
CS395T: Continuous Algorithms, Part VIII
Linear regression

Kevin Tian

1 Preconditioning
In this lecture, we develop highly-efficient algorithms for one of the most basic optimization
problems, linear (i.e. least-squares) regression. Specifically, throughout we fix a full-rank ma-
trix A ∈ Rn×d with n ≥ d (which can be thought of as containing the d-dimensional features of n
data points), and a vector b ∈ Rn of response variables.1 Our goal is to solve the problem

min
x∈Rd

‖Ax− b‖22 . (1)

Note that the Hessian of the objective (1) is 2A>A ∈ Sd×d�0 , so it is a convex optimization problem.
When A>A is well-conditioned, gradient descent (e.g. Theorem 4, Part II) achieves a highly-
accurate solution to (1) in few iterations, each of which requires computing the gradient 2A>(Ax−
b) and performing a vector update. In the regime where A>A has constant condition number, the
runtime cost of an ε-accurate solution to (1) (in a sense we make precise later) scales as

O

(
nnz(A) · log

1

ε

)
. (2)

On the other hand, we can directly compute the minimizer x? of (1), since the first-order optimality
condition implies that 2A>Ax = 2A>b, so x? = (A>A)−1A>b. The cost of computing x? is
dominated by the cost of computing A>A, which requires O(ndω−1) time (Remark 1). Moreover,
practical matrix multiplication algorithms have ω ≈ 3, and the resulting runtime of ≈ nd2 can be
significantly more expensive than (2), which is at most ≈ nd and can be even smaller.

Remark 1. We implicitly used two observations about matrix multiplication in our earlier dis-
cussion. First, given an algorithm which can multiply two d × d matrices in time O(dω), it is
straightforward to multiply a d×n matrix A by a n×d matrix B in time O(ndω−1) time, by tiling
each n× d matrix (i.e. A> and B) with ≈ n

d square matrices, and applying our dω time algorithm
to each block separately. Summing over blocks takes time n

d · d
2 which does not dominate. Second,

we can use matrix multiplication to invert a full-rank d× d matrix A in time O(dω). To see this,
let I(d) be the time it takes to invert a full-rank d×d matrix. Using the Schur complement formula

A =

(
A11 A12

A21 A22

)
=⇒ A−1 =

(
S−1 −S−1A12A

−1
22

−A−122 A21S
−1 A−122 + A−122 A21S

−1A12A
−1
22

)
,

when A22 is invertible, where S := A11 −A12A
−1
22 A21, we obtain the recursion

I(d) = 2I
(
d

2

)
+O

((
d

2

)ω)
,

since the only matrices we need to invert are A22 and S, and the remaining operations are d
2×

d
2 ma-

trix multiplications or additions. This recursion yields I(d) = O(dω) for ω > 2, as claimed. More
generally, a similar argument follows by applying pseudoinverses (see Definition 2) appropriately
in place of inverses in the above formula, to account for non-full-rank submatrices.

1The assumption that A is full-rank, i.e. A>A ∈ Sd×d
�0 , is made only for expositional simplicity and all of the

methods we discuss generalize to the case where A has a kernel as well.
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Our focus is showing how, even when A may be arbitrarily poorly-conditioned, we can nonetheless
achieve the goal runtime (2) up to an additive runtime term depending only on d. In moderately
tall or dense instances, where nnz(A) = Ω(poly(d)), the dominant term is then still just the cost
of matrix-vector products through A, matching the well-conditioned setting.

Our approach is motivated by the following observation on preconditioned gradient descent.

Lemma 1. Let A ∈ Rn×d be full-rank with n ≥ d, and let P ∈ Sd×d�0 satisfy K � P � κK, where
K := A>A. Let x ∈ Rd, and let x? ∈ Rd minimize (1). Then if x′ ← x−P−1(Kx−A>b),

‖x′ − x?‖P ≤
(

1− 1

κ

)
‖x− x?‖P .

Proof. Recall that x? = K−1A>b, so that

x? = x? −P−1(Kx? −A>b).

In other words, x = x? is the fixed point of the given update from x to x′. We continue:

x′ − x? =
(
x−P−1

(
Kx−A>b

))
−
(
x? −P−1(Kx? −A>b)

)
=
(
Id −P−1K

)
(x− x?) .

We have hence reduced our goal to showing (Id −P−1K)>P(Id −P−1K) � (1− 1
κ )2P, since this

would imply the claimed distance decrease. To see this, we expand:(
Id −KP−1

)
P
(
Id −P−1K

)
= P− 2K + KP−1K

= P
1
2

(
Id −P−

1
2 KP−

1
2

)2
P

1
2 �

(
1− 1

κ

)2

P.

In the last inequality, we used that the assumption implies 1
κId � P−

1
2 KP−

1
2 � Id.

Lemma 1 suggests a framework for an algorithm: even if A>A is poorly-conditioned, if we can
find a preconditioner matrix P ∈ Sd×d�0 such that P ≈ A>A spectrally, we can still solve (1) at
a well-conditioned rate, provided we have computed P−1. Note that given P, we can invert it in
time O(dω) by Remark 1. In Sections 2 and 3, we will see different strategies for computing such
a preconditioner P, which vary in runtime and the types of structure afforded to P.

