
ITERATIVE METHODS FOR

STRUCTURED ALGORITHMIC DATA SCIENCE

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Kevin Tian

June 2022

This dissertation is online at: https://purl.stanford.edu/qy752rq1707

© 2022 by Kevin Jimaine Tian. All Rights Reserved.

Re-distributed by Stanford University under license with the author.

ii

https://purl.stanford.edu/qy752rq1707

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Aaron Sidford, Primary Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Nima Ahmadipouranari

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Moses Charikar

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Gregory Valiant

Approved for the Stanford University Committee on Graduate Studies.

Stacey F. Bent, Vice Provost for Graduate Education

This signature page was generated electronically upon submission of this dissertation in
electronic format. An original signed hard copy of the signature page is on file in
University Archives.

iii

Preface

This thesis studies the interplay between two aspects of algorithmic data science: iterative method

theory and structured problem instances arising from applications. We organize the thesis into

two parts, each of which couples a branch of the modern iterative method toolkit with a family

of related structured problems in data science. Each part of the thesis develops new frameworks

for designing iterative methods, gives new tools for the efficient implementation of said methods,

and offers fresh perspectives on the relationships between our new iterative methods and various

fundamental algorithmic problems in the relevant application domain.

Stochastic Variational Inequalities and Combinatorial Optimization. The first part of the

thesis presents new algorithms and analysis frameworks for solving variational inequalities (VIs) in

monotone operators (which generalizes convex optimization and equilbrium computation in minimax

optimization), with a focus on algorithms for operators admitting a naturally stochastic structure.

In Chapters 2 and 3, we develop different aspects of stochastic VI theory: acceleration and vari-

ance reduction. In the case of Chapter 2, as a consequence of our new acceleration frameworks,

we develop state-of-the-art algorithms for (well-conditioned) separable minimax and finite-sum op-

timization problems. In the case of Chapter 3, we give a host of new runtime tradeoffs for bilinear

minimax optimization problems, advancing the frontier of approximate equilibrium computation in

zero-sum matrix games for the first time since seminal works of [253, 415].

In Chapters 4, 5, and 6, we build upon the techniques of Chapters 2 and 3 by giving new

algorithms for combinatorial optimization problems such as flow, matching, and transportation

under different computational models. We achieve these results by combining advances in primal-

dual acceleration, stochastic estimator design, and novel ways of implementing iterations of our

methods in parallel, streaming, or dynamic settings. In this portion of the thesis, we give a state-of-

the-art approximate solver for undirected maximum flow (Chapter 4), an implementation of low-pass,

optimal space combinatorial optimization algorithms in a semi-streaming model (Chapter 5), and

new reduction frameworks and faster update times for dynamic matching problems (Chapter 6).

iv

Semidefinite Programming and High-Dimensional Statistics. The second part of the thesis

investigates different aspects of the design of nearly-linear time semidefinite programming (SDP)

solvers. In Chapter 7, we use ideas from the sketching literature and new theory for monotone SDPs

to give a suite of new SDP tools catering to different geometries (e.g. Ky Fan or Schatten norm

objectives) and constraint structure (e.g. packing or matrix dictionary recovery instances).

In Chapters 8 and 9, we showcase the power of our new SDP tools by providing robust algo-

rithms for high-dimensional statistical estimation tasks under different contamination models. We

consider contamination models capturing adversarial data poisoning and total variation distance

misspecification in Chapter 8, where we give new almost-linear time algorithms for heavy-tailed

clustering, generalized linear regression, and principal component analysis. These algorithms obtain

near-optimal recovery guarantees in high dimensions as a function of the corruption parameter, and

are based on combining the filtering paradigm with new SDP regret minimization tools. In Chap-

ter 9, we robustify standard linear system solvers and regression algorithms in both overcomplete

and undercomplete (sparse recovery) settings to run in nearly-linear time under the presence of an

appropriate semi-random adversary which augments the measurement matrix (arbitrarily hindering

standard notions of problem conditioning), without sacrificing statistical performance.

In Chapter 10, we consider a somewhat separate area of algorithmic high-dimensional statistics:

developing an oracle complexity theory for structured logconcave sampling. Here too, we draw

inspiration from aspects of iterative method theory such as proximal point methods and variance

reduction to give a new framework for structured sampler design. We obtain state-of-the-art query

complexities for well-conditioned, composite, and finite-sum structured densities; in the first case,

we complement our new algorithms with near-matching lower bounds for popular frameworks.

v

Acknowledgments

If the reader chooses to only read one section of this thesis, I sincerely hope it is this one. This thesis

would not have been possible if it were not for the joint efforts of a number of mentors, compatriots,

and friends I have had the tremendous fortune to cross paths with over my lifetime. It is difficult to

capture in words the influence they have had on both my academic and personal trajectories, but I

will do my best in this section, and any omissions are solely my responsibility.

Mentors. I would like to start by thanking Aaron Sidford for being an amazing mentor, advisor,

advocate and friend to me over the course of my Ph.D. Aaron took a leap of faith by accepting me as

his student when I had never done research in algorithms or optimization before coming to Stanford.

It took over a year of collaborating with Aaron before we got our first result, but Aaron continued to

bring a level of enthusiasm and optimism to every meeting which set the tone for the whole group,

and for how I strived to conduct theory research. Aaron taught me the value of dreaming big but

also questioning our understanding of the basics at every stage. One of the biggest takeaways I have

from working with Aaron is that every time I learn a new technique, it is a worthwhile endeavor

(time permitting) to revisit every related problem armed with this new perspective to see if it yields

deeper understanding. For all the lessons in both math and life you have taught me, and all the

exciting research that has come out of our collaborations, thank you Aaron!

Next, I would like to thank Yin Tat Lee and Jerry Li, who have answered enough of my silly

questions over Slack and Hangouts that they could be considered my informal co-advisors. I was

fortunate to meet both Yin Tat and Jerry during Summer 2019 when I visited Seattle, and my tastes

have substantially benefitted from working with both of them: almost all of the research in Part II

of the thesis is a direct reflection of my work with Yin Tat (my guide into the world of sampling)

and Jerry (likewise, for robust statistics). I am excited to continue our collaborations next year as I

move to Seattle. Beyond both being incredibly sharp technically, Yin Tat and Jerry have given me

very helpful advice during a number of tough times. Thank you, Yin Tat and Jerry!

Going back a bit further, I would like to thank James Zou and Greg Valiant for serving as my

rotation mentors during my first few months at Stanford. Even though our research interests have

diverged somewhat since then, they taught me about what it meant to do world-class research, and

vi

have continued to provide guidance — I look up to both of them a lot.

Next, I thank my mentors from my time as an undergraduate, including Yuchun Guo, David

Gifford and Dana Moshkovitz at MIT, and Jennifer Listgarten and Nicolo Fusi at Microsoft Research.

I did quite a bit of flailing around trying to understand what kind of research I liked and how to make

progress in general during those days — thank you all for your patience and mentorship. Yuchun in

particular has been a great friend and advocate, and paved the way for my graduate studies.

I would like to thank Jon Kelner for hosting me at MIT during Summer 2021. Jon is one of the

kindest academics I know, and taught me most of what I know about random matrix theory. I would

also like to thank the other more senior academics I have benefitted from working with for all they

have shared with me, including Tselil Schramm, Nima Anari, Sepehr Assadi, Chris Musco, Sivakanth

Gopi, Adam Bouland, John Duchi, Ilias Diakonikolas, Daniel Kane, and Santosh Vempala.

The Stanford Theory Group is a wonderful place to spend 6 years thinking about hard problems,

and part of what made me want to do TCS research in the first place was the universal friendliness I

felt from theory-minded folk. I thank Moses Charikar, Li-Yang Tan, and Jan Vondrak for excellent

courses they have taught, the other Stanford Theory faculty for creating an awesome environment,

and Jay Subramanian, Megan Harris, Ruth Harris, and all the other Stanford CS administrators

who have made the Ph.D. a smooth experience. I also have benefitted from Aaron’s Stanford MS&E

and ICME affiliations, and would like to thank the administration of these departments as well.

Finally, it is time to revisit my roots as an “academic” and thank all the teachers who shaped

my tastes in math in the early years. I want to give special shoutouts to Mrs. Sarah Griffin and Mrs.

Sally Barber, who helped me mature as a mathematician and a student, and have checked in over

the years to make sure I am happy in life. I also want to thank Dr. Weizhen Gu for being one of

my first extracurricular math teachers, and Sam Baethge, Dr. Max Warshauer, Dr. Nathaniel Dean,

and Dr. Edward Early for letting me take my first steps into research at Texas Mathworks.

Academic compatriots. Theoretical research (and research of any form) can be an isolating

experience if one is not careful, given the amount of time spent “in the trenches.” I have been lucky

to work with an amazing group of fellow students, each of whom has been incredibly helpful to talk

to over the years as we jointly seek a deeper understanding. The Ph.D. would have been a lot less

enjoyable without all of them, so I will use this space to shout them out.

Arun Jambulapati was one of the first students I worked closely with, and since then we have

usually not gone very long before getting interested in a new direction together, having roped

each other into a number of projects over the years. Arun has an incredible breadth and depth of

knowledge, and our wide-ranging conversations have provided me stronger intuition for many topics.

It’s been a lot of fun, Arun, and I’m sure this is only the beginning.

Weihao Kong was the first senior student I worked on a project with, and has been very generous

with his advice and friendship since then. Yair Carmon has a deep understanding of many different

aspects of optimization theory, and was kind enough to include me on our first project [108] together.

vii

He also has taught me a lot about writing style, and it never feels like you can be stuck on a problem

for too long when you work with Yair. Those early days during the Ph.D. are the most important

towards building a research network, and I am very grateful it started with Weihao and Yair.

I have been very fortunate to work closely with two junior students, Yujia Jin and Ruoqi Shen,

on several projects throughout my Ph.D. Yujia and Ruoqi are both rising stars in the field, and I

am thankful to them for all their efforts and insights, which have gotten us far.

Next, I would like to thank Swati Padmanabhan and Ewin Tang, close friends from my time in

Seattle. Swati went through the exhilarating roller coaster that was the project [285, 286] with me

and Arun; although our work there is not done yet, I’m sure we’ll understand someday. Ewin has

fielded many of my questions as I try to learn about quantum computing (which resulted in my first

brief cameo on Wikipedia), and I also want to shout out her music recommendations.

I thank my other student collaborators over the years for our joint research efforts, including

Teng Zhang, Qijia Jiang, Daniel Kongsgaard, Allen Liu, June Vuong, Sinho Chewi, and Daogao Liu.

All are exceptional researchers and friends, and it has been a pleasure learning from them.

I also want to thank some of my other friends in graduate school, who helped make the academic

grind a much more enjoyable process, including Shivam Garg (my gym buddy for many years), Kiran

Shiragur, Yang Liu, Jay Mardia, Mark Sellke, Isabella Huang, Judy Shen, and Sitan Chen.

From the before times. The start of my Ph.D. was a very lonely experience at times, and the

anxiety caused from the experience of dramatically switching areas during my first year would have

been difficult to bear alone. Although it has become a much smoother process since then, when

things get tough I still feel very fortunate to be able to lean on my friends “from the before times.”

Jeffrey Chan has stuck with me as a “big brother” and role model for many different stages of

my life. He edited all of my grad school and fellowship applications early on, as well as my first

paper submission, hosted me in Berkeley on numerous occasions, and has provided an uncountable

amount of advice about navigating the Ph.D. and adult life in general. Without his guidance and

friendship, I would have surely been much more lost in this journey.

George Qi has been a stalwart friend to me since we were kids, and we have similarly stuck

together through each stage of life since then. I am very grateful that we got to live together during

the COVID times, though I am less grateful for all the ping pong balls he made me chase. Thanks

for all the great memories, and the Rudy’s, George.

Kevin Li and Zach Izzo were an absolute blast to live with during the Ph.D. and made Stanford

feel like home away from home, especially during the long nights before deadlines. I am very thankful

to have known them for so long (Kevin has been my roommate for periods during middle school,

high school, college, and graduate school), and that we went through the Ph.D. journey together.

Moving to the Bay Area was an experience made much more comfortable by the presence of

great friends nearby. For that, I thank Thom Lu, Jodie Chen, Connie Liu, Mike Wu, Jeff Sun,

Kevin Peng, Lisa Huang, Serena Wang, Leonel Drukker, Rue Park, Joel Schneider, and Ben Bell.

viii

I took multiple “academic vacations” to Seattle during the Ph.D. and those times were made

even better by being able to hang out with Julia Guo, Matt Basile, Maddie Zhang, and Emmanuel

Azuh. I’m really excited to move there and see you all again soon.

I would also like to thank Alex Jaffe, Kai Xiao, Weilian Chu, Tony Zeng, Eric Wang, Sonya Han,

David Wang, Alex Hong, and Sameer Deshpande for being lifelong friends from college who I have

kept in touch with over the years, even though I don’t see them nearly as much as I’d like these

days. Similarly, Ding Zhou, Lilly Shen, Leon Otis, Josh Dong, Danny Chen, Frances Chen, James

Cong, Jackie Chen, Aaron Hui, Thaonhi Cung, Mary Jiang, David Yu, Priyanka Deshpande, Bobby

Shen, Aditya Jain, Daniel (Shenghao) Wang, Jason Pang, Peter Hong, Ricky Chiang, Jessica Xiao,

Jarry Xiao, Zeyi Lin, Prerna Bhat, Divya Ramamoorthy, Patrick Haley, and Connie Yan have been

friends from my childhood who have kept in touch with me throughout all this time, which I deeply

appreciate. During the COVID times, life was always more colorful when Lisa Hsiao and Kelly Zhou

dropped by to visit us in Austin. Catching up with you all is always time well spent.

Finally, I thank the 1997-2016 San Antonio Spurs for giving me something to look forward to

every year of my childhood. Pop, Tim, and Manu remain some of my biggest heroes in life.

The most important part. This is the most difficult part of the acknowledgments section for

me to write, because I feel I will inevitably be unable to do it justice. I want to dedicate this thesis

to all of the following amazing individuals, who have shaped me into the person I am.

From the very beginning, my parents Tian Hong and Xu Xiaoli have done everything they can to

ensure that I live a good life. They sacrificed so much (more than I know) to give my sister and me

a solid education and a happy childhood, putting our well-being first always. They taught me the

value of honest, hard work, but also to always be proud of my efforts, rather than losing sleep over

things outside of my control. They have been my biggest cheerleaders throughout my life, and I hope

they know how much I look up to them as role models. Although the COVID times were difficult in

some ways, I am grateful to have spent a year of my Ph.D. eating my parents’ home-cooked meals

every weekend. It is my great fortune of a lifetime to be able to call you my parents.

Sunny, thank you for all the fun memories we had growing up, and for being the most thoughtful

sister I could ever ask for. Even though we’re on different coasts now, it’s always like a breath of

fresh air when we get to see each other again. Despite being the older sibling, I feel like I still learn

so much from you. I want you to know how proud I am to be your brother.

I would also like to acknowledge my extended family, especially my grandparents, Li Guirong,

Xu Jintang, Zhang Fulan, and Tian Qingzhong. My maternal grandparents helped raise me during

my early childhood, and were some of the most dedicated teachers I have ever had. My grandma Li

Guirong patiently taught me times tables over long walks to and from elementary school, and my

grandpa Xu Jintang painstakingly hand-translated math contests from English to Chinese so that

he could teach me. Despite speaking no English, they spent over a decade in America taking care of

my sister and me. I can only hope to give back to others a fraction of what they have given to me.

ix

Amy, the most important event of my time in graduate school is when you came into my life.

During the happy times, there is no one else I would rather celebrate with; during the hard times,

you always know how to make me feel like everything will be alright. Long distance hasn’t always

been easy, but I could imagine no better partner through it all. You are my best friend, and life is

sweeter now because I can always look forward to the next great adventure with you.

x

“When nothing seems to help, I go and look at a stonecutter hammering away

at his rock perhaps a hundred times without as much as a crack showing in it.

Yet at the hundred and first blow it will split in two, and I know

that it was not that blow that did it, but all that had gone before.”

— Jacob Riis

xi

Contents

Preface iv

Acknowledgments vi

1 Introduction 1

1.1 Results: Theory of Stochastic Variational Inequalities 9

1.1.1 Chapter 2: Acceleration via Primal-Dual Extragradient Methods 10

1.1.2 Chapter 3: Stochastic Methods for Matrix Games 11

1.2 Results: Combinatorial Optimization . 13

1.2.1 Chapter 4: Faster Approximate `∞ Regression and Maximum Flow 14

1.2.2 Chapter 5: Semi-Streaming Combinatorial Optimization 15

1.2.3 Chapter 6: Dynamic Decremental Bipartite Matching 16

1.3 Results: Structured Semidefinite Programming Solvers 16

1.3.1 Chapter 7: Matrix Multiplicative Weights and Friends 17

1.4 Results: Algorithmic High-Dimensional Statistics . 20

1.4.1 Chapter 8: High-Dimensional Robust Statistics in Almost-Linear Time 20

1.4.2 Chapter 9: Semi-Random Linear Systems . 22

1.4.3 Chapter 10: Towards an Oracle Complexity of Sampling 24

1.5 Bibliography of Represented Material . 25

I Stochastic Variational Inequalities and Combinatorial Optimization 28

2 Acceleration via Primal-Dual Extragradient Methods 29

2.1 Introduction . 29

2.1.1 Relative Lipschitzness in extragradient methods 30

2.1.2 Sharper rates for separable minimax and finite sum optimization 33

2.1.3 Additional related work . 41

2.2 Preliminaries . 42

xii

2.3 Extragradient convergence under relative Lipschitzness 44

2.4 Acceleration via relative Lipschitzness . 45

2.5 Area convexity rates for box-simplex games via relative Lipschitzness 48

2.6 Randomized coordinate acceleration via expected relative Lipschitzness 51

2.7 Separable minimax optimization . 53

2.7.1 Setup . 55

2.7.2 Algorithm . 56

2.7.3 Convergence analysis . 58

2.7.4 Main result . 63

2.8 Finite sum optimization . 63

2.8.1 Setup . 64

2.8.2 Algorithm . 65

2.8.3 Convergence analysis . 69

2.8.4 Main result . 71

2.9 Minimax finite sum optimization . 72

2.9.1 Setup . 73

2.9.2 Algorithm . 74

2.9.3 Inner loop convergence analysis . 78

2.9.4 Outer loop convergence analysis . 80

2.9.5 Main result . 81

3 Stochastic Methods for Matrix Games 83

3.1 Introduction . 83

3.1.1 Our results . 84

3.1.2 Our approach . 89

3.1.3 Related work . 95

3.1.4 Chapter organization . 99

3.2 Preliminaries . 99

3.2.1 Local norm setups . 99

3.2.2 The problem and optimality criterion . 101

3.2.3 Matrix access models . 102

3.2.4 Data structure interfaces . 102

3.3 Framework . 104

3.3.1 Sublinear coordinate methods . 104

3.3.2 Variance-reduced coordinate methods . 107

3.4 Matrix games . 110

3.4.1 `1-`1 sublinear coordinate method . 111

3.4.2 `1-`1 variance-reduced coordinate method . 113

xiii

3.5 Data structure implementation . 120

3.5.1 IterateMaintainerp . 120

3.5.2 ApproxExpMaintainer . 123

3.5.3 ScaleMaintainer . 130

3.6 Applications . 136

3.6.1 Maximum inscribed ball . 137

3.6.2 Minimum enclosing ball . 140

3.6.3 Regression . 141

4 Faster Approximate `∞ Regression and Maximum Flow 143

4.1 Introduction . 143

4.1.1 Regression results . 144

4.1.2 Maximum flow results . 146

4.1.3 Previous work . 148

4.1.4 Organization . 151

4.2 Overview . 152

4.2.1 Basic definitions . 152

4.2.2 Overview of our algorithms . 154

4.3 `∞ regression subject to a box constraint . 158

4.3.1 Constructing the smooth approximation to regression 158

4.3.2 Acceleration via proximal point method . 159

4.3.3 Constructing the subproblem oracle . 163

4.3.4 Putting it all together: accelerated `∞ regression 168

4.3.5 Cheap iterations for `∞ regression in column-sparse matrices 172

4.4 Accelerating maximum flow . 174

4.4.1 Maximum flow preliminaries . 174

4.4.2 From maximum flow to constrained `∞ regression 175

4.4.3 Runtimes for accelerated maximum flow . 175

4.4.4 Exact maximum flows in uncapacitated graphs 177

4.5 Improved flow runtimes via primal-dual coordinate regression 178

4.5.1 Overview . 179

4.5.2 Algorithm . 182

4.5.3 Runtime . 193

5 Semi-Streaming Combinatorial Optimization 204

5.1 Introduction . 204

5.1.1 Problem setup . 206

5.1.2 Our results . 208

xiv

5.1.3 Our techniques . 209

5.1.4 Previous work . 212

5.2 Preliminaries . 213

5.3 Box-simplex games in low space . 214

5.4 Approximate maximum cardinality matching . 220

5.4.1 Reducing MCM to a box-simplex problem . 221

5.4.2 Additional tools . 223

5.4.3 Approximate MCM in fewer passes and optimal space 224

5.5 Further matching applications . 225

5.5.1 Exact maximum cardinality matching . 225

5.5.2 Weighted bipartite matching under an `1 constraint 227

5.5.3 Optimal transportation . 228

5.5.4 Maximum weight matching . 229

5.6 Transshipment . 229

5.6.1 Constructing stretch approximators . 231

5.6.2 Reduction to box-simplex game . 233

5.6.3 Recovering a sparse flow . 235

5.6.4 Semi-streaming transshipment . 236

6 Dynamic Decremental Bipartite Matching 238

6.1 Introduction . 238

6.1.1 Our results . 241

6.1.2 Prior work . 245

6.2 Preliminaries . 246

6.3 Dynamic decremental bipartite matching . 247

6.3.1 DDBM framework . 247

6.3.2 DDBM solvers . 251

6.4 Regularized box-simplex games . 252

6.4.1 Algorithmic framework . 253

6.4.2 Helper lemmas . 255

6.4.3 Regularized box-simplex solver and its guarantees 256

II Semidefinite Programming and High-Dimensional Statistics 260

7 Matrix Multiplicative Weights and Friends 261

7.1 Introduction . 261

7.1.1 Sketching matrix multiplicative weights . 261

7.1.2 Ky Fan matrix multiplicative weights . 265

xv

7.1.3 Matrix dictionary recovery SDPs . 266

7.1.4 Schatten packing SDPs . 269

7.2 A rank-1 sketch for matrix multiplicative weights . 270

7.2.1 Main result . 270

7.2.2 Analyzing the average mirror projection . 274

7.2.3 Efficient computation of matrix exponential-vector products 278

7.2.4 Application to semidefinite programming . 280

7.2.5 Discussion . 283

7.3 Ky Fan matrix multiplicative weights . 284

7.3.1 Regret bound . 284

7.3.2 Refined divergence bound . 286

7.3.3 Refined k-PCA guarantees . 290

7.3.4 Implementation . 295

7.4 Matrix dictionary recovery SDP solvers . 302

7.4.1 Identity constraints . 302

7.4.2 General constraints . 310

7.5 Schatten packing . 317

7.5.1 Mirror descent interpretation of [379] . 317

7.5.2 `p-norm packing linear programs . 318

7.5.3 Schatten-norm packing semidefinite programs 320

7.5.4 Schatten packing with a `∞ constraint . 321

8 High-Dimensional Robust Statistics in Almost-Linear Time 322

8.1 Organization . 322

8.2 Clustering mixture models in almost-linear time . 323

8.2.1 Our results . 326

8.2.2 Technical overview . 327

8.3 Preliminaries: clustering mixture models . 331

8.3.1 Notation . 332

8.3.2 Technical tools . 333

8.3.3 Potential function approach to fast filtering 335

8.4 Fast bounded covariance multifilter . 338

8.4.1 Reducing Partition to SplitOrCluster . 339

8.4.2 Reducing SplitOrCluster to SplitOrTailBound and Fixing 343

8.4.3 Implementation of SplitOrTailBound . 347

8.4.4 Fixing a cluster via fast filtering . 350

8.4.5 Runtime analysis . 356

8.4.6 Full bounded covariance algorithm . 357

xvi

8.4.7 Cleaning up the list . 360

8.4.8 (Slightly) improving the error rate . 363

8.5 Clustering mixture models . 364

8.5.1 Clustering uniform (sub-)Gaussian mixture models 364

8.5.2 Robustly clustering (sub-)Gaussian mixture models 367

8.5.3 Mixture models with bounded fourth moments 369

8.5.4 Bounded-covariance mixture models . 371

8.6 Robust regression . 373

8.6.1 Our results . 374

8.6.2 Prior work . 378

8.6.3 Techniques . 379

8.7 Preliminaries: robust regression . 381

8.7.1 Notation . 381

8.7.2 Our statistical models . 384

8.7.3 Linear regression . 385

8.7.4 Regularity assumptions: Lipschitz and smooth stochastic optimization 389

8.7.5 Robustly decreasing the covariance operator norm 391

8.8 Linear regression . 392

8.8.1 Filtering under (ε, ε
2

α)-goodness . 392

8.8.2 Identifiability proof for linear regression . 393

8.8.3 Halving the distance to θ? . 395

8.8.4 Last phase analysis . 399

8.8.5 Full algorithm . 400

8.9 Robust acceleration . 401

8.9.1 Noisy gradient oracle . 402

8.9.2 Proximal subproblems . 404

8.9.3 Halving the distance to θ?F . 407

8.9.4 Full accelerated algorithm . 411

8.10 Lipschitz generalized linear models . 413

8.10.1 Noisy gradient oracle for the Moreau envelope 413

8.10.2 Accelerated optimization of the regularized Moreau envelope 416

8.11 Robust sub-Gaussian principal component analysis 416

8.11.1 Robust sub-Gaussian PCA via filtering . 420

8.11.2 Robust sub-Gaussian PCA in nearly-linear time 421

9 Semi-Random Linear Systems 427

9.1 Organization . 427

9.2 Diagonal preconditioning . 428

xvii

9.2.1 Inner scaling . 429

9.2.2 Outer scaling . 430

9.3 Overcomplete semi-random linear systems . 437

9.3.1 Semi-random linear systems . 438

9.3.2 Statistical linear regression . 439

9.4 Semi-random sparse recovery . 444

9.4.1 Our techniques . 449

9.4.2 Related work . 453

9.5 Preliminaries: semi-random sparse recovery . 454

9.6 Exact recovery . 455

9.6.1 Radius contraction using step oracles . 456

9.6.2 Designing a step oracle . 459

9.6.3 Equivalence between Assumption 11 and RIP 465

9.6.4 Putting it all together . 468

9.7 Noisy recovery . 468

9.7.1 Radius contraction above the noise floor using step oracles 469

9.7.2 Designing a strong step oracle . 475

9.7.3 Equivalence between Assumption 12 and RIP 477

9.7.4 Putting it all together . 478

10 Towards an Oracle Complexity of Sampling 480

10.1 Introduction . 480

10.1.1 Our results: upper bounds . 482

10.1.2 Our results: lower bounds . 486

10.1.3 Previous work . 490

10.1.4 Technical overview: upper bounds . 493

10.1.5 Technical overview: lower bounds . 499

10.1.6 Roadmap . 501

10.2 Preliminaries . 501

10.2.1 Notation . 501

10.2.2 Technical facts . 503

10.2.3 Metropolis-adjusted Langevin algorithm . 504

10.2.4 Hamiltonian Monte Carlo . 505

10.3 Proximal reduction framework . 505

10.4 Tighter runtimes for structured densities . 510

10.4.1 Well-conditioned logconcave sampling: proof of Corollary 45 510

10.4.2 Composite logconcave sampling: proof of Corollary 46 513

10.4.3 Sampling logconcave finite sums: proof of Corollary 47 514

xviii

10.5 Composite logconcave sampling with a restricted Gaussian oracle 516

10.5.1 Reduction from Composite-Sample to Composite-Sample-Shared-Min . . . 516

10.5.2 Reduction from Composite-Sample-Shared-Min to Sample-Joint-Dist . . . 519

10.5.3 Implementing Sample-Joint-Dist . 519

10.5.4 Putting it all together: proof of Theorem 69 519

10.6 Logconcave finite sums . 520

10.6.1 Approximate Metropolis-Hastings . 521

10.6.2 Conductance analysis . 525

10.7 Lower bound for MALA on Gaussians . 527

10.8 Lower bound for MALA on well-conditioned distributions 534

10.9 Mixing time lower bound for MALA . 541

10.9.1 Mixing time lower bound for small h . 542

10.9.2 Proof of Theorem 73 . 543

10.10Lower bounds for HMC . 544

10.10.1 Structure of HMC: a detour to Chebyshev polynomials 544

10.10.2 HMC lower bound for all K . 548

10.11Conclusion . 553

A Deferred proofs from Chapter 2 554

A.1 Convex analysis . 554

A.2 Unaccelerated smooth convex optimization via mirror prox 557

A.3 Minimax optimization . 558

A.4 Additional extragradient methods . 560

A.4.1 Strongly monotone mirror prox . 560

A.4.2 Dual extrapolation . 561

A.5 Extragradient acceleration in non-Euclidean norms 562

A.6 Missing proofs from Section 2.6 . 565

A.7 Optimism . 568

A.8 Reducing strongly monotone problems to regularized subproblems 568

A.8.1 Convex optimization . 568

A.8.2 Convex-concave optimization . 570

A.9 Helper facts . 571

A.10 Proofs for Section 2.9 . 573

A.10.1 Proofs for Section 2.9.2 . 573

A.10.2 Proofs for Section 2.9.3 . 576

A.10.3 Proofs for Section 2.9.4 . 580

xix

B Deferred proofs from Chapter 3 584

B.1 Deferred proofs from Section 3.2 . 584

B.2 Deferred proofs from Section 3.3 . 586

B.2.1 Proof of Proposition 9 . 586

B.2.2 Proof of Proposition 10 . 588

B.2.3 Proof of Proposition 11 . 589

B.3 Deferred proofs for sublinear methods . 593

B.3.1 `2-`2 sublinear coordinate method . 593

B.3.2 `2-`1 sublinear coordinate method . 597

B.4 Deferred proofs for variance-reduced methods . 601

B.4.1 Helper proofs . 601

B.4.2 `2-`2 variance-reduced coordinate method . 603

B.4.3 `2-`1 variance-reduced coordinate method . 608

B.5 Additional results on variance-reduced methods . 612

B.5.1 Row-column sparsity variance-reduced methods 612

B.5.2 Extensions with composite terms . 614

B.6 Deferred proofs from Section 3.6 . 618

B.6.1 Proofs from Section 3.6.1 . 618

B.6.2 Proofs from Section 3.6.2 . 619

B.6.3 Proofs from Section 3.6.3 . 619

B.7 Strongly monotone proximal method . 622

B.8 IterateMaintainer2: numerical stability and variations 625

B.8.1 Numerical stability of IterateMaintainer1. 625

B.8.2 WeightedIterateMaintainer2 . 626

B.8.3 CenteredIterateMaintainer2 . 628

C Deferred proofs from Chapter 4 630

C.1 Missing proofs from Section 4.1 and Section 4.2 . 630

C.1.1 Folklore bound on size of `∞-strongly-convex functions 630

C.1.2 Reduction from general box-constrained `∞ regression to Definition 8 631

C.1.3 Convergence rates of first-order methods . 632

C.1.4 Proof of Lemma 239 . 633

C.1.5 Proof of Lemma 240 . 634

C.2 Missing proofs from Section 4.4 . 634

C.2.1 Reducing undirected maximum flow to `∞ regression 634

C.2.2 Reducing directed maximum flow to undirected maximum flow 637

xx

D Deferred proofs from Chapter 5 639

D.1 Area convexity and optimal transport . 639

D.1.1 Optimal transport . 639

D.1.2 Overview . 643

D.1.3 Main algorithm . 646

D.1.4 Rounding to Ur,c . 649

D.1.5 Missing proofs from Section D.1.3 . 650

D.1.6 Experiments . 657

D.1.7 Deferred proofs from Section 5.3 . 661

D.2 Matching tools from the literature . 663

D.3 Cycle cancelling in low space . 665

D.3.1 Link/cut tree description . 666

D.3.2 Implementation of BCCO . 667

D.4 Sampling for rounding linear programming solutions 668

D.4.1 Concentration bounds . 668

D.4.2 Random sampling guarantees . 670

D.4.3 Application: rounding MCM solutions . 674

D.5 Approximate MCM via box-constrained Newton’s method 675

E Deferred proofs from Chapter 6 684

E.1 Proofs for Section 6.3 . 684

E.1.1 Proofs for Section 6.3.1 . 684

E.1.2 DDBM via regularized box-simplex games . 686

E.1.3 DDBM via matrix scaling and box-constrained Newton’s method 689

E.1.4 DDBM via Sinkhorn objective solver in [124] 691

E.2 Proofs for Section 6.4 . 692

E.2.1 Proofs for Section 6.4.1 . 694

E.2.2 Proofs for Section 6.4.2 . 698

E.2.3 Proofs for Section 6.4.3 . 701

E.3 Approximating Sinkhorn distances . 708

E.3.1 Regularized box-simplex solver for computing Sinkhorn distances: Theorem 85 709

