
CS395T: Continuous Algorithms, Part IX
Sparse recovery

Kevin Tian

1 Basis pursuit
In Part VIII, we developed efficient algorithms for overconstrained linear systems, i.e. solving a
regression problem Ax ≈ b where A has more rows (constraints) than columns (features). This
lecture considers the underconstrained counterpart of this problem, where we model observations
b ∈ Rn as being the result of noisy linear measurements of a hidden vector x? ∈ Rd, i.e. for n < d,1

b = Ax? + ξ, A ∈ Rn×d, b, ξ ∈ Rn, x? ∈ Rd with nnz(x?) ≤ k. (1)

In the noiseless case ξ = 0n, the problem (1) has infinitely-many solutions, because A has a kernel,
and moving arbitrarily within this kernel induces new solutions. One may posit that this means the
underconstrained linear regression problem is meaningless in general, because recovering x? from
Ax? is ill-posed when n < d. However, a sequence of striking breakthroughs by [CR05, CT05,
Don06, CT06, CRT06] pushed back on this conventional wisdom, by showing that the problem
of recovering x? from underconstrained measurements is both well-defined and algorithmically
tractable, under additional structural assumptions on A and x?. These works and follow-ups led
to the development of the field of sparse recovery, also known as compressed sensing because of
the ability to detect or approximate x? from a compressed number of � d measurements.

As implied by the name sparse recovery, in this lecture we consider the case where x? is k-sparse, i.e.
nnz(x?) ≤ k, and we wish to approximately recover x? from noisy measurements. This modeling
assumption, subject to accounting for noise, is well-motivated in practice. To see why, the noise-
tolerant model (1) extends to the case where a parameter vector of interest x is heavy, i.e. there is a
subset S ⊆ [d] with |S| ≤ k such that ‖xS‖2 is responsible for a large portion of ‖x‖2. In this case,
we can treat the heavy coordinates xS as our hidden parameter vector x?, and lump AxSc into the
noise component ξ where Sc := [d] \ S, with the hope that ‖AxSc‖2 � ‖Ax?S‖2. Indeed, recovery
of heavy parameter vectors is a ubiquitous problem in many application domains. For example,
in signal processing (e.g. for recording music), only a few coordinates in the Fourier spectrum are
large; similarly, images are often sparse in the Haar wavelet basis, which captures locality (e.g.
features localized to a few adjacent pixels). Moreover, various real-world data, such as the number
of inlinks per page in internet networks, follow power-law distributions which are naturally heavy.
We defer additional discussion of this phenomenon to the excellent reference [Pri20].

In this section, to introduce the algorithmic tractability of (1), we focus on the noiseless problem

b = Ax?, A ∈ Rn×d, b ∈ Rn, x? ∈ Rd with nnz(x?) ≤ k, (2)

i.e. (1) where ξ = 0n, handling more general noisy cases in Sections 2 and 3. As a starting point,
observe that it is ideal that A has no O(k)-sparse vectors in its kernel. For example, suppose our
problem is mildly-misspecified and x? is actually k

2 -sparse,
2 but A has a k

2 -sparse vector v in its
kernel. Then, x? + tv for any t ∈ R is an equally-plausible solution to (2), and hence our sparse
recovery problem is again ill-posed. The following robust variant of this “no sparse vectors in A’s
kernel” assumption was formalized by [CDD09], where it was termed the nullspace property.

1We mention that there is a design decision in how to model the noise ξ. The definition (1) considers “output
noise,” i.e. ξ is added to Ax?, which captures applications where x? is truly-sparse and we can only access noisy
linear measurements of it. Another natural assumption is “input noise” where we let b = A(x? + ξ). As we explore
later in this lecture, under structural assumptions on A these notions are comparable.

2It is more realistic to assume that k is an upper bound on the sparsity of x? (than nnz(x?) = k, for example),
since it is often an unknown parameter which must be estimated using domain knowledge.
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Definition 1 (Nullspace property). We say A ∈ Rn×d satisfies the k-nullspace property, or k-
NSP, if for all S ⊆ [d] with |S| ≤ k, all vectors v ∈ Rd with Av = 0n have

‖vS‖1 < ‖vSc‖1 .