In light of the progress guarantee given by Lemma 1, for a desired parameter ε ∈ (0, 1), in the rest
of the lecture we focus on obtaining a vector x̂ ∈ Rd such that

‖x̂− x?‖A>A ≤ ε ‖x
?‖A>A , for x

? :=
(
A>A

)−1
A>b. (3)

We call such a x̂ an ε-approximate solution to (1). Because the quadratic norm induced by a good
preconditioner P is closely-approximated by the quadratic norm in A>A, we can transfer between
the progress given by Lemma 1 and the distance in the A>A norm up to a multiplicative

√
κ. In

this case, (3) is the type of bound one would obtain after iterating the updates

x0 ← 0d, xt+1 ← xt −P−1
(
A>Axt −A>b

)
for all t ≥ 0,

for T = O(κ log κ
ε ) iterations, and then transferring the distance guarantee from ‖·‖P to ‖·‖A>A.

2 Oblivious subspace embeddings
In this section, we consider a strategy pioneered by the influential work [Sar06] and subsequently
developed further by [CW13], the first to achieve a runtime of ≈ (nnz(A) + poly(d)) log 1

ε for
achieving an ε-approximate solution to (1) in the sense of (3). The idea of [CW13] in particular
was to efficiently construct a preconditioner via oblivious subspace embeddings.

Definition 1. Let m,n, d ∈ N with n ≥ d. We say that a random matrix Π ∈ Rm×n is a (d, ε, δ)-
oblivious subspace embedding (OSE) if for every fixed U ∈ Rn×d with orthonormal columns,∥∥∥U>Π>ΠU− Id

∥∥∥
op
≤ ε, (4)

with probability ≥ 1− δ over the randomness of Π, independent of U.
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Recall that the assumption that U has orthonormal columns means that U>U = Id. We can
equivalently view U as giving a basis for the d-dimensional subspace Span(U) ⊂ Rn; as discussed
in Section 2.2, Part V, UU> ∈ Sn×n�0 is then the orthogonal projection matrix onto Span(U).

To explain this naming choice, (4) is oblivious in the sense that for any holdout matrix U indepen-
dent from the randomness of Π, U>Π>ΠU ≈ Id should hold with high probability. Additionally,
(4) is an extremely strong condition: it means that for any u = Uv ∈ Span(U),

(1− ε) ‖v‖22 ≤ v
>U>Π>ΠUv ≤ (1 + ε) ‖v‖22

=⇒ (1− ε) ‖u‖22 ≤ ‖Πu‖22 ≤ (1 + ε) ‖u‖22 ,

simultaneously for all possible v ∈ Rd, since ‖u‖2 = ‖Uv‖2 = ‖v‖2. In other words, Π approxi-
mately preserves the norms of every u ∈ Span(U), so in this sense it is a subspace embedding.

For the condition in (4) to hold, it is clear that U>Π>ΠU must at least be full-rank, so m ≥ d
necessarily. We mention one additional useful consequence of Π being an OSE.

Lemma 2. Let Π ∈ Rm×n be a (d, ε, δ)-OSE. For all full-rank A ∈ Rn×d with n ≥ d, with
probability ≥ 1− δ, we have (1− ε)A>A � A>Π>ΠA � (1 + ε)A>A.

Proof. Let the singular value decomposition of A be UΣV>, for U ∈ Rn×d, V ∈ Rd×d with
orthonormal columns, and diagonal Σ ∈ Sd×d�0 . Assuming (4) holds for U, the claim follows:

(1− ε)U>U � U>Π>ΠU � (1 + ε)U>U

=⇒ (1− ε)VΣU>UΣV> � VΣU>Π>ΠUΣV> � (1 + ε)VΣU>UΣV>

=⇒ (1− ε)A>A � A>Π>ΠA � (1 + ε)A>A.

In other words, if we can find a OSE Π such that ΠA is easy to compute, Lemma 2 says that we
can use P = 1

1−εA
>Π>ΠA as our preconditioner in Lemma 1. Ideally, ΠA has few rows (say

m = poly(d)), such that once we have ΠA we can compute P and invert it in poly(d) time.

However, it is not even a priori clear that short OSEs Π exist, let alone that they are easy to
apply to matrices. We begin by discussing OSE existence in Section 2.1. We then give an efficient
construction of a sparse OSE in Section 2.2, and demonstrate its application to solving (1).

2.1 Dense OSEs
As a proof-of-concept, in this section we show m = O((d+ log 1

δ ) · 1
ε2 ) suffices for a (d, ε, δ)-OSE Π

to exist. That is, for say ε = 1
2 in Lemma 2 (which leads to κ = 3 in Lemma 1), our existence proof

will show that ≈ d rows in Π suffice for (4) to hold with high probability. Note that such a short
Π need not be easy to apply, an issue we discuss in greater detail in the following Section 2.2.

Before giving our construction of an OSE, we require a few helper claims.

