕ(X?‖X0) ≤ log d.

To understand the condition that {−Gt}0≤t<T ∈ Sd×d�0 , later in the course, we will encounter
several applications where Mt := −Gt is an empirical second moment matrix, i.e. for some vector
Xt ∼ D for a distribution D of interest, we let Mt = XtX

>
t . In this case, our goal is to certify

bounds on the empirical covariance 1
T

∑
0≤t<T Mt, whereby we have

max
X?∈X

1

T

∑
0≤t<T

〈−Gt,X
?〉 = max

X?∈X

1

T

∑
0≤t<T

〈Mt,X
?〉 =

∥∥∥∥∥∥ 1

T

∑
0≤t<T

Mt

∥∥∥∥∥∥
op

.

The left-hand side is exactly the type of quantity which Theorem 2 lets us control.

As we will see, the bound in Theorem 2 gives us significantly tighter bounds on such quantities than
the looser Theorem 1. Bounds of the form in Theorem 2 are often called “local norms” bounds in
the literature on multiplicative weights, because they are induced by a local reweighting by a fixed
matrix Xt, improving upon the “worst-case” bound ‖Gt‖op ≥ 〈Gt,Xt〉. As a simple motivating
example, if G = −XX> for X ∼ N (0d, Id), then Gaussian moment bounds show

E ‖G‖2op = E ‖X‖42 = O(d2), but E
[
‖G‖op 〈−G,X〉

]
= O(d) for all X ∈ X ,

since Gaussian samples have norm ≈
√
d but their expected inner product with any fixed unit

vector direction (or a convex combination thereof) scales as O(1).5 In particular, writing X ∈ X
as
∑
i∈[d] λiuiu

>
i for unit vectors {ui}i∈[d] and λ ∈ ∆d, we used

E
[〈
XX>,X

〉]
=
∑
i∈[d]

λiE 〈X,ui〉2 =
∑
i∈[d]

λi = 1.

3 Simplex-spectraplex games
In this section, we discuss computational aspects of the MMW algorithm. We are particularly
motivated by an instantiation of MMW used to solve a minimax optimization problem between
X ∈ ∆d×d and y ∈ ∆n, i.e. a “simplex-spectraplex game,” of the form

min
X∈∆d×d

max
y∈∆n

∑
i∈[n]

yi 〈Ai,X〉 . (13)

5We will see a formal proof of the above claim, using that Gaussian random vectors have hypercontractive
moments, i.e. E 〈X, v〉4 = O(E 〈X, v〉2)2, later in the course.
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Here, {Ai}i∈[n] ∈ Sd×d are a set of specified matrices. This is not the only use case of MMW, but
will be illustrative of relevant techniques, so we focus on it. We also introduce the notation

A(y) :=
∑
i∈[n]

yiAi for y ∈ Rn, A∗(X) := {〈Ai,X〉}i∈[n] for X ∈ Sd×d.

Under this notation, (13) is simply minX∈∆d×d maxy∈∆n 〈A(y),X〉. Moreover,

g(X, y) = (A(y),−A∗(X)) (14)

is the monotone operator associated with (13), in the sense of Eq. (5), Part IV. Finally, in analogy
to the simplex-simplex game minx∈∆d maxy∈∆n y>Ax explored in Section 2, Part IV, where the
natural Lipschitz constant was

‖A‖max = max
i∈[d]

max
j∈[n]

|Aij | = max
x∈∆d

max
y∈∆n

y>Ax,

and the norm in question was a joint `1-`1 norm, in this section we denote

Z := ∆d×d︸ ︷︷ ︸
:=X

× ∆n︸︷︷︸
:=Y

, ‖(X, y)‖ :=

√
‖X‖2tr + ‖y‖21, ϕ(X, y) := 〈X, log(X)〉+ 〈y, log y〉 , (15)

where log y is entrywise in the last definition. Finally, we define the Lipschitz constant

L := max
i∈[n]
‖Ai‖op = max

X∈X
max
y∈Y
〈A(y),X〉 . (16)

The following claim on the regularity of (13) is a straightforward extension of Lemma 5, Part IV.