Ignoring computational issues of how to determine whether A satisfies k-NSP until later in the
lecture, we demonstrate how Definition 1 leads to polynomial-time algorithms for sparse recovery
in the noiseless setting (2). Intuitively, Definition 1 prevents the type of sparse movement in the
kernel of A described earlier, because it enforces that all v with Av = 0 cannot have a k-sized set
S which accounts for most of v’s `1 mass. We now formalize this intuition.

Lemma 1. Let x? ∈ Rd have x?i = 0 for all i 6∈ S, for S ⊆ [d]. Then for all x ∈ Rd with
‖x‖1 ≤ ‖x?‖1, we have for v := x− x? that ‖vS‖1 ≥ ‖vSc‖1.

Proof. We apply the triangle inequality and the support assumption on x?:

‖x‖1 = ‖x? + vS + vSc‖1 = ‖x? + vS‖1 + ‖vSc‖1
≥ ‖x?‖1 − ‖vS‖1 + ‖vSc‖1 ≥ ‖x‖1 − ‖vS‖1 + ‖vSc‖1 .

In particular, the second equality used coordinatewise-separability of `1, and the last inequality
applied the assumption ‖x‖1 ≤ ‖x?‖1. The conclusion follows by rearranging.

Lemma 1 motivates a simple algorithm for recovering x? in (2), when A satisfies k-NSP.

Theorem 1 (Basis pursuit). Consider an instance of the problem (2). If A satisfies k-NSP, then
x? is the unique solution to

min
x∈Rd

Ax=b

‖x‖1 . (3)

Proof. Suppose for contradiction that there is x 6= x? satisfying Ax = b and ‖x‖1 ≤ ‖x?‖1. By
definition, this means v := x−x? has Av = 0n, but additionally Lemma 1 implies ‖vS‖1 ≥ ‖vSc‖1,
where S ⊆ [d] is the support of x?. Since |S| ≤ k by assumption, this contradicts k-NSP.

We note that the problem (3) is equivalent to a linear program, by introducing d auxiliary variables
{ti}i∈[d] ∈ R≥0, adding the linear constraints −ti ≤ xi ≤ ti for all i ∈ [d], and minimizing 〈t,1d〉.
Thus, there are polynomial-time algorithms for solving (3) to high accuracy, via Theorem 1, Part
I (or alternatively, the more specialized algorithms developed in the next lecture).

Remark 1. The linear programming-based solution (3) to underconstrained linear systems has
a longer history than discussed here, surveyed in e.g. [CDS01]. The intuition for this `1-based
minimization problem is that the `1 norm serves as a proxy for the `0 “norm,” another name for
number of nonzero elements ‖x‖0 := nnz(x). We would like to find sparse solutions to Ax = b, but
‖·‖0 is nonconvex (so it is not an actual norm), and in fact it is discontinuous. Instead, guided by
the intuition that for a fixed `2 budget, the `1 norm is smaller for sparse vectors, since

‖x‖1 ≤
√

nnz(x) ‖x‖2 (4)

by the Cauchy-Schwarz inequality, (3) has long been used as a heuristic to choose sparse solutions.
Indeed, (3) is often described as a convex relaxation of the nonconvex problem

min
x∈Rd

Ax=b

nnz(x),

which models the actual goal of sparse recovery when there is a uniquely-sparsest solution. The
name basis pursuit arises from a signal processing viewpoint which casts A as a dictionary of
columns, and hence the goal of sparse recovery in this language is to find a linear combination of a
small subset of these columns (i.e. a basis) to reconstruct b. It was finally proven by [CRT06] that
choosing A to be a subsampled Fourier matrix, solving (4) succeeds in recovering sparse signal x?
with few samples (i.e. rows of A). This result inspired a flurry of work which abstracted properties
of A needed for basis pursuit to succeed in sparse recovery, see e.g. the survey [Rau10].
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2 Restricted isometry property
In this section, we consider an alternative structural property of a matrix A which makes recovering
x? in (1) tractable. This structural property, known as the restricted isometry property, can be
thought of as a quantitative variant of Definition 1 from earlier.

Definition 2 (Restricted isometry property). We say A ∈ Rn×d satisfies the (ε, k)-restricted
isometry property, or (ε, k)-RIP, if for all x ∈ Rd with nnz(x) ≤ k,

(1− ε) ‖x‖22 ≤ ‖Ax‖
2
2 ≤ (1 + ε) ‖x‖22 .