Lemma 3. Let S := {x ∈ Rd | ‖x‖2 = 1} be the surface of the unit ball in Rd, and let ε ∈ (0, 1).
There exists N ⊂ S with |N | ≤ (1 + 2

ε )d, such that

max
x∈S

min
v∈N
‖v − x‖2 ≤ ε. (5)

Proof. Consider a greedy iterative process, where N ← ∅ initially, and anytime there remains a
point x ∈ S where minv∈N ‖v − x‖2 > ε, we add x to S. Suppose we have run this process for T
iterations, producing N = {xt}t∈[T ]. We claim T ≤ (1 + 2

ε )d. To see this, by construction

B
(
xt,

ε

2

)
∩ B

(
xs,

ε

2

)
= ∅ for all s 6= t,

i.e. all of the radius- ε2 balls centered around points in N are disjoint. To see this, letting s < t, we
would not have added xt to N if it was at distance ≤ ε from xs. Finally, we have T disjoint balls
of volume ( ε2 )d ·Vol(B(1)), all of which are contained in B(1 + ε

2 ), so the claim follows:

T ≤
Vol

(
B(1 + ε

2 )
)

Vol
(
B
(
ε
2

)) ≤
(

1 +
2

ε

)d
.
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Lemma 3 shows how to approximate S with a finite set N up to distance ε, so N is also sometimes
called an ε-net. We next show that quadratic forms on a net approximate the operator norm.

Lemma 4. In the notation of Lemma 3, let N ⊂ S satisfy (5) for ε ≤ 1
3 . For all M ∈ Sd×d,

‖M‖op ≤
1

1− 2ε− ε2
max
v∈N

∣∣v>Mv
∣∣ .

Proof. Recall that ‖M‖op = supx,y∈S x
>My, and also that ‖M‖op = |u>Mu| for some u ∈ S.

Therefore, letting u ∈ S achieve this latter equality, and letting v ∈ N have ‖u− v‖2 ≤ ε,

‖M‖op =
∣∣u>Mu

∣∣
≤
∣∣v>Mv

∣∣+
∣∣(u− v)>Mv

∣∣+
∣∣v>M(u− v)

∣∣+
∣∣(u− v)>M(u− v)

∣∣
≤
∣∣v>Mv

∣∣+
(
2ε+ ε2

)
‖M‖op .

Rearranging and dividing by 1− 2ε− ε2 yields the claim.

We are now ready to give our first OSE existence proof.

Proposition 1. Let Π ∈ Rm×n have i.i.d. entries ∼ N (0, 1
m ). Then, Π is a (d, ε, δ)-OSE for

m = O

(
d+ log( 1

δ )

ε2

)
.

Proof. Throughout this proof, fix U ∈ Rn×d with orthonormal columns, and following the notation
of Lemma 3, let N satisfy (5) with ε = 1

4 , such that |N | ≤ 9d. Our goal is to show that with
probability ≥ 1− δ over the randomness of Π, we have for all v ∈ N that∣∣∣v> (U>Π>ΠU− Id

)
v
∣∣∣ ≤ ε

3
,

since this would imply (4) by Lemma 4. By applying a union bound over all of the ≤ 9d vectors
Uv ∈ Rn, for all v ∈ N , the Johnson-Lindenstrauss lemma (Corollary 1, Part V) with failure
probability δ

9d
shows that if we take m = O(

d+log( 1
δ )

ε2 ) for an appropriate constant, the above
display indeed holds with probability ≥ 1− δ, concluding the proof.

While Proposition 1 is promising, it does not immediately let us use the framework suggested by
Lemmas 1 and 2. This is because Lemma 2 requires us to compute ΠA, which for dense Π may be
even more expensive than computing A>A, the original problem we were trying to avoid because
it requires ≈ ndω−1 time. Moreover, this construction ΠA seems to lose all structural information
about A, e.g. even if A is sparse we cannot say anything about the sparsity of ΠA.

2.2 Sparse OSEs
Motivated by the computational difficulties encountered at the end of last section, we next consider
a strategy for choosing Π such that ΠA is efficiently-computable, and retains structure present in
the rows of A. We analyze a matrix Π originally proposed by [TZ12], inspired by applications in
streaming algorithms, which was studied in the context of OSEs by [NN13a]. Specifically, we let
Π ∈ {0, 1}m×n have exactly one uniformly random nonzero entry per column. Letting the nonzero
entry of the jth column be denoted h(j) ∈ [m],2 for all j ∈ [n], it is straightforward to check that

[ΠA]i: =
∑
j∈[n]
h(j)=i

Ai:, for all i ∈ [m].

In other words, each row in A is added to a uniformly random row in ΠA exactly one time. To
see why this is desirable in applications, note that ΠA can be computed in time O(nnz(A)) using

2We choose this notation because the sketching and streaming community typically chooses h to be a hash
function, where they analyze the limited independence of h required for space considerations.
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one pass over A, whereas if Π was an arbitrary m × n matrix (say with m = d), computing ΠA
would require time ≈ ndω−1 which can be potentially � nnz(A). Additionally, observe that it is
simple to apply ΠA to a vector v ∈ Rd in O(nnz(A) + m) time, since it suffices to first compute
Av and then sum relevant coordinates to each output entry. We next show that choosing m ≈ d2
in the [TZ12] matrix gives an OSE, with constant failure probability and accuracy.