E.3.2 Box-constrained Newton for computing Sinkhorn distances: Theorem 86 . . . 711

E.3.3 Unaccelerated rate of Sinkhorn’s algorithm 713

F Deferred proofs from Chapter 7 716

F.1 Deferred proofs from Section 7.2 . 716

F.1.1 Dual averaging regret bounds . 716

F.1.2 High probability regret bounds . 717

xxi

F.1.3 Proof of Lemma 7.2.2 . 718

F.1.4 Proof of Lemma 7.2.2 . 719

F.1.5 Facts about the Beta distribution . 726

F.1.6 Efficient computation of matrix exponential-vector products 727

F.1.7 Description of the Lanczos method . 728

F.2 Deferred proofs from Sections 7.4 . 734

F.2.1 Proof of Proposition 26 . 734

F.3 Deferred proofs from Section 7.5 . 735

F.3.1 Proofs from Section 7.5.2 . 735

F.3.2 Proofs from Section 7.5.3 . 736

F.3.3 Proof of Proposition 30 . 739

G Deferred proofs from Chapter 8 744

G.1 List-decodable mean estimation for α−1 = Ω(d) . 744

G.2 Filtering in k dimensions: SIFT . 745

G.2.1 General preliminaries . 746

G.2.2 Filtering preliminaries . 747

G.2.3 Analysis of SIFT . 750

G.3 Fast filtering in k dimensions under a diameter bound 753

G.3.1 Analysis of DecreaseKFNorm . 756

G.3.2 Analysis of ProduceGoodTuple . 761

G.4 Cleanup . 764

G.4.1 Merging candidate means . 764

G.4.2 Bounding dataset diameter . 766

G.4.3 Putting it all together . 767

G.4.4 Trading off accuracy for runtime . 769

G.5 Warmup: fast Gaussian multifilter . 770

G.5.1 Reducing GaussianPartition to GaussianSplitOrCluster 771

G.5.2 Implementation of GaussianSplitOrCluster . 775

G.5.3 Full Gaussian algorithm . 778

G.6 Deferred proofs from Section 3.2 . 782

G.6.1 Proof of Proposition 33 . 782

G.6.2 Proof of Proposition 36 . 785

G.7 Concentration . 789

G.7.1 Sub-Gaussian concentration . 789

G.7.2 Concentration under weightings in Sn
ε . 790

G.8 Deferred proofs from Section 8.11.1 . 792

G.8.1 Robust univariate variance estimation . 792

xxii

G.8.2 Preliminaries . 795

G.8.3 Analysis of PCAFilter . 796

G.9 Deferred proofs from Section 8.11.2 . 799

G.9.1 Proof of Proposition 40 . 799

G.9.2 Proof of Lemma 149 . 800

G.9.3 Proof of Lemma 150 . 800

H Deferred proofs from Chapter 9 801

H.1 Deferred proofs from Section 9.2 . 801

H.1.1 Polynomial approximation to the square root 801

H.1.2 Deferred proofs from Section 9.2.2 . 802

H.1.3 Normalizing the diagonal . 803

H.1.4 Faster scalings with a conjectured subroutine 806

H.2 Greedy and non-convex methods fail in the semi-random setting 813

H.2.1 Iterative hard thresholding . 814

H.2.2 Orthogonal matching pursuit . 814

H.2.3 Convex methods . 815

H.3 Proof of Lemma 171 . 816

I Deferred proofs from Chapter 10 820

I.1 Discussion of inexactness tolerance . 820

I.2 Deferred proofs from Section 10.5 . 821

I.2.1 Deferred proofs from Section 10.5.2 . 821

I.2.2 Deferred proofs from Section 10.5.3 . 827

I.3 Mixing time ingredients . 830

I.3.1 Warm start . 830

I.3.2 Transitions of nearby points . 832

I.3.3 Isoperimetry . 835

I.3.4 Correctness of Y-Oracle . 836

I.4 Structural results . 838

I.5 Equivalence of HMC and Metropolis-adjusted Langevin dynamics 841

I.6 Gradient concentration . 842

I.7 Necessity of fixing a scale . 846

I.8 HMC lower bounds beyond κ
√
d . 846

I.8.1 Relaxation time lower bound for small K . 847

I.8.2 Mixing time lower bound for small K . 853

Bibliography 856

xxiii

List of Tables

3.1 Dependence on A for different methods in different geometries. Comments: Ai: and

A:j denote the ith row and jth column of A, respectively. Numerically sparse instances

satisfy Lco = O(Lrc).
† In the `2-`1 setting we can also achieve Lco = Lrc

√
rcs and

Lco = max{maxi ‖Ai:‖1 ,
√

maxi ‖Ai:‖1 maxj ‖A:j‖1}. 86

3.2 Comparison of iterative methods for bilinear problems. Comments: nnz denotes the

number of nonzeros in A ∈ Rm×n and rcs ≤ max{m,n} denotes the maximum number

of nonzeros in any row and column of A. The quantities Lmv, Lco and Lrc depend on

problem geometry (see Table 3.1). 86

3.3 Comparison of complexity for different applications. Comments: ρ denotes the radii

ratio of the minimum ball enclosing the rows of A and maximum ball inscribed in

them. † For MaxIB and MinEB, we refer the reader to Section 3.6.2 for a more

fine-grained runtime bound. 86

3.4 The distributions p, q used in our coordinate gradient estimator. Comments: The estimator

is of the form g̃(x, y) =
(

1
pij

yiAij · ej ,− 1
qlk

Alkxk · el
)

where i, j ∼ p and l, k ∼ q. 96

3.5 The distributions p, q used for our reduced variance coordinate gradient estimator. Com-

ments: The estimator is of the form g̃(x, y) =
(
A>y+ 1

pij
(yi − y0,i)Aij ·ej , −Ax− 1

qlk
Alk(xk − x0,k)·

el
)

where i, j ∼ p and l, k ∼ q and x0, y0 is a reference point. 96

3.6 Local norm setups. Comments: In each case, Z = X × Y, ∆n is the probability

simplex {x | x ∈ Rn≥0,1
>
n x = 1}, Bn is the Euclidean ball {x | x ∈ Rn, ‖x‖2 ≤ 1}, the

operations sign, min, and | · | are performed entrywise on a vector, and ◦ stands for

the entrywise product between vectors. 100

4.1 Dependencies of algorithms for `∞ regression in A ∈ Rn×m on various problem pa-

rameters. Note that there is up to an O(
√
m) discrepancy between the `2 and `∞

norms. Here, d is the maximum number of nonzero entries in any column of A. . . 149

4.2 Complexity of maximum flow since [242] for undirected graphs with n vertices, m

edges, where s is the `22 of the maximum flow’s congestion, and F is the maximum

flow value. 151

xxiv

8.1 Robust linear regression results in the κ � 1 regime. All listed results assume 2-

to-4 hypercontractivity and independent noise (although some also give rates for

non-independent noise). Error guarantees are in Mahalanobis distance. We omit

polylogarithmic factors for simplicity. 378

10.1 Complexity of sampling from e−F (x) where F (x) = 1
n

∑
i∈[n] fi(x) on Rd is µ-strongly

convex, each fi is convex and L-smooth, and κ = L
µ . For relevant lines, M is the

Lipschitz constant of the Hessian ∇2F , which our algorithm has no dependence on.

Complexity is measured in terms of the number of calls to fi or ∇fi for summands

{fi}i∈[n]. We hide polylog(nκdε) factors for simplicity. 491

D.1 Optimal transport algorithms. Algorithms using second-order information use potentially-

expensive SDD system solvers; the runtime analysis of Sink/Greenkhorn is due to

[208, 365]. 642

xxv

List of Figures

9.1 The effect of `1 projection on iterate progress. The dashed line represents a facet of

the `1-ball around xt of radius ‖xt − x?‖1. 452

10.1 Second derivative of our hard function f1d, κ = 10, h = 0.01. Starting from inside

the hard region, on average over g ∼ N (0, I), a move by
√

2hg decreases the second

derivative. 500

C.1 The reduction from solving the approximate maximum flow problem to solving Õ(1)

approximate regression problems. 636

C.2 Recovering a maximum flow in directed G via a maximum flow in undirected G′. . . 638

D.1 Edge-incidence matrix A of a 3× 3 bipartite graph and uniform demands. 643

xxvi

Chapter 1

Introduction

Iterative methods are, in a broad sense, algorithmic procedures which make progress towards solving

a computational task by performing a sequence of update rules, which are potentially much less

cumbersome to implement than an “all-at-once” solution to the original problem. The analysis of

iterative methods typically proceeds by first defining a global progress measure (a “potential”), and

showing that local iterative updates advance this potential. In some cases, the potential used for

analysis purposes directly reflects the problem the algorithm designer is trying to solve (e.g. when

minimizing a loss function, the potential may be the function value itself). In other cases, e.g. when

the most direct potential of interest either is difficult to directly measure or does not accurately

reflect the type of progress being made by local iterates, designing an appropriate potential for

analysis purposes can become a much more challenging endeavor.

Simple iterative methods such as (stochastic) gradient descent have emerged as a powerful

workhorse enabling many recent advances in data science, operations research, and machine learn-

ing. The practical appeal of iterative methods is clear: by synthesizing local update rules into an

algorithm with global performance guarantees, iterative methods effectively decouple the efficient

implementation of the local update (such as matrix-vector multiplications, gradient computations,

or other vectorizable operations) from the analysis of the overall algorithm. From an algorithm de-

sign perspective, what remains is to establish an understanding of performance measures obtained

by the potpourri of iterative methods which practitioners may choose between. However, in many

situations, there is not a “one-size-fits-all” type of analysis which generically applies to the myriad

use cases of an iterative method framework. To advance the algorithmic frontier for a specific task at

hand, an algorithm designer needs to take into account specific structural aspects of the problem in

choosing an iterative method (and conducting a corresponding analysis, e.g. designing a potential).

Ubiquitous algorithms and algorithmic primitives building upon iterative update rules, such as

stochastic gradient methods, convex programming, regression, and clustering, have well-understood

1

CHAPTER 1. INTRODUCTION 2

analyses in classical “textbook” regimes, under simplifying assumptions such as moderate dimension-

ality, knowledge of problem parameters, and an independently-sampled dataset. Frequently, these

analyses are applied black-box in designing methodology for specific applications to obtain theo-

retical performance guarantees. However, in prominent modern applications going beyond these

well-studied regimes, the theoretical guarantees of basic algorithms and their classical analyses may

leave much on the table. This is particularly true when pursuing tradeoffs between goals such as ro-

bustness, accuracy, and computational efficiency as is often demanded by the practice of data-driven

applications. This state of affairs suggests the following directions towards developing a modern

theory of iterative methods.

First, can we develop a principled understanding of the power of classical frameworks for designing

iterative methods, under design constraints imposed by the modern practice of data science?

Moreover, in cases when classical frameworks fall short, can we expand the modern computa-

tional theory of data science by proposing new algorithmic frameworks which provably address the

shortcomings of the existing toolkit in the context of these aforementioned design constraints?

In many of the case studies contained in this thesis, the answer to these questions is yes, with an

important qualification: to go beyond the black-box performance guarantees of analysis frameworks

for iterative methods, we will crucially rely on a deeper understanding of specific structural properties

of the algorithmic problem we study. This type of problem-specific structural understanding can be

viewed as a guiding force in the theory of algorithm design in two ways. Most directly, it guides our

selection of an appropriate iterative method and analysis for solving our desired problem. Taking a

more comprehensive view, if the type of structure in question is sufficiently fundamental (e.g. shared

across multiple natural computational problems), it may motivate the development of new iterative

methods which are capable of taking advantage of said structure, and which thus have important

implications for solving future problems with similar properties.

The goal of this thesis is to investigate algorithmic problems at the interface of iterative method

design and the practice of modern data science through the lens of these two questions. Admittedly,

the problems this thesis studies are fairly diverse, and at first glance may not seem particularly

cohesive. However, the design of algorithms for solving these problems becomes a substantially more

unified undertaking when approached through the principles discussed thus far, namely furthering

the interplay between iterative method theory and structured data science. We organize the thesis

into two distinct parts, which take different perspectives on the types of iterative method frameworks

they investigate, the structure and mathematical properties of the problems they capitalize on, and

the analytical toolkits they borrow from in synthesizing complete algorithms.

Each part of this thesis will begin with our developments of an aspect of modern iterative method

theory: stochastic variational inequality solvers in Part I, and efficient semidefinite program solvers

in Part II. In each case, the theory we develop aims to answer the following questions for the family

of structured optimization problems at hand.

CHAPTER 1. INTRODUCTION 3

1. Convergence analysis. How can we develop analysis frameworks which effectively capture the

convergence of our iterative methods (e.g. by choosing an appropriate potential function)?

2. Efficient iterations. How can we couple our framework with cheaply-implementable iterations

(e.g. by replacing complex updates with simpler or more flexible alternatives, which afford a

provably comparable iteration quality in terms of relevant progress measures)?

In each of Parts I and II, we will offer fresh perspectives for both of Questions 1 and 2: in the latter

case of answering Question 2, we will frequently combine our developments in optimization theory

with advancements in numerical linear algebra (i.e. streaming and sketching) or data structures.

Finally, the latter portion of each part of the thesis develops a close interplay between the new

aspects of optimization theory we build and algorithms with improved performance guarantees for

a fundamental application domain: combinatorial optimization in Part I, and high-dimensional

statistics in Part II. By pushing forth this interplay with new iterative methods which are capable

of taking advantage of structural aspects of the relevant application domain, our goal in this thesis

is to showcase the power and flexibility of application-mindful iterative method design for solving

problems in structured algorithmic data science.

Part I: Stochastic Variational Inequalities and Combinatorial Optimization

In the first part of this thesis, we develop new iterative methods for solving variational inequalities

admitting stochastic formulations, as well as refined frameworks for analyzing these new methods.

In Chapters 2 and 3, we directly apply these new methods to answer several open questions in

the theory of first-order optimization methods. In Chapters 4, 5, and 6, we improve the state-

of-the-art for a variety of well-studied problems in combinatorial optimization, such as maximum

flow, optimal transport, and bipartite matching in different computational models, by combining

our new iterative machinery with insights from the theoretical computer science literature, such as

combinatorial constructions and efficient data structures.

We now briefly motivate how these developments came to be. Our approach to solving the

algorithmic graph theory problems we study in Chapters 4, 5, and 6 is to first relax the underly-

ing combinatorial optimization problem to an appropriate continuous formulation. The resulting

continuous formulations share the following properties.

1. They are naturally formulated as zero-sum games between two players with geometrically-

constrained domains (e.g. a Euclidean ball, a probability simplex, or a coordinatewise box).

2. They have combinatorial structure which can be harnessed to obtain tighter runtime char-

acterizations, and are effectively captured by subsampling schemes (e.g. they are regression

problems in an adjacency matrix with rows that are sparse or bounded, or become such a

problem after applying a graph-structured preconditioner).

CHAPTER 1. INTRODUCTION 4

In order to capitalize upon these structural aspects, we develop the theory of stochastic variational

inequalities. Variational inequalities (VIs) are a well-studied family of continuous optimization

problems parameterized by a vector-valued operator g : Z → Z∗, where Z∗ is the dual space of Z,

see e.g. [458, 460, 459]. A strong solution to a VI in an operator g is a point z? ∈ Z such that

〈g(z?), z? − z〉 ≤ 0 for all z ∈ Z. (1.1)

The attentive reader well-versed in convex optimization may recognize (1.1) as the first-order opti-

mality condition [458, 98]; indeed, when g = ∇f for a differentiable convex function f defined over

a domain Z, (1.1) is a necessary and sufficient condition for z? to minimize f . This phenomenon is

not unique to convex optimization: (1.1) has important implications for more general VIs, particu-

larly when the operator g is monotone (for all z, w ∈ Z, 〈g(z)− g(w), z − w〉 ≥ 0). Indeed, convex

function gradients are monotone, and further another important example of a monotone operator

is an appropriate gradient operator of a convex-concave function f : Z → R, where Z = X × Y is

a product domain.1 In this case, (1.1) implies that z? is an equilibrium of f , and hence solves an

appropriate minimax optimization problem.

In the special case of convex optimization, a substantial amount of effort in the continuous

optimization community has been devoted to the understanding of optimal query complexities for

solving (1.1) via first-order iterative methods, which in each iteration, query g at a point in the

domain and perform a computationally-cheap update rule (e.g. direct vector addition). This has

led to a comprehensive understanding of the complexity of solving convex optimization problems in

various structured forms. A particularly important type of structure in the practice of optimization

is stochasticity. Informally, this property is captured when g admits a natural formulation as an

expectation over a random operator g̃ : Z → Z∗, and either updates or queries to g̃ are substantially

cheaper than the analogs in g. A canonical example is when f is an average loss function over a

sample or a population, and g̃ = ∇fi is the loss gradient evaluated at a specific individual i.

However, much less is known about the complexity of solving stochastic variational inequalities

beyond convex minimization. This becomes highly relevant in our applications to combinatorial

optimization, which are often encapsulated by an appropriate stochastic minimax problem, as al-

luded to by the structural properties discussed previously. Correspondingly, in Chapters 2 and 3, we

develop new iterative methods for analyzing and solving more general stochastic variational inequal-

ities. More concretely, Chapter 2 investigates the power of primal-dual formulations of variational

inequalities for designing accelerated algorithms, making progress towards understanding Question 1

from the perspective of designing analysis frameworks for acceleration. Further, Chapter 3 builds

theories of variance reduction and numerical sparsity for stochastic minimax problems, providing

new tools for answering Question 2 for a suite of structured sparse updates.

1More precisely, in the case when f(·, y) is convex and f(x, ·) is concave for any x ∈ X , y ∈ Y, we will define the
monotone operator g(x, y) = (∇xf(x, y),−∇yf(x, y)).

CHAPTER 1. INTRODUCTION 5

Beyond yielding important primitives and design frameworks which will later be used in Chap-

ters 4, 5, and 6, we note that results in Chapters 2 and 3 represent independently important progress

in optimization theory, answering several basic open questions some of which have seen no improved

bounds in over a decade (e.g. approximating a Nash equilbrium in a zero-sum game). More broadly,

both minimax and stochastic optimization problems have become increasingly important for mod-

eling purposes in modern data science, representing robustness to an adversary and scalability to

large datasets respectively. As a result, we are optimistic that developing a general understanding

of stochastic VI theory will have important downstream implications, a major motivation for the

work in Part I of this thesis beyond specific applications in combinatorial optimization.

Finally, we briefly discuss the types of combinatorial optimization problems which are considered

in Part I of the thesis, and the modern algorithmic design considerations they aim to address.

Our results in Chapter 4, 5, and 6 showcase the interplay between iterative method design and

combinatorial problem structure, as well as the flexibility of the stochastic VI solvers we build in

adapting to various design constraints.

1. In Chapter 4, we consider the undirected maximum flow problem on capacitated graphs. We

develop stochastic algorithms based on coordinate subsampling which, on a graph with m

edges and n vertices, yield a flow of quality 1 − ε times the optimum with a runtime2 of

Õ(m+
√
mnε−1), which remains the state-of-the-art for moderately small ε (and is improved

further for graphs with sparse maximum flows). Our methods take advantage of inherent

sparsity structure in graphs: by routing flows on a size-m graph via a smaller object (of

dimension Õ(n)), after a small number of passes over the graph, the method has a convergence

rate which scales sublinearly in graph size, an appealing property for large-scale applications.

2. In Chapter 5, we consider combinatorial optimization problems such as transportation and

matching in a semi-streaming setting, where we can only access the description of the graph

using read-only passes over its adjacency matrix. We improve the pass complexities of semi-

streaming iterative methods by applying acceleration tools to an appropriate continuous re-

laxation of the optimization problem. Moreover, by opening up the recursions governing our

iterative method iterates, we demonstrate that our new algorithms can be implemented using

an optimal O(n) space. To achieve this, we combine an implicit representation of our iterative

method iterates with dynamic data structure tools for sparsifying solutions on the fly.

3. In Chapter 6, we consider the application of iterative methods to dynamic combinatorial

optimization problems, where one wishes to maintain an (approximate) solution on a slowly-

changing graph, without recomputing from scratch. We demonstrate a simple framework

for a dynamic model of bipartite matching, which reduces the solution maintenance problem

2Throughout the thesis, for ease of presentation, Õ hides polylogarithmic factors in appropriate problem parame-
ters; in specific sections, we will be more precise in quantifying the relevant paramters.

CHAPTER 1. INTRODUCTION 6

to solving a small number of regularized regression subproblems. Intuitively, regularization

equips the subproblem solutions with robustness properties which persist in a dynamic model,

even against strong (adversarial) models of how the problem changes over time. Our hope

is that this insight opens the door towards further applications of the powerful continuous

optimization toolkit for dynamic algorithmic questions.

Part II: Semidefinite Programming and High-Dimensional Statistics

In the second part of this thesis, we present novel solvers achieving nearly-linear runtimes for various

structured semidefinite programs, and their further algorithmic implications. Semidefinite program-

ming (SDP) is a powerful primitive in convex optimization, and generalizes linear programming (LP)

to matrix-valued variables and constraints. Formally, semidefinite programs (SDPs) are concerned

with optimization problems of the form

min 〈C,X〉 subject to X ∈ Sd≥0, 〈Ai,X〉 ≥ bi for all i ∈ [n], (1.2)

where C, X, {Ai}i∈[n] are real, symmetric d× d matrices and Sd≥0 is the d× d positive semidefinite

cone. However, the flexibility of using SDP solvers to attack an algorithmic problem can come at a

significant computational price. The implementation of update rules for semidefinite programming

solvers is notoriously expensive, often requiring full-matrix spectral operations (e.g. inversion or

eigendecomposition), or careful analysis of the error propagation of approximate operations (see

e.g. [399] for an extensive discussion of the difficulty of implicitly exponentiating a matrix). This

computational overhead is a substantial challenge to address when deciding whether to use a SDP

solver in practice. In Chapter 7, we give a suite of new SDP tools which both run in nearly-linear

time, and effectively capture different types of problem structure. Two important types of structure

we investigate are monotonicity (e.g. where the constraints {Ai}i∈[n] in (1.2) are all nonnegative

or nonpositive when viewed in an operator sense) and geometry (e.g. variants of (1.2) which have

constraint geometry captured by an appropriate matrix norm, such as Schatten or Ky Fan norms,

and hence can be phrased as regret minimization over an appropriate dual matrix set).

The solvers we give in Chapter 7 advance our understanding of Questions 1 and 2 on multiple

fronts. From the perspective of Question 1, we suggest a new approach towards understanding

width-independent convergence rates for monotone SDPs based on opening up potentials used in

regret minimization, which results in multiple novel solvers. From the perspective of Question 2,

we demonstrate new mathematical properties of low-rank sketches and the resulting approximate

projections they implement, which allows for their use in iterates of our SDP solvers.

In Chapters 8 and 9, we build upon these new solvers either directly or indirectly (drawing

inspiration from their design principles) to develop new methods for modern algorithmic questions

in high-dimensional statistics. A common theme in these two chapters is the investigation of the

CHAPTER 1. INTRODUCTION 7

robustness of algorithms to model misspecification. Classical analyses of estimators and learning

algorithms in statistics theory typically assume a “best-case” scenario from a modeling standpoint,

which makes obtaining provable guarantees more tractable: a few examples follow.

1. Assume that the dataset is drawn independently from the same distribution (homogeneity).

2. Assume that the underlying distribution is “well-behaved” and “explicit” in various senses,

such as belonging to a known family (e.g. Gaussian), exhibiting strong concentration properties

(e.g. light tail behavior or bounded moments), or satisfying an explicit parameterization (e.g.

being in approximately isotropic position, with a near-identity covariance).

However, due to the large-scale nature of modern data collection, imposing such strong assump-

tions about a statistical task may lead to meaningless algorithm performance guarantees, resulting

in estimates which reveal very little about the actual problem at hand. As a result, it is important

to develop algorithms which are flexible enough to datasets we are likely to actually observe, which

may break typical assumptions. These assumption violations may occur at several different places

along the data collection pipeline, including heterogeneity of sampling and (potentially adversarial)

dataset contamination; alternatively, the ground truth may simply not have the properties we would

like to posit (e.g. it is non-Gaussian, or satisfies weak concentration).

The field of robust statistics [31, 512, 278, 513] has classically addressed exactly these consid-

erations, and indeed has resulted in robust estimators which can handle various forms of dataset

contamination. Unfortunately, yet another aspect of modern data science throws a new wrinkle into

the effectiveness of these classical robust estimators: high dimensionality. In particular, classical

robust estimators when viewed as algorithms often result in runtimes exponential in the problem

dimension. This has been alleviated in part by recent advances by the theoretical computer science

community, e.g. [175, 337], but the resulting runtimes of many of these newly proposed algorithms

are still far from linear in the problem size, and remain potentially prohibitive in high dimensions.

This thesis advances the state-of-the-art of robust algorithms for performing statistical tasks in

high dimensions. We consider two fairly distinct examples of algorithmic robustness criteria “beyond

the best case” motivated by practical modeling considerations.

1. In Chapter 8, we develop new algorithms for estimating generalized linear models, clustering

mixture models, and performing principal component analysis under the strong contamination

model. In this model, an adversary is allowed to replace a bounded fraction of (independent)

draws with arbitrary points in the support of the underlying distribution, reflecting either

(potentially adversarial) data poisoning or model misspecification in total variation distance.

2. In Chapter 9, we give new algorithms for overcomplete linear regression and sparse recovery,

in the presence of a monotone semi-random adversary. Such an adversary can augment a well-

behaved dataset with additional consistent information, which cannot affect the information-

theoretic tractability of the problem, but can arbitrarily hinder the computational performance

CHAPTER 1. INTRODUCTION 8

of iterative methods which succeed under best case assumptions. This adversary captures the

presence of heterogeneous data sources or the breaking of independence assumptions.

All of the algorithms presented in Chapters 8 and 9 crucially both run in almost-linear time in

the dataset size, and further obtain provably near-optimal statistical guarantees under the relevant

contamination model. Our algorithms build heavily upon the SDP solvers we develop in Chapter 7,

to capture structural properties of the underlying problem instance. Intuitively, many of the nice-

ness properties which are used by classical “best-case analyses” of the statistical problems we study

are inherently spectral. For example, bounded moments may be certified through a small covariance

matrix, and isotropicity and variants thereof are inherently statements about the conditioning of a

dataset (how “spherical” the covariance matrix is). Moreover, algorithms which only take advantage

of independence of samples through matrix concentration arguments can frequently be simulated

through appropriate spectral certificates of concentration. As a result, even in contaminated situ-

ations beyond the best case, by carefully designing and solving appropriate SDP instances we can

efficiently locate enough structure present in the problem to yield high-quality solutions.

Finally, in Chapter 10, we consider an area of algorithmic high-dimensional statistics which is

somewhat of a departure from the other problems in Part II of this thesis: sampling from structured

distributions under weak oracle access to the density. Specifically, the goal in Chapter 10 is to

develop an oracle complexity theory for “logconcave sampling” problems of the following flavor:

produce a sample from the density µ ∝ exp(−f), where f : Rd → R is convex. (1.3)

Problems of the form (1.3) frequently arise in computational Bayesian statistics (i.e. posterior sam-

pling), as well as wide-ranging branches of modern data science such as differential privacy [63] and

reinforcement learning [464]. In many applications, our access to µ is best modeled through a fairly

implicit oracle, which queries gradients or values of the negative log-likelihood f at points (i.e. does

not assume explicit knowledge of the density π or its normalizing constant). The goal of an oracle

complexity theory is then to bound the number of oracle queries required to solve the problem (1.3).

Despite similarities between (1.3) and questions in convex optimization such as min f under value

or gradient oracle access to f , which have been well-understood from an oracle complexity perspective

for decades [414, 418], our understanding of the problem (1.3) from an analogous perspective is

remarkably nascent. In Chapter 10, we push forward this research program by providing state-of-

the-art samplers for basic structured formulations of (1.3) under standard oracle access and weak

regularity assumptions, as well as lower bounds for well-studied approaches to sampler design.

Admittedly, the algorithms we develop for solving (1.3) are fairly distinct from the applications

of SDP technology to robust statistical estimation found in the remainder of Part II of this thesis.