Definition 2 requires that beyond having no sparse vectors in its kernel, A should also act as an
approximate isometry when restricted to sparse vectors. That is, while NSP is closer to a full-rank
condition on sparse vectors, RIP posits that A>A is well-conditioned when restricted to this set.
In this lecture, we primarily focus on the case when ε ∈ (0, 1) is a fixed constant for simplicity. For
various randommodels of A, e.g. when A has rows sampled from an appropriately-rescaled isotropic
Gaussian N (0d, σ2Id), we can establish Definition 2. We remark that preconditioned variants of
the methods we discuss are an active research area, see e.g. [KKMR21] which established lower
bounds on the sample complexity required by these preconditioned methods when A has rows
∼ N (0d,Σ) for ill-conditioned Σ with certain graph structure.

Unfortunately, in general both RIP and NSP are NP-hard to certify [BDMS13, TP14]. However,
the sparse recovery community has developed various arguments for showing that certain random
matrix designs satisfy RIP with high probability. To give a simple example, we prove that the
isotropic Gaussian model satisfies Definition 2 using few samples.

Lemma 2. Let A ∈ Rn×d have i.i.d. rows ∼ N (0d, 1
nId). For ε, δ ∈ (0, 1), if

n ≥ C ·
k log( dk ) + log( 1

δ )

ε2
,

for an appropriate constant C, then A satisfies (ε, k)-RIP with probability ≥ 1− δ.

Proof. To prove Definition 2, it suffices to show that for each T ⊆ [d] with |T | ≤ k, we have
‖[A>A]T×T − IT ‖op ≤ ε, where IT is shorthand for the identity matrix restricted to coordinates
in T , and MT×T denotes the submatrix of M with rows and columns T . Note that there are

(
d
k

)
such matrices, since it is enough to consider T with |T | = k, as this bounds the operator norm of
all smaller submatrices as well. For each such T , let

ST :=
{
x ∈ Rd | ‖x‖2 = 1, supp(x) ⊆ T

}
be the surface of the unit ball in RT . Moreover, let NT ⊂ ST be a set such that

max
x∈ST

min
v∈NT

‖v − x‖2 ≤
1

4
.

Lemma 4, Part VIII shows that to prove ‖[A>A]T×T − IT ‖op ≤ ε, it suffices to show that for all
v ∈ NT , we have |v>(A>A − Id)v| ≤ ε

3 . Moreover, Lemma 3, Part VIII proves that NT exists
satisfying the above display with |NT | ≤ 9k. Therefore, it suffices to prove that for the

(
dk
·
)
9k

different vectors v ∈ NT for some T ⊆ [d], |T | = k, we have

1− ε ≤ ‖Av‖22 ≤ 1 + ε.

By taking n as specified, the result follows from the Johnson-Lindenstrauss lemma (Corollary 1,
Part V), with failure probability set to δ

9k ·
(
d
k

)−1
, where we use log

(
d
k

)
= O(k log d

k ).

Beyond Gaussian models, a variety of random design matrices A have been shown to satisfy RIP
using n ≈ k rows, including Rademacher matrices and subsampled Fourier matrices. These design
matrices are reasonable in settings such as signal processing, where we have a choice in what linear
measurements we apply to the sparse signal of interest, e.g. Fourier measurements of images in
MRI. Intuitively, all of these RIP design matrices have rows which are spanned by a few elements of
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an orthonormal basis that is entirely non-sparse in the standard coordinate system, so their kernels
also do not contain sparse vectors. There is a perspective which views these opposing orthonormal
bases (i.e. the standard basis and a basis spanning A’s rows) as inducing an uncertainty principle,
which states that no vector is sparse in both bases. For a formalization of why uncertainty principles
lead to tractable sparse recovery, we refer the reader to [DS89, Moi18].

In the remainder of the section, we develop a more continuous variant of the RIP definition, which
is in some sense discrete because of its imposition of exact sparsity. We instead use the following
definition as a continuous proxy for sparsity, motivated by the observation (4).

Definition 3 (Numerical sparsity). We say x ∈ Rd is k-numerically sparse if

NS(x) :=
‖x‖21
‖x‖22

≤ k.

Because of (4), all truly k-sparse vectors are also k-numerically sparse. However, Definition 3 allows
for some flexibility, e.g. xmay have many nonzero coordinates, as long as they are sufficiently small.
To relate Definition 3 to the standard notion of sparsity, the following decomposition is helpful.