Proposition 2. Let {τij}i∈[m],j∈[n] be {0, 1}-valued random variables such that for all j ∈ [n],
exactly one τij = 1 uniformly at random, and τij is independent of τi′j′ for all j 6= j′. Further, let
{σij}i∈[m],j∈[n] ∼unif. {−1, 1} i.i.d. Then for δ, ε ∈ (0, 1), if

m ≥ 2d2

δε2
,

the random matrix Π ∈ {−1, 0, 1}m×n with Πij = τijσij for all i ∈ [n], j ∈ [m] is a (d, ε, δ)-OSE.

Proof. Fix U ∈ Rn×d with orthonormal columns throughout the proof. We observe that

E
[
Π>Π

]
ij

= E 〈Π:i,Π:j〉 =

{
1 i = j

0 i 6= j
,

so EΠ>Π = In and therefore EU>Π>ΠU = Id. Further, for all i, j ∈ [d], we have[
U>Π>ΠU

]
ij

= 〈[ΠU]:i, [ΠU]:j〉 =
∑
r∈[m]

[ΠU]ri [ΠU]rj

=
∑
r∈[m]

∑
s∈[n]

τrsσrsu
i
s

∑
s∈[n]

τrsσrsu
j
s


=
〈
ui, uj

〉
+
∑
r∈[m]

∑
s,t∈[n]
s6=t

τrsτrtσrsσrtu
i
su
i
t,

where we let {uk}k∈[d] be the columns of U. By orthonormality of U, we thus have[
U>Π>ΠU− Id

]
ij

=
∑
r∈[m]

∑
s,t∈[n]
s 6=t

τrsτrtσrsσrtu
i
su
i
t. (6)

Our strategy is to control ‖U>Π>ΠU− Id‖op using E‖U>Π>ΠU− Id‖2F. To this end, we bound
the expected square of (6). First, for i = j, when expanding the square of (6), every entry vanishes
in expectation except those which select the same (r, s, t) twice, by column independence. Hence,

E
[
U>Π>ΠU− Id

]2
ii

=
2

m

∑
s,t∈[n]
s 6=t

(
uisu

i
t

)2 ≤ 2

m

∥∥ui∥∥4
2
. (7)

The factor 2 arises since (s, t) can be matched with either (s, t) or (t, s), and we also used∑
r∈[m] Eτ2rsτ

2
rt = m · 1

m2 = 1
m . Next, we consider the case of i 6= j:

E
[
U>Π>ΠU− Id

]2
ij

=
1

m2

∑
r∈[m]

∑
s,t∈[n]
s6=t

((
uisu

j
t

)2
+
(
uisu

i
tu
j
su
j
t

))

=
1

m

∑
s,t∈[n]
s6=t

((
uisu

j
t

)2
+
(
uisu

i
tu
j
su
j
t

))
.

(8)

Additionally, observe that∑
s,t∈[n]
s6=t

uisu
i
tu
j
su
j
t =

〈
ui, uj

〉2 −∑
s∈[n]

(uisu
j
s)

2 = −
∑
s∈[n]

(uisu
j
s)

2 ≤ 0.
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Plugging this into (8), we hence have

E
[
U>Π>ΠU− Id

]2
ij
≤ 1

m

∥∥ui∥∥2
2

∥∥uj∥∥2
2
.

Combining with (7), we finally conclude

E
∥∥∥U>Π>ΠU− Id

∥∥∥2
op
≤ E

∥∥∥U>Π>ΠU− Id

∥∥∥2
F
≤ 2

m

∑
i∈[d]

∥∥ui∥∥2
2

2

≤ 2d2

m
,

since ‖U‖2F = d by column orthonormality. The conclusion follows from Markov’s inequality.

We conclude with the following consequence of Lemma 1 and Proposition 2.

Theorem 1 (Linear regression via OSEs). Let ε, δ ∈ (0, 1), b ∈ Rn, and let A ∈ Rn×d be full-rank.
There is an algorithm which computes x̂ ∈ Rd satisfying (3) with probability ≥ 1− δ in time

O

((
nnz(A) + d2

)
log

(
1

ε

)
log

(
1

δ

)
+ dω+1 log

(
1

δ

))
.

Proof. First, let Π be the result of Proposition 2 with ε ← 1
2 and δ ← 1

2 , i.e. with m = O(d2).
Proposition 2 and Lemma 2 show that with probability ≥ 1

2 , we have 1
2A>A � A>Π>ΠA �

3
2A>A. Moreover, we can compute ΠA in time O(nnz(A)), and using the tiling strategy in
Remark 1, we can then compute P := 2A>Π>ΠA and invert it in time O(dω+1). Finally, running
Lemma 1 with κ← 3 for O(log 1

ε ) iterations gives the result, assuming our OSE succeeded. Each
iteration of Lemma 1 takes time O(nnz(A) + d2) to run, since we have already precomputed P−1.