Fact 1. In the context of (13), and following the notation (14), (15), (16),

sup
z∈Z
‖g(z)‖∗ ≤

√
2L.

By applying Proposition 1, Part IV, to the game in (13) using the regularity bound in Fact 1, it is
straightforward to show that we can obtain an ε-approximate saddle point to (13) in

T = O

(
L2 log(nd)

ε2

)
iterations, in exactly the same way as was done in Corollary 1, Part IV. However, a naïve imple-
mentation of this strategy requires computing the updates Xt given by (12) exactly, in order to
compute the operator (14). Because exponentiating a matrix is highly-expensive in general (requir-
ing a full eigendecomposition), and runs into numerical stability issues in practice (see the famous
documentation of these problems in [ML78]), we would like to avoid an exact implementation.
After a brief motivation of the problem (13) in Section 3.1, we show how to run the algorithm in
Proposition 1, Part IV in nearly-linear time in Section 3.2, via techniques we have developed.

3.1 Semidefinite programs
One application of (13) is solving semidefinite programs (SDPs), a matrix generalization of linear
programs (LPs). In the standard form of SDP, we are given n matrices {Ai}i∈[n] ∈ Sd×d, and an
additional vector and matrix b ∈ Rn≥0, C ∈ Sd×d, and we wish to determine the value of

max
X∈Sd×d

�0

〈C,X〉 , subject to 〈Ai,X〉 ≤ bi for all i ∈ [n]. (17)

Note that (17) exactly recovers the standard form of an LP when all of {Ai}i∈[n],C,X are restricted
to be diagonal matrices. We now sketch how (17) is reducible to (13).

Typically, we can find a value R such that the constraints in (17) imply that any feasible solution
X must satisfy Tr(X) ≤ R, and we can introduce a dummy (d + 1)th dimension to make the
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trace inequality an equality, i.e. Tr(X) = R exactly. Therefore, scaling the whole problem by 1
R ,

overloading d← d+ 1, and negating C, (17) becomes

min
X∈∆d×d

〈C′,X〉 , subject to 〈A′i,X〉 ≤ b′i for all i ∈ [n], (18)

for appropriate {A′i, b′i}i∈[n], C′ constructed from the original problem instance. Moreover, by
binary searching on the optimal value t = 〈C′,X〉, we can reduce (18) from an optimization
problem into a feasibility problem, where we want to check if there is X ∈ Sd×d�0 satisfying the
constraints 〈A′i,X〉 ≤ b′i for all i ∈ [n], as well as 〈C′,X〉 ≤ t, i.e. we treat C′ as another constraint
matrix. Finally, subtracting b′iId from each A′i, we have reduced (17) to determining the value of

min
X∈∆d×d

max
i∈[n]

〈
Ãi,X

〉
,

in particular its sign, for some {Ãi}i∈[n] constructed from the original problem instance. This new
problem is precisely an instance of (13), up to reparameterizing Ai ← Ãi.

The upshot is that the MMW algorithm can be implemented to run highly-efficiently, albeit only to
low accuracy, as discussed in the following Section 3.2 (see also Theorem 3). This is in contrast to
standard high-accuracy solvers for semidefinite programming, where the state-of-the-art [JKL+20,
HJS+22] runs in time ≈ min(

√
d(nd2 +nω+dω),

√
d(n2 +d4)+nω+d2ω), which can be significantly

superlinear compared to the problem description size, bounded by O(nd2). What is somehow lost
in this reduction is any sense of relative scale of the problem, since the worst-case normalization R
can be very large. Nonetheless, in many interesting applications, we can use additional structure
of the SDP problem to argue this overhead is small enough, so that we can still say interesting
things about semidefinite program solutions using a nearly-linear time algorithm.