However, the principles we use to design our new sampling frameworks draw heavy inspiration

from the theory of iterative methods, and our analysis synthesizes tools from convex optimization

CHAPTER 1. INTRODUCTION 9

with structural insights from the extensive literature on high-dimensional statistics and applied

probability. In this sense, Chapter 10 is very reflective of the themes of Part II at both a philosophical

level, and also in the mathematical tools it uses. We hope the reader is understanding of the technical

non sequitur the inclusion of Chapter 10 presents: the problem it studies is a personal favorite of

the author, and we believe the resulting algorithms we design are sufficiently reflective of the goals

of Part II that they merit representation in the thesis.

Organization

In Sections 1.1, 1.2, 1.3, and 1.4, we describe results contained in this thesis at a more detailed

resolution. For brevity, we concentrate on defining the problems we solve and our results, providing

only abbreviated discussions of motivations and techniques (deferring a more extensive discussion to

the relevant chapters). Section 1.5 provides a bibliography on the content that this thesis represents.

1.1 Results: Theory of Stochastic Variational Inequalities

In Chapters 2 and 3, we give new algorithms for solving various fundamental stochastic VIs (1.1)

in monotone operators. As a result, we obtain improved complexity bounds for several different

optimization problems which admit appropriate stochastic VI formulations.

Throughout this discussion, fix a monotone operator g : Z → Z∗, and a convex regularizer

r : Z → R. The classical proximal point method [459] is an implicit method for solving a VI by

recursively performing the update

zt+1 ← argminz∈Z
{
〈ηg(z), z − zt〉+ V rzt(z)

}
, (1.4)

where η > 0 is a step size parameter, and V r the Bregman divergence in r, a function which rewards

proximity to zt (e.g. when r is a standard squared Euclidean regularizer, V r is simply the squared

Euclidean distance). When r is strongly convex, it is well-known that (1.4) converges at a rate of

roughly 1
ηT in T iterations. However, the update (1.4) is considered implicit because it typically

does not afford closed form solutions, and hence can only be approximately implemented. Indeed,

as η → ∞ solving (1.4) can be shown to solve the original VI in g as well. This framework hence

presents a variety of tradeoffs an algorithm designer must consider.

1. How large should we choose the step size η to be able to solve the subproblems (1.4)? A large

value of η leads to a stronger convergence rate, but more difficult subproblems to solve.

2. What optimization method should we use to implement solutions to each subproblem, and

how can we take advantage of structure (e.g. stochastic formulations) present in g?

CHAPTER 1. INTRODUCTION 10

3. In cases when (1.4) may be difficult to directly implement, can we define an approximation to

the update (1.4) whose analysis is more readily analyzed?

In Chapter 2, we provide a novel fine-grained analysis of the convergence rate of extragradi-

ent methods, a discretization strategy for simulating the subproblem (1.4) via fixed-point iteration

[329, 415, 420] as suggested by Question 3. We then highlight the power of primal-dual formula-

tions of optimization problems (which are well-captured by our new convergence criteria, termed

“relative Lipschitzness”), and recover accelerated algorithms for smooth convex optimization and

`∞ regression using classical extragradient methods. Finally, we demonstrate the flexibility of the

relative Lipschitzness framework by adapting it to yield state-of-the-art accelerated algorithms for

smooth finite-sum convex and separable minimax optimization problems.

In Chapter 3, in the spirit of Questions 1 and 2, we directly implement solvers for (1.4) for bilin-

ear minimax problems over geometric domains (such as Euclidean balls and probability simplices)

whose convergence rates are parameterized by η. Importantly, the resulting solvers obtain sublinear

runtimes after a linear amount of preprocessing, and are based on a variance-reduced scheme for

stochastic minimax optimization. By tuning the parameter η, the overall proximal point method

yields improved rates for regression, classification, and equilbrium computation. We couple this

new variance reduction framework for minimax optimization with gradient estimators based on sub-

sampling coordinates of the constraint matrix, which results in significantly-improved runtimes for

numerically sparse bilinear minimax problems.

1.1.1 Chapter 2: Acceleration via Primal-Dual Extragradient Methods

Extragradient methods are algorithms which approximately implement the update rule (1.4) by

performing a linearized fixed-point iteration:

z′t ← argminz∈Z
{
〈ηg(zt), z − zt〉+ V rzt(z)

}
,

zt+1 ← argminz∈Z
{
〈ηg(z′t), z − zt〉+ V rzt(z)

}
.

(1.5)

For sufficiently simple (e.g. coordinatewise separable) regularizers r, the updates (1.5) are cheaply

implementable. Classical analyses by [415, 420] show that when g is Lipschitz in a norm ‖·‖ and r is

strongly convex in the same norm, the approximation (1.5) converges at a 1
ηT rate for any η ≤ L−1.

A direct application of the [415, 420] result to the case of smooth, strongly convex optimization

(minimization of f where ∇f is L-Lipschitz and f is µ-strongly convex) yields a convergence rate

of Õ(Lµ) gradient queries to a high-accuracy optimizer. Mysteriously, this convergence rate is not

optimal: Nesterov’s famous accelerated gradient descent algorithm [417] attains a convergence rate

of Õ(
√

L
µ) for the same problem, which is the tight rate up to constants [418].

In Chapter 2, we first show that applying the rule (1.5) to smooth, strongly convex optimization

does indeed yield the optimal rate of Õ(
√

L
µ), when one defines g as the gradient operator resulting

CHAPTER 1. INTRODUCTION 11

from a primal-dual minimax formulation of the optimization problem:

min
x∈X

max
y∈X∗

µ

2
‖x‖22 + 〈y, x〉 − f̃∗(y), (1.6)

where f̃∗ is the convex conjugate of f̃ := f − µ
2 ‖·‖

2
2. We give a tighter convergence guarantee for

the updates (1.5) which goes beyond the standard Lipschitz g, strongly convex r setup considered

in [415, 420]. We then show that running extragradient methods on the formulation (1.6) phrased

as a variational inequality obtains an accelerated optimization rate through our tighter analysis.

Beyond recovering known results, we consider two families of modern optimization problems:

separable minimax problems of the form

min
x∈X

max
y∈Y

f(x) + h(x, y)− g(y) where f, g are convex and h is convex-concave, (1.7)

and finite-sum convex optimization problems of the form

min
x∈X

1

n

∑
i∈[n]

fi(x). (1.8)

For each of (1.7) and (1.8), we design appropriate primal-dual formulations, and adaptations of

(stochastic, in the latter case) extragradient methods which achieve accelerated rates of optimization.

In the case of (1.7), we obtain the first algorithm to match a lower bound of [545] under smoothness

and strong convexity. In the case of (1.8), we use our primal-dual formulation of (1.8) to design an

accelerated method which improves upon the prior best rate obtained in [17] by up to a
√
n factor.

1.1.2 Chapter 3: Stochastic Methods for Matrix Games

The theory of variance reduction for convex minimization has resulted in various improved algorithms

for stochastic optimization problems [477, 472, 17]. The principle behind variance reduction is to

use a small number of (more-expensive) full gradient computations as preprocessing to improve

the quality of later stochastic gradient estimates. In particular, letting ∇̃f be a (potentially poor)

unbiased estimator for ∇f , the idea is to reduce its variance by using the estimate

∇̃f(x)− ∇̃f(x̄) +∇f(x̄),

which is similarly unbiased, but whose variance improves the closer x̄ is to a minimizer of f .

However, for minimax problems, a similar theory of variance reduction was largely unexplored

(except in the Euclidean regression setting: see [432]). This lack of development was an impediment,

in some cases, to further improvements to the complexity of stochastic minimax optimization. To

further the theory of minimax variance reduction, we consider in Chapter 3 the basic setting of

CHAPTER 1. INTRODUCTION 12

bilinear saddle point problems:

min
x∈X

max
y∈Y

y>Ax− b>y + c>x, (1.9)

for some A ∈ Rm×n and geometrically-constrained domains X , Y. For example, in an `1-`1 “zero-

sum game,” X = ∆n and Y = ∆m are probability simplices with bounded `1 norm, which represent

mixed strategies (we additionally consider analogous `2-`1 games, and `2-`2 games, which encapsulate

linear classification and programming, and obtain similar improvements, but omit discussion here).

As a starting point, we develop a way of combining ideas from the theory of variance reduction

with the tradeoffs afforded by proximal point methods (1.4), to obtain new algorithms with improved

complexities for zero-sum games. Roughly speaking, when A is entrywise bounded, prior algorithms

by [415] and [253] respectively obtained runtimes of

Õ

(
nnz(A)

ε

)
and Õ

(
m+ n

ε2

)
for computing an ε-approximate equilbrium to (1.9), where A has nnz(A) nonzero entries. We

instead show that we can solve the subproblem (1.4) at a rate of Õ((m+n)η2), after a nnz(A)-time

preprocessing step, for any η < ε−1. Altogether, choosing the best η yields a rate of

Õ

((
nnz(A) + (m+ n)η2

)
· 1

ηε

)
=⇒ Õ

(
nnz(A) +

√
nnz(A)(m+ n)

ε

)
,

which generically improves upon [415] and improves [253] for moderately small ε. We give analogous

speedups for nonlinear stochastic minimax problems under a gradient oracle model.

By designing new stochastic gradient estimators based on subsampling coordinates, we show how

to further improve upon this rate for numerically sparse A, namely dense matrices with few large

entries. Intuitively, an estimator which samples coordinates avoids density issues by targeting small

entries of A less frequently, and hence presents a finer-grained, more continuous characterization of

A’s inherent sparsity. For example, when every row and column of A has Euclidean norm Õ(1), we

obtain an improved runtime of

Õ

(
(nnz(A) + η2) · 1

ηε

)
=⇒ Õ

(
nnz(A) +

√
nnz(A)

ε

)
.

Direct uses of our stochastic methods for matrix games imply similar speedups for linear classifica-

tion, linear regression, and various problems in computational geometry.

CHAPTER 1. INTRODUCTION 13

1.2 Results: Combinatorial Optimization

In Chapters 4, 5, and 6 we draw inspiration from our developments on stochastic VI theory, and

obtain new algorithms for approximately solving constrained `1 and `∞ regression. The resulting

methods have immediate implications for a variety of combinatorial optimization problems, which

are reducible to regression. As an example, consider the box-constrained `∞-regression problem

min
x∈[−1,1]m

‖Ax− b‖∞ + c>x, (1.10)

where A ∈ Rn×m has rows with bounded `1 norms. Solving (1.10) at an accelerated rate, i.e.

computing an ε-approximate minimizer within a runtime scaling linearly or sublinearly in nnz(A)

but depending only linearly on ε−1, was a notorious open problem in the continuous optimization

community (it is straightforward to obtain a rate of nnz(A) · ε−2 using unaccelerated gradient

methods). One concrete reason for this is lower bounds on the size of `∞-strongly convex regularizers

over a box [483, 486], which typically govern the convergence rate of accelerated methods.

In a breakthrough work, Sherman in [483] showed how to formulate (1.10) as a “box-simplex

game”

min
x∈[−1,1]m

max
y∈∆n

y>Ax− b>y + c>x (1.11)

and design a somewhat ad hoc accelerated algorithm for solving (1.11) via a primal-dual extragradi-

ent method utilizing a coupled regularizer. Intuitively, Sherman’s regularizer uses the dual variable

y to perform a careful reweighting of a primal regularizer on x, bypassing the size lower bound.

To further our understanding of these local reweighting strategies and their implications for

accelerating structured regression, we show in Chapter 2 how to construct a simpler primal-dual

regularizer which retains Sherman’s rate for solving (1.10), (1.11). Moreover, we give a flexible anal-

ysis strategy for our regression algorithm through the framework of a strengthening of our relative

Lipschitzness criterion for extragradient algorithms, which we term local relative Lipschitzness.

In Chapter 4, we propose alternatives to Sherman’s regularization strategy for solving (1.10)

based on reweighted accelerated coordinate methods. The resulting runtimes improve upon [483] in

many structured instances, and we show how to apply them to obtain faster approximate undirected

maximum flow algorithms by using advances in combinatorial preconditioning [482, 318, 441].

In Chapter 5, we show that by recasting graph-structured problems such as bipartite match-

ing, optimal transport, and transshipment as box-simplex games, we can obtain improved parallel

complexities for approximately solving each by building upon our solver from Chapter 2. Moreover,

we demonstrate that the iterates of our solver admit recursions which are amenable to implemen-

tation in low space in a semi-streaming model of access to the graph. As a result, we improve the

state-of-the-art pass and/or space complexities for all of these problems as well.

In Chapter 6, we give a generic reduction framework from a decremental variant of bipartite

CHAPTER 1. INTRODUCTION 14

matching to solving a sequence of appropriately regularized box-simplex games, i.e. (1.11) with addi-

tional (small) regularization terms which encourage the simplex variable y to be “uniformly spread.”

We complete this picture by providing new accelerated solvers for said regularized games, via our

relative Lipschitzness framework from Chapter 2.

1.2.1 Chapter 4: Faster Approximate `∞ Regression and Maximum Flow

The (undirected, capacitated) maximum flow problem on a graph G = (V,E,w) (where u ∈ RE≥0 are

edge capacities) asks to find a flow f ∈ RE which satisfies entrywise capacity constraints |f | ≤ u,

and routes as many units as possible from a source s to a sink t. Letting B ∈ {−1, 0, 1}E×V be the

(signed) edge-vertex incidence matrix of G, and letting d ∈ RV be a 2-sparse demand vector with

ds = −1, dt = 1, it is straightforward to see that solving the “minimum congestion flow” problem

min
B>f=d

∥∥∥diag (u)
−1
f
∥∥∥
∞

recovers the maximum flow. In [482, 318, 441] it was shown that an appropriate “soft relaxation” of

the hard constraints B>f = d can be used without loss in approximation quality: it suffices to solve a

box-constrained instance (1.10) instead. Intuitively, the box constraint on x := diag (u)
−1
f follows

from a reparameterization and binary search on the value of ‖x‖∞, and A is B after left-multiplying

by a combinatorial preconditioner, and has bounded row norms. The preconditioner is obtained by

a routing scheme from G onto a smaller graph. Our runtime improvements for maximum flow follow

by designing optimization procedures which capture the structure of the problem more tightly. In

particular, our methods directly leverage sparsity properties of the preconditioner.

We begin by developing a faster algorithm for solving (1.10) via an accelerated coordinate descent

algorithm with dynamic sampling probabilities, providing an alternative to [483]. The resulting

algorithm yields a runtime of

Õ

(
m+

√
mn

ε

)
for solving a maximum flow instance with n vertices and m edges, to 1− ε multiplicative accuracy,

generically improving upon the Õ(mε−1) runtime of [483] for slightly-dense graphs. We further build

upon a synthesis of stochastic VI acceleration methodology from Chapter 2, and data structures for

supporting coordinate updates from Chapter 3, to obtain an improved maximum flow algorithm.

When the optimal x?, the solution to (1.10), has ‖x?‖22 = s, our improvement runs in time

Õ

(
m+

n+
√
ns

ε

)
.

Since s ≤ m generically, this is never worse than our previous runtime (up to logarithmic factors),

and represents an improvement for sparse maximum flows.

CHAPTER 1. INTRODUCTION 15

1.2.2 Chapter 5: Semi-Streaming Combinatorial Optimization

We demonstrate that various combinatorial optimization problems can be efficiently reduced to

box-simplex games, following similar “soft penalization schemes” as were used in prior works on

maximum flow. For example, consider the problem of maximum cardinality bipartite matching on

an unweighted bipartite graph G = (V,E), where we wish to find a flow vector f ∈ RE≥0 which solves

max
B>f≤1V

‖f‖1 . (1.12)

Here, we overload notation from the prior section and let B ∈ {0, 1}E×V be the (unsigned) incidence

matrix, and 1V is the all-ones vector on V . The condition B>f ≤ 1V means there is no more than

one total unit of flow on any vertex, and ‖f‖1 is the matching size. It is well-known that an optimal

f is integral, i.e. it is 0-1 valued, so this continuous relaxation is without loss.

By using the existence of combinatorial rounding schemes which greedily remove overflow (vio-

lations of the constraints B>f = 1) without substantially affecting matching size, we show that the

matching problem (1.12) is captured by an `1 regression problem

min
x∈∆E

−〈1E , x〉+
∥∥max(B>x− 1V , 0)

∥∥
1

(1.13)

which penalizes constraint violations directly in the objective. A primal-dual formulation of (1.13)

can then be framed as a box-simplex game, and is hence amenable to the accelerated extragradient

solvers developed in [483] or Chapter 2 of this thesis. Similar observations for the optimal transport

and transshipment problems (e.g. shortest path) result in state-of-the-art parallel algorithms for

each, obtaining depth scaling as Õ(ε−1) where ε governs approximation quality, and near-linear work.

Prior parallel complexities of near-linear work solvers for these problems scaled as Õ(ε−2) [365, 358],

and were based on unaccelerated methods. Our results follow because extragradient methods rely

on only first-order (“gradient”) information about the problem, which can be implemented using

only efficiently parallelizable matrix-vector multiplications.

We next turn to solving these problems under a semi-streaming model of computation. In this

model, the matrix B is not stored explicitly due to space considerations, and can only be accessed

through read-only streams where edges are presented one at a time, termed passes over the graph.

This presents a potential obstacle to solving (1.13) in low space: the iterates are naturally |E|-
dimensional, and hence writing them is as expensive as storing the entire matrix B, which we were

trying to avoid! As our main result, we show our accelerated box-simplex game solver from Chapter 2

can entirely be implemented and deterministically sparsified in O(|V |) space for these combinatorial

applications, implying a Õ(ε−1) pass complexity in a semi-streaming model and improving upon

prior works on semi-streaming bipartite matching (e.g. [12, 13]) in either space, passes, or both.

CHAPTER 1. INTRODUCTION 16

1.2.3 Chapter 6: Dynamic Decremental Bipartite Matching

In recent years (cf. Chapters 4 and 5), a variety of static combinatorial optimization problems have

benefitted tremendously from continuous perspectives and iterative method machinery. However,

the development of dynamic graph algorithms, an important and widely-studied undertaking in the

theoretical computer science literature, has remained fairly separate from continuous optimization

developments. This begs the question: can we directly use faster solvers for continuous formulations

of combinatorial problems to obtain improved complexities in a dynamic setting?

As a proof-of-concept, in Chapter 6 we show how to obtain such a reduction for a natural

dynamic decremental model of bipartite matching (undergoing possibly adversarial edge deletions),

abbreviated DDBM. We prove that to maintain a fractional matching with value at least 1− ε the

optimum, it suffices to solve Õ(ε−2) regularized subproblems roughly of the form

min
x∈∆E

−〈1E , x〉+
∥∥max(B>x− 1V , 0)

∥∥
1

+ ε
∑
e∈E

xe log xe

to high accuracy. By directly plugging in high-precision accelerated solvers for regularized box-

simplex games inspired by our extragradient analysis framework in Chapter 2, we deterministically

solve the DDBM problem at an amoritized cost of Õ(ε−3), over m := |E| edge deletions. This

improves upon the prior state-of-the-art of Õ(ε−4) from [73] for the same problem.

Our framework is flexible enough that it decouples the DDBM problem from the cost of im-

plementing subproblems, and hence is compatible with powerful techniques for solving variants of

regularized box-simplex games. By using a recent breakthrough in the maximum flow literature

[124] as our subproblem solver, we obtain an amoritized cost of Õ(mo(1)ε−2) over m edge deletions

for the DDBM problem, an improvement upon our earlier result for sufficiently small ε.

1.3 Results: Structured Semidefinite Programming Solvers

In Chapter 7, we present nearly-linear time approximation algorithms for structured semidefinite

programs (1.2), several of which are directly used in our applications in Chapters 8 and 9. Our algo-

rithms are based on adaptations and generalizations of the matrix multiplicative weights framework,

which we briefly overview here before stating our new results.

Matrix multiplicative weights (MMW) is an instantiation of regret minimization techniques over

a subset of the positive semidefinite matrix cone, denoted Sd≥0 (where the matrices in question are

d × d). To give a typical example, let X := {X ∈ Sd≥0 | Tr(X) = 1} be the “spectraplex.” Given a

sequence of operator-norm bounded “gain matrices” {Gt}t≥1, MMW produces a sequence of response

matrices {Xt}t≥1 ⊂ X which aim to minimize the cumulative regret in linear measurements through

CHAPTER 1. INTRODUCTION 17

{Gt}t≥1 compared to the best action U ∈ X in hindsight:

sup
U∈X

∑
t∈[T]

〈Gt,U〉

−
∑
t∈[T]

〈Gt,Xt〉

 . (1.14)

Crucially, the response matrices {Xt}t≥1 must be chosen in an online fashion, without knowledge

of future gain matrices Gs for s > t. When all gain matrices satisfy ‖Gt‖op ≤ 1, the matrix Hölder

inequality implies that the regret can never be more than T , the number of iterations. The key

guarantee of MMW is that it beats this trivial bound by obtaining vanishing average regret : it

plays a sequence of response matrices such that the total regret (1.14) scales as Õ(
√
T). A standard

application of MMW, based on reducing (1.2) to feasibility problems which can be captured by

regret minimization over X , yields approximation algorithms for semidefinite programming: this

reduction is detailed in Section 7.2. However, this situation comes with a few caveats.

1. Although the update rule employed by MMW is simple to state (based on solving entropy-

regularized problems over X , which admit explicit characterizations), actually implementing

these updates exactly requires matrix eigendecomposition, which is an expensive operation.

Are there cheaper alternatives which do not sacrifice performance?

2. There have been relatively few explorations of instantiating MMW for subsets of Sd≥0 beyond

the spectraplex defined previously. Regret minimization over various other structured subsets

of interest may entail more complicated update rules, and the resulting methods necessitate

careful analyses when combined with faster, approximate implementations of said updates

bypassing explicit eigendecomposition. Can we develop approximation-tolerant MMW variants

over more complex sets?

3. The reduction of SDPs (1.14) to regret minimization over the spectraplex can be very lossy

from the perspective of problem parameterization; typically, one needs to pay an overhead

depending on the problem width, such as the size of constraints {Ai}i∈[n] or the optimizer X?.

For structured SDPs, can we design more fine-grained reductions which bypass this lossiness via

stronger guarantees (e.g. multiplicative value approximations with no dependence on width)?

In Chapter 7, we provide new variants of the MMW framework which make progress towards

addressing each of these questions.

1.3.1 Chapter 7: Matrix Multiplicative Weights and Friends

We summarize the performance guarantees of our new variants of the MMW framework.

CHAPTER 1. INTRODUCTION 18

A rank-1 sketch for MMW. Standard MMW iterates can be expressed in closed form as Xt =
exp(Yt)

Tr exp(Yt)
, for a matrix Yt efficiently computable from the sequence of {Gs}s≤t. However, computing

Xt explicitly can be prohibitively expensive for applications. Towards addressing Question 1, one

cheaper way to approximate Xt is to let Q ∈ Rk×d be a Johnson-Lindenstrauss (approximately

norm-preserving) sketch matrix, and instead compute

X̃t :=
exp(1

2Yt)Q
>Q exp(1

2Yt)

〈exp(Yt),Q>Q〉
.

Both the numerator and denominator of X̃t can be efficiently approximated using the Lanczos

method [339] and polynomial approximations to the exponential. However, black-box applications of

Johnson-Lindenstrauss constructions require choosing k ≈ log d·ε−2 to guarantee an ε-approximation

to inner products. We show that, perhaps surprisingly, when each gain matrix Gt is chosen obliv-

iously to randomness used in computing the current iterate Xt, a rank-1 sketch matrix suffices to

retain standard MMW guarantees up to constant factors (letting Q = q> for a uniformly random

unit vector q). As a result of our simple sketch, we improve upon prior state-of-the-art runtimes for

regret minimization over the spectraplex by factors of Ω(log5 d) [20].

Ky Fan MMW. Let k ∈ [d]. Towards addressing Question 2, we develop new regret minimization

procedures over the “k-Fantope,”

Fk := {X ∈ Sd≥0 | Tr(X) = k, X � I},

with iteration complexity dominated by an approximate k-PCA procedure, implementable in Õ(k)

matrix-vector multiplications through gain matrices. The set Fk is important in applications because

it is the set of dual certificates against the Ky Fan norm ‖G‖k, defined to be the sum of the k largest

eigenvalues (in magnitude) of G: namely, for G ∈ Sd≥0, ‖G‖k = supX∈Fk 〈G,X〉. When k = 1, our

method recovers the standard MMW guarantee.

A key difficulty in designing a regret minimization procedure over Fk is the relatively complicated

nature of entropic projections onto Fk, which involves thresholding eigenvalues. As a side result

required by our analysis, we give new performance guarantees on approximate k-PCA procedures

such as simultaneous power iteration for approximating the spectrum of a matrix, refining results

from [404, 136]. By opening up the interplay between our MMW variant and approximate spectrum

computation, we obtain end-to-end approximation-tolerant algorithms for regret minimization over

Fk, and improve prior bounds in [136] for the same problem by factors of Ω(k3).

Structured positive SDP. We consider variants of (1.2) with monotonicity structure, also referred to

in the literature as mixed packing-covering (MPC) SDPs. The feasibility variant of MPC SDPs, in

CHAPTER 1. INTRODUCTION 19

full generality, asks to determine whether there exists w ∈ Rn≥0 such that

∑
i∈[n]

wiPi �
∑
i∈[n]

wiCi, for {Pi}i∈[n] , {Ci}i∈[n] ⊂ Sd≥0. (1.15)

We can think of {Pi}i∈[n] as a set of matrices we wish to “pack” in a weighted sense, such that they

are “covered” by the set of {Ci}i∈[n]. The monotone linear programming specialization of (1.15),

where all of {Pi}i∈[n], {Ci}i∈[n] are diagonal matrices, admit approximation algorithms with very

strong guarantees: they can test feasibility of (1.15) up to a 1 + ε multiplicative factor, depending

polynomially on ε−1 and only polylogarithmically on width parameters of the problem. One com-

pelling answer to Question 3 would thus be designing similar “width-independent” approximation

algorithms for testing (1.15). However, a solution to this problem in full generality has resisted

efforts from the theoretical computer science and continuous optimization communities, including a

recent attempt by the author of this thesis [286].

Towards developing general solvers for (1.15), we give improved algorithms for various special-

izations of MPC SDPs in Chapter 7. We first consider the case when each Ci is a κ multiple of

Pi for some κ > 1, which we term a “matrix dictionary recovery SDP.” This specialization has

immediate implications to structured preconditioning tasks (detailed in Section 9.2), and intuitively

asks to approximate I with a linear combination of our matrix dictionary of {Pi}i∈[n]. We give a

nearly-linear time algorithm for solving matrix dictionary SDPs with iteration complexity scaling

only linearly in κ, the natural width parameter of the problem. We also design methods which

generalize this result to approximating an arbitrary constraint matrix B ∈ Sd≥0 using a specified

matrix dictionary which admits efficient linear system solvers, e.g. graph Laplacians [491].

Finally, in the special case of (1.15) where all the Ci are scalars (also known as “pure pack-

ing SDPs”), we give an improved solver whose runtime roughly scales as ε−5, improving the ε−6

dependency of [19, 442]. We obtain our improvement by interpreting width-independent solvers

for pure packing SDPs through the lens of mirror descent, and show that this viewpoint extends

straightforwardly to solve “Schatten norm packing SDPs” of the form

max ‖w‖1 subject to

∥∥∥∥∥∥
∑
i∈[n]

wiPi

∥∥∥∥∥∥
p

≤ 1

at a width-independent rate, where ‖·‖p of a matrix argument is the Schatten-p norm. Our result is

the first width-independent, nearly-linear time solver for Schatten norm packing SDPs.

CHAPTER 1. INTRODUCTION 20

1.4 Results: Algorithmic High-Dimensional Statistics

1.4.1 Chapter 8: High-Dimensional Robust Statistics in Almost-Linear

Time

We design algorithms for three types of high-dimensional statistical estimation problems under

dataset contamination models: clustering, generalized linear regression, and principal component

analysis (PCA). Our contamination models are variants of the following: we observe a dataset

{Xi}i∈[n] such that an α ∈ (0, 1) fraction is independently drawn from a “ground truth” D supported

on Rd, and the remainder of the data is arbitrary (potentially adversarially chosen) points in Rd.
Several algorithms in Chapter 8 are variants of filtering. Instantiations of the filtering paradigm in

algorithmic robust statistics (originally introduced in [177, 360, 492]) combine two ideas: certifiable

corruption and iterative dataset sanitization. The first idea asks to produce a (problem-specific)

example of a certificate of corruption: in the absence of the certificate, a näıve solution (e.g. an

empirical mean) should suffice for the estimation problem. Often, the proof of correctness of this

certificate comes with a contrapositive which states that whenever it is present, it must be because

of dataset contamination, and can hence be used as a “spectral signature” [508, 360] to define scores

for each data point which are amplified on the adversarial points. For example, when performing

mean estimation and the ground truth D is assumed to have a bounded covariance, an appropriate

certificate is an amplified-variance direction v and the corresponding scores are correlations with v

(relative to the empirical mean). These scores can then be used to iteratively sanitize the dataset,

e.g. by downweighting a set of soft “inlier” scores being maintained over the data points.

Once an appropriate certificate is identified from statistical properties of the problem, basic

instances of filtering strategies frequently suffice for obtaining polynomial-time algorithms for robust

statistics. However, a much more challenging endeavor is developing robust estimators which both

attain optimal statistical guarantees, and run in nearly-optimal time. Designing such a “best-of-

both-words” estimator requires satisfactory answers to the following questions.

1. How can we compute scores through a certificate of corruption in nearly-linear time?

2. How can design a scheme which synthesizes iterations downweighting based on corruption

certificates, and provably terminates in a near-constant number of iterations?

To answer these questions in the setting of robust mean estimation, [194] used an approximate

top eigenvector computation to answer Question 1. Moreover, they developed a way of using the

guarantees of regret minimization procedures over the spectraplex to ensure fast termination of the

method. More specifically, [194] used the response matrices of MMW as their certificates of corrup-

tion, and used MMW regret guarantees to repeatedly decrease the operator norm of an empirical

covariance matrix by a constant factor. Chapter 8 builds upon the program initiated by [194], and

gives cheaply-computable robust estimators for multiple tasks beyond mean estimation.

CHAPTER 1. INTRODUCTION 21

Clustering heavy-tailed mixture models. Given a dataset of size n drawn from a mixture model D :=∑
i∈[k]

1
kDi, where each mixture component Di is Gaussian and has identity-bounded covariance, we

wish to recover which data point was drawn from which component to arbitrary constant precision

(e.g. correctly classifying a .95 fraction of points). This problem is information-theoretically tractable

assuming a sufficient separation condition between component means {µi}i∈[k], and there exist

efficient algorithms for solving it dominated by Õ(1) approximate k-PCA computations as long

as mini 6=j∈[k] ‖µi − µj‖2 = Ω(k−
1
2) [520, 7]. However, these algorithms break down in the face of

contamination, do not generalize to heavy-tailed (non-Gaussian) data, and do not run in linear time

(incurring a k-factor overhead).