Our final algorithm runs the subroutine described above O(log 1
δ ) times, so that one of the runs

constructs P satisfying Lemma 1’s condition with κ = 3 with probability ≥ 1− δ. Finally, note

‖Ax̂− b‖22 − ‖Ax
? − b‖22 = ‖A(x̂− x?)‖22 = ‖x̂− x?‖2A>A .

Hence, it suffices to evaluate ‖Ax̂− b‖22 for each computed x̂, and take the best such point.

Remark 2. Theorem 1 establishes a strong baseline for linear regression, as it shows that (omitting
logarithmic factors) (3) can be obtained in time ≈ nnz(A) + dω+1. A natural question is whether
it is possible to improve upon the row count in Proposition 2, i.e. from ≈ d2 to ≈ d. In [NN13b], it
was shown that for 1-sparse columns, Ω(d2) rows are necessary. To overcome this, [CW13, NN13a]
analyzed strategies where s random entries for each column were set to ±s−1/2, generalizing the
s = 1 strategy of Proposition 2, calling the resulting OSEs oblivious sparse norm-approximating
projections (OSNAPs). This culminated in an analysis by [Coh16] who showed that the tradeoff

s = O

(
logb(

d
δ )

ε

)
, m = O

(
bd log(dδ )

ε2

)
,

is achievable for any b ≥ 2, e.g. taking b = logc(dδ ) for a small constant c yields s = O(1) and
m = O(d log1+c(dδ )) for ε = Θ(1). The resulting linear regression algorithm, following our earlier
framework, improves Theorem 1’s runtime to ≈ nnz(A) + dω. As seen in Section 3, a similar
runtime follows using a different strategy. Notably, this line of research was essentially closed up
to constant factors, assuming ω > 2, by [CSWZ23], who gave a distribution over Π such that Π
is a (d,Θ(1),Θ(1))-OSE, and Π has O(d) rows and can be applied in time O(nnz(A) + dω).

3 Spectral sparsification
In this section, we adopt a different perspective on the preconditioning problem, where we ask that
our preconditioner P (for use in Lemma 1) has the structured form

P = A>WA =
∑
i∈[n]

wiaia
>
i , (9)
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for a diagonal matrix W = diag (w) ∈ Sn×n�0 , and where we let the rows of A ∈ Rn×d be denoted
{ai}i∈[n]. In other words, we want P to be the Gram matrix of W

1
2 A, which simply reweights

the rows of P. We are particularly interested in the case where nnz(w) ≈ d, i.e. almost all of the
weights are zero, and therefore we have a compact representation of W

1
2 A.

Remark 3. One significant potential advantage of the preconditioner choice (9) is that it approx-
imates A>A with B>B, for a matrix B = W

1
2 A which preserves the structures of rows of A, e.g.

sparsity patterns and more. This is desirable because a variety of linear system solvers can take ad-
vantage of sparsity, which can imply faster Gaussian elimination by careful choice of “pivot orders,”
i.e. the order in which rows are eliminated. For example, linear system solvers faster the naive dω
runtime are known for tridiagonal matrices, banded matrices, circulant matrices, Hessenberg matri-
ces, and more. Further, a successful line of research initiated by the breakthrough work of [ST14] has
shown how to solve linear systems in matrices with combinatorial structure in nearly-linear time,
including undirected graph Laplacians [ST14], connection Laplacians [KLP+16], directed graph
Laplacians [CKK+18], M-matrices [AJSS19], and more [CFM+14, KPSZ18, BMNW22, JLM+23].
These results further motivate preconditioner constructions capable of preserving structure.

3.1 Leverage score sampling
As a starting point, we analyze the following simple strategy in this section, known as leverage score
sampling. Noting that A>A =

∑
i∈[n] aia

>
i , consider the reweighting strategy where we average

K independent draws to an unbiased rank-one estimate for A>A. That is, for some sampling
probabilities p = {pi}i∈[n] ∈ ∆n, and some K ∈ N, we let

Mk =
1

pik
aika

>
ik
, for ik ∼ p,

independently for k ∈ [K], and we set P = 1
K

∑
k∈[K] Mk. Clearly, this strategy produces a

preconditioner P of the form in (9), since the output is a reweighted average of the row outer
products of A. However, we have substantial freedom in designing our sampling probabilities p.

Leverage score sampling proposes to use the following definition of row importances in choosing p.

Definition 2 (Leverage scores). Let A ∈ Rn×d for n ≥ d have rows {ai}i∈[n] ⊂ Rd. We let

τi(A) := a>i (A>A)†ai.

be the leverage score of the ith row of A.3

To gain some intuition for leverage scores, we summarize some of their properties in the following.

Lemma 5. In the notation of Definition 2, the following properties hold.

1.
∑
i∈[n] τi(A) = rank(A).

2. τi(A) ∈ [0, 1] for all i ∈ [n].

Proof. Item 1 follows since∑
i∈[n]

τi(A) =
∑
i∈[n]

〈
aia
>
i , (A

>A)†
〉

=
〈
A>A, (A>A)†

〉
= dim(Span(A)).