We take the liberty of listing a few examples here, for the reader’s interest. First, MMW was
used in [AK07, OSVV08] to solve combinatorial semidefinite programs which approximate graph
partitioning problems such as sparsest cut and balanced separator. Moreover, it has been used
for faster numerical linear algebra primitives such as spectral sparsification and preconditioning
[ZLO15, LS17, JLM+23], which we discuss in more detail next lecture. It has also resulted in
significantly faster algorithms for robust statistics in various settings [CDG19, DHL19, CMY20,
DKK+21, DL22], discussed later in the course. Finally, MMW was the workhorse algorithm in the
proof that QIP = PSPACE [JJUW11], a landmark result in quantum complexity theory.

3.2 Nearly-linear time implementation
Consider a run of the minimax variant of mirror descent (Proposition 1, Part IV) on the problem
(13), under the setup described in (14), (15), (16). In each iteration t, parameterized by iterate
blocks zt := (Xt, yt), the key computational problem is to compute the vector block of the minimax
operator (14), i.e. A∗(Xt). To see why, first note that on the vector side, given access to the vector
block of g(zt), we can update the vector iterate yt to yt+1 in linear time.

Moreover, we can implicitly maintain the matrix Xt as ∇ϕ∗(St), as described by the updates (11),
(12). In our particular case, where Gt = A(yt), is the matrix block of g(zt) in (14), we can instead
maintain the vector vt := −η

∑
0≤s<t yt in linear time, so that (11), (12) imply

Xt = ∇ϕ∗(A(vt)) =
exp(A(vt))

Tr exp(A(vt))
. (19)

Therefore, as long as this implicit representation of Xt is acceptable, the computational bottleneck
in each iteration is to compute, for some explicit vector v,

〈∇ϕ∗(A(v)),Ai〉 =
〈exp(A(v)),Ai〉
Tr exp(A(v))

for all i ∈ [n]. (20)

Indeed, this expression is precisely the vector block of (14), when X = ∇ϕ∗(A(v)). We split our
discussion by numerator and denominator, i.e. we will separately discuss computation of

Tr exp(A(v)), (21)
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and
〈exp(A(v)),Ai〉 for all i ∈ [n]. (22)

Finally, to simplify our runtime claims, we will only consider the setting where Tmv(Ai) = Ω(d)
for all i ∈ [n], which is typically true unless Ai is unusually sparse.

We begin by showing how to approximate the value of (21) to multiplicative accuracy.

Proposition 1. Let v ∈ Rn satisfy ‖v‖1 ≤ ρ, and let ε, δ ∈ (0, 1). We can compute a value V such
that with probability ≥ 1− δ, V ∈ [(1− ε)Tr exp(A(v)), (1 + ε)Tr exp(A(v))], in time

O

∑
i∈[n]

Tmv(Ai)

 · Lρ log
(

1
ε

)
log
(
d
δ

)
ε2

 .

Proof. Throughout the proof, let M := A(v), and note that following the notation (16),

‖M‖op ≤
∑
i∈[n]

|vi| ‖Ai‖op ≤ L
∑
i∈[n]

|vi| ≤ Lρ︸︷︷︸
:=R

.

Additionally, it is clear that Tmv(M) = O(
∑
i∈[n] Tmv(Ai)). We now describe our strategy.

First, in place of computing Tr exp(M), we will compute Tr(p(M)2), for a polynomial p such
that p2 is a multiplicative approximation to exp on the range [−R,R]. Indeed, letting q be the
degree-∆ := O(R log 1

ε ) polynomial on [0, 1] given by Lemma 2, Part VI, such that

sup
x∈[0,1]

|exp (−Rx)− q(x)| ≤ ε

9
exp(−R),

we can let p(t) = exp(R2 ) · q( 1
2R (R− t)), so that changing variables appropriately,

sup
t∈[−R,R]

∣∣∣∣exp

(
t

2

)
− p(t)

∣∣∣∣ = exp

(
R

2

)
· sup
t∈[−R,R]

∣∣∣∣exp

(
−R ·

(
R− t
2R

))
− q

(
R− t
2R

)∣∣∣∣
≤ exp

(
R

2

)
· sup
x∈[0,1]

|exp(−Rx)− q(x)|

≤ ε

9
exp

(
−R

2

)
≤ ε

9
exp

(
t

2

)
, for all t ∈ [−R,R].