Lemma 3. Let x ∈ Rd have NS(x) ≤ k. For any C > 1, we can write x =
∑
i∈[m] vi for

{vi}i∈[m] ⊂ Rd with disjoint supports, such that nnz(vi) ≤ Ck for all i ∈ [k], and
m∑
i=2

‖vi‖2 ≤
1√
C
‖x‖2 .

Proof. Consider a greedy decomposition of x which, starting from i← 1, lets vi be x restricted to
its Ck largest remaining coordinates by magnitude, and updates x← x−vi, until x = 0d. Because
every coordinate of vi is larger than every coordinate of vi+1 by magnitude, we have

‖vi+1‖2 ≤
√
Ck ‖vi+1‖∞ ≤

1√
Ck
‖vi‖1 for all i ∈ [m− 1].

Summing this equation for all i ∈ [m− 1], and using that the {supp(vi)}i∈[m] are disjoint,
m∑
i=2

‖vi‖2 ≤
1√
Ck
‖v‖1 ≤

1√
C
‖v‖2 ,

where the last inequality used that NS(x) ≤ k by assumption.

The decomposition in Lemma 3 is sometimes referred to as a shelling decomposition, because it
recursively partitions a vector into sparse shells. By using this decomposition, we can show that
RIP matrices satisfy a related definition we call restricted well-conditioning.3

Definition 4 (Restricted well-conditioned). We say A ∈ Rn×d is (ε, k)-restricted well-conditioned,
or (ε, k)-RWC, if for all x ∈ Rd with NS(x) ≤ k,

(1− ε) ‖x‖22 ≤ ‖Ax‖
2
2 ≤ (1 + ε) ‖x‖22 .

Clearly, Definition 4 implies Definition 2, because all sparse vectors are numerically sparse (see
(4)). We briefly formalize the fact that RWC is also a quantitative strengthening of NSP.

Lemma 4. For A ∈ Rn×d and ε ∈ (0, 1), if A is (ε, 4k)-RWC, it also satisfies k-NSP.

Proof. Suppose for contradiction that Av = 0n for v 6= 0d, yet ‖vS‖1 ≥ ‖vSc‖1 for some S ⊆ [d]
with |S| ≤ k. We observe that this implies NS(v) ≤ 4k:

‖v‖1 ≤ 2 ‖vS‖1 ≤ 2
√
k ‖vS‖2 ≤ 2

√
k ‖v‖2 . (5)

However, by RWC this also means ‖Av‖22 ≥ (1− ε) ‖v‖22 > 0, a contradiction.

By applying Lemma 3, we now relate Definitions 2 and 4.

Lemma 5. For A ∈ Rn×d and ε ∈ (0, 1), if A satisfies ( ε5 ,
25k
ε2 )-RIP,4 it is also (ε, k)-RWC.

3Our Definition 4 is related to the restricted well-conditioning definition in [ANW10], which implies ours.
4These constants are not optimized for ease of exposition, and can be sharpened.
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Proof. Let NS(x) ≤ k, and let {vi}i∈[m] all be 25k
ε2 -sparse with disjoint supports, so that

∑
i∈[m] vi =

x and
∑m
i=2‖vi‖2 ≤

ε
5 ‖x‖2, from Lemma 3. For the upper bound, we have by applying RIP,

‖Ax‖22 ≤
(

1 +
ε

5

)
‖Av1‖22 +

(
1 +

5

ε

)∥∥∥∥∥
m∑
i=2

Avi

∥∥∥∥∥
2

2

≤
(

1 +
ε

5

)2

‖v1‖22 +
6

ε

(
m∑
i=2

‖Avi‖2

)2

≤
(

1 +
ε

5

)2

‖x‖22 +
6

ε
· ε

2

25

√
1 + ε ‖x‖22 ≤ (1 + ε) ‖x‖22 .

Similarly, the lower bound follows from

‖Ax‖22 ≥
(

1− ε

5

)
‖Av1‖22 +

(
1− 5

ε

)∥∥∥∥∥
m∑
i=2

Avi

∥∥∥∥∥
2

2

≥
(

1− ε

5

)2

‖v1‖22 −
5

ε

(
m∑
i=2

‖Avi‖2

)2

≥
(

1− ε

5

)4

‖x‖22 −
5

ε
· ε

2

25

√
1 + ε ‖x‖22 ≥ (1− ε) ‖x‖22 .