We present a new clustering algorithm which bypasses all of these barriers assuming a similar

separation level. In particular, we provide an almost-linear time algorithm (with runtime O(n1+ε0d)

for any constant ε0) for the following problem, termed list-decodable mean estimation. We are

given a dataset {Xi}i∈[n], an α ∈ (0, 1
2) fraction of which is drawn from D (with identity-bounded

covariance), and the remainder of which are arbitrary in Rd. We wish to produce a list of length

O(α−1) containing at least one element at distance Õ(−α− 1
2) from the mean of D. By letting D

vary through mixture components, and using the list-decoding procedure as a preprocessing step

in a separated mixture model estimation problem, we obtain an almost-linear runtime for robustly

clustering heavy-tailed mixture models as well. Even from just a runtime perspective (i.e. assuming

uncorrupted Gaussian components), this is the first improvement upon [520, 7].

Our starting point is a simple, polynomial-time reduction from list-decodable mean estimation to

approximate k-PCA subroutines, which we use to define certificates of corruption. We then combine

this reduction with a Ky Fan norm SDP solver we develop in Chapter 7 to solve the general list-

decodable mean estimation problem in Õ(ndk) time. Finally, to go beyond this k-PCA computation

runtime barrier, we design an O(n1+ε0d)-time algorithm for solving list-decodable mean estimation

using “split-or-cluster” steps based on solely one-dimensional projections. This final method is

inspired by both filtering based on MMW responses, and the multifilter algorithm of [179]. In

particular, the algorithm maintains a partial clustering over the dataset which is iteratively refined,

where we bound the total number of points across all clusters.

Parameter estimation in generalized linear models. Consider the following parameter estimation

problem: we observe independent {(Xi, yi)}i∈[n] ∼ D supported on Rd×R, and given a link function

γ : R2 × R, we wish to estimate

θ? := argminθ∈RdE(X,y)D [γ(〈θ,X〉 , y)] .

This regression problem arises as a maximum likelihood estimation problem in exponential families.

When γ is regular (i.e. convex, and Lipschitz or smooth), and D has appropriately bounded moments,

the empirical risk minimizer attains good performance. We consider a robust variant of this problem

CHAPTER 1. INTRODUCTION 22

where an ε fraction of our dataset is contaminated.

By combining a gradient filtering scheme based on semidefinite programming, and a new noise-

tolerant accelerated gradient method we develop, we solve the Lipschitz link function variant of the

robust regression problem to
√
ε Euclidean norm accuracy (up to a scaling by problem regularity

parameters) in time Õ(nd
√
κ). Here, κ is a conditioning parameter of the regression problem. This

is a generic improvement upon the “robust gradient descent” method of [447] which attained runtime

Õ(ndκ), and applies to both Lipschitz, smooth link functions such as the logistic loss, as well as the

Moreau envelope approximations to solely Lipschitz link functions such as the hinge loss.

We further specialize to the case of robust linear regression, when the X-marginal of D is 2-to-4

hypercontractive (has fourth moments relatively bounded by second moments). Here, we obtain both

an accelerated nearly-linear time algorithm, and another nearly-linear time algorithm which obtains

an improved estimation rate, albeit at a quadratically larger sample complexity. Our algorithm

estimates at a Euclidean error rate scaling as
√
κε (where κ is the conditoning of the X-marginal

covariance matrix). This can be seen as an interpolation between (accelerated) robust gradient

methods, which estimate at rate κ
√
ε, and sum-of-squares methods [53], which attain a rate ε

3
4 but

require exactly solving a large SDP and impose slightly stronger problem regularity assumptions.

Sub-Gaussian principal component analysis. Given an ε-corrupted set of n samples from a d-

dimensional, mean-zero sub-Gaussian distribution, return a (1 − δ)-approximate top eigenvector

of the covariance matrix. We give a simple filtering-based polynomial-time algorithm which solves

this problem for δ = O(ε log ε−1), which is essentially optimal. Moreover, we give an application of

a Schatten-p norm packing SDP we develop in Chapter 7 to the robust PCA problem. The result is

a near-linear time algorithm for mildly-“gapped” covariances, achieving δ = O(
√
ε log ε−1 log d).

We find these results interesting for two additional conceptual reasons. First, they draw an

explicit connection between Schatten norm SDP objectives and robust PCA. We establish this

connection by noting that, while an adversary can elevate a single large direction (fooling operator

norm SDPs), it can only create a bounded number of such large directions, which a Schatten norm

objective can detect. Second, they are an example of covariance property estimation without using

the strong algebraic relationships afforded by assuming exactly Gaussian samples or other strong

algebraic properties, which to our knowledge had remained open until our work.

1.4.2 Chapter 9: Semi-Random Linear Systems

Consider the problem of solving a consistent linear system Ax? = b, given (A, b) ∈ Rn×d×Rn. When

A is full-rank and n ≥ d, the system is overconstrained, and fast iterative methods (e.g. accelerated

gradient descent) converge in nearly-linear time if A>A is O(1)-multiplicatively close to a multiple

of the identity. Interestingly, by giving additional consistent linear measurements (augmenting A

with more rows), we can arbitrarily ruin the condition number of A, and correspondingly hinder the

performance of gradient-based iterative methods.

CHAPTER 1. INTRODUCTION 23

We also consider the underconstrained sparse recovery counterpart of this problem, where n < d.

To make the problem meaningful (i.e. for the solution to be uniquely determined), we must ensure

that there are no candidate solutions in the nullspace of A. This is typically formulated as follows: x?

is assumed to be s-sparse, and A is assumed to satisfy the O(s)-restricted nullspace property (RNP),

which means it has no O(s)-sparse vectors in its kernel. The RNP is essentially the minimum

assumption on A required for the sparse recovery problem to be information-theoretically tractable.

When A is assumed to satisfy the stronger property of being O(1)-approximately norm preserving

on all O(s)-sparse vectors, it is said to satisfy the stronger restricted isometry property (RIP). Under

this stronger RIP assumption, there exist fast iterative methods which converge in nearly-linear time.

However, a similar state of affairs (as in the overconstrained case) occurs when applying nearly-

linear time solvers to “augmented” RIP matrices: by adding new consistent measurements, the

problem does not become information-theoretically harder, but the convergence of fast iterative

methods which work well on fully-RIP matrices becomes poor. This latter phenomenon is in fact

reported in practical applications of fast iterative methods to sparse recovery problems [166, 280,

446], motivating the development of nearly-linear time algorithms tolerant to some amount of model

misspecification. We investigate both of these problems through the lens of a monotone semi-

random adversary. Concretely, in the overconstrained setting, we assume that there exists a diagonal

reweighting matrix W? = diag (w?) , w? ∈ Rn≥0 such that A>W?A is well-conditioned. This is an

even weaker assumption on “planted structure” than the presence of a subset of well-conditioned

rows, since we may set w? to be a zero-one indicator vector. In the underconstrained (sparse

recovery) setting, we similarly assume there exists a W? such that A>W?A satisfies RIP. In both

cases, we develop nearly-linear time solvers for the exact recovery problem (where we observe Ax?),

as well as variants of the noisy recovery problem (where we only observe Ax? + ξ for some noise

vector ξ ∈ Rn).

In the overconstrained case, our method is based on approximately solving a more general optimal

diagonal preconditioning problem, which asks to find a nonnegative diagonal matrix W such that

the condition number of A>WA is as small as possible. To do so, we apply the matrix dictionary

recovery SDP solver from Chapter 7 to a dictionary consisting of outer products of A’s rows. We

also solve a similar “outer preconditioning” problem from numerical linear algebra, by using the

diagonal basis dictionary and A>A as the constraint matrix.

In the setting of sparse recovery, there are known hardness results (i.e. NP-hardness of certi-

fying RIP [57]) which suggest it may be computationally difficult to obtain a global reweighting

of A which is RIP. We sidestep this hardness result by designing a “locally reweighted” projected

gradient descent method based on `1-constrained optimization. Our algorithm progresses whenever

we can compute a reweighting of g = A>∆ satisfying certain decomposition properties which can

be easily computationally verified, where ∆ = b−Ax are the residuals of a current iterate x. Such

a reweighting always exists, because when A is fully RIP, we prove such a decomposition always

CHAPTER 1. INTRODUCTION 24

succeeds, and hence we can let the weighting be
√
w∗. We rephrase the computation of each local

reweighting as a convex subproblem, which we solve efficiently using stochastic gradient methods.

1.4.3 Chapter 10: Towards an Oracle Complexity of Sampling

We define three variants of the meta-problem (1.3), each described by a density family parameterized

by a type of structure the negative log-likelihood (denoted f throughout this exposition) is assumed

to satisfy, and a type of oracle access to the density. In each case, we provide results which yield

a further understanding of the oracle complexity of sampling from said density family. We briefly

remark that each family we consider has a counterpart in convex optimization theory and is hence

similarly motivated; further, each optimization counterpart has a well-established oracle complexity

theory, with nearly-matching upper and lower bounds.

Well-conditioned sampling. We consider the setting where the function f is assumed to have a

condition number bounded by κ (i.e. ∇2f everywhere has all eigenvalues in [µ,L], and κ := L
µ). We

assume gradient and value oracle access to f .

On the upper bound side, we prove new concentration bounds on the norm of the gradient,

‖∇f(x)‖2 where x ∼ µ, for well-conditioned f . This allows us to design samplers attaining an oracle

query complexity of Õ(κd) for sampling to high accuracy in total variation from an explicit warm

start, improving a line of recent results which had previously achieved Õ(κd+ κ1.5
√
d) [210, 128].

On the lower bound side, we provide hardness results for sampling from well-conditioned log-

concave distributions using two popular frameworks: the Metropolis-adjusted Langevin algorithm

(MALA), and multi-step Metropolized Hamlitonian Monte Carlo (HMC). We show that when ini-

tialized at suitably-adversarial exponentially warm start, no parameterization of MALA can obtain

a better mixing rate than Ω̃(κd), and give similar (slightly weaker) hardness results for HMC. Be-

cause it is currently unknown how to construct subexponentially warm starts, our result may be

interpreted positively as further motivation to study the construction of such high-quality starting

distributions, which would have further implications beyond specific algorithms e.g. MALA or HMC.

Composite logconcave sampling with a restricted Gaussian oracle. We consider the setting where

the function f is decomposable as f = h+ g, where h has a condition number bound of κ and g is

“simple” in a precise sense, but possibly non-smooth. Even in very special cases of this composite

sampling problem where g was e.g. the indicator of a coordinatewise box in the standad basis,

designing nontrivial high-accuracy samplers3 was an outstanding open problem. Our definition of

simplicity of g assumes that we can query a “restricted Gaussian oracle” (RGO) O(η, v), which

produces a sample from the density ∝ exp

(
−g(x)− 1

2η
‖x− v‖22

)
.

3Any logconcave density can be sampled to high accuracy using polynomially many queries to a value oracle [373];
we use “nontrivial” to mean a runtime going beyond a black-box citation to this general result.

CHAPTER 1. INTRODUCTION 25

We give an algorithm which samples from µ to high accuracy in total variation using Õ(κd) iterations,

each querying the RGO for g and the gradient oracle for h once.

The astute reader may note a similarity between the RGO definition and the proximal point

method described in (1.4). In fact, our composite sampler follows from combining two pieces. First,

we develop a basic sampler which achieves Õ(κ2d) iteration complexity. Next, we give a generic

“proximal point method” for logconcave sampling based on the notion of RGO access, which we use

to improve the condition number dependence of our basic sampler.

Logconcave finite sums. We consider the setting where the function f is expressible as a finite sum:

f = 1
n

∑
i∈[n] fi, and all fi are κ well-conditioned. We assume gradient oracle access to each fi.

Note that we can always simulate gradient oracle access to f via n gradient queries; however, by

subsampling gradients, it is possible that we can do even better than a naive “full gradient” method.

We first give a basic method which achieves a gradient oracle query complexity of Õ(n + κ2d).

We then boost this algorithm through our aforementioned proximal reduction framework, to obtain

an overall query complexity of Õ(n+κ
√
nd+κd). Up to a Õ(max(1,

√
n
d)) factor, this is essentially

the best one could hope for without an improvement in the n = 1 case. Finally, we show that the

n = 1 case of our finite sum sampler actually implies that well-conditioned densities are sampleable

in Õ(κd) calls to only a value oracle, suggesting that we may not yet have a mature understanding

why gradient oracles are helpful in the well-conditioned setting.

1.5 Bibliography of Represented Material

Part I

• Chapter 2 of this thesis is based on the works “Relative Lipschitzness in Extragradient Methods

and a Direct Recipe for Acceleration” [147] (published in ITCS 2021) and “Sharper Rates for

Separable Minimax and Finite Sum Optimization via Primal-Dual Extragradient Methods”

[299] (published in COLT 2022), joint with Michael B. Cohen, Yujia Jin, and Aaron Sidford.

• Chapter 3 of this thesis is based on the works “Variance Reduction for Matrix Games” [111]

(published in NeurIPS 2019) and “Coordinate Methods for Matrix Games” [112] (published

in FOCS 2020), joint with Yair Carmon, Yujia Jin, and Aaron Sidford.

• Chapter 4 of this thesis is based on the work “Coordinate Methods for Accelerating `∞ Re-

gression and Faster Approximate Maximum Flow” [486] (published in FOCS 2018), joint with

Aaron Sidford.

• Chapter 5 of this thesis is based on the works “A Direct Õ(1/ε) Iteration Parallel Algorithm

for Optimal Transport” [293] (published in NeurIPS 2019) and “Semi-Streaming Bipartite

CHAPTER 1. INTRODUCTION 26

Matching in Fewer Passes and Optimal Space” [39] (published in SODA 2022), joint with

Sepehr Assadi, Arun Jambulapati, Yujia Jin, and Aaron Sidford.

• Chapter 6 of this thesis is based on the work “Regularized Box-Simplex Games and Dynamic

Decremental Bipartite Matching” [284] (published in ICALP 2022), joint with Arun Jambula-

pati, Yujia Jin, and Aaron Sidford.

Part II

• Chapter 7 of this thesis is based on (parts of) the works “A Rank-1 Sketch for Matrix Mul-

tiplicative Weights” [108] (published in COLT 2019), “List-Decodable Mean Estimation in

Nearly-PCA Time” [180] (published in NeurIPS 2021), “Fast and Near-Optimal Diagonal Pre-

conditioning” [287] (preprint under submission), and “Robust Sub-Gaussian Principal Compo-

nent Analysis and Width-Independent Schatten Packing” [289] (published in NeurIPS 2020),

joint with Yair Carmon, Ilias Diakonikolas, John C. Duchi, Arun Jambulapati, Daniel M.

Kane, Daniel Kongsgaard, Jerry Li, Christopher Musco, and Aaron Sidford.

• Chapter 8 of this thesis is based on (parts of) the works “Clustering Mixture Models in Almost-

Linear Time via List-Decodable Mean Estimation” [181] (published in STOC 2022), “Robust

Regression Revisited: Acceleration and Improved Estimation Rates” (published in NeurIPS

2021), [180], and [289], joint with Ilias Diakonikolas, Arun Jambulapati, Daniel M. Kane,

Daniel Kongsgaard, Jerry Li, and Tselil Schramm.

• Chapter 9 of this thesis is based on (parts of) the works “Semi-Random Sparse Recovery in

Nearly-Linear Time” [319] (preprint under submission) and [287], joint with Arun Jambulapati,

Jonathan A. Kelner, Jerry Li, Allen Liu, Christopher Musco, and Aaron Sidford.

• Chapter 10 of this thesis is based on the works “Logsmooth Gradient Concentration and

Tighter Runtimes for Metropolized Hamiltonian Monte Carlo” [344] (published in COLT 2020),

“Structured Logconcave Sampling with a Restricted Gaussian Oracle” [346] (published in

COLT 2021), and “Lower Bounds on Metropolized Sampling Methods for Well-Conditioned

Distributions” [345] (published in NeurIPS 2021), joint with Yin Tat Lee and Ruoqi Shen.

Copyright notices

As per IEEE copyright requirements, we note excerpts from [486] and [112] are used, from works

which are respectively ©2018 IEEE and ©2020 IEEE. As per ACM copyright requirements, we

note excerpts from [181] are used, from a work which is ©2022 ACM. As per SIAM copyright

requirements, we note excerpts from [39] are used, from a work which is ©2022 SIAM.

CHAPTER 1. INTRODUCTION 27

Other

We acknowledge the author’s other research collaborations throughout the Ph.D. which have taught

the author a variety of technical tools and perspectives and influenced his research style. A few of

these collaborations have resulted in the works “Learning Populations of Parameters” [503] (pub-

lished in NeurIPS 2017), “CoVeR: Learning Covariate-Specific Vector Representations with Tensor

Decompositions” [504] (published in ICML 2018), “Acceleration with a Ball Optimization Ora-

cle” [109] (published in NeurIPS 2020), and “Improved Sampling-to-Counting Reductions in High-

Dimensional Expanders and Faster Parallel Determinantal Sampling” [26], joint with Nima Anari,

Callum Burgess, Yair Carmon, Arun Jambulapati, Qijia Jiang, Yujia Jin, Weihao Kong, Yin Tat

Lee, Aaron Sidford, Gregory Valiant, Thuy-Duong Vuong, Teng Zhang, and James Zou.

Part I

Stochastic Variational Inequalities

and Combinatorial Optimization

28

Chapter 2

Acceleration via Primal-Dual

Extragradient Methods

This chapter is based on [147, 299], with Michael B. Cohen, Yujia Jin, and Aaron Sidford.

2.1 Introduction

In this chapter, we study the classic extragradient algorithms of mirror prox [415] and dual ex-

trapolation [420] for solving variational inequalities (VIs) in monotone operators. This family of

problems includes convex optimization and finding the saddle point of a convex-concave game. Due

to applications of the latter to adversarial and robust training, extragradient methods have received

significant recent attention in the machine learning community, see e.g. [121, 391, 277]. Further,

extragradient methods have been the subject of increasing study by the theoretical computer sci-

ence and optimization communities due to recent extragradient-based runtime improvements for

problems including maximum flow [483] and zero-sum games [111, 112].

Given a Lipschitz monotone operator and a bounded strongly-convex regularizer, mirror prox

[415] and dual extrapolation [420] achieve O(T−1) regret for solving the associated VI after T iter-

ations. This rate is worst-case optimal when the Lipschitzness of the operator and strong convexity

of the regularizer are with respect to the Euclidean norm [431]. However, in certain structured

problems related to VIs, alternative analyses and algorithms can yield improved rates. For instance,

when minimizing a smooth convex function (i.e. one with a Lipschitz gradient), it is known that

accelerated rates of O(T−2) are attainable, improving upon the standard O(T−1) extragradient

rate for the naive associated VI (see Appendix A.2). Further, algorithms inspired by extragradient

methods have been developed recovering the O(T−2) rate [192, 530].

29

CHAPTER 2. ACCELERATION VIA PRIMAL-DUAL EXTRAGRADIENT METHODS 30

Additionally, alternative analyses of extragradient methods, such as optimism [452] and area con-

vexity [483] have shown that under assumptions beyond a Lipschitz operator and a strongly convex

regularizer, improved rates can be achieved. These works leveraged modified algorithms which run

efficiently under such non-standard assumptions. Further, the area convexity-based methods of [483]

have had a number of implications, including faster algorithms for `∞ regression, maximum flow and

multicommodity flow [483] as well as improved parallel algorithms for work-efficient positive linear

programming [91] and optimal transport [293].

In this chapter we seek a better understanding of these structured problems and the somewhat

disparate-seeming analyses and algorithms for solving them. We ask, are the algorithmic changes

enabling these results necessary? Can standard mirror prox and dual extrapolation be leveraged to

obtain these results? Can we unify analyses for these problems, and further clarify the relationship

between acceleration, extragradient methods, and primal-dual methods? Finally, can we use these

novel perspectives to broaden the optimization toolbox through new methods with improved properties?

2.1.1 Relative Lipschitzness in extragradient methods

Towards addressing these questions, we provide a general condition, which we term relative Lips-

chitzness (cf. Definition 1), and analyze the convergence of mirror prox and dual extrapolation for a

monotone relatively Lipschitz operator.1 This condition is derived directly from the standard anal-

ysis of the methods and is stated in terms of a straightforward relationship between the operator g

and the regularizer r which define the algorithm. Our condition is inspired by both area convexity

as well as the “relative smoothness” condition in convex optimization [64, 375], and can be thought

of as a generalization of the latter to variational inequalities (see Lemma 3). Further, through this

analysis we show that standard extragradient methods directly yield accelerated rates for smooth

minimization and recover the improved rates of [483] for box-constrained `∞ regression, making

progress on the questions outlined above. We also show our methods recover certain randomized

accelerated rates and have additional implications, outlined below.

Extragradient methods directly yield acceleration. In Section 2.4, we show that applying algo-

rithms of [415, 420] to a minimax formulation of minx∈Rd f(x), when f is smooth and strongly

convex, yields accelerated minimization rates when analyzed via relative Lipschitzness. Specifically,

we consider the following problem, termed the Fenchel game in [530]:

min
x∈Rd

max
y∈Rd

〈y, x〉 − f∗(y), (2.1)

and show that when f is µ-strongly convex and L-smooth, O(
√
L/µ) iterations of either mirror

prox [415] or dual extrapolation [420] produces an average iterate which halves the function error

1A somewhat similarly-named property appeared in [374], which also studied mirror descent algorithms under

relaxed conditions; however, their property ‖g(x)‖2∗ ≤
MVx(y)

‖y−x‖2 for all x, y, is different than the one we propose.

CHAPTER 2. ACCELERATION VIA PRIMAL-DUAL EXTRAGRADIENT METHODS 31

of f . By repeated application, this yields an accelerated linear rate of convergence and the optimal

O(T−2) rates for non-strongly convex, smooth function minimization by a reduction [551]. Crucially,

to attain this rate we give a sharpened bound on the relative Lipschitzness of the gradient operator

of (2.1) with respect to a primal-dual regularizer.

Our result advances a recent line of research, [3, 4, 192], on applying primal-dual analyses to

shed light on the mysterious nature of acceleration. Specifically, [3, 4] show that the classical

algorithm of [417] can be rederived via applying primal-dual “optimistic” dynamics, inspired by the

framework of [452]. Further, [192] showed that an appropriate discretization of dynamics inspired

by extragradient algorithms yields an alternative accelerated algorithm. While these results clarify

the primal-dual nature of acceleration, additional tuning is ultimately required to obtain their final

algorithms and analysis. We obtain acceleration as a direct application of known frameworks, i.e.

standard mirror prox and dual extrapolation, applied to the formulation (2.1), and hope this helps

demystify acceleration.

In Appendix A.5, we further show that analyzing extragradient methods tailored to strongly

monotone operators via relative Lipschitzness, and applying this more fine-grained analysis to a

variant of the objective (2.1), also yields an accelerated linear rate of convergence. The resulting

proof strategy extends readily to accelerated minimization of smooth and strongly convex functions

in general norms, as we discuss at the end of Section 2.4, and we believe it may be of independent

interest.

Finally, we remark that there has been documented difficulty in accelerating the minimization of

relatively smooth functions [265]; this was also explored more formally by [197]. It is noted in [265],

as well as suggested in others (e.g. in the development of area convexity [483]) that this discrepancy

may be due to acceleration fundamentally requiring conditions on relationships between groups of

three points, rather than two. Our work, which presents an alternative three-point condition yielding

accelerated rates, sheds light on this phenomenon and we believe it is an interesting future direction

to explore the relationships between our condition and other alternatives in the literature which are

known to yield acceleration.

Area convexity for bilinear box-simplex games. In Section 2.5, we draw a connection between rela-

tive Lipschitzness and the notion of an “area convex” regularizer, proposed by [483]. Area convexity

is a property which weakens strong convexity, but is suitable for extragradient algorithms with a

linear operator. It was introduced in the context of solving a formulation of approximate undirected

maximum flow via box-constrained `∞ regression, or more generally approximating bilinear games

between a box variable and a simplex variable. The algorithm of [483] applied to bilinear games

was a variant of standard extragradient methods and analyzed via area convexity, which was proven

via solving a subharmonic partial differential equation. We show that mirror prox, as analyzed

by a local variant of relative Lipschitzness, yields the same rate of convergence as implied by area

convexity, for box-simplex games. Our proof of this rate is straightforward and based on a simple

CHAPTER 2. ACCELERATION VIA PRIMAL-DUAL EXTRAGRADIENT METHODS 32

Cauchy-Schwarz argument after demonstrating local stability of iterates.

Randomized extragradient methods via local variance reduction. In general, the use of stochas-

tic operator estimates in the design of extragradient algorithms for solving general VIs is not as

well-understood as their use in the special case of convex function minimization. The best-known

known stochastic methods for solving VIs [302] with bounded-variance stochastic estimators obtain

O(T−1/2) rates of convergence; this is by necessity, from known classical lower bounds on the rate of

the special case of stochastic convex optimization [414]. Towards advancing the randomized extra-

gradient toolkit, we ask: when can improved O(T−1) rates of convergence be achieved by stochastic

algorithms for solving specific VIs and fine-grained bounds on estimator variance (i.e. more local

notions of variance)? This direction is inspired by analogous results in convex optimization, where

reduced-variance and accelerated rates have been obtained, matching and improving upon their

deterministic counterparts [300, 472, 18, 347, 425, 553].

For the special case of bilinear games, this question was recently addressed by the works [432, 111],

using proximal reductions to attain improved rates. In this work, we give a framework for direct

stochastic extragradient method design bypassing the variance bottleneck limiting prior algorithms to

a O(T−1/2) rate of convergence for problems with block-separable structure. We identify a particular

criterion of randomized operators used in the context of extragradient algorithms (cf. Proposition 2)

which enables O(T−1) rates of convergence. Our approach is a form of “local variance reduction”,

where estimators in an iteration of the method share a random seed and we take expectations over

the whole iteration in the analysis. Our improved estimator design exploits the separable structure

of the problem; it would be interesting to design a more general variance reduction framework for

randomized extragradient methods.

Formally, we apply our local variance reduction framework in Section 2.6 to show that an instance

of our new randomized extragradient methods recover acceleration for coordinate-smooth functions,

matching the known tight rates of [553, 425]. Along the way, we give a variation of relative Lips-

chitzness capturing an analagous property between a locally variance-reduced randomized gradient

estimator and a regularizer, which we exploit to obtain our runtime. We note that a similar approach

was taken in [486] to obtain faster approximate maximum flow algorithms in the bilinear minimax

setting; here, we generalize this strategy and give conditions under which our variance reduction

technique obtains improved rates for extragradient methods more broadly.

Additional contributions. A minor contribution of our work is that we show (Appendix A.3) that

relative Lipschitzness implies new rates for minimax convex-concave optimization, taking a step

towards closing the gap with lower bounds with fine-grained dependence on problem parameters.

Under operator-norm bounds on blocks of the Hessian of a convex-concave function, as well as

blockwise strong convexity assumptions, [545] showed a lower bound on the convergence rate to

obtain an ε-approximate saddle point. When the blockwise operator norms of the Hessian are

roughly equal, [366] gave an algorithm matching the lower bound up to a polylogarithmic factor,

CHAPTER 2. ACCELERATION VIA PRIMAL-DUAL EXTRAGRADIENT METHODS 33

using an alternating scheme repeatedly calling an accelerated proximal point reduction. Applying

our condition with a strongly monotone variant of the mirror prox algorithm of [415] yields a new fine-

grained rate for minimax optimization, improving upon the runtime of [366] for a range of parameters.

Our algorithm is simple and the analysis follows directly from a tighter relative Lipschitzness bound;

we note the same result can also be obtained by considering an operator norm bound of the problem

after a rescaling of space, but we include this computation because it is a straightforward implication

of our condition. We also remark that these results serve as a baseline rate for smooth minimax

optimization, which is later sharpened by developments in Section 2.7.

Finally, in Appendix A.7, we discuss the relation of relative Lipschitzness to another framework

for analyzing extragradient methods: namely, we note that our proof of the sufficiency of relative

Lipschitzness recovers known bounds for optimistic mirror descent [452].

2.1.2 Sharper rates for separable minimax and finite sum optimization

In the second part of this chapter, we further study several fundamental families of optimization

problems, namely (separable) minimax optimization, finite sum optimization, and minimax finite

sum optimization (which generalizes both), and provide new state-of-the-art rates for these problem

families using the framework developed in Section 2.1.1. These families have received widespread

recent attention from the optimization community due to their prevalence in modeling tasks arising

in modern data science. For example, minimax optimization has been used in both convex-concave

settings and beyond to model robustness to (possibly adversarial) noise in many training tasks

[378, 451, 244]. Moreover, finite sum optimization serves as a fundamental subroutine in many

of the empirical risk minimization tasks of machine learning today [92]. Nonetheless, and perhaps

surprisingly, there remain gaps in our understanding of the optimal rates for these problems. Toward

closing these gaps, we provide new accelerated algorithms improving upon the state-of-the-art for

each family of problems.

Our results build upon our earlier framework, in particular its application of primal-dual extra-

gradient methods to recover accelerated rates for smooth, convex optimization in Appendix A.5.

This application considers the problem2

min
x∈X

f(x) +
µ

2
‖x‖2 for L-smooth and convex f, (2.2)

and its equivalent primal-dual formulation as an appropriate “Fenchel game”

min
x∈X

max
x∗∈X∗

µ

2
‖x‖2 + 〈x∗, x〉 − f∗(x∗), where f∗ is the convex conjugate of f . (2.3)

As discussed earlier, our framework shows that applying extragradient methods [415, 420] and an-

alyzing them through a condition known as relative Lipschitzness recovers an accelerated gradient

2Throughout, X ,Y are unconstrained, Euclidean spaces (see Section 2.2).

CHAPTER 2. ACCELERATION VIA PRIMAL-DUAL EXTRAGRADIENT METHODS 34

query complexity for computing (2.2), which was known to be optimal [418].

Both the Fenchel game [3, 530] and the relative Lipschitzness property (independently proposed

in [496]) have a longer history, discussed in Section 2.1.3. This chapter is particularly motivated by

their synthesis in the earlier sections of this chapter, which used these tools to provide a general

recipe for designing accelerated methods. This recipe consists of the following ingredients.