Also, p is degree-∆. Finally, since p(t) ∈ [(1− ε
9 ) exp( t2 ), (1 + ε

9 ) exp( t2 )] for all t ∈ [−R,R],

p(t)2 ∈
[(

1− ε

3

)
exp (t) ,

(
1 +

ε

3

)
exp (t)

]
, for all t ∈ [−R,R]. (23)

In other words, every eigenvalue of p(M)2 is within a ε
3 multiplicative factor of the corresponding

eigenvalue of exp(M), so we lose only this factor when using Tr(p(M)2) instead.

Second, let {ri}i∈[d] be the rows of p(M), so that

Tr(p(M)2) = ‖p(M)‖2F =
∑
i∈[d]

‖ri‖22 .

The next idea is to apply a random sketching matrix G ∈ Rk×d, such that ‖Gri‖2 ≈ ‖ri‖2 for
all i ∈ [d]. Fortunately, the Johnson-Lindenstrauss lemma (Corollary 1, Part V) shows that if we
choose k = O( 1

ε2 log d
δ ) for an appropriate constant, we have

‖Gri‖22 ∈
[(

1− ε

3

)
‖ri‖22 ,

(
1 +

ε

3

)
‖ri‖22

]
for all i ∈ [d],

with probability 1− δ over a random Gaussian matrix G ∈ Rk×d with each entry i.i.d. ∼ N (0, 1
k ),

by a union bound over the rows. So, in other words we have shown that it suffices to compute

V :=
∑
i∈[d]

‖Gri‖22 ∈ [(1− ε)Tr exp(M), (1 + ε)Tr exp(M)] .
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Finally, note that if we let the rows of G be denoted {gj}j∈[k] for convenience,∑
i∈[d]

‖Gri‖22 = ‖Gp(M)‖2F = Tr
(
p(M)G>Gp(M)

)
= Tr

(
Gp(M)2G>

)
=
∥∥p(M)G>

∥∥2

F =
∑
j∈[k]

‖p(M)gj‖22 .
(24)

Now, given a row gj , we can compute p(M)gj explicitly in ∆ matrix-vector multiplications to M.
We need to do this k times (once per row), yielding an overall runtime as claimed:

O (Tmv(M) ·∆ · k) = O

∑
i∈[n]

Tmv(Ai)

 · LA · ρ log
(

1
ε

)
log
(
d
δ

)
ε2

 .

Similarly, we show how to approximate the value of (22) to additive accuracy. We begin with a
simpler variant of the computation required for a single value in (22).

Proposition 2. Let N ∈ Sd×d�0 , v ∈ Rn have ‖N‖op ≤ ν, ‖v‖1 ≤ ρ respectively, and let ε, δ ∈ (0, 1).
We can compute a value V such that with probability ≥ 1 − δ, V ∈ [(1 − ε) 〈exp(A(v)),N〉 , (1 +
ε) 〈exp(A(v)),N〉], in time

O

∑
i∈[n]

Tmv(Ai)

 · Lρ log( 1
ε ) log(dδ )

ε2
+ Tmv(N) ·

log(dδ )

ε2

 .

Proof. We follow the notation of Proposition 1, letting p be the degree-∆ = O(R log 1
ε ) polynomial

satisfying (23) for R := Lρ. This means that for M := A(v),〈
p(M)2,N

〉
∈
[(

1− ε

3

)
〈exp(M),N〉 ,

(
1 +

ε

3

)
〈exp(M),N〉

]
.

Now, letting {ri}i∈[d] be the rows of N
1
2 p(M), we have following the derivation in (24) that for

some k = O( 1
ε2 log d

δ ), and G a random k × d matrix with i.i.d. entries ∼ N (0, 1
k ),

Tr
(
Gp(M)Np(M)G>

)
∈
[(

1− ε

3

) 〈
p(M)2,N

〉
,
(

1 +
ε

3

) 〈
p(M)2,N

〉]
.