Lemma 5 states that for constant ε, we can transfer RIP (approximate isometry on sparse vectors)
to RWC (approximate isometry on numerically sparse vectors) with constant overhead in the
parameters. This also yields as a corollary of Lemma 4 the fact that (ε, O(k))-RIP implies k-NSP,
for any sufficiently small constant ε. In summary, RIP and RWC imply each other, and both imply
NSP, where all statements hold with potentially a constant factor loss in parameters.

Finally, we generalize Theorem 1 to the noisy setting (1), under the RWC assumption.

Theorem 2 (Noise-tolerant basis pursuit). Consider an instance of the problem (1), where ‖ξ‖2 ≤
∆. If A is (ε, 4k)-RWC for any ε ∈ (0, 1

2 ], then ‖x− x?‖2 ≤ 4∆, where

x := argmin x∈Rd

‖Ax−b‖2≤∆

‖x‖1 .

Proof. Because x? is feasible, we have ‖x‖1 ≤ ‖x?‖1, so Lemma 1 and (5) imply that v := x− x?
has NS(v) ≤ 4k. Therefore, by RWC and the assumption ‖Ax− b‖2, we have the desired

‖x− x?‖22 ≤
1

1− ε
‖A(x− x?)‖22 ≤

4

1− ε

(
‖Ax− b‖22 + ‖Ax? − b‖22

)
≤ 8∆2

1− ε
≤ 16∆2.

Theorem 2 shows we can extend basis pursuit to solve noisy sparse recovery in polynomial time,
recovering the true parameter vector up to a distance scaling linearly in the amount of noise added.

Remark 2. In situations where it is important to output proper hypotheses, i.e. estimates x which
are truly k-sparse, we can take any hypothesis x̂ and truncate it to its largest k coordinates. This
will at most double the distance to x?, due to the observation

x̂Sk(x̂) = argmin x∈Rd

nnz(x)≤k
‖x− x̂‖2

=⇒
∥∥x̂Sk(x̂) − x?

∥∥
2
≤
∥∥x̂− x̂Sk(x̂)

∥∥
2

+ ‖x̂− x?‖2 ≤ 2 ‖x̂− x?‖2 ,

where we let Sk(x̂) ⊆ [d] denote the indices of x̂’s k largest coordinates by magnitude.

In the remainder of the lecture, to be consistent with Remark 2, we let Sk(v) return the indices of
the k largest coordinates of a vector v by magnitude, breaking ties arbitrarily.
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3 Projected gradient descent
In this section, we develop a simple first-order method which qualitatively matches the guarantees
of Theorem 2, but which can be implemented to run in nearly-linear time. We mention that under
the RIP (or RWC) assumption, there are a host of efficient first-order methods which achieve
this type of guarantee, including greedy combinatorial methods such as matching pursuit and
its variants [MZ93, PRK93, NV10], and iterative methods which directly analyze progress on a
nonconvex objective (i.e. over the set of sparse vectors) [NT09, BD09, MD10, Fou11].

The algorithm we present in this section is inspired by several of these first-order algorithms, but
its analysis is closer in spirit to the projected gradient descent methods we have seen in convex
settings throughout earlier lectures. It also was extended recently by [KLL+23b] to robustly handle
a certain type of semi-random adversarial noise in the observations, giving some credence to its
general flexibility as a framework for sparse recovery. To motivate it, note that half the gradient at
x of the least-squares objective in A (i.e. Eq. (1), Part VIII) is A>(Ax− b). Now, let us consider
the noiseless setting b = Ax? for simplicity, and suppose A = 1√

n
G where G ∈ Rn×d is entrywise

i.i.d. ∼ N (0, 1). In this case, if x, x? is independent of G, letting {gi}i∈[n] be the rows of G,

A>(Ax− b) = A>A(x− x?)

=
1

n

∑
i∈[n]

〈gi, x− x?〉 gi.

Next, consider a single one of these summands. Writing v := x − x? and supposing ‖v‖2 = 1 for
simplicity, we can decompose gi = ξiv + hi, where ξ ∼ N (0, 1) and hi ∼ N (0d, Id − vv>), i.e. we
separate out the components of gi in the v direction and in the orthogonal subspace. Then,

1

n

∑
i∈[n]

〈gi, v〉 gi =

 1

n

∑
i∈[n]

ξ2
i

 v +
1

n

∑
i∈[n]

ξihi.