Item 2 uses A>A � aia>i =⇒ 0d � (A>A)† � (aia
>
i )†, and

〈
aia
>
i , (aia

>
i )†
〉

= 1.

Lemma 5 motivates using the leverage scores {τi(A)}i∈[n] as measures of the relative importance of
rows of A, in composing the spectrum of A>A, bounded in [0, 1]. For example, a row contributes
the maximum score of 1 if it is orthogonal to all other rows in A. One convenient way to picture
τi(A) geometrically is that it first normalizes the matrix A>A to be in isotropic position (in

3Here, M† denotes the Moore-Penrose pseudoinverse of M ∈ Sd×d
�0 , which is the unique matrix in Sd×d

�0 such
that MM† = M†M is the identity matrix on the range of M. In other words, if UΛU> is the eigendecomposition
of M, we let M† = UΛ†U> where Λ†ii = Λ−1

ii if Λii > 0, and otherwise Λ†ii = 0.
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Span(A)) by pre- and post-multiplying it by (A>A)
†
2 , and then measures the row length of ai.

That is, letting vi be the ith row of A(A>A)
†
2 for all i ∈ [n], we have

‖vi‖22 =
∥∥∥(A>A)

†
2 ai

∥∥∥2
2

= τi(A),
∑
i∈[n]

viv
>
i = (A>A)

†
2 A>A(A>A)

†
2 , (10)

which is the projection matrix onto Span(A>). We now formally analyze leverage score sampling.

Proposition 3. Let A ∈ Rn×d have rows {ai}i∈[n] ⊂ Rd, and let τ ∈ Rn≥0 have τi = τi(A) for all
i ∈ [n]. Define p = τ

‖τ‖1
∈ ∆n, and for K ∈ N, let

P :=
∑
k∈[K]

1

Kpik
aika

>
ik
, for ik ∼ p, (11)

i.i.d. for all k ∈ [K]. Then for ε, δ ∈ (0, 1), if K ≥ 3·rank(A)
ε2 log( 2d

δ ), with probability ≥ 1− δ,

(1− ε)A>A � P � (1 + ε)A>A. (12)

Proof. For all i ∈ [n], let vi := (A>A)
†
2 ai, and let Π = (A>A)†A>A be the projection matrix to

Span(A). We observe that the condition (12) is equivalent to

(1− ε)Π � (A>A)
†
2 P(A>A)

†
2 =

∑
k∈[K]

1

Kpik
vikv

>
ik
� (1 + ε)Π. (13)

To prove (13), we appeal to the matrix Chernoff bound. Let Zk be an independent random matrix
set to 1

Kpi
viv
>
i for i ∼ p, and for all k ∈ [K], so all the EZk = Π by (10). We have

max
i∈[n]

1

Kpi

∥∥viv>i ∥∥op = max
i∈[n]

‖τ‖1
Kτi

‖vi‖22 =
‖τ‖1
K

, (14)

where the last equality used (10). Therefore, letting R :=
‖τ‖1
K ≤ ε2

3 log−1( 2d
δ ), where we used

Item 1 in Lemma 5 to obtain the inequality, the equivalent claim (13) follows by applying both
the upper and lower bounds in Theorem 12, Part V,4 and then taking a union bound.

Proposition 3 yields a preconditioner which is the Gram matrix of an approximation to A, whose
row count matches Proposition 1 up to a low-order term due to its log(dδ ) dependence, rather than
log 1

δ . Moreover, it achieves this row count via a direct reweighting of A’s rows of the form (9). This
additional structure is not without a price; in particular, Proposition 3 is clearly non-oblivious,
as it uses sampling probabilities which depend on the matrix A we are trying to approximate. It
is also not clear how to implement Proposition 3 efficiently: it appears to require computation of
(A>A)†, which was the inversion we were trying to avoid in the first place in solving (1).

To break this chicken-and-egg problem, in the following Section 3.2 we analyze a strategy which
takes advantage of an additional degree of flexibility in the proof of Proposition 3.

Corollary 1. In the setting of Proposition 3, suppose instead that τ ∈ Rn≥0 has τi ≥ τi(A) for all
i ∈ [n], and again define p = τ

‖τ‖1
. Then, defining P as in (11) with respect to the new sampling

probabilities p, if K ≥ 3‖τ‖1
ε2 log( 2d

δ ), the conclusion (12) holds with probability ≥ 1− δ.

Proof. The proof is identical to Proposition 3, except (14) is an inequality instead of an equality.

Corollary 1 states that as long as we have overestimates of the leverage scores of A, as long as
the overestimate quality is not too poor (i.e. ‖τ‖1 is reasonable compared to rank(A)), we can
still produce a preconditioner P with few sampled rows. This extra degree of freedom allows us to
break the chicken-and-egg problem encountered in leverage score sampling mentioned earlier.