1. Choose a primal-dual formulation of an optimization problem and a regularizer, r.

2. Bound iteration costs, i.e. the cost of implementing mirror steps with respect to r.

3. Bound the relative Lipschitzness of the gradient operator of the problem with respect to r.

In our basic accelerated algorithm in Appendix A.5, this recipe was applied with (2.3) as the primal-

dual formulation and r(x, x∗) := µ
2 ‖x‖

2
+ f∗(x∗). Further, it was shown that each iteration could

be implemented (implicitly) with O(1) gradient queries and that the gradient operator Φ of the

objective (2.3) is O(
√
L/µ)-relatively Lipschitz with respect to r. Combining these ingredients gave

the accelerated rate for (2.3).

We broaden this primal-dual extragradient approach and add new recipes to the optimization

cookbook. As a result, we obtain methods with improved rates for minimax optimization, finite

sum optimization, and minimax finite sum optimization. We follow similar approaches as our basic

recipe but change the ingredients with different primal-dual formulations, regularizers, extragradient

methods, and analyses. In the following sections, we discuss each problem family, our new results

and approach, and situate them in the relevant literature.

Separable minimax optimization.

In Section 2.7, we study separable convex-concave minimax optimization problems of the form3

min
x∈X

max
y∈Y

Fmm(x, y) := f(x) + h(x, y)− g(y), (2.4)

where f is Lx-smooth and µx-strongly convex, g is Ly-smooth and µy-strongly convex, and h is

convex-concave and twice-differentiable with
∥∥∇2

xxh
∥∥ ≤ Λxx,

∥∥∇2
xyh
∥∥ ≤ Λxy, and

∥∥∇2
yyh
∥∥ ≤ Λyy.

Our goal is to compute a pair of points (x, y) with bounded duality gap with respect to Fmm:

GapFmm
(x, y) ≤ ε (see Section 2.2 for definitions).

The problem family (2.4) contains as a special case the following family of convex-concave min-

imax optimization problems with bilinear coupling (with Λxx = Λyy = 0 and Λxy = ‖A‖):

min
x∈X

max
y∈Y

f(x) +
(
y>Ax− 〈b, y〉+ 〈c, x〉

)
− g(y). (2.5)

3Our results in Section 2.7 apply generally to non-twice differentiable, gradient Lipschitz h, but we use these
assumptions for simplicity in the introduction. All norms are Euclidean (see Section 2.2 for relevant definitions).

CHAPTER 2. ACCELERATION VIA PRIMAL-DUAL EXTRAGRADIENT METHODS 35

Problem (2.5) has been widely studied in the optimization literature, dating at least to the classic

work of [116], which used (2.5) to relax convex optimization with affine constraints related to imaging

inverse problems. Problem (2.5) also encapsulates convex-concave quadratics and has been used to

model problems in reinforcement learning [201] and decentralized optimization [333].

Our results. We give the following result on solving (2.4).

Theorem 1 (informal, cf. Theorem 25). There is an algorithm that, given (x0, y0) ∈ X×Y satisfying

GapFmm
(x0, y0) ≤ ε0, returns (x, y) with GapFmm

(x, y) ≤ ε using T gradient evaluations to f , h, and

g for

T = O
(
κmm log

(κmmε0
ε

))
, for κmm :=

√
Lx

µx
+

√
Ly

µy
+

Λxx

µx
+

Λxy

√
µxµy

+
Λyy

µy
.

In the special case of (2.5), Theorem 1 matches a lower bound of [545], which applies to the

family of quadratic minimax problems obeying our smoothness and strong convexity bounds. More

generally, Theorem 1 matches the lower bound whenever Λxx and Λyy are sufficiently small compared

to the remaining parameters, improving prior state-of-the-art rates [533] in this regime.

By applying reductions based on explicit regularization used in [366], Theorem 1 also yields

analogous accelerated rates depending polynomially on the desired accuracy when we either f , g, or

both are not strongly convex. For conciseness, in this paper we focus on the strongly convex-concave

regime discussed previously in this section.

Our approach. Our algorithm for solving (2.4) is based on the simple observation that minimax

problems with the separable structure can be effectively “decoupled” by using convex conjugation on

the components f and g. In particular, following a similar recipe as our smooth convex optimization

application in Appendix A.5, we rewrite (an appropriate regularized formulation of) the problem

(2.4) using convex conjugates as follows:

min
x∈X ,y∗∈Y∗

max
y∈Y,x∗∈X∗

µx

2
‖x‖2 − µy

2
‖y‖2 + 〈x∗, x〉 − 〈y∗, y〉+ h(x, y)− f∗(x∗) + g∗(y∗).

Further, we define the regularizer r(x, y, x∗, y∗) := µx

2 ‖x‖
2
+ µy

2 ‖y‖
2
+f∗(x∗)+g∗(y∗). Finally, we ap-

ply an extragradient method for strongly monotone operators to our problem, using this regularizer.

We demonstrate efficient implementability, and analyze the relative Lipschitzness of the problem’s

gradient operator with respect to r, yielding Theorem 1. In the final gradient oracle complexity, our

method obtains the accelerated trade-off between primal and dual blocks for µx

2 ‖x‖
2
+〈x∗, x〉−f∗(x∗)

and its Y analog, for the separable parts f and g respectively. It also obtains an unaccelerated rate

for the h component, by bounding the relative Lipschitzness corresponding to h via our assumptions.

Prior work. Many recent works obtaining improved rates for minimax optimization under

smoothness and strong convexity restrictions (including Appendix A.3 of this thesis) concentrate

CHAPTER 2. ACCELERATION VIA PRIMAL-DUAL EXTRAGRADIENT METHODS 36

on a more general family of problems of the form:

min
x∈X

max
y∈Y

F (x, y). (2.6)

Typically, these works assume (for simplicity, assuming F is twice-differentiable), ∇2
xxF is bounded

between µxI and ΛxxI everywhere, ∇2
yyF is bounded between µyI and ΛyyI everywhere, and ∇2

xyF

is operator norm bounded by Λxy. It is straightforward to see that (2.6) contains (2.4) as a special

case, by setting f ← µx

2 ‖·‖
2
, g ← µy

2 ‖·‖
2
, and h← F − f + g.

For (2.6), under gradient access to F , the works [366, 533], and Appendix A.3 presented different

approaches yielding a variety of query complexities. Letting Λmax := max (Λxx,Λxy,Λyy), these

complexities scaled respectively as4

Õ

√max (Λxx,Λxy,Λyy)
2

µxµy

 , Õ

(√
Λxx

µx
+

√
Λyy

µy
+

√
ΛxyΛmax

µxµy

)
, Õ

(
Λxx

µx
+

Λyy

µy
+

Λxy

√
µxµy

)
.

The state-of-the-art rate (ignoring logarithmic factors) is due to [533], which obtained the middle

gradient query complexity above. Theorem 1 matches the rate obtained by Appendix A.3 and

improves upon [366] in some regimes. Notably, Theorem 1 never improves upon [533] in the general

regime, up to logarithmic factors. On the other hand, the method in Theorem 1 uses only a single

loop, as opposed to the multi-loop methods in [366, 533] which lose logarithmic factors.

Up to logarithmic factors, there is a gap between [533] and the lower bound of [545] only when

Λxy � Λmax. We close this gap for minimax problems admitting the separable structure (2.5). In the

special case of quadratic problems, prior work, [533], proposed a recursive approach which obtained

a rate comparable to that of Theorem 1, albeit larger by subpolynomial factors.

Concurrent work. A pair of independent and concurrent works [332, 501] obtained variants of

Theorem 1. Their results were stated under the restricted setting of bilinear coupling (2.5), but they

each provided alternative results under (different) weakenings of our strong convexity assumptions.

The algorithm of [501] is closer to the one developed in this chapter (also going through a primal-

dual lifting), although the ultimate methods and analyses are somewhat different. Though our

results were obtained independently, our presentation was informed by a reading of [332, 501] for a

comparison.

Finite sum optimization

In Section 2.8, we study finite sum optimization problems of the form

min
x∈X

Ffs(x) :=
1

n

∑
i∈[n]

fi(x), (2.7)

4Õ hides logarithmic factors throughout, see Section 2.2.

CHAPTER 2. ACCELERATION VIA PRIMAL-DUAL EXTRAGRADIENT METHODS 37

where fi is Li-smooth for each i ∈ [n], and 1
n

∑
i∈[n] fi is µ-strongly convex. We focus on the strongly

convex regime; through generic reductions [551], our results yield accelerated rates depending poly-

nomially on the desired accuracy, without the strong convexity assumption.

Methods for solving (2.7) have garnered substantial interest because of their widespread appli-

cability to empirical risk minimization problems over a dataset of n points, which encapsulate a

variety of (generalized) regression problems in machine learning (see [92] and references therein).

Our results. We give the following result on solving (2.7).

Theorem 2 (informal, cf. Theorem 8, Corollary 4). There is an algorithm that, given x0 ∈ X
satisfying Ffs(x0)− Ffs(x?) ≤ ε0 where x? minimizes Ffs, returns x ∈ X with EFfs(x)− Ffs(x?) ≤ ε

using T gradient evaluations (each to some fi) for

T = O
(
κfs log

(κfsε0
ε

))
, for κfs := n+

∑
i∈[n]

√
Li√
nµ

.

Our approach. Our algorithm for solving (2.7) builds upon an accelerated coordinate descent

variant developed in Section 2.6, which developed an analysis of a randomized extragradient method

to do so. We consider an equivalent primal-dual formulation of (a regularized variant of) (2.7),

inspired by analogous developments in the ERM literature [477, 478]:

min
x∈X

max
{x∗i }i∈[n]⊂X∗

µ

2
‖x‖2 +

1

n

∑
i∈[n]

(〈x∗i , x〉 − f∗i (x∗i)) .

Our algorithm then solves this regularized primal-dual game to high precision.

A key building block of our method is a randomized extragradient method which is compatible

with strongly monotone problems. To this end, we extend the way the randomized extragradient

method is applied in Section 2.6, which does not directly yield a high-precision guarantee. We

proceed as follows: for roughly κfs iterations (defined in Theorem 2) of our method, we run the non-

strongly monotone randomized mirror prox method of Section 2.6 to obtain a regret bound. We then

subsample a random iterate, which we show halves an appropriate potential in expectation via our

regret bound and strong monotonicity. We then recurse on this procedure to obtain a high-precision

solver.

Prior work. Developing accelerated algorithms for (2.7) under our regularity assumptions has

been the subject of a substantial amount of research effort in the community, see e.g. [364, 227,

478, 17] and references therein. Previously, the state-of-the-art gradient query complexities (up to

CHAPTER 2. ACCELERATION VIA PRIMAL-DUAL EXTRAGRADIENT METHODS 38

logarithmic factors) for (2.7) were obtained by [364, 227, 17],5 and scaled as

Õ

n+

√∑
i∈[n] Li

µ

 . (2.8)

Rates such as (2.8), which scale as functions of
∑
i∈[n]

Li
µ , arise in known variance reduction-based

approaches [300, 168, 472, 17] due to their applications of a “dual strong convexity” lemma (e.g.

Theorem 1, [300] or Lemma 2.4, [17]) of the form

‖∇fi(x)−∇fi(x̄)‖2 ≤ 2Li (fi(x̄)− fi(x)− 〈∇fi(x), x̄− x〉) .

The analyses of e.g. [300, 17] sample i ∈ [n] proportional to Li, allowing them to bound the variance

of a resulting gradient estimator by a quantity related to the divergence in Ffs.

The rate in (2.8) is known to be optimal in the uniform smoothness regime [539], but in a

more general setting its optimality is unclear. Theorem 2 shows that the rate can be improved for

sufficiently non-uniform Li. In particular, Cauchy-Schwarz shows that the quantity κfs is never worse

than (2.8), and improves upon it by a factor asymptotically between 1 and
√
n when the {Li}i∈[n]

are non-uniform. Moreover, even in the uniform smoothness case, Theorem 2 matches the tightest

rate in [17] up to an additive log κfs term, as opposed to an additional multiplicative logarithmic

overhead incurred by the reduction-based approaches of [364, 227].

Our rate’s improvement over (2.8) is comparable to a similar improvement that was achieved

previously in the literature on coordinate descent methods. In particular, [347] first obtained a

(generalized) partial derivative query complexity comparable to (2.8) under coordinate smoothness

bounds, which was later improved to a query complexity comparable to Theorem 2 by [553, 425].

Due to connections between coordinate-smooth optimization and empirical risk minimization (ERM)

previously noted in the literature [477, 478], it is natural to conjecture that the rate in Theorem 2

is achieveable for finite sums (2.7) as well. However, prior to our work (to our knowledge) this rate

was not known, except in special cases e.g. linear regression [10].

Our method is based on using a primal-dual formulation of (2.7) to design our gradient estimators.

It attains the rate of Theorem 8 by sampling summands proportional to
√
Li, trading off primal

and dual variances through a careful coupling. It can be viewed as a modified dual formulation

to the coordinate descent algorithm in Section 2.6, which used primal-dual couplings inspired by

the fine-grained accelerated algorithms of [553, 425]. We believe our result sheds further light on

the duality between coordinate-smooth and finite sum optimization, and gives an interesting new

approach for algorithmically leveraging primal-dual formulations of finite sum problems.

5There have been a variety of additional works which have also attained accelerated rates for either the problem
(2.7) or its ERM specialization, see e.g. [167, 547, 338, 549]. However, to the best of our knowledge these do not
improve upon the state-of-the-art rate of [17] in our setting.

CHAPTER 2. ACCELERATION VIA PRIMAL-DUAL EXTRAGRADIENT METHODS 39

Minimax finite sum optimization

In Section 2.9, we study a family of minimax finite sum optimization problems of the form

min
x∈X

max
y∈Y

Fmmfs(x, y) :=
1

n

∑
i∈[n]

(fi(x) + hi(x, y)− gi(y)) . (2.9)

We assume fi is Lx
i -smooth, gi is Ly-smooth, and hi is convex-concave and twice-differentiable with

blockwise operator norm bounds Λxx
i , Λxy

i , and Λyy
i for each i ∈ [n]. We also assume the whole

problem is µx-strongly convex and µy-strongly concave.

We propose the family (2.9) because it encapsulates (2.6) and (2.7), and is amenable to techniques

from solving both. Moreover, (2.9) is a natural description of instances of (2.6) which arise from

primal-dual formulations of empirical risk minimization problems, e.g. [547, 529]. It also generalizes

natural minimax finite sum problems previously considered in e.g. [111].

Our results. We give the following result on solving (2.9).

Theorem 3 (informal, cf. Theorem 9). There is an algorithm that, given (x0, y0) ∈ X ×Y satisfying

GapFmmfs
(x0, y0) ≤ ε0, returns (x, y) with EGapFmmfs

(x, y) ≤ ε using T gradient evaluations, each to

some fi, gi, or hi, where

T = O
(
κmmfs log (κmmfs) log

(κmmfsε0
ε

))
,

for κmmfs := n+
1√
n

∑
i∈[n]

√Lx
i

µx
+

√
Ly
i

µy
+

Λxx
i

µx
+

Λxy
i√
µxµy

+
Λyy
i

µy

 .

The rate in Theorem 3 captures (up to a logarithmic factor) both of the rates in Theorems 1

and 2, when (2.9) is appropriately specialized. It can be more generally motivated as follows. When

n is not the dominant term in Theorem 2’s bound, the remaining term is
√
n times the average rate

attained by Nesterov’s accelerated gradient method [417] on each summand in (2.7). This improves

upon the factor of n overhead which one might naively expect from computing full gradients. In

similar fashion, Theorem 3 attains a rate (up to an additive n, and logarithmic factors) which is
√
n

times the average rate attained by Theorem 1 on each summand in (2.9).

Our approach. Our algorithm for solving (2.9) is a natural synthesis of the earlier algorithms

suggested in Section 2.1.2. However, to obtain our results we apply additional techniques to by-

pass complications which arise from the interplay between the minimax method and the finite sum

method, inspired by [111]. In particular, to obtain our tightest rate we would like to subsample the

components in our gradient operator corresponding to {fi}i∈[n] , {gi}i∈[n] , {hi}i∈[n] all at different

frequencies when applying the randomized extragradient method. These different sampling distri-

butions introduce dependencies between iterates, and make our randomized estimators no longer

“unbiased” for the true gradient operator to directly incur the randomized extragradient analysis.

CHAPTER 2. ACCELERATION VIA PRIMAL-DUAL EXTRAGRADIENT METHODS 40

To circumvent this difficulty, we obtain our result via a partial decoupling, treating components

corresponding to {fi}i∈[n], {gi}i∈[n] and those corresponding to {hi}i∈[n] separately. For the first two

aforementioned components, which are separable and hence do not interact, we pattern an expected

relative Lipschitzness analysis for each block, similar to the finite sum optimization. For the remain-

ing component {hi}i∈[n], we develop a variance-reduced stochastic method which yields a relative

variance bound. We put these pieces together in Proposition 5, a new randomized extragradient

method analysis, to give a method with a convergence rate of roughly

n+
1√
n

∑
i∈[n]

√Lx
i

µx
+

√
Ly
i

µy

+ (κhmmfs)
2, where κhmmfs :=

1

n

∑
i∈[n]

(
Λxx
i

µx
+

Λxy
i√
µxµy

+
Λyy
i

µy

)
.

The dependence on all pieces above is the same as in Theorem 3, except for the term corresponding

to the {hi}i∈[n]. To improve this dependence, we wrap our solver in an “outer loop” proximal

point method which solves a sequence of γ-regularized variants of (2.9). We obtain our final claim

by trading off the terms n and (κhmmfs)
2 through our choice of γ, which yields the accelerated

convergence rate of Theorem 3.

Prior work. To our knowledge, there have been relatively few results for solving (2.9) under our

fine-grained assumptions on problem regularity, although various stochastic minimax algorithms

have been developed in natural settings [302, 432, 277, 111, 121, 112, 16]. For the general problem of

solving minx∈X maxy∈Y
1
n

∑
i∈[n] Fi(x, y) where Fi is Li-smooth and convex-concave, and the whole

problem is µx-strongly convex and µy-strongly concave, perhaps the most direct comparisons are

Section 5.4 of [111] and Theorem 15 of [507]. In particular, [111] provided a high-precision solver

using roughly

Õ

n+
1√
n

∑
i∈[n]

Li
µ

gradient queries, when µx = µy = µ. This is recovered by Theorem 9 (possibly up to logarithmic

factors) in the special setting of fi = gi ← 0, µx = µy ← µ, and Λxx
i = Λxy

i = Λyy
i ← Li. More

generally, [111] gave a result depending polynomially on the desired accuracy without the strongly

convex-concave assumption, which follows from a variant of Theorem 9 after applying the explicit

regularization in [366] that reduces to the strongly convex-concave case.

Moreover, Theorem 15 of [507] provided a high-precision solver using roughly

Õ

n+
1√
n

∑
i∈[n]

Li√
µxµy

gradient queries. Our work recovers (and sharpens dependences in) this result for minimax finite

sum problems where each summand has the bilinear coupling (2.5). In the more general setting

CHAPTER 2. ACCELERATION VIA PRIMAL-DUAL EXTRAGRADIENT METHODS 41

where each summand only has a uniform smoothness bound, the [507] result can be thought of as

the accelerated finite sum analog of the main claim in [366], which is incomparable to our Theorem 1.

In a similar way, the rate of [507] is incomparable to Theorem 3, and each improves upon the other

in different parameter regimes. We believe designing a single algorithm which obtains the best of

both worlds for (2.9) is an interesting future direction.

2.1.3 Additional related work

We give a brief discussion of several lines of work which our results build upon, and their connection

with the techniques used in this paper.

Acceleration via primal-dual extragradient methods. Our algorithms are based on extragradient

methods, a framework originally proposed by [329] which was later shown to obtain optimal rates for

solving Lipschitz variational inequalities in [415, 420]. There have been various implementations of

extragradient methods including mirror prox [415] and dual extrapolation [420]; we focus on adapting

the former in this work. Variations of extragradient methods have been studied in the context of

primal-dual formulations of smooth convex optimization [3, 530], and are known to obtain optimal

(accelerated) rates in this setting. In particular, the relative Lipschitzness analysis of acceleration

in this chapter is motivated by developments in the bilinear setting, namely the area convexity

framework of [483]. We further build upon these works by using primal-dual formulations to design

accelerated algorithms in various settings beyond smooth convex optimization, namely (2.6), (2.7),

and (2.9).

Acceleration under relative regularity assumptions. This chapter builds upon a framework for

analyzing extragradient methods known as relative Lipschitzness, which was proposed independently

by [496]. We demonstrate that this framework (and randomized variants thereof) obtains improved

rates for primal-dual formulations beyond those studied in prior works.

Curiously, our applications of the relative Lipschitzness framework reveal that the regularity

conditions our algorithms require are weaker than standard assumptions of smoothness in a norm.

In particular, several technical requirements of specific components of our algorithms are satis-

fied by setups with regularity assumptions generalizing and strengthening the relative smoothness

assumption of [64, 375]. This raises interesting potential implications in terms of the necessary regu-

larity assumptions for non-Euclidean acceleration, because relative smoothness is known to be alone

insufficient for obtaining accelerated rates in general [197]. Notably, [265] also developed an acceler-

ation framework under a strengthened relative smoothness assumption, which requires strengthened

bounds on divergences between three points. We further elaborate on these points in Section 2.7.3,

when deriving relative Lipschitzness bounds through weaker assumptions in Lemma 13. We focus

on the Euclidean setup in this paper, but we believe an analogous study of non-Euclidean setups is

interesting and merits future exploration.

CHAPTER 2. ACCELERATION VIA PRIMAL-DUAL EXTRAGRADIENT METHODS 42

2.2 Preliminaries

General notation. We use Õ to hide logarithmic factors in problem regularity parameters, initial

radius bounds, and target accuracies when clear from context. We denote [n] := {i ∈ N | i ≤ n}.
Variables are in Rd unless otherwise noted. ei is the ith standard basis vector. Throughout the

chapter, X (and Y, when relevant) represent Euclidean spaces, and ‖·‖ will mean the Euclidean

norm in appropriate dimension when applied to a vector, unless stated otherwise in the context.

Regardless, when a norm ‖·‖ is clear from context, the dual norm is ‖·‖∗, defined as ‖x‖∗ :=

max‖y‖≤1 y
>x.

For a variable on a product space, e.g. z ∈ X × Y, we refer to its blocks as (zx, zy) when clear

from context. For a bilinear operator A : X → Y∗, unless specified otherwise, ‖·‖ will mean the

(Euclidean) operator norm, i.e.

‖A‖ := sup
‖x‖=1

‖Ax‖ = sup
‖x‖=1

sup
‖y‖=1

y>Ax.

Complexity model. Throughout the paper, we evaluate the complexity of methods by their

gradient oracle complexity, and do not discuss the cost of vector operations (which typically are

subsumed by the cost of the oracle). In Section 2.7, the gradient oracle returns ∇f , ∇g, or ∇h at

any point; in Section 2.8 (respectively, Section 2.9), the oracle returns ∇fi at a point for some i ∈ [n]

(respectively, ∇fi, ∇gi, or ∇hi at a point for some i ∈ [n]).

Divergences. The Bregman divergence induced by differentiable, convex r is V rx (x′) := r(x′) −
r(x)−〈∇r(x), x′ − x〉, for any x, x′ ∈ X . For all x, V rx is nonnegative and convex. Whenever we use

no superscript r, we assume r = 1
2 ‖·‖

2
so that Vx(x′) = 1

2 ‖x− x
′‖2. Bregman divergences satisfy

the equality

〈∇r(w)−∇r(z), w − u〉 = V rz (w) + V rw(u)− V rz (u). (2.10)

We define the proximal operation in r by

Proxrx(Φ) := argminx′∈X {〈Φ, x′〉+ V rx (x′)} .

Functions and operators. We say h : X × Y → R is convex-concave if its restrictions h(·, y) and

h(x, ·) are respectively convex and concave, for any x ∈ X and y ∈ Y. The duality gap of a pair

(x, y) is Gaph(x, y) := maxy′∈Y h(x, y′)−minx′∈X h(x′, y); a saddle point is a pair (x?, y?) ∈ X ×Y
with zero duality gap.

We call operator Φ : Z → Z∗ monotone if 〈Φ(z)− Φ(z′), z − z′〉 ≥ 0 for all z, z′ ∈ Z. We

say z? solves the variational inequality (VI) in Φ if 〈Φ(z?), z? − z〉 ≤ 0 for all z ∈ Z. We equip

differentiable convex-concave h with the “gradient operator” Φ(x, y) := (∇xh(x, y),−∇yh(x, y)).

The gradient of convex f and the gradient operator of convex-concave h are both monotone (see

Appendix A.9). Their VIs are respectively solved by any minimizers of f and saddle points of h.

CHAPTER 2. ACCELERATION VIA PRIMAL-DUAL EXTRAGRADIENT METHODS 43

Finally, for a function f , we call any x with f(x) ≤ f(x?) + ε an ε-approximate minimizer, where x?

is the minimizing argument.

Regularity. We say function f : X → R is L-smooth if ‖∇f(x)−∇f(x′)‖∗ ≤ L ‖x− x′‖ for all

x, x′ ∈ X ; if f is twice-differentiable, this is equivalent to (x′− x)>∇2f(x)(x′− x) ≤ L ‖x′ − x‖2 for

all x, x′ ∈ X . We say differentiable function f : X → R is µ-strongly convex if V fx (x′) ≥ µ
2 ‖x− x

′‖2

for all x, x′ ∈ X ; if f is twice-differentiable, this is equivalent to (x′−x)>∇2f(x)(x′−x) ≥ µ ‖x′ − x‖2

for all x, x′ ∈ X . We also say f is µ-strongly convex with respect to a distance-generating function

r if V fx (y) ≥ µV rx (y) for all x, y ∈ X .

Finally, we say operator Φ : Z → Z∗ is m-strongly monotone with respect to convex r : Z → R
if for all z, z′ ∈ Z,

〈Φ(z)− Φ(z′), z − z′〉 ≥ m 〈∇r(z)−∇r(z′), z − z′〉 = m (V rz (z′) + V rz′(z)) .

Convex conjugates. The (Fenchel dual) convex conjugate of a convex f : X → R is denoted

f∗(x∗) := max
x∈X
〈x, x∗〉 − f(x).

We allow f∗ to take the value ∞. We recall the following facts about convex conjugates.

Fact 1. Let f : X → R be differentiable.

1. For all x ∈ X , ∇f(x) ∈ argmaxx∗∈X∗ 〈x∗, x〉 − f∗(x∗).

2. (f∗)∗ = f .

3. If f∗ is differentiable, for all x ∈ X , ∇f∗(∇f(x)) = x.

4. If f is L-smooth, then for all x, x′ ∈ X ,

f(x′)− f(x)− 〈∇f(x), x′ − x〉 ≥ 1

2L
‖∇f(x′)−∇f(x)‖2 .

If f is µ-strongly convex, f∗ is 1
µ -smooth.

Proof. The first three items all follow from Chapter 11 of [458]. The first part of the fourth item is

shown in Appendix A.1, and the second part is shown in [303].

For a function f : X → R, we define the set X ∗f ⊂ X ∗ to be the set of points realizable as a

gradient, namely X ∗f := {∇f(x) | x ∈ X}. This will be come relevant in applications of Item 4 in

Fact 1 throughout the paper, when ∇f is not surjective (onto X ∗).
Finally, we defer a review and several additional facts about convex conjugates to Appendix A.1.

CHAPTER 2. ACCELERATION VIA PRIMAL-DUAL EXTRAGRADIENT METHODS 44

Algorithm 1: Mirror-Prox(z0, T): Mirror prox [415]

1 Input: Distance generating r, λ-relatively Lipschitz monotone g : Z → Z∗, initial point
z0 ∈ Z;

2 for 0 ≤ t < T do
3 wt ← Proxrzt(

1
λg(zt));

4 zt+1 ← Proxrzt(
1
λg(wt));

2.3 Extragradient convergence under relative Lipschitzness

We give a brief presentation of mirror prox [415], and a convergence analysis under relative Lips-

chitzness. Our results also hold for dual extrapolation [420], which can be seen as a “lazy” version

of mirror prox updating a state in dual space (see [98]); we defer details to Appendix A.4.

Definition 1 (Relative Lipschitzness). For convex r : Z → R, we call operator g : Z → Z∗

λ-relatively Lipschitz with respect to r if for every three z, w, u ∈ Z,

〈g(w)− g(z), w − u〉 ≤ λ (V rz (w) + V rw(u))

We say g is λ-relatively Lipschitz with respect to r over Zalg ⊆ Z if the above inequality holds for

all z, w, u ∈ Zalg.

For example, we have the following bound when g = ∇r, which follows directly from nonnega-

tivity of Bregman divergences and (2.10).

Lemma 1. Let r : Z → R be convex. Then, ∇r is 1-relatively Lipschitz with respect to r over Z.

Definition 1 can be thought of as an alternative to a natural nonlinear analog of the area convexity

condition of [483] displayed below:

〈g(w)− g(z), w − u〉 ≤ λ
(
r(z) + r(w)− r(u)− 3r

(
z + w + u

3

))
.

Our proposed alternative is well-suited for the standard analyses of extragradient methods such as

mirror prox and dual extrapolation. For the special case of bilinear minimax problems in a matrix

A, the left hand side of Definition 1 measures the area of a triangle in a geometry induced by A.

Relative Lipschitzness encapsulates the more standard assumptions that g is Lipschitz and r is

strongly convex (Lemma 2), as well as the more recent assumptions that f is convex and relatively

smooth with respect to r [64, 375] (Lemma 3). We defer proofs to Appendix A.1.

Lemma 2. If g is L-Lipschitz and r is µ-strongly convex in ‖·‖, g is L/µ-relatively Lipschitz with

respect to r.

CHAPTER 2. ACCELERATION VIA PRIMAL-DUAL EXTRAGRADIENT METHODS 45

Lemma 3. If f is L-relatively smooth with respect to r, i.e. V fx (y) ≤ LV rx (y) for all x and y, then

g, defined by g(x) := ∇f(x) for all x, is L-relatively Lipschitz with respect to r.

We now give an analysis of Algorithm 1 showing the average “regret” 〈g(wt), wt − u〉 of iterates

decays at a O(T−1) rate. This strengthens Lemma 3.1 of [415].

Proposition 1. The iterates {wt} of Algorithm 1 satisfy for all u ∈ Z,

∑
0≤t<T

〈g(wt), wt − u〉 ≤ λV rz0(u).

Proof. First-order optimality conditions of wt, zt+1 with respect to u imply (see Lemma 216)

1

λ
〈g(zt), wt − zt+1〉 ≤ V rzt(zt+1)− V rwt(zt+1)− V rzt(wt),

1

λ
〈g(wt), zt+1 − u〉 ≤ V rzt(u)− V rzt+1

(u)− V rzt(zt+1).