Viewing each ξihi as essentially an independent Gaussian vector, we expect the maximum coordi-
nate of 1

n

∑
i∈[n] ξihi to scale as 1√

n
, and moreover 1

n

∑
i∈[n] ξ

2
i is very tightly concentrated around

1. The point of this digression is that we showed that in this special case, the gradient A>(Ax−b)
is highly-correlated with v, the desired descent direction, up to a “flat” additive term, i.e. a noise
component which is small coordinatewise. We view the role of `1 projection in gradient descent as
denoising this flat term. We begin by making this decomposition of the gradient rigorous.

Lemma 6. Let A ∈ Rn×d and v ∈ Rd. If A is ( 1
2 , k)-RWC and NS(v) ≤ k,∥∥gSk(g)

∥∥
2
≤ 3

2
‖v‖2 , for g := A>Av.

Proof. Let h = gSk(g) be k-sparse, so our goal is to show ‖h‖2 ≤
3
2 ‖v‖2. We have

‖h‖22 = 〈h, g〉 =
〈
h,A>Av

〉
≤ ‖Ah‖2 ‖Av‖2 ≤

3

2
‖h‖2 ‖v‖2 ,

where we used the RWC assumption and NS(h),NS(v) ≤ k.

Lemma 6 shows that if x−x? is numerically sparse, then the gradient step A>(Ax−b) = A>A(x−
x?) can be decomposed into a “short” component with `2 normO(‖v‖2), and a “flat” component with
`∞ norm O( 1√

k
‖v‖2). This latter claim is because every coordinate outside the top k coordinates

of g by magnitude is smaller than 1√
k
times the `2 norm of the top k coordinates. We now show

how to turn this observation into an efficient algorithm based on projected gradient descent.

We begin by describing one phase of the algorithm. Let x0 ∈ Rd be k-sparse, and assume we know
an upper bound R ≥ ‖x0 − x?‖2. We show how to produce a k-sparse point x̂ ∈ Rd such that
‖x̂− x?‖2 ≤

R
2 in O(nd) time.5 Our main helper tool is the following one-step analysis.

5The algorithm technically runs in O(nnz(A)) time, but RIP (and hence RWC) matrices are typically dense.
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Proposition 1. In the setting of (2), let x0 ∈ Rd have nnz(x0) ≤ k and ‖x0 − x?‖2 ≤ R. Suppose
A is ( 1

2 , 2
16k)-RWC, and x ∈ Rd satisfies

‖x− x?‖2 ≤ R, x ∈ X :=
{
x ∈ Rd | ‖x− x0‖1 ≤

√
2kR

}
.

Then, one of the following two situations must occur, where we denote v := x− x?.

1. ‖Av‖22 ≥
R2

32 and A>Av = s+ f for some s, f ∈ Rd with

‖s‖2 ≤
3R

2
, ‖f‖∞ ≤

3

29
√
k
R.

2. ‖v‖2 ≤
R
4 .

In the former case, letting η := 1
180 and x′ ← argminx′∈X {〈ηg, x′ − x〉+ 1

2 ‖x
′ − x‖22}, we have

‖x′ − x?‖22 ≤ ‖x− x
?‖22 −

R2

14400
.

Proof. Note that sparsity of x0 and x? implies that x? ∈ X , by using (4). Next, if it is not the case
that ‖v‖2 ≤

R
4 , then since ‖v‖1 ≤ ‖x0 − x?‖1+‖x0 − x‖1 ≤

√
32kR, it is the case that NS(v) ≤ 32k.

Therefore, the fact that A is RWC with the given parameters implies ‖Av‖22 ≥
1
2 ‖v‖

2
2 ≥

R2

32 , as
claimed. Further, applying Lemma 6 with k ← 216k, and letting s be the 216k largest coordinates
of g by magnitude and f := g − s, we have

‖f‖∞ ≤ min
i∈supp(s)

|si| ≤
1

28
√
k
‖s‖2 ≤

3

29
√
k
R.