4Technically, we must take care because λd(Π) = 0 if A is not full-rank. However, tracing through the proof of
Theorem 12, Part V, we note that all matrices appearing in all inequalities have images in Span(Π) = Span(A),
and therefore we obtain a concentration bound depending on the minimum eigenvalue of Π in its span.
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Remark 4. Matrices (9) which approximate A>A in the sense of (12), where nnz(w) � n, are
often called spectral sparsifiers. This is because they preserve the spectrum of A>A by using a
sparse reweighting of its rank-one components. Proposition 3 shows that spectral sparsifiers exist
for all matrices A ∈ Rn×d with nnz(w) = O(d log dε2 ); it is natural to ask if this is improvable. In
a breakthrough result, [BSS14] proved that nnz(w) = O( dε2 ) suffices using a careful analysis of an
iterative process guided by potential functions, known to be optimal up to a constant factor.

3.2 Uniform sampling
In this section, we summarize an elegant observation made by [CLM+15] which allows us to imple-
ment leverage score sampling significantly more efficiently, breaking the chicken-and-egg problem
described in Section 3.1. To state this result more cleanly, for S ⊆ [n], let AS: ∈ R|S|×d be the
subset of A’s rows indexed by S, and let

τSi (A) := a>i (A>S:AS:)
†ai. (15)

Lemma 6. For k ∈ [n], let S be a uniformly random subset of [n] of size k. Then for A ∈ Rn×d,

E

∑
i∈[n]

τ
S∪{i}
i (A)

 ≤ nd

k
.

Moreover, τSi (A) ≥ τi(A) for any S ⊆ [n].

Proof. The second conclusion follows immediately from the definition (15) and A>S:AS: � A>A.
To see the first conclusion, note that for any S ⊆ [n],

∑
i∈S τ

S
i (A) = rank(AS:) ≤ d, so

E

∑
i∈[n]

τ
S∪{i}
i (A)

 = E

[∑
i∈S

τSi (A)

]
+ E

∑
i 6∈S

τ
S∪{i}
i (A)

 ≤ d+ E

∑
i 6∈S

τ
S∪{i}
i (A)

 .
To bound the second term, note 1

n−kE
∑
i6∈S τ

S∪{i}
i (A) is the expectation of a random variable

which first selects S ⊆ [n] and then returns τS∪{i}i (A) for a uniformly random i ∈ [n]\S. However,
sampling a uniformly random S ⊆ [n] of size k is the same thing as sampling a uniformly random
subset T ⊆ [n] of size k + 1,5 and then dropping a random i ∈ T . Therefore,

1

n− k
E

∑
i 6∈S

τ
S∪{i}
i (A)

 = ET
[
Ei∼unif.T

[
τTi (A)

]]
≤ ET

[
d

k + 1

]
=

d

k + 1
.

Combining the above two displays,

E

∑
i∈[n]

τ
S∪{i}
i (A)

 ≤ d+
d(n− k)

k + 1
≤ nd

k
.

We mention one fact which simplifies the computation in Lemma 6.

Lemma 7. Let S ⊆ [n] and i 6∈ S. Then, τS∪{i}i (A) =
τSi (A)

1+τSi (A)
. Moreover, given a value

τ ∈ [τSi (A), (1 + ε)τSi (A)] for ε ∈ (0, 1), we have τ
1+τ ∈ [τ

S∪{i}
i (A), (1 + ε)τ

S∪{i}
i (A)].

Proof. The Sherman-Morrision formula states that for any matrix M ∈ Sd×d and u ∈ Rd, we have

(
M + uu>

)†
= M† − M†uu>M†

1 + u>M†u
, (16)

5The conclusion of the lemma is straightforward if k = n.
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which can be verified by direct expansion. Therefore, letting M := A>S:AS:,

a>i
(
M + aia

>
i

)†
ai = a>i M†ai −

(a>i M†ai)
2

1 + a>i M†ai
=

a>i M†ai
1 + a>i M†ai

.

This yields the first claim, and the second claim then follows straightforwardly.

Lemmas 6 and 7 show that if we can compute a good approximation to (A>S:AS:)
† for a uniformly

random subset S ⊆ [n], we can use it to provide reasonable overestimates of the leverage scores
of A. These overestimates may not let us sparsify A in one shot, but we will show they let us
significantly reduce the number of rows in A, yielding a favorable recursion.

Theorem 2 (Linear regression via recursive row sampling). Let ε, δ ∈ (0, 1), b ∈ Rn, and let
A ∈ Rn×d be full-rank. There is an algorithm which computes x̂ ∈ Rd satisfying (3) with probability
≥ 1− δ in time

O

(
(nnz(A) + dω)

(
log2(n) + log

(
1

ε

))
log

(
1

δ

))
.

Proof. Throughout this proof, fix a parameter R = O(log log n
d ) ∈ N, which will be a bound on

the number of rounds of recursion we perform. Moreover, for each r ∈ [R] and k ∈ [n], consider
the following computational task. For W = diag (w) ∈ Rn≥0 with nnz(W) ≤ k, we let Tr(k) be the
time required to produce a matrix P ∈ Rd×d such that(

A>WA
)† � P2 � exp

( r
R

) (
A>WA

)†
, (17)

conditioned on an event E which will be described. We bound the cost Tr(n) using the following
algorithmic framework, which consists of 3 steps at each layer of recursion.