(2.11)

Adding and manipulating gives, via relative Lipschitzness (Definition 1),

1

λ
〈g(wt), wt − u〉 ≤ V rzt(u)− V rzt+1

(u) +
1

λ
〈g(wt)− g(zt), wt − zt+1〉 − V rwt(zt+1)− V rzt(wt)

≤ V rzt(u)− V rzt+1
(u).

(2.12)

Finally, summing and telescoping (2.12) yields the desired conclusion.

We briefly comment on how to use Proposition 1 to approximately solve convex-concave games

in a function f(x, y). By applying convexity and concavity appropriately to the regret guarantee

(and dividing by T , the iteration count), one can replace the left hand side of the guarantee with the

duality gap of an average point w̄ against a point u, namely f(wx, uy) − f(ux, wy). By maximizing

the right hand side over u, this can be converted into an overall duality gap guarantee. For some of

our applications in following sections, u will be some fixed point (rather than a best response) and

the regret statement will be used in a more direct manner to prove guarantees.

2.4 Acceleration via relative Lipschitzness

We show that directly applying Algorithm 1 to the optimization problem (2.1) recovers an accelerated

rate for first-order convex function minimization (for simplicity, we focus on the `2 norm here;

our methods extend to general norms, discussed in Appendix A.5). Our main technical result,

Lemma 4, shows the gradient operator of (2.1) is relatively Lipschitz in the natural regularizer

induced by f , which combined with Proposition 1 gives our main result, Theorem 4. Crucially, our

method regularizes the dual variable with f∗, the Fenchel dual of f , which we show admits efficient

implementation, allowing us to obtain our improved bound on the relative Lipschitzness parameter.

CHAPTER 2. ACCELERATION VIA PRIMAL-DUAL EXTRAGRADIENT METHODS 46

Lemma 4 (Relative Lipschitzness for the Fenchel game). Let f : Rd → R be L-smooth and µ-strongly

convex in the Euclidean norm ‖·‖2. Let g(x, y) = (y,∇f∗(y)− x) be the gradient operator of the

convex-concave problem (2.1), and define the distance-generating function r(x, y) := µ
2 ‖x‖

2
2 +f∗(y).

Then, g is 1 +
√

L
µ -relatively Lipschitz with respect to r.

Proof. Consider three points z = (zx, zy), w = (wx, wy), u = (ux, uy). By direct calculation,

〈g(w)− g(z), w − u〉 = 〈wy − zy, wx − ux〉+ 〈−wx + zx +∇f∗(wy)−∇f∗(zy), wy − uy〉 . (2.13)

By Cauchy-Schwarz and L−1-strong convexity of f∗ (cf. Lemma 214) respectively, we have

〈wy − zy, wx − ux〉+ 〈zx − wx, wy − uy〉 ≤ ‖wy − zy‖2 ‖w
x − ux‖2 + ‖zx − wx‖2 ‖w

y − uy‖2

≤

√
L

µ

(
µ

2
‖wx − zx‖22 +

µ

2
‖wx − ux‖22 +

1

2L
‖wy − zy‖22 +

1

2L
‖wy − uy‖22

)

≤

√
L

µ
(V rz (w) + V rw(u)) .

(2.14)

The second line used Young’s inequality twice. Furthermore, by convexity of f∗ from zy to uy,

〈∇f∗(wy)−∇f∗(zy), wy − uy〉

= 〈∇f∗(zy), uy − zy〉 − 〈∇f∗(wy), uy − wy〉 − 〈∇f∗(zy), wy − zy〉

≤ f∗(uy)− f∗(zy)− 〈∇f∗(wy), uy − wy〉 − 〈∇f∗(zy), wy − zy〉

= V f
∗

zy (wy) + V f
∗

wy (uy) ≤ V rz (w) + V rw(u).

(2.15)

The last inequality used separability of r and nonnegativity of divergences. Summing the bounds

(2.14) and (2.15) and recalling (2.13) yields the conclusion, where we use Definition 1.

We also state a convenient fact about the form our iterates take.

Lemma 5. In the setting of Lemma 4, let zt = (xt, yt), wt = (xt+ 1
2
, yt+ 1

2
) be iterates produced by

running Algorithm 1 on the pair g, r. Suppose y0 = ∇f(v0) for some v0. Then, yt+ 1
2

and yt+1 can

be recursively expressed as yt+ 1
2

= ∇f(vt+ 1
2
), yt+1 = ∇f(vt+1), for

vt+ 1
2
← vt +

1

λ
(xt − vt), vt+1 ← vt +

1

λ

(
xt+ 1

2
− vt+ 1

2

)
.

Proof. We prove this inductively; consider some iteration t. Assuming yt = ∇f(vt), by definition

yt+ 1
2

= argminy

{〈
1

λ
(∇f∗(yt)− xt) , y

〉
+ V f

∗

yt (y)

}
= argmaxy

{〈
1

λ
(xt − vt) + vt, y

〉
− f∗(y)

}
= ∇f

(
vt +

1

λ
(xt − vt)

)
.

CHAPTER 2. ACCELERATION VIA PRIMAL-DUAL EXTRAGRADIENT METHODS 47

Here, we used standard facts about convex conjugates (see Lemma 212). A similar argument shows

that we can compute implicitly yt+1 = ∇f(vt + 1
λ (xt+ 1

2
− vt+ 1

2
)).

We now prove Theorem 4, i.e. that we can halve function error in O
(√

L
µ

)
iterations of Algo-

rithm 1. Simply iterating Theorem 4 yields a linear rate of convergence for smooth, strongly convex

functions, yielding an ε-approximate minimizer in O
(√

L
µ log f(x0)−f(x∗)

ε

)
iterations.

Theorem 4. In the setting of Lemma 4, run T ≥ 4λ iterations of Algorithm 1 initialized at z0 =

(x0,∇f(x0)) on the pair g, r with λ = 1 +
√

L
µ , and define

v̄ =
1

T

∑
0≤t<T

vt+ 1
2

where wt =
(
xt+ 1

2
,∇f(vt+ 1

2
)
)
.

Then we have f(v̄)− f(x∗) ≤ 1
2 (f(x0)− f(x∗)), where x∗ minimizes f .

Proof. First, we remark that this form of wt follows from Lemma 5, and correctness of λ follows

from Lemma 4. By an application of Proposition 1, letting u = (x∗,∇f(x∗)),

1

T

∑
0≤t<T

〈g(wt), wt − u〉 ≤
λ

T
· V rz0(u) ≤ 1

4

(µ
2
‖x0 − x∗‖22 + V f

∗

∇f(x0)(∇f(x∗))
)

=
1

4

(µ
2
‖x0 − x∗‖22 + f(x0)− f(x∗)

)
≤ 1

2
(f(x0)− f(x∗)) .

The second line used the definition of divergence in f∗ (see Lemma 213) and strong convexity of f ,

which implies f(x0) ≥ f(x∗) + µ
2 ‖x0 − x∗‖22. Moreover, by the definition of g and ∇f(x∗) = 0,

1

T

∑
0≤t<T

〈g(wt), wt − u〉 =
1

T

∑
0≤t<T

〈
∇f(vt+ 1

2
), xt+ 1

2
− x∗

〉
+
〈
vt+ 1

2
− xt+ 1

2
,∇f(vt+ 1

2
)
〉

≥ 1

T

∑
0≤t<T

f(vt+ 1
2
)− f(x∗) ≥ f(v̄)− f(x∗).

The last line used convexity twice. Combining these two derivations yields the conclusion.

For convenience, we state the full algorithm of Theorem 4 as Algorithm 2.

In Appendix A.5, we give an alternative proof of acceleration leveraging relative Lipschitzness, as

well as a variant of extragradient methods suited for strongly monotone operators (cf. Appendix A.4),

by applying these tools to the saddle point problem (to be contrasted with (2.1))

min
x∈Rd

f(x) = min
x∈Rd

max
y∈Rd

µ

2
‖x‖22 + 〈y, x〉 − h∗(y), where h(x) := f(x)− µ

2
‖x‖22 .

This alternative proof strategy readily generalizes the accelerated rate of Theorem 4 to general

norms. While the rates attained in Appendix A.5 are slightly less sharp (losing a L
µ factor in the

CHAPTER 2. ACCELERATION VIA PRIMAL-DUAL EXTRAGRADIENT METHODS 48

Algorithm 2: EG-Accel(x0, ε): Extragradient accelerated smooth minimization

1 Input: x0 ∈ Rd, f L-smooth and µ-strongly convex in ‖·‖2, and ε0 ≥ f(x0)− f(x∗);
2 Output: ε-approximate minimizer of f ;

3 λ← 1 +
√
L/µ, x(0) ← x0, T ← 4dλe, K ← dlog2

ε0
ε e;

4 for 0 ≤ k < K do
5 x0 ← x(k), v0 ← x0;
6 for 0 ≤ t < T do
7 xt+ 1

2
← xt − 1

µλ∇f(vt) and vt+ 1
2
← vt + 1

λ (xt − vt);
8 xt+1 ← xt − 1

µλ∇f(vt+ 1
2
) and vt+1 ← vt + 1

λ (xt+ 1
2
− vt+ 1

2
) ;

9 x(k+1) ← 1
T

∑
0≤t<T vt+ 1

2
;

10 Return: x(K);

logarithm) when compared to Theorem 4, the analysis is arguably simpler. This is in the sense that

Appendix A.5 shows a potential function decreases at a linear rate in every iteration, rather than

requiring O(
√
L/µ) iterations to halve it.

2.5 Area convexity rates for box-simplex games via relative

Lipschitzness

In this section, we show that a local variant of Definition 1 recovers the improved convergence rate

achieved by [483] for box-constrained `∞-regression, and more generally box-simplex bilinear games.

Specifically, we will use the following result, a simple extension to Proposition 1 which states that

relative Lipschitzness only must hold with respect to triples of algorithm iterates.

Corollary 1. Suppose Algorithm 1 is run with a monotone operator g and a distance generating r

satisfying, for all iterations t,

〈g(wt)− g(zt), wt − zt+1〉 ≤ λ
(
V rzt(wt) + Vwt(zt+1)

)
. (2.16)

Then, the conclusion of Proposition 1 holds.

Proof. Observe that the only applications of relative Lipschitzness in the proof of Proposition 1 are

of the form (2.16) (namely, in (2.12)). Thus, the same conclusion still holds.

In other words, letting Zalg be a superset of all the iterates of the algorithm, it suffices for

relative Lipschitzness to hold only over Zalg (see Definition 1). We use Corollary 1 to give an

alternative algorithm and analysis recovering the rates implied by the use of area convexity in [483],

for box-simplex games, which we now define.

CHAPTER 2. ACCELERATION VIA PRIMAL-DUAL EXTRAGRADIENT METHODS 49

Problem 1 (Box-simplex game). Let A ∈ Rm×n be a matrix and let b ∈ Rm, c ∈ Rn be vectors.

The associated box-simplex game, and its induced monotone operator g, are

min
x∈[−1,1]n

max
y∈∆m

f(x, y) := y>Ax− 〈b, y〉+ 〈c, x〉 , g(x, y) :=
(
A>y + c, b−Ax

)
. (2.17)

Here, ∆m := {y ∈ Rm≥0 :
∑
i∈[m] yi = 1} is the nonnegative probability simplex in m dimensions.

By a simple reduction that at most doubles the size of the input (stacking A, b with negated

copies, cf. Section 3.1 of [486]), Problem 1 is a generalization of the box-constrained `∞-regression

problem

min
x∈[−1,1]m

‖Ax− b‖∞ .

The work of [483] proposed a variant of extragradient algorithms, based on taking primal-dual

proximal steps in the following regularizer:6

r(x, y) := y>|A|(x2) + 10 ‖A‖∞→∞
∑
i∈[m]

yi log yi. (2.18)

Here, |A| is the entrywise absolute value of A. The convergence rate of this algorithm was proven

in [483] via an analysis based on “area convexity” of the pair (g, r), which required a somewhat

sophisticated proof based on solving a partial differential equation over a triangle. We now show

that the same rate can be obtained by the extragradient algorithms of [415, 420], and analyzed

via local relative Lipschitzness (2.16).7 We first make the following simplication without loss of

generality.

Lemma 6. For all x ∈ [−1, 1]n the value of maxy∈∆m f(x, y) in (2.17) is unchanged if we remove all

coordinates of b with bi ≥ mini∗∈[m] bi∗ + 2 ‖A‖∞→∞, and the corresponding rows of A. Therefore,

in designing an algorithm to solve (2.17) to additive error with linear pre-processing it suffices to

assume that bi ∈ [0, 2 ‖A‖∞→∞] for all i ∈ [m].

Proof. For any x ∈ [−1, 1]n, letting i∗ ∈ argmini∈[m]bi we have

max
y∈∆m

y> (Ax− b) = max
i∈[m]

[Ax− b]i ≥ −‖A‖∞→∞ ‖x‖∞ − min
i∗∈[m]

bi ≥ −‖A‖∞→∞ − bi∗ .

However, [Ax − b]i ≤ ‖A‖∞→∞ − bi for all i ∈ [m]. Consequently, any coordinate i ∈ [m] that

satisfies bi ≥ bi∗ + 2 ‖A‖∞→∞ has [Ax − b]i ≤ [Ax − b]i∗ and the value of maxy∈∆m f(x, y) is

unchanged if this entry of bi and the corresponding row of A is removed. Further, note that 〈y,1〉
is a constant for all y ∈ ∆m. Consequently, in linear time we can remove all the coordinates i with

6We let ‖A‖∞→∞ := sup‖x‖∞=1 ‖Ax‖∞, i.e. the `∞ operator norm of A or max `1 norm of any row.
7Although our analysis suffices to recover the rate of [483] for `∞ regression, the analysis of [483] is in some sense

more robust (and possibly) more broadly applicable than ours, as it does not need to reason directly about how much
the iterates vary in a step. Understanding or closing this gap is an interesting open problem.

CHAPTER 2. ACCELERATION VIA PRIMAL-DUAL EXTRAGRADIENT METHODS 50

bi ≥ mini∗∈[m] bi∗ + 2 ‖A‖∞→∞ and shift all the coordinates by an additive constant so that the

minimum coordinate of a remaining bi is 0 without affecting additive error of any x.

We now prove our main result regarding the use of mirror prox to solve box-simplex games, using

the area convex regularizer analyzed (with a slightly different algorithm) in [483].

Theorem 5. Assume the preprocessing of Lemma 6 so that b ∈ [0, 2 ‖A‖∞→∞]m. Consider running

Algorithm 1 or Algorithm 65 on the operator in (2.17) with λ = 3, using the regularizer in (2.18).

The resulting iterates satisfy (2.16), and thus satisfy the conclusion of Proposition 1.

Proof. Fix a particular iteration t. We first claim that the simplex variables wyt and zyt+1 obey the

following multiplicative stability property: entrywise,

wyt , z
y
t+1 ∈

[
1

2
zyt , 2z

y
t

]
. (2.19)

We will give the proof for wyt as the proof for zyt+1 follows from the same reasoning. Recall that

wt = argminw∈∆n×[−1,1]m

{〈
1

λ
g(zt), w

〉
+ V rzt(w)

}
,

and therefore, defining (x)
2

and (zxt)
2

as the entrywise square of these vectors,

wyt = argminy∈∆m 〈γyt , y〉+ 10 ‖A‖∞→∞
∑
i∈[m]

yi log
yi

[zyt]i
where γyt :=

1

λ
(b−Azxt) + |A|

[
(x)

2 − (zxt)
2
]
.

Consequently, applying log and exp entrywise we have

wyt ∝ exp

(
log zyt −

1

10 ‖A‖∞→∞
γyt

)
.

This implies the desired (2.19), where we use that ‖γyt ‖∞ ≤ 3 ‖A‖∞→∞, and exp(0.6) ≤ 2. Next,

we have by a straightforward calculation (Lemma 3.4, [483] or Lemma 6, [293]) that

∇2r(x, y) �

diag
(
|A:j |>y

)
0

0 ‖A‖∞→∞ diag
(

1
yi

) . (2.20)

By expanding the definition of Bregman divergence, we have

V rzt(wt) =

∫ 1

0

∫ α

0

‖wt − zt‖2∇2r(zt+β(wt−zt)) dβdα.

Fix some β ∈ [0, 1], and let zβ := zt+β(wt−zt). Since the coordinates of zβ also satisfy the stability

CHAPTER 2. ACCELERATION VIA PRIMAL-DUAL EXTRAGRADIENT METHODS 51

property (2.19), by the lower bound of (D.12), we have

‖wt − zt‖2∇2r(zβ) ≥
∑

i∈[m],j∈[n]

|Aij |

(
[zyβ]i [wxt − zxt]

2
j +

1

[zyβ]i
[wyt − z

y
t]

2
i

)

≥ 1

2

∑
i∈[m],j∈[n]

|Aij |
(

[zyt]i [wxt − zxt]
2
j +

1

[zyt]i
[wyt − z

y
t]

2
i

)
.

By using a similar calculation to lower bound V rwt(zt+1), we have by Young’s inequality the desired

V rzt(wt) + V rwt(zt+1) ≥ 1

4

∑
i∈[m],j∈[n]

|Aij |
(

[zyt]i [wxt − zxt]
2
j +

1

[zyt]i
[wyt − z

y
t]

2
i

)

+
1

4

∑
i∈[m],j∈[n]

|Aij |
(

[zyt]i
[
wxt − zxt+1

]2
j

+
1

[zyt]i

[
wyt − z

y
t+1

]2
i

)
≥ 1

3

∑
i∈[m],j∈[n]

Aij

(
[wyt − z

y
t]i
[
wxt − zxt+1

]
j
−
[
wyt − z

y
t+1

]
i
[wxt − zxt]j

)
=

1

λ
〈g(wt)− g(zt), wt − zt+1〉 .

The range of the regularizer r is bounded by O(‖A‖∞→∞ logm), and hence the iteration com-

plexity to find an ε additively-approximate solution to the box-simplex game is O(
‖A‖∞→∞ logm

ε).

Finally, we comment that the iteration complexity of solving the subproblems required by extragra-

dient methods in the regularizer r to sufficiently high accuracy is logarithmically bounded in problem

parameters via a simple alternating minimization scheme proposed by [483]. Here, we note that the

error guarantee e.g. Proposition 1 is robust up to constant factors to solving each subproblem to

ε additive accuracy, and appropriately using approximate optimality conditions (for an example of

this straightforward extension, see Corollary 1 of [293]).

2.6 Randomized coordinate acceleration via expected rela-

tive Lipschitzness

We show relative Lipschitzness can compose with randomization. Specifically, we adapt Algorithm 2

to coordinate smoothness, recovering the accelerated rate first obtained in [553, 425]. We recall f

is Li-coordinate-smooth if its coordinate restriction is smooth, i.e. |∇if(x + cei) −∇if(x)| ≤ Li|c|
∀x ∈ X , c ∈ R; for twice-differentiable coordinate smooth f , ∇2

iif(x) ≤ Li.
Along the way, we build a framework for randomized extragradient methods via “local variance

reduction” in Proposition 2. In particular, we demonstrate how for separable domains our tech-

nique can yield O(T−1) rates for stochastic extragradient algorithms, bypassing a variance barrier

CHAPTER 2. ACCELERATION VIA PRIMAL-DUAL EXTRAGRADIENT METHODS 52

encountered by prior methods [302]. Throughout, let f : Rd → R be Li-smooth in coordinate i, and

µ-strongly convex in ‖·‖2, and define the distance generating function r(x, y) = µ
2 ‖x‖

2
2 + f∗(y).

Our approach modifies that of Section 2.4 in the following ways. First, our iterates are defined

via stochastic estimators which “share randomness” (use the same coordinate in both updates).

Concretely, fix some iterate zt = (xt,∇f(vt)). For a distribution {pi}i∈[d], sample i ∼ pi and let

gi(zt) :=

(
1

pi
∇if(vt), vt − xt

)
, w

(i)
t =

(
x

(i)

t+ 1
2

,∇f(vt+ 1
2
)
)

:= Proxrzt

(
1

λ
gi(zt)

)
,

gi(w
(i)
t) :=

(
1

pi
∇if(vt+ 1

2
), vt+ 1

2
−
(
xt +

1

pi
∆

(i)
t

))
for ∆

(i)
t := x

(i)

t+ 1
2

− xt,

z
(i)
t+1 =

(
x

(i)
t+1,∇f(v

(i)
t+1)

)
:= Proxrzt

(
1

λ
gi(w

(i)
t)

)
.

(2.21)

By observation, gi(zt) is unbiased for g(zt); however, the same cannot be said for gi(w
(i)
t), as

the random coordinate was used in the definition of w
(i)
t . Nonetheless, examining the proof of

Proposition 1, we see that the conclusion

〈g(w̄t), w̄t − u〉 ≤ V rzt(u)− E
[
V r
z

(i)
t+1

(u)

]
still holds for some point w̄t, as long as

E
[〈
gi(w

(i)
t), w

(i)
t − u

〉]
= 〈g(w̄t), w̄t − u〉 ,

E
[〈
gi(w

(i)
t)− gi (zt) , w

(i)
t − z

(i)
t+1

〉]
≤ λE

[
V rzt(w

(i)
t) + V r

w
(i)
t

(z
(i)
t+1)

]
.

(2.22)

We make this concrete in the following claim, a generalization of Proposition 1 which handles

randomized operator estimates as well as an expected variant of relative Lipschitzness. We remark

that as in Corollary 1, the second condition in (2.22) only requires relative Lipschitzness to hold for

the iterates of the algorithm, rather than globally.

Proposition 2. Suppose in every iteration of Algorithm 1, steps are conducted with respect to

randomized gradient operators
{
gi(zt), gi(w

(i)
t)
}

satisfying (2.22) for some {w̄t}. Then, for all

u ∈ Z,

E

 ∑
0≤t<T

〈g (w̄t) , w̄t − u〉

 ≤ λV rz0(u).

Proof. The proof follows identically to that of Proposition 1, where we iterate taking expectations

over (2.12), each time applying the two conditions in (2.22).

For the rest of this section, we overload gi to mean the choices used in (2.21). This choice is

motivated via the following two properties, required by (2.22) (and shown in Appendix A.6).

CHAPTER 2. ACCELERATION VIA PRIMAL-DUAL EXTRAGRADIENT METHODS 53

Lemma 7. Let w̄t := (xt +
∑
i∈[d] ∆

(i)
t ,∇f(vt+ 1

2
)). Then ∀u, taking expectations over iteration t,

E
[〈
gi(w

(i)
t), w

(i)
t − u

〉]
= 〈g(w̄t), w̄t − u〉 .

Lemma 8 (Expected relative Lipschitzness). Let λ = 1 + S1/2/
√
µ, where S1/2 :=

∑
i∈[d]

√
Li.

Then, for the iterates (2.21) with pi =
√
Li/S1/2, taking expectations over iteration t,

E
[〈
gi(w

(i)
t)− gi (zt) , w

(i)
t − z

(i)
t+1

〉]
≤ λE

[
V rzt(w

(i)
t) + V r

w
(i)
t

(z
(i)
t+1)

]
.

Crucially, our proof of these results uses the fact that our randomized gradient estimators are

1-sparse in the x component, and the fact that we “shared randomness” in the definition of the

gradient estimators. Moreover, our iterates are efficiently implementable, under the “generalized

partial derivative oracle” of prior work [347, 553, 425], which computes ∇if(ax + by) for x, y ∈ Rd

and a, b ∈ R. In many settings of interest, these oracles can be implemented with a dimension-

independent runtime; we defer a discussion to previous references.

Lemma 9 (Iterate maintenance). We can implement each iteration of Algorithm 1 using two gen-

eralized partial derivative oracle queries and constant additional work.

We defer a formal statement to Appendix A.6, as Lemma 222. Combining Lemma 7 and

Lemma 8, (2.22) is satisfied with λ = 1 + S1/2/
√
µ. Finally, all of these pieces directly imply

the following, via the proof of Theorem 4 and iterating expectations. We give our full method as

Algorithm 1.

Theorem 6 (Coordinate acceleration). Algorithm 1 produces an ε-approximate minimizer of f in

O

∑
i∈[d]

√
Li
µ

log

(
f(x0)− f(x∗)

ε

) iterations in expectation,

with iteration complexity given by Lemma 9.

Proof. This follows from the proof of Theorem 4, using Proposition 2 in place of Proposition 1.

2.7 Separable minimax optimization

In this section, we provide efficient algorithms for computing an approximate saddle point of the

following separable minimax optimization problem:

min
x∈X

max
y∈Y

Fmm(x, y) for Fmm := f(x) + h(x, y)− g(y). (2.23)

CHAPTER 2. ACCELERATION VIA PRIMAL-DUAL EXTRAGRADIENT METHODS 54

Here and throughout this section f : X → R and g : Y → R are differentiable, convex functions

and h : X × Y → R is a differentiable, convex-concave function. For the remainder, we focus on

algorithms for solving the following regularized formulation of (2.23):

min
x∈X

max
y∈Y

Fmm-reg(x, y) for Fmm-reg(x, y) := f(x) + h(x, y)− g(y) +
µx

2
‖x‖2 − µy

2
‖y‖2 . (2.24)

To instead solve an instance of (2.23) where f is µx-strongly convex and g is µy-strongly convex, we

may instead equivalently solve (2.24) by reparameterizing f ← f − µx

2 ‖·‖
2
, g ← g− µy

2 ‖·‖
2
. As it is

notationally convenient for our analysis, we focus on solving the problem (2.24) and then give the

results for (2.23) at the end of this section in Corollary 3.

In designing methods for solving (2.24) we make the following additional regularity assumptions.

Assumption 1 (Minimax regularity). We assume the following about (2.24).

1. f is Lx-smooth and g is Ly-smooth.

2. h has the following blockwise-smoothness properties: for all u, v ∈ X × Y,

‖∇xh(u)−∇xh(v)‖ ≤ Λxx ‖ux − vx‖+ Λxy ‖uy − vy‖ ,

‖∇yh(u)−∇yh(v)‖ ≤ Λxy ‖ux − vx‖+ Λyy ‖uy − vy‖ .
(2.25)

Note that when h is twice-differentiable, (2.51) equates to everywhere operator norm bounds on

blocks of ∇2h. Namely, for all w ∈ X × Y,

∥∥∇2
xxh(w)

∥∥
op
≤ Λxx,

∥∥∇2
xyh(w)

∥∥
op
≤ Λxy, and

∥∥∇2
yyh(w)

∥∥
op
≤ Λyy.

In the particular case when h(x, y) = y>Ax − b>y + c>x is bilinear, clearly Λxx = Λyy = 0 (as

remarked in the introduction). In this case, we may then set Λxy := ‖A‖op.

The remainder of this section is organized as follows.

1. In Section 2.7.1, we state a primal-dual formulation of (2.24) which we will apply our methods

to, and prove that its solution yields a solution to (2.24).

2. In Section 2.7.2, we give our algorithm and prove it is efficiently implementable.

3. In Section 2.7.3, we prove the convergence rate of our algorithm.

4. In Section 2.7.4, we state and prove our main result, Theorem 25.

CHAPTER 2. ACCELERATION VIA PRIMAL-DUAL EXTRAGRADIENT METHODS 55

2.7.1 Setup

To solve (2.24), we will instead find a saddle point to the expanded primal-dual function

Fmm-pd(z) :=
〈
zf
∗
, zx
〉
−
〈
zg
∗
, zy
〉

+
µx

2
‖zx‖2 − µy

2
‖zy‖2 + h(zx, zy)− f∗(zf

∗
) + g∗(zg

∗
). (2.26)

We denote the domain of Fmm-pd by Z := X × Y × X ∗ × Y∗. For z ∈ Z, we refer to its blocks by

(zx, zy, zf
∗
, zg
∗
). The primal-dual function Fmm-pd is related to Fmm-reg in the following way.

Lemma 10. Let z? be the saddle point to (2.26). Then, (zx?, z
y
?) is a saddle point to (2.24).

Proof. By performing the maximization over zf
∗

and minimization over zg
∗
, we see that the problem

of computing a saddle point to the objective in (2.26) is equivalent to

min
zx∈X

max
zy∈Y

µx

2
‖zx‖2 − µy

2
‖zy‖2 + h(zx, zy) +

(
max
zf∗∈X∗

〈
zf
∗
, zx
〉
− f∗(zf

∗
)

)
−
(

max
zg∗∈Y∗

〈
zg
∗
, zy
〉
− g∗(zg

∗
)

)
.

By Item 2 in Fact 1, this is the same as (2.24).

We next define Φ, the gradient operator of Fmm-pd. Before doing so, it will be convenient to

define r : Z → R, which combines the (unsigned) separable components of Fmm-pd:

r(z) :=
µx

2
‖zx‖2 +

µy

2
‖zy‖2 + f∗(zf

∗
) + g∗(zg

∗
). (2.27)

The function r will also serve as a regularizer in our algorithm. With this definition, we decompose

Φ into three parts, roughly corresponding to the contribution from r, the contributions from the

bilinear portion of the primal-dual representations of f and g, and the contribution from h. In

particular, we define

Φr(z) := ∇r(z) =
(
µxzx, µyzy,∇f∗(zf

∗
),∇g∗(zg

∗
)
)

Φbilin(z) := (zf
∗
, zg
∗
,−zx,−zy),

Φh(z) := (∇xh(zx, zy),−∇yh(zx, zy), 0, 0) .

(2.28)

It is straightforward to check that Φ, the gradient operator of Fmm-pd, satisfies

Φ(z) := Φr(z) + Φbilin(z) + Φh(z). (2.29)

Finally, we note that by construction Φ is 1-strongly monotone with respect to r.

Lemma 11 (Strong monotonicity). The operator Φ (as defined in (I.20)) is 1-strongly monotone

with respect to the function r : Z → R as in (7.66).

CHAPTER 2. ACCELERATION VIA PRIMAL-DUAL EXTRAGRADIENT METHODS 56

Proof. Consider the decomposition of Φ = Φr+Φbilin +Φh defined in (2.28) and (I.20). By definition

and Items 1 to 3 from Fact 35, we know the operators Φh and Φbilin are monotone, and Φr = ∇r
is 1-strongly monotone with respect to r. Combining the three operators and using additivity of

monotonicity in Item 4 of Fact 35 yields the claim.

2.7.2 Algorithm

Our algorithm will be an instantiation of strongly monotone mirror prox, stated as Algorithm 3 below

and analyzed in Appendix A.4, an alternative to the mirror prox algorithm originally proposed by

[415].

Algorithm 3: SM-Mirror-Prox(λ, T, z0): Strongly monotone mirror prox

1 Input: Convex r : Z → R, m-strongly monotone Φ : Z → Z∗ (with respect to r), z0 ∈ Z
2 Parameter(s): λ > 0, T ∈ N
3 for 0 ≤ t < T do
4 zt+1/2 ← Proxrzt(

1
λΦ(zt))

5 zt+1 ← argminz∈Z{ 1
λ

〈
Φ(zt+1/2), z

〉
+ m

λ V
r
zt+1/2

(z) + V rzt(z)}

We prove the following result in Appendix A.4.