Finally, observe that, letting {gi}i∈[k] be the rows of G for readability,

Tr
(
Gp(M)Np(M)G>

)
=
∑
i∈[k]

g>i p(M)Np(M)gi. (25)

Each summand requires ∆ matrix-vector multiplications through N, and one matrix-vector mul-
tiplication through N. The conclusion follows by doing these multiplications k times.

Finally, we give the following summary of the results in this section.

Corollary 2. Let v ∈ Rn have ‖v‖1 ≤ ρ, and let ε, δ ∈ (0, 1). We can compute values {ui}i∈[n]

such that with probability ≥ 1− δ,∣∣∣∣ui − 〈exp(A(v)),Ai〉
Tr exp(A(v))

∣∣∣∣ ≤ ε for all i ∈ [n],

in time

O

∑
i∈[n]

Tmv(Ai)

 · L3ρ log(Lε ) log(ndδ )

ε2

 .

9



Proof. First, let Ni ← Ai + LId for all i ∈ [n], so that 0d � Ni � 2LId for all i ∈ [n]. Next, we
use Proposition 1 to compute a value V such that

V ∈
[(

1− ε

6L

)
Tr exp(A(v)),

(
1 +

ε

6L

)
Tr exp(A(v))

]
,

within the allotted time, with failure probability δ
2 . We also use Proposition 2 n times, each with

failure probability δ
2n , to compute values {Ni}i∈[n] such that

Ni ∈
[(

1− ε

6L

)
〈exp(A(v)),Ni〉 ,

(
1 +

ε

6L

)
〈exp(A(v)),Ni〉

]
.

Note that all n calls fit within the allotted runtime. To see this, we can simply reuse the sketching
matrix G in all n calls, since the matrix p(M) is the same. Therefore, when computing the values
(25) required, we can first precompute vj = p(M)gj for all j ∈ [k] a single time, and then compute
all
∑
j∈[k] v

>
j Nivj , which only requires k matrix-vector multiplications. Hence, we only pay the

first term in the runtime in Proposition 2 a single time, to perform the precomputation.

Finally, consider the use of the approximations {ui := Ni

V − L}i∈[n]. We have for all i ∈ [n],

Ni
V
− L ≤

(
1 +

ε

6L

)2 〈exp(A(v)),Ni〉
Tr exp(A(v))

− L

≤
(

1 +
ε

2L

)( 〈exp(A(v)),Ai〉
Tr exp(A(v))

+ L

)
− L

≤
(

1 +
ε

2L

) 〈exp(A(v)),Ai〉
Tr exp(A(v))

+
ε

2
≤ 〈exp(A(v)),Ai〉

Tr exp(A(v))
+ ε.

In the last inequality, we used

〈exp(A(v)),Ai〉
Tr exp(A(v))

≤
∥∥∥∥ exp(A(v))

Tr exp(A(v))

∥∥∥∥
tr
‖Ai‖op ≤ L.

We can establish analogous lower bounds on Ni

V − L, yielding the claim.

In a culmination of our efforts, Corollary 2 indeed solves the computational problem of approxi-
mating (20) entrywise, as described in the beginning of the section.

3.3 Putting it all together
We are now ready to state a complete runtime bound on solving the problem (13).

Theorem 3 (Simplex-spectraplex games). Consider an instance of (13), and define L as in (16).
For ε ∈ (0, L) and δ ∈ (0, 1), there is an algorithm which computes an ε-approximate saddle point
to (13) with probability ≥ 1− δ, in time

O

∑
i∈[n]

Tmv(Ai)

 · L5 log2(nd) log(Lε ) log(ndLδε )

ε5

 .