This proves our first claim. The first-order optimality condition on x′ (see e.g. the proof of Theorem
2, Part II) then implies, letting v′ := x′ − x?, that

‖v‖22 − ‖v
′‖22 ≥ 〈2ηg, x− x

?〉+ 〈2ηg, x′ − x〉+ ‖x− x′‖22
≥ 2η ‖Av‖22 + 〈2ηf, x′ − x〉+ 〈2ηs, x′ − x〉+ ‖x− x′‖22

≥ ηR2

16
− 2η ‖f‖∞ ‖x

′ − x‖1 − η
2 ‖s‖22

≥ ηR2

40
− 9η2R2

4
≥ R2

14400
.

where we used ‖x′ − x‖1 ≤
√

8kR since x, x′ ∈ X , and plugged in our choice of η.

By iterating on Proposition 1, we can implement the phase described earlier.

Corollary 1. In the setting of (2), let x0 ∈ Rd have nnz(x0) ≤ k and ‖x0 − x?‖2 ≤ R, and
suppose A is ( 1

2 , 2
16k)-RWC. There is an algorithm which produces x̂ ∈ Rd satisfying nnz(x̂) ≤ k

and ‖x̂− x?‖2 ≤
R
2 , in time O(nd).

Proof. We simply iterate the procedure in Proposition 1, until the condition in Item 1 fails and
hence we can conclude we are in the case of Item 2. Note that we can verify if Item 1 holds in every
iteration, since Av = Ax− b, which we can compute in O(nnz(A)) time. Moreover, we will reach
the case of Item 2 in O(1) iterations, since each iteration makes Ω(R2) progress on the squared
distance to x?. Finally, once we are in the latter case, we can truncate our final iterate to its top
k coordinates, which at most doubles the distance to x? by applying Remark 2.

Finally, by iterating on Corollary 1, we obtain a high-precision solver for (2).

Theorem 3 (Sparse recovery via projected gradient descent). In the setting of (2), let ‖x?‖2 ≤ R,
and suppose A is ( 1

2 , 2
16k)-RWC. There is an algorithm which produces x̂ ∈ Rd satisfying nnz(x̂) ≤

k and ‖x̂− x?‖2 ≤ r, in time

O

(
nd log

(
R

r

))
.
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Proof. It suffices to recursively apply the algorithm in Corollary 1, log2(Rr ) times.

We note that the strategy in Theorem 3 generalizes to handle the noisy setting (1), recovering x?
up to distance O(∆), similarly to Theorem 2. This was shown in [KLL+23b], which, as mentioned
previously, extended this analysis to handle a wider family of matrices A perturbed by an adversary
which can augment A with additional rows, potentially destroying the restricted isometry property.
In this endeavor, the short-flat decomposition strategy of Proposition 1 was crucial, because it gives
verifiable conditions (the size of residuals and the existence of a decomposition) which allow one
to provably make progress, whereas checking for RIP is computationally hard.

Remark 3. In addition to sparse recovery (i.e. underconstrained linear regression), the frame-
works described in this lecture extend to varying degrees to solve a variety of other linear inverse
problems with structural assumptions on the solution, including low-rank matrix generalizations of
compressed sensing, and recovering permutation or orthogonal matrices [ANW10, CRPW12].

One particularly challenging variation of linear inverse problems is the matrix completion problem,
where we are given random observations of a low-rank matrix, and wish to recover it. For example,
the Netflix Prize was a famous competition for designing collaborative filtering algorithms [SN07],
an instance of matrix completion [RS05]. The key challenge in this setting is that a “for all low-
rank matrices” type of statement such as RIP (which preserves the norm for all sparse vectors)
cannot hold for the linear measurements taken by matrix completion, as we can always plant a
1-sparse, rank-1 matrix which entirely dodges the measurements, and hence its norm will not be
preserved. Under additional structural assumptions on the target matrix, such as the popular notion
of incoherence, a sequence of works [CT10, KMO10, CR12] ultimately showed that rank-k, d × d
matrices can be recovered using ≈ dk observations [Rec11], which can be far fewer than d2 when k
is small. We mention that the short-flat decomposition strategy of this section was recently extended
to the matrix completion case [KLL+23a], giving a nearly-linear time algorithm with the state-of-
the-art sample complexity and recovery rate among such algorithms in theory. However, it remains
to be seen whether such frameworks lead to improved performance in practice.
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Source material
Portions of this lecture are based on reference material in [Moi18, Pri20], as well as the author’s
own experience working in the field.
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