Proposition 3. If Φ is λ-relatively Lipschitz with respect to r over Zalg containing all iterates of

Algorithm 3, and its VI is solved by z?, the iterates of Algorithm 3 satisfy

V rzt(z?) ≤
(

1 +
m

λ

)−t
V rz0(z?), for all t ∈ [T].

Our algorithm in this section, Algorithm 4, will simply apply Algorithm 3 to the operator-

regularizer pair (Φ, r) defined in (I.20) and (7.66). We give this implementation as pseudocode

below, and show that it is a correct implementation of Algorithm 3 in the following lemma.

Lemma 12. Algorithm 4 implements Algorithm 3 with m = 1 on (Φ, r) defined in (I.20), (7.66).

Proof. Let {zt, zt+1/2}0≤t≤T be the iterates of Algorithm 3. We will inductively show that Algo-

rithm 4 preserves the invariants

zt =
(
zxt , z

y
t ,∇f

(
zft
)
,∇g (zgt)

)
, zt+1/2 =

(
zxt+1/2, z

y
t+1/2,∇f

(
zft+1/2

)
,∇g

(
zgt+1/2

))
,

for the iterates of Algorithm 4. Once we prove this claim, it is clear from inspection that Algorithm 4

implements Algorithm 3, upon recalling the definitions (I.20), (7.66).

The base case of our induction follows from our initialization so that (∇f(zf0),∇g(zg0)) ←
(∇f(x0),∇f(y0)). Next, suppose for some 0 ≤ t < T , we have zf

∗

t = ∇f(zft) and zg
∗

t = ∇g(zgt). By

CHAPTER 2. ACCELERATION VIA PRIMAL-DUAL EXTRAGRADIENT METHODS 57

Algorithm 4: Minimax-Solve(Fmm-reg, x0, y0): Separable minimax optimization

1 Input: (2.24) satisfying Assumption 1, (x0, y0) ∈ X × Y
2 Parameter(s): λ > 0, T ∈ N
3 (zx0, z

y
0)← (x0, y0), (zf0, z

g
0)← (x0, y0)

4 for 0 ≤ t < T do
5

Φx ← µxzxt +∇f(zft) +∇xh(zxt , z
y
t)

Φy ← µyzyt +∇g(zgt)−∇yh(zxt , z
y
t).

.gradient step:

6 zxt+1/2 ← zx − 1
λµx Φx

7 zyt+1/2 ← zy − 1
λµy Φy

8 zft+1/2 ← (1− 1
λ)zft + 1

λz
x
t and zgt+1/2 ← (1− 1

λ)zgt + 1
λz

y
t

9

Φx ← µxzxt+1/2 +∇f(zft+1/2) +∇xh(zxt+1/2, z
y
t+1/2)

Φy ← µyzyt+1/2 +∇g(zgt+1/2)−∇yh(zxt+1/2, z
y
t+1/2)

.extragradient step:

10 zxt+1 ← 1
1+λz

x
t+1/2 + λ

1+λz
x
t − 1

(1+λ)µx Φx

11 zyt+1 ← 1
1+λz

y
t+1/2 + λ

1+λz
y
t − 1

(1+λ)µy Φy

12 zft+1 ← λ
1+λz

f
t + 1

1+λz
x
t+1/2 and zgt+1 ← λ

1+λz
g
t + 1

1+λz
y
t+1/2

the updates in Algorithm 3,

zf
∗

t+1/2 ← argminzf∗∈X∗

{
1

λ

〈
∇f∗(zf

∗

t)− zxt , zf
∗
〉

+ V f
∗

zf
∗
t

(zf
∗
)

}
= argminzf∗∈X∗

{
1

λ

〈
zft − zxt , zf

∗
〉
−
〈
zft, z

f∗
〉

+ f∗(zf
∗
)

}
= argmaxzf∗∈X∗

{〈(
1− 1

λ

)
zft +

1

λ
zxt , z

f∗
〉
− f∗(zf

∗
)

}
= ∇f

((
1− 1

λ

)
zft +

1

λ
zxt

)
.

The second line used our inductive hypothesis and Item 3 in Fact 1, and the last used Item 1 in

Fact 1. Hence, the update to zft+1/2 in Algorithm 4 preserves our invariant; a symmetric argument

yields zg
∗

t+1/2 = ∇g(zgt+1/2) where zgt+1/2 := (1− 1
λ)zgt + 1

λz
y
t .

Similarly, we show we may preserve this invariant for zt+1:

zf
∗

t+1 ← argminzf∗∈X∗

{
1

λ

〈
zft+1/2 − z

x
t+1/2, z

f∗
〉
− 1

λ

〈
zft+1/2, z

f∗
〉
−
〈
zft, z

f∗
〉

+

(
1 +

1

λ

)
f∗(zf

∗
)

}
= argmaxa∈X∗

{〈
zft +

1

λ
zxt+1/2, z

f∗
〉
−
(

1 +
1

λ

)
f∗(zf

∗
)

}
= ∇f

(
λ

1 + λ
zft +

1

1 + λ
zxt+1/2

)
.

CHAPTER 2. ACCELERATION VIA PRIMAL-DUAL EXTRAGRADIENT METHODS 58

Hence, we may set zft+1 := λ
1+λz

f
t + 1

1+λz
x
t+1/2 and similarly, zgt+1 := λ

1+λz
g
t + λ

1+λz
y
t+1/2.

As an immediate corollary of Lemma 12, we have the following characterization of our iterates,

recalling the definitions of X ∗f and Y∗g from Section 2.2.

Corollary 2. Define the product space Zalg := X × Y × X ∗f × Y∗g , where X ∗f := {∇f(x) | x ∈ X}
and Y∗g := {∇g(y) | y ∈ Y}. Then all iterates of Algorithm 4 lie in Zalg.

For a point z ∈ Zalg, we define the points zf := ∇f∗(zf∗) and zg := ∇g∗(zg∗). By Item 3 of

Fact 1, this implies zf , zg ∈ X since zf
∗

and zg
∗

are appropriate gradients.

2.7.3 Convergence analysis

In order to use Proposition 3 to analyze Algorithm 4, we require a strong monotonicity bound and

a relative Lipschitzness bound on the pair (Φ, r); the former is already given by Lemma 11. We

build up to the latter bound by first giving the following consequences of Assumption 1, inspired by

a similar proof strategy as used in Lemma 4.

Lemma 13 (Minimax smoothness implications). Let convex f : X → R and g : Y → R, and

convex-concave h : X × Y → R satisfy Assumption 1. Then, the following hold.

1. |〈∇f (v)−∇f (w) , x− y〉| ≤ αLxV fv (w) + α−1Vx(y) for all v, w, x, y ∈ X and α > 0.

2. |〈∇g (v)−∇g (w) , x− y〉| ≤ αLyV gv (w) + α−1Vx(y) for all v, w, x, y ∈ Y and α > 0.

3. Φh is 1-relatively Lipschitz with respect to rhα : Z → R defined for all z ∈ Z and α > 0 by

rhα(z) := 1
2 (Λxx + αΛxy) ‖zx‖2 + 1

2

(
Λyy + α−1Λxy

)
‖zy‖2.

Proof. We will prove Items 1 and 3, as Item 2 follows symmetrically to Item 1.

Proof of Item 1. We compute:

|〈∇f(v)−∇f(w), x− y〉| ≤ ‖∇f(v)−∇f(w)‖ ‖x− y‖

≤ α

2
‖∇f(v)−∇f(w)‖2 +

1

2α
‖x− y‖2

≤ αLxV f
∗

∇f(w)(∇f(v)) + α−1Vx(y) = αLxV fv (w) + α−1Vx(y).

The first inequality was Cauchy-Schwarz, the second was Young’s inequality, and the third used

Items 3 and 4 in Fact 1. The last equality follows from Fact 1.

CHAPTER 2. ACCELERATION VIA PRIMAL-DUAL EXTRAGRADIENT METHODS 59

Proof of Item 3. Let w, v, z ∈ Z be arbitrary. We have,

〈
Φh(w)− Φh(z), w − v

〉
= 〈∇xh(wx, wy)−∇xh(zx, zy), wx − vx〉 − 〈∇yh(wx, wy)−∇yh(zx, zy), wy − vy〉 .

Applying Cauchy-Schwarz, Young’s inequality, and Assumption 1 yields

〈∇xh(wx, wy)−∇xh(zx, zy), wx − vx〉 ≤ ‖∇xh(wx, wy)−∇xh(zx, zy)‖ ‖wx − vx‖

≤ (Λxx ‖wx − zx‖+ Λxy ‖wy − zy‖) ‖wx − vx‖

≤ Λxx

2
‖wx − zx‖2 +

Λxx

2
‖wx − vx‖2 + Λxy ‖wy − zy‖ ‖wx − vx‖ .

Symmetrically,

〈∇yh(wx, wy)−∇yh(zx, zy), wy − vy〉 ≤ Λyy

2
‖wy − zy‖2 +

Λyy

2
‖wy − vy‖2 +Λxy ‖wx − zx‖ ‖wy − vy‖ .

Applying Young’s inequality again yields

Λxy ‖wy − zy‖ ‖wx − vx‖ ≤ αΛxy

2
‖wx − vx‖2 +

Λxy

2α
‖wy − zy‖2 ,

and Λxy ‖wx − zx‖ ‖wy − vy‖ ≤ αΛxy

2
‖wx − zx‖2 +

Λxy

2α
‖wy − vy‖2 .

Combining these inequalities yields the desired bound of

〈
Φh(w)− Φh(z), w − v

〉
≤ (Λxx + αΛxy) (Vzx(w

x) + Vwx(vx)) + (Λyy + αΛxy) (Vzy(w
y) + Vwy(vy))

= V
rhα
z (w) + V

rhα
w (v).

Leveraging Lemma 13 and Lemma 1, we prove relative Lipschitzness of Φ with respect to r in

Lemma 14. Interestingly, the implications in Lemma 13 are sufficient for this proof, and this serves as

a (potentially) weaker replacement for Assumption 1 in yielding a convergence rate for our method.

This is particularly interesting when the condition in Item 1 is replaced with a non-Euclidean

divergence, namely |〈∇f (v)−∇f (w) , x− y〉| ≤ αLxV fv (w)+α−1V ωx (y) for some convex ω : X → R.

Setting, setting v = y, w = x, α = 1
Lx in this condition yields V fx (y) ≤ LV ωx (y). Hence, this extension

to Item 1 generalizes relative smoothness between f and ω, a condition introduced by [64, 375]. It has

been previously observed [265, 197] that relative smoothness alone does not suffice for accelerated

rates. Item 1 provides a new strengthening of relative smoothness which, as shown by its (implicit)

use in Section 2.4, suffices for acceleration. We believe a more thorough investigation comparing

these conditions is an interesting avenue for future work.

CHAPTER 2. ACCELERATION VIA PRIMAL-DUAL EXTRAGRADIENT METHODS 60

Lemma 14 (Relative Lipschitzness). Define Φ : Z → Z∗ as in (I.20), and define r : Z → R as in

(7.66). Then Φ is λ-relatively Lipschitz with respect to r over Zalg defined in Corollary 2 for

λ = 1 +

√
Lx

µx
+

√
Ly

µy
+

Λxx

µx
+

Λxy

√
µxµy

+
Λyy

µy
. (2.30)

Proof. Let w, v, z ∈ Zalg. We wish to show (cf. Definition 1)

〈Φ(w)− Φ(z), w − v〉 ≤ λ (V rz (w) + V rw(v)) .

Since Φ = Φr + Φbilin + Φh (cf. (I.20)), we bound the contribution of each term individually. The

conclusion follows from combining (2.31), (2.32), and (2.33).

Bound on Φr: By applying Lemma 1 to r,

〈Φr(w)− Φr(z), w − v〉 = 〈∇r(w)−∇r(z), w − v〉 ≤ V rz (w) + V rw(v). (2.31)

Bound on Φbilin: For all a ∈ Zalg, we may write for some af ∈ X and ag ∈ Y,

Φbilin(a) = (af
∗
, ag
∗
,−ax,−ay) = (∇f(af),∇g(ag),−ax,−ay)

and a = (ax, ay, af
∗
, ag
∗
) = (ax, ay,∇f(af),∇g(ag)).

Consequently,

〈
Φbilin(w)− Φbilin(z), w − v

〉
=
〈
∇f(wf)−∇f(zf), wx − vx

〉
+
〈
∇g(wf)−∇g(zf), wy − vy

〉
−
〈
wx − zx,∇f(wf)−∇f(vf)

〉
− 〈wy − zy,∇g(wg)−∇g(vg)〉 .

Applying Lemma 13 (Item 1 and Item 2) to each term, with α = (µxLx)−
1
2 for terms involving f

and α = (µyLy)−
1
2 for terms involving g yields

〈
Φbilin(w)− Φbilin(z), w − v

〉
≤

√
Lx

µx

(
V f
wf (z

f) + V f
vf

(wf)
)

+

√
Lx

µx
(µxVwx(vx) + µxVzx(w

x))

+

√
Ly

µy
(V gwg(zg) + V gvg(w

g)) +

√
Ly

µy
(µyVwy(vy) + µyVzy(w

y)) .

Applying Item 3 in Fact 1 and recalling the definition of r (7.66) yields

〈
Φbilin(w)− Φbilin(z), w − v

〉
≤

(√
Lx

µx
+

√
Ly

µy

)
(V rz (w) + V rw(v)) . (2.32)

CHAPTER 2. ACCELERATION VIA PRIMAL-DUAL EXTRAGRADIENT METHODS 61

Bound on Φh: Applying Lemma 13 (Item 3 with α =
√
µx/µy), we have that Φh is 1-relatively

Lipschitz with respect to rhα : Z → R defined for all z ∈ X and α > 0 by

rhα(z) :=
1

2
(Λxx + αΛxy) ‖zx‖2 +

1

2

(
Λyy + α−1Λxy

)
‖zy‖2

=

(
Λxx

µx
+

Λxy

√
µxµy

)
· µ

x

2
‖zx‖2 +

(
Λyy

µy
+

Λxy

√
µxµy

)
· µ

y

2
‖zy‖2 .

Leveraging the nonnegativity of Bregman divergences, we conclude

〈
Φh(w)− Φh(z), w − v

〉
≤ V r

h
α

z (w) + V
rhα
w (v)

≤
(

Λxx

µx
+

Λxy

√
µxµy

+
Λyy

µy

)
(V rz (w) + V rw(v)) . (2.33)

Finally, we provide simple bounds regarding initialization and termination of Algorithm 4.

Lemma 15. Let (x0, y0) ∈ X × Y, and define

z0 := (x0, y0,∇f(x0),∇g(y0)) . (2.34)

Suppose GapFmm-reg
(x0, y0) ≤ ε0. Then, letting z? be the solution to (2.26),

V rz0(z?) ≤
(

1 +
Lx

µx
+
Ly

µy

)
ε0.

Proof. By the characterization in Lemma 10, we have by Item 1 in Fact 1:

z? = (x?, y?,∇f(x?),∇g(y?)) .

Hence, we bound

V rz0(z?) = µxVx0
(x?) + V fx?(x0) + µyVy0

(y?) + V gy?(y0)

≤ µxVx0(x?) +
Lx

2
‖x0 − x?‖2X + µyVy0(y?) +

Ly

2
‖y0 − y?‖2Y

=

(
Lx

µx
+ 1

)
µxVx0(x?) +

(
Ly

µy
+ 1

)
µyVy0(y?)

≤
(
Lx

µx
+
Ly

µy
+ 1

)
ε0.

The first line used Item 3 in Fact 1, and the second used smoothness of f and g (Assumption 1).

CHAPTER 2. ACCELERATION VIA PRIMAL-DUAL EXTRAGRADIENT METHODS 62

To obtain the last line, define the functions

F x
mm-reg(x) := max

y∈Y
Fmm-reg(x, y) and F y

mm-reg(y) := min
x∈X

Fmm-reg(x, y).

Fact 36 shows F x
mm-reg is µx-strongly convex and F y

mm-reg is µy-strongly concave, so

GapFmm-reg
(x0, y0) =

(
F x

mm-reg(x0)− F x
mm-reg(x?)

)
+
(
F y

mm-reg(y?)− F y
mm-reg(y0)

)
≥ µxVx0

(x?) + µyVy0
(y?).

Lemma 16. Let z ∈ Z have

V rz (z?) ≤
(
µx + Lx + Λxx

µx
+
µy + Ly + Λyy

µy
+

(Λxy)2

µxµy

)
· ε

2
,

for z? the solution to (2.26). Then,

GapFmm-reg
(zx, zy) ≤ ε.

Proof. We follow the notation of Lemma 15. From Fact 36 we know F x
mm-reg is Lx-smooth and

F y
mm-reg is Ly-smooth, where

Lx := µx + Lx + Λxx +
(Λxy)2

µy
and Ly := µy + Ly + Λyy +

(Λxy)2

µx
,

under Assumption 1. Moreover, by Lemma 10 and the definition of saddle points, x? := zx? is the

minimizer to F x
mm-reg, and y? := zy? is the maximizer to F y

mm-reg. We conclude via

GapFmm-reg
(zx, zy) =

(
F x

mm-reg(x)− F x
mm-reg(x?)

)
+
(
F y

mm-reg(y?)− F y
mm-reg(zy)

)
≤
(
µx + Lx + Λxx +

(Λxy)2

µy

)
‖x− x?‖2

+

(
µy + Ly + Λyy +

(Λxy)2

µx

)
‖y − y?‖2

≤ 2

(
µx + Lx + Λxx

µx
+
µy + Ly + Λyy

µy
+

(Λxy)2

µxµy

)
V rz (z?) ≤ ε.

The first inequality was smoothness of F x
mm-reg and F y

mm-reg (where we used that the gradients at x?

and y? vanish because the optimization problems they solve are over unconstrained domains), and

the last inequality was nonnegativity of Bregman divergences.

CHAPTER 2. ACCELERATION VIA PRIMAL-DUAL EXTRAGRADIENT METHODS 63

2.7.4 Main result

We now state and prove our main claim.

Theorem 7. Suppose Fmm-reg in (2.24) satisfies Assumption 1, and suppose we have (x0, y0) ∈ X×Y
such that GapFmm-reg

(x0, y0) ≤ ε0. Algorithm 4 with λ as in (2.30) returns (x, y) ∈ X × Y with

GapFmm-reg
(x, y) ≤ ε in T iterations, using a total of O(T) gradient calls to each of f , g, h, where

T = O
(
κmm log

(κmmε0
ε

))
, for κmm :=

√
Lx

µx
+

√
Ly

µy
+

Λxx

µx
+

Λxy√
µxµy

+
Λyy

µy
. (2.35)

Proof. By Lemma 10, the points x? and y? are consistent between (2.24) and (2.26). The gradient

complexity of each iteration follows from observation of Algorithm 4.

Next, by Lemma 12, Algorithm 4 implements Algorithm 3 on the pair (I.20), (7.66). By substi-

tuting the bounds on λ and m in Lemmas 14 and 11 into Proposition 3 (where we define Zalg as in

Corollary 2), it is clear that after T iterations (for a sufficiently large constant in the definition of

T), we will have V rzT (z?) is bounded by the quantity in Lemma 16, where we use the initial bound

on V rz0(z?) from Lemma 15. The conclusion follows from setting (x, y)← (zxT , z
y
T).

As an immediate corollary, we have the following result on solving (2.23).

Corollary 3. Suppose for Fmm in (2.23) solved by (x?, y?), (f − µx

2 ‖·‖
2
, g − µy

2 ‖·‖
2
, h) satisfies

Assumption 1. There is an algorithm taking (x0, y0) ∈ X ×Y satisfying GapFmm
(x0, y0) ≤ ε0, which

performs T iterations for T in (2.35), returns (x, y) ∈ X ×Y satisfying GapFmm
(x, y) ≤ ε, and uses

a total of O(T) gradient calls to each using O(1) gradient calls to each of f , g, h.

2.8 Finite sum optimization

In this section, we give an algorithm for efficiently finding an approximate minimizer of the following

finite sum optimization problem:

Ffs(x) :=
1

n

∑
i∈[n]

fi(x). (2.36)

Here and throughout this section fi : X → R is a differentiable, convex function for all i ∈ [n]. For

the remainder, we focus on algorithms for solving the following regularized formulation of (2.36):

min
x∈X

Ffs-reg(x) for Ffs-reg(x) :=
1

n

∑
i∈[n]

fi(x) +
µ

2
‖x‖2 . (2.37)

As in Section 2.7, to solve an instance of (2.36) where each fi is µ-strongly convex, we may instead

equivalently solve (2.37) by reparameterizing fi ← fi − µ
2 ‖·‖

2
for all i ∈ [n]. We further remark

CHAPTER 2. ACCELERATION VIA PRIMAL-DUAL EXTRAGRADIENT METHODS 64

that our algorithms extend to solve instances of (2.36) where Ffs is µ-strongly convex in ‖·‖, but

individual summands are not. We provide this result at the end of the section in Corollary 4.

In designing methods for solving (2.37) we make the following additional regularity assumptions.

Assumption 2. For all i ∈ [n], fi is Li-smooth.

The remainder of this section is organized as follows.

1. In Section 2.8.1, we state a primal-dual formulation of (2.37) which we will apply our methods

to, and prove that its solution also yields a solution to (2.37).

2. In Section 2.8.2, we give our algorithm and prove it is efficiently implementable.

3. In Section 2.8.3, we prove the convergence rate of our algorithm.

4. In Section 2.8.4, we state and prove our main result, Theorem 8.

2.8.1 Setup

To solve (2.37), we instead find a saddle point to the primal-dual function

Ffs-pd (z) :=
1

n

∑
i∈[n]

(〈
zf
∗
i , zx

〉
− f∗i (zf

∗
i)
)

+
µ

2
‖zx‖2 . (2.38)

We denote the domain of Ffs-pd by Z := X × (X ∗)n. For z ∈ Z, we refer to its blocks by

(zx,
{
zf
∗
i

}
i∈[n]

). The primal-dual function Ffs-pd is related to Ffs-reg in the following way.

Lemma 17. Let z? be the saddle point to (2.38). Then, zx? is a minimizer of (2.37).

Proof. By performing the maximization over each zf
∗
i , we see that the problem of computing a

minimizer to the objective in (2.38) is equivalent to

min
zx∈X

µ

2
‖zx‖2 +

1

n

∑
i∈[n]

(
max
zf
∗
i ∈X∗

〈
zf
∗
i , zx

〉
− f∗i (zf

∗
i)

)
.

By Item 2 in Fact 1, this is the same as (2.37).

As in Section 2.7.1, it will be convenient to define the convex function r : Z → R, which combines

the (unsigned) separable components of Ffs-pd:

r (z) :=
µ

2
‖zx‖2 +

1

n

∑
i∈[n]

f∗i (zf
∗
i). (2.39)

CHAPTER 2. ACCELERATION VIA PRIMAL-DUAL EXTRAGRADIENT METHODS 65

Again, r serves as a regularizer in our algorithm. We next define Φ, the gradient operator of Ffs-pd:

Φ(z) :=

 1

n

∑
i∈[n]

zf
∗
i + µzx,

{
1

n

(
∇f∗i (zf

∗
i)− zx

)}
i∈[n]

 . (2.40)

By construction, Φ is 1-strongly monotone with respect to r.

Lemma 18 (Strong monotonicity). Define Φ : Z → Z∗ as in (2.40), and define r : Z → R as in

(2.39). Then Φ is 1-strongly-monotone with respect to r.

Proof. The proof is identical to Lemma 11 without the Φh term: the bilinear component cancels in

the definition of strong monotonicity, and the remaining part is exactly the gradient of r.

2.8.2 Algorithm

Our algorithm is an instantiation of randomized mirror prox stated as Algorithm 5 below, an ex-

tension to mirror prox allowing for randomized gradient estimators. This algorithm was also used

in our developments in Section 2.6, but we restate it explicitly here for convenience. We note that

the operators Φi need only be defined on iterates of the algorithm.

Algorithm 5: Rand-Mirror-Prox({Φi}i∈[n], w0): Randomized mirror prox [147]

1 Input: Convex r : Z → R, probability distribution p : [n]→ R≥0 with
∑
i∈[n] pi = 1,

operators {Φi}i∈[n] : Z → Z∗, z0 ∈ Z;
2 Parameter(s): λ > 0, S ∈ N ;
3 for 0 ≤ s < S do
4 Sample i ∼ p;
5 ws+1/2 ← Proxrwt(

1
λΦi(ws));

6 ws+1 ← Proxrwt(
1
λΦi(ws+1/2));

We restate the following result (originally given as Proposition 2 earlier) in slightly more gener-

ality, giving a guarantee on Algorithm 5.

Proposition 4. Suppose {Φi}i∈[n] are defined so that in each iteration s, for all u ∈ Z, there exists

a point w̄s ∈ Z and a monotone operator Φ : Z → Z∗ such that (where all expectations fix ws, and

condition only on the randomness in iteration s)

Ei∼p
[〈

Φi(ws+1/2), ws+1/2 − u
〉]

= 〈Φ(w̄s), w̄s − u〉 for all u ∈ Z,

Ei∼p
[〈

Φi(ws+1/2)− Φi(ws), ws+1/2 − ws+1

〉]
≤ λEi∼p

[
V rws(ws+1/2) + V rws+1/2

(ws+1)
]
.

(2.41)

CHAPTER 2. ACCELERATION VIA PRIMAL-DUAL EXTRAGRADIENT METHODS 66

Then (where the expectation below is taken over the randomness of the entire algorithm):

E

 1

S

∑
0≤s<S

〈Φ(w̄s), w̄s − u〉

 ≤ λV rw0
(u)

S
, for all u ∈ Z.

The first condition in (2.41) is an “unbiasedness” requirement on the operators {Φi}i∈[n] with

respect to the operator Φ, for which we wish to conclude a regret guarantee. The second posits that

relative Lipschitzness (Definition 1) holds in an expected sense. We recall that Algorithm 5 requires

us to specify a set of sampling probabilities {pi}i∈[n]. We define

pi :=

√
Li

2
∑
j∈[n]

√
Lj

+
1

2n
for all i ∈ [n]. (2.42)

This choice crucially ensures that all pi ≥ 1
2n , and that all

√
Li
pi
≤ 2

∑
j∈[n]

√
Lj .

Our algorithm, Algorithm 6, recursively applies Algorithm 5 to the operator-pair (Φ, r) defined

in (2.40) and (2.39), for an appropriate specification of {Φi}i∈[n]. We give this implementation as

pseudocode in Algorithms 6 and 7 below, and show that Algorithm 7 is a correct implementation of

Algorithm 5 with respect to our specified {Φi}i∈[n] in the remainder of the section.

Algorithm 6: Finite-Sum-Solve(Ffs-reg, x0): Finite sum optimization

1 Input: (2.37) satisfying Assumption 2, x0 ∈ X ;
2 Parameter(s): T ∈ N;

3 zx0 ← x0, zfi0 ← x0, z
f∗i
0 ← ∇fi(x0) for all i ∈ [n];

4 for 0 ≤ t < T do
5 zt+1 ← Finite-Sum-One-Phase(Ffs-reg, zt);

We next describe the operators {Φi}i∈[n] used in our implementation of Algorithm 5. Fix some

0 ≤ s < S, and consider some iterates {w,waux(j)} := {ws, ws+1/2} of Algorithm 5 (where we use

the notation (j) to mean the iterate that would be taken if j ∈ [n] was sampled in iteration s, and

we drop the subscript s for simplicity since we only focus on one iteration). We denote the X block

of waux(j) by wx
aux, since (as made clear in the following) conditioned on w, wx

aux is always the same

regardless of the sampled j ∈ [n]. For all j ∈ [n], we then define the operators

Φj (w) :=

 1

n

∑
i∈[n]

wf∗i + µwx,

{
1

npj
(∇f∗j (wf∗j)− wx) · 1i=j

} ,

Φj (waux(j)) :=

 1

n

∑
i∈[n]

wf∗i +
1

npj

(
w

f∗j
aux(j)− wf∗j

)
+ µwx

aux,

{
1

npj

(
∇f∗j

(
w

f∗j
aux(j)

)
− wx

aux

)
· 1i=j

} ,

(2.43)

CHAPTER 2. ACCELERATION VIA PRIMAL-DUAL EXTRAGRADIENT METHODS 67

Algorithm 7: Finite-Sum-One-Phase(Ffs-reg, w0): Finite sum optimization subroutine

1 Input: (2.37) satisfying Assumption 2, w0 ∈ Z specified by wx
0, {w

fi
0}i∈[n] ∈ X ;

2 Parameter(s): λ ≥ 2, S ∈ N;
3 Sample 0 ≤ σ < S uniformly at random;
4 for 0 ≤ s ≤ σ do
5 Sample j ∈ [n] according to p defined in (2.42);

6 wx
s+1/2 ← wx

s − 1
λµ (µwx

s + 1
n

∑
i∈[n]∇fi(wfi

s));

7 w
fj
s+1/2 ← (1− 1

λnpj
)w

fj
s + 1

λnpj
wx
s;

8 wfi
s+1/2 ← wfi

s for all i 6= j;

9 ∆s ← ∇fj(w
fj
s+1/2)−∇fj(w

fj
s);

10 wx
s+1 ← wx

s − 1
λµ (µwx

s+1/2 + 1
n

∑
i∈[n]∇fi(wfi

s) + 1
npj

∆s);

11 w
fj
s+1 ← w

fj
s + 1

λnpj
(wx

s+1/2 − w
fj
s+1/2);

12 wfi
s+1 ← wfi

s for all i 6= j;

13 Return: (wx
σ+1/2, {∇fi((1−

1
λnpi

)wfi
σ + 1

λnpi
wx
σ)}i∈[n])

where 1i=j is a zero-one indicator. In other words, Φj(w) and Φj(waux(j)) both only have two

nonzero blocks, corresponding to the X and jth X ∗ blocks. We record the following useful obser-

vation about our randomized operators (2.43), in accordance with the first condition in (2.41). To

give a brief interpretation of our “aggregate point” defined in (2.44), the X coordinate is updated

deterministically from wx according to the corresponding block of Φ, and every dual block j ∈ [n]

of w̄ is set to the corresponding dual block had j been sampled in that step.

Lemma 19 (Expected regret). Define {Φj}j∈[n] : Z → Z∗ as in (2.43), and the “aggregate point”

w̄ :=

(
wx

aux,
{
w

f∗j
aux(j)

}
j∈[n]

)
. (2.44)

Then, for all u ∈ Z, defining Φ as in (2.40),

Ej∼p [〈Φj(waux(j)), waux(j)− u〉] = 〈Φ(w̄), w̄ − u〉 .