Proof. We first describe the algorithm. We run an approximate variant of the minimax variant of
mirror descent described in Proposition 1, Part IV, using the operator g in (14), and the regularizer
ϕ in (15). We also initialize the algorithm from z0 = (X0, y0) := ( 1

dId,
1
n1n) ∈ Z, which satisfies

the bound Dϕ(z‖z0) ≤ log(nd) for all z ∈ Z, by Lemma 2 and Lemma 7, Part III. In each step
0 ≤ t < T , the X iterate Xt is updated to Xt+1 using the exact matrix component of (14), which
can be implicitly maintained via the representation (19), i.e. we let

Xt :=
exp(A(vt))

Tr exp(A(vt))
,

only maintaining the vector vt := −η
∑

0≤s<t ys, which takes O(d) time to update in each iteration.
Next, instead of updating the Y iterate yt to yt+1 via exactly computing the vector component
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of (14), i.e. A∗(Xt), we instead use Corollary 2 to obtain a vector ut ∈ Rn which entrywise
approximates the vector component up to error ε

4 . It is straightforward to check that

〈ηg(zt), zt − z?〉 ≤ Dϕ(z?‖zt)−Dϕ(z?‖zt+1) +
η2L2

2
+
ηε

2
for all z? = (X?, y?) ∈ Z

in each iteration instead, following the standard proof of mirror descent (Theorem 2, Part III),
where we use the `1-`∞ Hölder’s inequality to bound the correction term 〈A∗(Xt)− ut, yt − y?〉 ≤ ε

2
due to our approximation error, since ‖yt − y?‖1 ≤ 2. Therefore, telescoping this guarantee shows
the duality gap after T iterations using our approximate computations is bounded by

log(nd)

ηT
+
ηL2

2
+
ε

2
.

It hence suffices to take η = ε
2L2 , T = 8L2 log(nd)

ε2 for this quantity to be bounded by ε as desired.
Finally, note that for all 0 ≤ t < T , we have

‖vt‖1 ≤ η
∑

0≤s<t

‖ys‖1 = ηt ≤ ηT ≤ 4 log(nd)

ε
.

Hence, it suffices to set ρ = 4 log(nd)
ε in Corollary 2, which we call T times to give the runtime.

Remark 2. The runtime in Theorem 3 is appealing because for small values of L
ε , the runtime

scales linearly in the total input size, represented by
∑
i∈[n] Tmv(Ai), as opposed to exponentiating

a matrix, which would take time at least dω and may run into additional computational issues
[ML78]. However, the overhead of ≈ (Lε )5 is a far cry from the iteration complexity of ≈ (Lε )2

achieved by mirror descent, or the ≈ L
ε iterations required by mirror prox (Theorem 1, Part IV).

Note that this overhead comes from ≈ (Lε )2 iterations, where each iteration applies a degree ≈ L
ε

polynomial to a rank-≈ (Lε )2 sketch via the Johnson-Lindenstrauss lemma.

There have been significant improvements to this runtime for MMW, using either faster frame-
works (e.g. mirror prox), lower-rank sketches than Johnson-Lindenstrauss, or using lower-degree
polynomials [BBN13, GHM15, AL17, CDST19]. First, the degree ≈ L

ε of the polynomial we used in
Propositions 1 and 2 can be sharpened to ≈ (Lε )1/2, by doing an initial preprocessing to estimate the
largest eigenvalue of M. This lets us avoid requiring accuracy ≈ exp(−R) from the approximating
polynomial, so we can obtain the square root savings from Lemma 2, Part VI.

The state-of-the-art runtime for obtaining ε duality gap in (13) has an overhead which scales as
≈ (Lε )2.5. This was achieved in two different ways by [BBN13, CDST19]. The strategy of [BBN13]
was to use mirror prox, and to show that substituting a rank-≈ L

ε sketch in place of Johnson-
Lindenstrauss enjoys a small-enough variance such that the error of the resulting method does not
accumulate poorly. In [CDST19], it was shown that the standard MMW implementation via mirror
descent actually gives the same regret guarantees up to constant factors, even if a rank-1 sketch
is used. However, the analysis of [CDST19] does not compose well with mirror prox; it is an
interesting open direction to see if there is a method which benefits from both approaches.
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Source material
This lecture is based on the author’s own experience working in the field.
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