1. For a parameter k ∈ [n] to be chosen, we uniformly sample a subset S ⊆ [n] and in Tr−1(k)
time, we produce a matrix P satisfying (17) where w = 1S is set to the 0-1 indicator for S.

2. Using P and Lemma 7, we approximate τS∪{i}i (A) for all i ∈ [n], by sampling a k×d G with
entries i.i.d. ∼ N (0, 1k ) for an appropriate k, and estimating 2a>i PG>GPai ≈ τSi (A).

3. Finally, we use our leverage score overestimates through Corollary 1 to produce a sparser
approximation to A, which allows us to recurse once again.

The event E we condition on is that Items 1, 2, and 3 succeed in each of our ≤ 2R calls to each
of the three randomized procedures described above, i.e. Lemma 6, the Johnson-Lindenstrauss
lemma (Corollary 1, Part V), and Corollary 1. We set the failure probability for each of these to
be 1

9·2R . When we say we condition on Lemma 6 succeeding, we mean the sum of leverage scores
through S ∪{i} is within a 9 · 2R factor of its expectation, which is correct by Markov’s inequality.
Therefore, by a union bound, we condition on E in the proof which occurs with probability ≥ 2

3 .

We now formalize each of these steps and discuss their runtimes, under E . Given a matrix P
satisfying (17) for w = 1S , taking k = O(log(n)+R) = O(log(n)) in Corollary 1, Part V guarantees
all a>i PG>GPai for i ∈ [n] are within a 2 multiplicative factor of their expectations, i.e.

a>i
(
A>WA

)†
ai ≤ 2a>i PG>GPai ≤ 12a>i

(
A>WA

)†
ai, (18)

where we also used (17). Note that computing all 2a>i PG>GPai takes time O((nnz(A) +
d2) log(n)), since we can first compute PG> in time O(d2 log(n)), and then multiply all rows
of GP by {ai}i∈[n]. Next, assuming Lemma 6 succeeds in the sense described earlier, the sum of
leverage score overestimates τS∪{i}i (A) is ≤ 9 ·2R · ndk , so using (18) through Lemma 7 with ε← 11
produces overestimates τ ∈ Rn≥0 which, combining (18) with our earlier bound, satisfy

∑
i∈[n]

τi ≤ 108 · 2R · nd
k
.

Using these overestimates we can apply Corollary 1 with error parameter ε← 1
3R , which increases

the approximation factor in (17) by an exp( 1
R ) factor, accounting for this layer of recursion, using
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1296 · 2RR2 · ndk (log(18d) +R) sampled rows. Therefore, putting together all the pieces and using
that 1296 · 2RR2 · ndk (log(18d) +R) ≤ Cnd

k log3(n) for a constant C,

Tr(n) = O
((
nnz(A) + d2

)
log(n)

)
+ Tr−1(k) + Tr−1

(
Cnd

k
log3(n)

)
.

Choosing k optimally, we therefore have

Tr(n) = O
((
nnz(A) + d2

)
log(n)

)
+ 2Tr−1

(√
Cnd log3(n)

)
.

We let the recursion proceed, setting r ← r − 1 and n ←
√
Cnd log3(n), until n becomes 2n0

for some n0 := O(d log3(d)), at which point we can also bound6 T1(n) = O(dω) because we can
explicitly compute A>WA, and invert and square root it in this time.7 It is straightforward to
check this process does indeed terminate in R = O(log log n

d ) rounds of recursion, as claimed in
the beginning of the proof, since log n

n0
halves at each round. Finally, the overall runtime is

TR(n) = O
((
nnz(A) + d2

)
log2(n) + dω log(n)

)
,

attaining failure probability 1
3 . Assuming the top layer of recursion succeeded, the remainder of the

proof follows identically to Theorem 1. We boost the result to fail with probability ≤ δ by again
taking O(log 1

δ ) independent runs and outputting the point with best function value in (1).

Notably, up to polylogarithmic factors, Theorem 2 gives a runtime which matches what Theorem 1
would have obtained, if the sparse OSEs in Proposition 2 had as few rows as the dense OSEs in
Proposition 1, but were still just as efficient to apply. Moreover, it does so by using a preconditioner
of the form (9), which preserves the structure of A. As mentioned in Remark 2, these logarithmic
factors have since been removed by [CSWZ23]. Interestingly, [CSWZ23] does so using embeddings
that are not of the form (9), instead using properties of subsampled Hadamard transforms.

6We let exponentiation by ω suppress polylogarithmic factors for readability, i.e. we assume we can multiply
d · polylog(d)-dimension matrices in dω time, which affects ω by a o(1) factor.

7This is assuming exact arithmetic, via the eigendecomposition algorithm in [PC99]. In finite-precision arithmetic,
one can use polynomial approximations to the square root, see e.g. Fact 4, [JLM+23].
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Source material
Portions of this lecture are based on reference material in [Woo14, LV23], as well as the author’s
own experience working in the field.
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