CHAPTER 2. ACCELERATION VIA PRIMAL-DUAL EXTRAGRADIENT METHODS 68

Proof. We expand the expectation, using (2.43) and taking advantage of the sparsity of Φj :

Ej∼p [〈Φj(waux(j)), waux(j)− u〉]

=

〈∑
j∈[n]

pj

 1

n

∑
i∈[n]

wf∗i +
1

npj

(
w

f∗j
aux(j)− wf∗j

)
+ µwx

aux

 , wx
aux − ux

〉

+
∑
j∈[n]

pj

〈
1

npj

(
∇f∗j

(
w

f∗j
aux(j)

)
− wx

aux

)
, w

f∗j
aux(j)− uf

∗
j

〉

=

〈
1

n

∑
j∈[n]

w
f∗j
aux(j) + µwx

aux, w
x
aux − ux

〉

+
∑
j∈[n]

〈
1

n

(
∇f∗j

(
w

f∗j
aux(j)

)
− wx

aux

)
, w

f∗j
aux(j)− uyj

〉
= 〈Φ(w̄), w̄ − u〉 .

We conclude this section by demonstrating that Algorithm 7 is an appropriate implementation

of Algorithm 5.

Lemma 20 (Implementation). Algorithm 7 implements Algorithm 5 on ({Φi}i∈[n] , r) defined in

(2.43), (2.39), for σ iterations, and returns w̄σ, following the definition (2.44). Each iteration s > 0

is implementable in O(1) gradient calls to some fi, and O(1) vector operations on X .

Proof. Let {ws, ws+1/2}0≤s≤σ be the iterates of Algorithm 5. We will inductively show that Algo-

rithm 7 preserves the invariants

ws =
(
wx
s,
{
∇fi(wfi

s)
}
i∈[n]

)
, ws+1/2 =

(
wx
s,
{
∇fi(wfi

s+1/2)
}
i∈[n]

)
for all 0 ≤ s ≤ σ. Once we prove this claim, it is clear from inspection that Algorithm 7 implements

Algorithm 5 and returns w̄σ, upon recalling the definitions (2.43), (2.39), and (2.44).

The base case of our induction follows from the initialization guarantee of Line 3 in Algorithm 7.

Next, suppose for some 0 ≤ s ≤ σ, we have w
f∗i
s = ∇f(wfi

s) for all i ∈ [n]. By the updates in

Algorithm 5, if j ∈ [n] was sampled on iteration s,

w
f∗j
s+1/2 ← argmin

w
f∗
j ∈X∗

{
1

λnpj

〈
w

f∗j
s − wx

s, w
f∗j

〉
−
〈
w

f∗j
s , w

f∗j

〉
+ f∗j

(
wf∗j

)}
= argmax

w
f∗
j ∈X∗

{〈(
1− 1

λnpj

)
w

f∗j
s +

1

λnpj
wx
s, w

f∗j

〉
− f∗j

(
wf∗j

)}
= ∇fj

((
1− 1

λnpj

)
w

f∗j
s +

1

λnpj
wx
s

)
.

Here, we used the first item in Fact 1 in the last line. Hence, the update to w
f∗j
s+1/2 in Algorithm 7

CHAPTER 2. ACCELERATION VIA PRIMAL-DUAL EXTRAGRADIENT METHODS 69

preserves our invariant, and all other w
f∗i
s+1/2, i 6= j do not change by sparsity of Φj . An analogous

argument shows the update to each w
f∗i
s+1 preserves our invariant. Finally, in every iteration s > 0,

the updates to wx
s+1/2 and wx

s+1 only require evaluating one new gradient each, by 1-sparsity of the

dual block updates in the prior iteration.

2.8.3 Convergence analysis

In this section, we prove a convergence result on Algorithm 7 via an application of Proposition 4.

To begin, we require a bound on the quantity λ in (2.41). We remark that our derivation of this

bound follows the derivation of Lemma 8 closely.

Lemma 21 (Expected relative Lipschitzness). Define {Φj}j∈[n] : Z → Z∗ as in (2.43), and define

r : Z → R as in (2.39). Letting w+(j) be ws+1 in Algorithm 5 if j ∈ [n] was sampled in iteration s,

Ej∼p [〈Φj(waux(j))− Φj(w), waux(j)− w+(j)〉] ≤ Ej∼p
[
V rw (waux(j)) + V rwaux(j)

(w+(j))
]

for

λ = 2n+
2
∑
j∈[n]

√
Lj

√
nµ

. (2.45)

Proof. We begin by expanding the expectation of the left-hand side:

Ej∼p [〈Φj(waux(j))− Φj(w), waux(j)− w+(j)〉] = Ej∼p
[〈
µwx

aux − µwx, wx
aux − wx

+(j)
〉]

+ Ej∼p
[

1

npj

〈
∇f∗j

(
w

f∗j
aux(j)

)
−∇f∗j

(
wf∗j

)
, w

f∗j
aux(j)− w

f∗j
+ (j)

〉]
+ Ej∼p

[
1

npj

〈
w

f∗j
aux(j)− wf∗j , wx

aux − wx
+(j)

〉]
+ Ej∼p

[
1

npj

〈
wx − wx

aux, w
f∗j
aux(j)− w

f∗j
+ (j)

〉]
. (2.46)

To bound the first two lines of (2.46), fix some j ∈ [n]. We apply Lemma 1 to the functions µ
2 ‖·‖

2

and 1
n∇f

∗
j , and use nonnegativity of Bregman divergences, to conclude

〈
µwx

aux − µwx, wx
aux − wx

+(j)
〉

+
1

npj

〈
∇f∗j

(
w

f∗j
aux(j)

)
−∇f∗j

(
wf∗j

)
, w

f∗j
aux(j)− w

f∗j
+ (j)

〉
≤ 2n

(
V rw (waux(j)) + V rwaux(j)

(w+(j))
)
.

In particular, we used 1
pj
≤ 2n by assumption, and noted we only need to handle the case where the

second inner product term above is positive (in the other case, the above inequality is clearly true).

Hence, taking expectations the first two lines in (2.46) contribute 2n to λ in the final bound.

To bound the last two lines of (2.46), fix j ∈ [n]. By applying Item 1 in Lemma 13 to the pair

CHAPTER 2. ACCELERATION VIA PRIMAL-DUAL EXTRAGRADIENT METHODS 70

(µ2 ‖·‖
2
, nfi), we have

1

n

〈
w

f∗j
aux(j)− wf∗j , wx

aux − wx
+(j)

〉
+

1

n

〈
wx − wx

aux, w
f∗j
aux(j)− w

f∗j
+ (j)

〉
≤ 1

n

√
nLj
µ

(
µVwx

aux

(
wx

+(j)
)

+ V
f∗j

w
f∗
j

(
w

f∗j
aux(j)

))
+

1

n

√
nLj
µ

(
µVwx (wx

aux) + V
f∗j

w
f∗
j
aux(j)

(
w

f∗j
+ (j)

))

=

√
Lj
nµ

(
V rw (waux(j)) + V rwaux(j)

(w+(j))
)
.

Using
√
Li
pi
≤ 2

∑
j∈[n]

√
Lj and taking expectations over the above display,

Ej∼p
[

1

npj

〈
w

f∗j
aux(j)− wf∗j , wx

aux − wx
+(j)

〉
+

1

npj

〈
wx − wx

aux, w
f∗j
aux(j)− w

f∗j
+ (j)

〉]
≤

2
∑
j∈[n]

√
Lj

√
nµ

Ej∼p
[
V rw (waux(j)) + V rwaux(j)

(w+(j))
]
.

Hence, the last two lines in (2.46) contribute
2
∑
j∈[n]

√
Lj√

nµ to λ in the final bound.

We next apply Proposition 4 to analyze the convergence of Algorithm 7.

Lemma 22. Let w0 := (wx
0, {∇fi(w

fi
0)}i∈[n]), which is the input zt to Algorithm 7 at iteration t. If

S ≥ 2λ in Algorithm 7 with λ as in (2.45), then Algorithm 7 returns w̃ ← w̄σ as defined in (2.44)

such that for z? as the saddle point to (2.38),

EV rw̃(z?) ≤
1

2
V rw0

(z?).

Proof. We apply Proposition 4, where (2.41) is satisfied via Lemmas 19 and 21. By Proposition 4

with u = z? and S ≥ 2λ,

E

 1

S

∑
0≤s<S

〈Φ(w̄s), w̄s − z?〉

 ≤ 1

2
V rw0

(z?).

Moreover, since σ is uniformly chosen in [0, S − 1], we have

E [〈Φ(w̄σ), w̄σ − z?〉] ≤
1

2
V rw0

(z?).

Finally, Lemma 20 shows that (an implicit representation of) w̄σ is indeed returned. We conclude

by applying Lemma 18 and using that z? solves the VI in Φ, yielding

E [〈Φ(w̄σ), w̄σ − z?〉] ≥ E [〈Φ(w̄σ)− Φ(z?), w̄σ − z?〉] ≥ V rw̄σ (z?).

CHAPTER 2. ACCELERATION VIA PRIMAL-DUAL EXTRAGRADIENT METHODS 71

Finally, we provide a simple bound regarding initialization of Algorithm 6.

Lemma 23. Let x0 ∈ X , and define

z0 :=
(
x0, {∇fi(x0)}i∈[n]

)
. (2.47)

Moreover, suppose that for x? the solution to (2.37), Ffs-reg(x0)− Ffs-reg(x?) ≤ ε0. Then, letting z?

be the solution to (2.38), we have

V rz0(z?) ≤

(
1 +

∑
i∈[n] Li

nµ

)
ε0.

Proof. By the characterization in Lemma 17, we have by Item 1 in Fact 1:

z? =
(
x?, {∇fi(x?)}i∈[n]

)
.

Hence, we bound analogously to Lemma 15:

V rz0(z?) ≤ µVx0(x?) + V
1
n

∑
i∈[n] fi

x? (x0)

≤ µVx0
(x?) +

∑
i∈[n] Li

2n
‖x0 − x?‖2

≤

(
1 +

∑
i∈[n] Li

nµ

)
µVx0(x?) ≤

(
1 +

∑
i∈[n] Li

nµ

)
ε0.

The last line applied strong convexity of Ffs-reg.

2.8.4 Main result

We now state and prove our main claim.

Theorem 8. Suppose Ffs-reg satisfies Assumption 2 and has minimizer x?, and suppose we have

x0 ∈ X such that Ffs-reg(x0) − Ffs-reg(x?) ≤ ε0. Algorithm 6 using Algorithm 7 with λ as in (2.45)

returns x ∈ X with EFfs-reg(x)− Ffs-reg(x?) ≤ ε in Ntot iterations, using a total of O(Ntot) gradient

calls each to some fi for i ∈ [n], where

Ntot = O
(
κfs log

(κfsε0
ε

))
, for κfs := n+

∑
i∈[n]

√
Li

√
nµ

. (2.48)

Proof. By Lemma 17, the point x? is consistent between (2.36) and (2.38). We run Algorithm 6

with

T = O
(

log
(κfsε0

ε

))
.

CHAPTER 2. ACCELERATION VIA PRIMAL-DUAL EXTRAGRADIENT METHODS 72

By recursively applying Lemma 22 for T times, we obtain a point z such that

EV rz (z?) ≤
εµ

L
for L = µ+

1

n

∑
i∈[n]

Li,

and hence applying L-smoothness of Ffs-reg and optimality of zx? yields the claim. The complexity

follows from Lemma 12, and spending O(n) gradient evaluations on the first and last iterates of each

call to Algorithm 7 (which is subsumed by the fact that S = Ω(n)).

By applying a generic reduction we derive in Appendix A.8, we then obtain the following corollary.

Corollary 4. Suppose the summands {fi}i∈[n] in (2.36) satisfy Assumption 2, and Ffs is µ-strongly

convex with minimizer x?. Further, suppose we have x0 ∈ X such that Ffs(x0) − Ffs(x?) ≤ ε0.

Algorithm 66 using Algorithm 6 to implement steps returns x ∈ X with EFfs(x) − Ffs(x?) ≤ ε in

Ntot iterations, using a total of O(Ntot) gradient calls each to some fi for i ∈ [n], where

Ntot = O
(
κfs log

(κfsε0
ε

))
, for κfs := n+

∑
i∈[n]

√
Li√
nµ

.

2.9 Minimax finite sum optimization

In this section, we provide efficient algorithms for computing an approximate saddle point of the

following minimax finite sum optimization problem:

min
x∈X

max
y∈Y

Fmmfs(x, y) :=
1

n

∑
i∈[n]

(fi(x) + hi(x, y)− gi(y)) . (2.49)

Here and throughout this section {fi : X → R}i∈[n], {gi : Y → R}i∈[n] are differentiable convex

functions, and {hi : X ×Y → R}i∈[n] are differentiable convex-concave functions. For the remainder,

we focus on algorithms for solving the following regularized formulation of (2.49):

min
x∈X

max
y∈Y

Fmmfs-reg(x, y) :=
1

n

∑
i∈[n]

(fi(x) + hi(x, y)− gi(y)) +
µx

2
‖x‖2 − µy

2
‖y‖2 . (2.50)

As in Section 2.7 and Section 2.8, to instead solve an instance of (2.49) where each fi is 2µx-

strongly convex and each gi is 2µy-strongly convex, we may instead equivalently solve (2.50) by

reparameterizing fi ← fi − µx ‖·‖2, gi ← gi − µy ‖·‖2 for each i ∈ [n]. The extra factor of 2 is so

we can make a strong convexity assumption in Assumption 3 about separable summands, which

only affects our final bounds by constants. We further remark that our algorithms extend to solve

instances of (2.49) where f , g is µx and µy-strongly convex in ‖·‖, but individual summands are not.

We provide this result at the end of the section in Corollary 5.

In designing methods for solving (2.50) we make the following additional regularity assumptions.

CHAPTER 2. ACCELERATION VIA PRIMAL-DUAL EXTRAGRADIENT METHODS 73

Assumption 3. We assume the following about (2.50) for all i ∈ [n].

1. fi is Lx
i -smooth and µx

i -strongly convex and gi is Ly
i -smooth and µy

i -strongly convex.

2. hi has the following blockwise-smoothness properties: for all u, v ∈ X × Y,

‖∇xhi(u)−∇xhi(v)‖ ≤ Λxx
i ‖ux − vx‖+ Λxy

i ‖u
y − vy‖ and

‖∇yhi(u)−∇yhi(v)‖ ≤ Λxy
i ‖u

x − vx‖+ Λyy
i ‖u

y − vy‖ .
(2.51)

The remainder of this section is organized as follows.

1. In Section 2.9.1, we state a primal-dual formulation of (2.50) which we will apply our methods

to, and prove that its solution also yields a solution to (2.50).

2. In Section 2.9.2, we give our algorithm, which is composed of an outer loop and an inner loop,

and prove it is efficiently implementable.

3. In Section 2.9.3, we prove the convergence rate of our inner loop.

4. In Section 2.9.4, we prove the convergence rate of our outer loop.

5. In Section 2.9.5, we state and prove our main result, Theorem 9.

2.9.1 Setup

To solve (2.50), we will instead find a saddle point to the primal-dual function

Fmmfs-pd (z) :=
µx

2
‖zx‖2 − µy

2
‖zy‖2

+
1

n

∑
i∈[n]

(
hi(z

x, zy) +
〈
zf
∗
i , zx

〉
−
〈
zg
∗
i , zy

〉
− f∗i

(
zf
∗
i

)
+ g∗i (zg

∗
i)
)
.

(2.52)

We denote the domain of Fmmfs-pd by Z := X × Y × (X ∗)n × (Y∗)n. For z ∈ Z, we refer to its

blocks by (zx, zy, {zf∗i }i∈[n], {zg
∗
i }i∈[n]). The primal-dual function Fmmfs-pd is related to the original

function Fmmfs in the following way; we omit the proof, as it follows analogously to the proofs of

Lemmas 10 and 17.

Lemma 24. Let z? = (zx?, z
y
?, {z

f∗i
? }i∈[n], {z

g∗i
? }i∈[n]) be the saddle point to (2.52). Then, (zx?, z

y
?) is a

saddle point to (2.50).

As in Section 2.7.1, it will be convenient to define the convex function r : Z → R, which combines

the (unsigned) separable components of Fmmfs-pd:

r

(
zx, zy,

{
zf
∗
i

}
i∈[n]

,
{
zg
∗
i

}
i∈[n]

)
:=

µx

2
‖zx‖2+

µy

2
‖zy‖2+

1

n

∑
i∈[n]

f∗i

(
zf
∗
i

)
+

1

n

∑
i∈[n]

g∗i

(
zg
∗
i

)
. (2.53)

CHAPTER 2. ACCELERATION VIA PRIMAL-DUAL EXTRAGRADIENT METHODS 74

Again, r serves as a regularizer in our algorithm. We next define Φmmfs-pd, the gradient operator

of Fmmfs-pd. We decompose Φmmfs-pd into three parts, roughly corresponding to the contribution

from r, the contributions from the primal-dual representations of {fi}i∈[n] and {gi}i∈[n], and the

contribution from {hi}i∈[n]. In particular, we define

Φmmfs-pd(z) := ∇r(z) + Φh(z) + Φbilin(z),

∇r
(
zx, zy,

{
zf
∗
i

}
i∈[n]

,
{
zg
∗
i

}
i∈[n]

)
:=

(
µxzx, µyzy,

{
1

n
∇f∗i

(
zf
∗
i

)}
i∈[n]

,

{
1

n
∇g∗i

(
zg
∗
i

)}
i∈[n]

)
,

Φh
(
zx, zy,

{
zf
∗
i

}
i∈[n]

,
{
zg
∗
i

}
i∈[n]

)
:=

 1

n

∑
i∈[n]

∇xhi(zx, zy),−
1

n

∑
i∈[n]

∇yhi(zx, zy), {0}i∈[n] , {0}i∈[n]

 ,

Φbilin

(
zx, zy,

{
zf
∗
i

}
i∈[n]

,
{
zg
∗
i

}
i∈[n]

)
:=

 1

n

∑
i∈[n]

zf
∗
i ,

1

n

∑
i∈[n]

zg
∗
i ,

{
− 1

n
zx
}
i∈[n]

,

{
− 1

n
zy
}
i∈[n]

 .

(2.54)

2.9.2 Algorithm

In this section we present our algorithm which consists of the following two parts; its design is

inspired by a similar strategy used in prior work [111, 112].

1. Our “outer loop” is based on a proximal point method (Algorithm 8, adapted from [415]).

2. Our “inner loop” solves each proximal subproblem to high accuracy via a careful analysis of

randomized mirror prox (Algorithm 9, adapted from Algorithm 5).

At each iteration t of the outer loop (Algorithm 8), we require an accurate approximation

zt+1 ≈ z?t+1 which solves the VI in Φ := Φmmfs-pd(z) + γ (∇r(z)−∇r(zt)) , (2.55)

where we recall the definitions of gtot and r from (2.54) and (2.53), and when zt is clear from context

(i.e. we are analyzing a single implementation of the inner loop).

To implement our inner loop (i.e. solve the VI in Φ), we apply randomized mirror prox (Algo-

rithm 5) with a new analysis. In particular, we will not be able to obtain the expected relative

Lipschitzness bound required by Proposition 4 for our randomized gradient estimators, so we de-

velop a new “partial variance” analysis of Algorithm 5 to obtain our rate. We use this terminology

because we use variance bounds on a component of Φ for which we cannot directly obtain expected

relative Lipschitzness bounds. We prove Proposition 5 in Appendix A.10.1.

Proposition 5 (Partial variance analysis of randomized mirror prox). Suppose (possibly random)

Φ̃ is defined so that in each iteration s, for all u ∈ Z and all ρ > 0, there exists a (possibly random)

CHAPTER 2. ACCELERATION VIA PRIMAL-DUAL EXTRAGRADIENT METHODS 75

point w̄s ∈ Z and a γ-strongly monotone operator Φ : Z → Z∗ (with respect to r) such that

E
[〈

Φ̃(ws+1/2), ws+1/2 − w?
〉]

= E [〈Φ(w̄s), w̄s − w?〉] ,

E
[〈

Φ̃(ws+1/2)− Φ̃(ws), ws+1/2 − ws+1

〉]
≤
(
λ0 +

1

ρ

)
E
[
V rws(ws+1/2) + V rws+1/2

(ws+1)
]

+ ρλ1E
[
V rw0

(w?) + V rw̄s(w?)
]
,

(2.56)

where w? solves the VI in Φ. Then by setting

ρ← γ

5λ1
, λ← λ0 +

1

ρ
, T ← 5λ

γ
=

5λ0

γ
+

25λ1

γ2
,

in Algorithm 5, and returning w̄σ for 0 ≤ σ < S sampled uniformly at random,

E
[
V rw̄σ (w?)

]
≤ 1

2
V rw0

(w?).

For simplicity in the following we denote z̄ := zt whenever we discuss a single proximal subprob-

lem. We next introduce the gradient estimator Φ̃ we use in each inner loop, i.e. finding a solution

to the VI in Φ defined in (2.55). We first define three sampling distributions p, q, r, via

pj :=

√
Lx
j

2
∑
i∈[n]

√
Lx
i

+
1

2n
for all j ∈ [n], qk :=

√
Ly
k

2
∑
i∈[n]

√
Ly
i

+
1

2n
for all k ∈ [n],

and r` :=
Λtot
`

2
∑
i∈[n] Λtot

i

+
1

2n
for all ` ∈ [n], where Λtot

i :=
Λxx
i

µx
+

Λxy
i√
µxµy

+
Λyy
i

µy
for all i ∈ [n].

(2.57)

Algorithm 9 will run in logarithmically many phases, each initialized at an “anchor point” w0

(cf. Line 18). We construct gradient estimators for Algorithm 5 of Φ(w) = Φmmfs-pd(w)+γ(∇r(w)−
∇r(z̄)) as defined in (2.55) as follows. In each iteration, for a current anchor point w0, we sample

four coordinates j ∼ p, k ∼ q, and `, `′ ∼ r, all independently. We believe that it is likely that

other sampling schemes, e.g. sampling j and k non-independently, will also suffice for our method

but focus on the independent scheme for simplicity. We use gxy to refer to the X × Y blocks of a

vector g in Z∗, and f∗g∗ to refer to all other blocks corresponding to (X ∗)n× (Y∗)n. Then we define

CHAPTER 2. ACCELERATION VIA PRIMAL-DUAL EXTRAGRADIENT METHODS 76

for an iterate w = ws of Algorithm 9 (where Φh is as in (2.54)):

Φ̃(w) := Φjk`(w) := Φhjk`(w) + Φsep
jk`(w) + Φbilin

jk` (w),[
Φhjk`(w)

]x
:=
[
Φh(w0)

]x
+

1

nr`
(∇xh`(wx, wy)−∇xh`(wx

0, w
y
0)) ,[

Φhjk`(w)
]y

:=
[
Φh(w0)

]y − 1

nr`
(∇yh`(wx, wy)−∇yh`(wx

0, w
y
0)) ,[

Φhjk`(w)
]f∗g∗

:=
(
{0}i∈[n] , {0}i∈[n]

)
,[

Φsep
jk`(w)

]xy
:= (1 + γ) (µxwx, µywy)− γ (µxz̄x, µyz̄y) ,[

Φsep
jk`(w)

]f∗g∗
:= (1 + γ)

({
1

npj
∇f∗j

(
wf∗j

)
· 1i=j

}
i∈[n]

,

{
1

nqk
∇g∗k

(
wf∗k

)
· 1i=k

}
i∈[n]

)

− γ

({
1

npj
∇f∗j

(
z̄f
∗
j

)
· 1i=j

}
i∈[n]

,

{
1

nqk
∇g∗k

(
z̄g
∗
k

)
· 1i=k

}
i∈[n]

)
,

[
Φbilin
jk` (w)

]xy
:=

 1

n

∑
i∈[n]

wf∗i ,
1

n

∑
i∈[n]

wg∗i

 ,

[
Φbilin
jk` (w)

]f∗g∗
:=

({
− 1

npj
wx · 1i=j

}
i∈[n]

,

{
− 1

nqk
wy · 1i=k

}
i∈[n]

)
.

(2.58)

In particular, the estimator Φjk`(w) only depends on the sampled indices j, k, `, and not `′. Next,

consider taking the step waux(jk`)← Proxrw(1
λgjk`(w)) as in Algorithm 5, where we use the shorthand

waux(jk`) = ws+1/2 to indicate the iterate of Algorithm 5 taken from ws assuming j, k, ` were

sampled. Observing the form of gjk`, we denote the blocks of waux(jk`) by

waux(jk`) :=

(
wx

aux(`), w
y
aux(`),

{
w

f∗i
aux(j)

}
i∈[n]

,
{
w

g∗i
aux(k)

}
i∈[n]

)
,

where we write wx
aux(`) to indicate that it only depends on the random choice of ` (and not j or k);

we use similar notation for the other blocks. We also define

∆x(j) := w
f∗j
aux(j)− wf∗j (j), ∆y(k) := w

g∗k
aux(k)− wg∗k (k),

CHAPTER 2. ACCELERATION VIA PRIMAL-DUAL EXTRAGRADIENT METHODS 77

and then set (where we use the notation Φjk`′ to signify its dependence on j, k, `′, and not `):

Φ̃(waux(jk`)) := Φjk`′(waux(jk`)) := Φhjk`′(waux(jk`)) + Φsep
jk`′(waux(jk`)) + Φbilin

jk`′ (waux(jk`)),[
Φhjk`′(waux(jk`))

]x
:=
[
Φh(w0)

]x
+

1

nr`′
(∇xh`′(wx

aux(`), w
y
aux(`))−∇xh`′(wx

0, w
y
0)) ,[

Φhjk`′(waux(jk`))
]y

:=
[
Φh(w0)

]y − 1

nr`′
(∇yh`′(wx

aux(`), w
y
aux(`))−∇yh`′(wx

0, w
y
0)) ,[

Φhjk`′(waux(jk`))
]f∗g∗

:=
(
{0}i∈[n] , {0}i∈[n]

)
,[

Φsep
jk`′(waux(jk`))

]xy
:= (1 + γ) (µxwx

aux(`), µ
ywy

aux(`))− γ (µxz̄x, µyz̄y) ,[
Φsep
jk`′(waux(jk`))

]f∗g∗
:= (1 + γ)

({
1

npj
∇f∗j

(
w

f∗j
aux

)
· 1i=j

}
i∈[n]

,

{
1

nqk
∇g∗k

(
w

f∗k
aux

)
· 1i=k

}
i∈[n]

)

− γ

({
1

npj
∇f∗j

(
z̄f
∗
j

)
· 1i=j

}
i∈[n]

,

{
1

nqk
∇g∗k

(
z̄g
∗
k

)
· 1i=k

}
i∈[n]

)
,

[
Φbilin
jk`′ (waux(jk`))

]xy
:=

 1

n

∑
i∈[n]

wf∗i +
1

npj
∆x(j),

1

n

∑
i∈[n]

wg∗i +
1

nqk
∆y(k)

 ,

[
Φbilin
jk`′ (waux(jk`))

]f∗g∗
:=

({
− 1

npj
wx

aux(`) · 1i=j
}
i∈[n]

,

{
− 1

nqk
wy

aux(`) · 1i=k
}
i∈[n]

)
.

(2.59)

We also define the random “aggregate point” we will use in Proposition 5:

w̄(`) := w +
(
wx

aux
(`)− wx, wy

aux
(`)− wy, {∆x(j)}j∈[n], {∆y(k)}k∈[n]

)
. (2.60)

Notably, w̄(`) depends only on the randomly sampled `. We record the following useful observation

about our randomized operators (2.58), (2.59), in accordance with the first condition in (2.56).

Lemma 25. Define {Φjk`,Φjk`′} : Z → Z∗ as in (2.58), (2.59), and the random “aggregate point”

w̄(`) as in (2.60). Then, for all u ∈ Z, recalling the definition of Φ = Φmmfs-pd + γ(∇r − ∇r(z̄))
from (2.55),

E [〈Φjk`′(waux(jk`)), waux(jk`)− u〉] = E`∼r [〈Φ(w̄(`)), w̄(`)− u〉] .

We prove Lemma 25 in Appendix A.10.1. Finally, we give a complete implementation of our

method as pseudocode below in Algorithms 8 (the outer loop) and 9 (the inner loop). We also show

that it is a correct implementation in the following Lemma 26, which we prove in Appendix A.10.1.

Lemma 26. Lines 6 to 18 of Algorithm 9 implement Algorithm 5 on ({Φ̃}, r) defined in (2.58),

(2.59), (2.53), for σ iterations, and returns w̄σ, following the definition (2.60). Each iteration s > 0

is implementable in O(1) gradient calls to some {fj , gk, hl}, and O(1) vector operations on X and

Y.

CHAPTER 2. ACCELERATION VIA PRIMAL-DUAL EXTRAGRADIENT METHODS 78

Algorithm 8: Minimax-Finitesum-Solve(Fmmfs-reg, x0, y0): Minimax finite sum opti-
mization

1 Input: (2.50) satisfying Assumption 3, (x0, y0) ∈ X × Y
2 Parameter(s): T ∈ N
3 zx0 ← x0, zy0 ← y0, zfi0 ← x0, z

f∗i
0 ← ∇fi(x0), zgi0 ← y0, z

g∗i
0 ← ∇gi(y0) for all i ∈ [n]

4 for 0 ≤ t < T do

5 zt+1 ←Minimax-Finitesum-Inner(Fmmfs-reg, {zxt , z
y
t , {z

fi
t }i∈[n], {zgit }i∈[n]})

6 Return: (zxT , z
y
T)

2.9.3 Inner loop convergence analysis

We give a convergence guarantee on Algorithm 9 for solving the VI in Φ := gtot + γ(∇r −∇r(z̄)).
In order to use Proposition 5 to solve our problem, we must prove strong monotonicity of Φ and

specify the parameters λ0, λ1 and ρ in (2.56); note that Lemma 25 handles the first condition in

(2.56). To this end we give the following properties on Φ, Φ̃ as defined in (2.58) and (2.59); proofs

of Lemmas 28 and 29 are deferred to Appendix A.10.2.

Strong monotonicity. We begin by proving strong monotonicity of Φ.

Lemma 27 (Strong monotonicity). Define Φ : Z → Z∗ as in (2.55), and define r : Z → R as in

(2.53). Then Φ is (1 + γ)-strongly monotone with respect to r.

Proof. We decompose Φ(z) = (1 + γ)∇r(z) + Φbilin(z) + Φh(z) − γ∇r(z̄), using the definitions in

(2.54). By a similar argument as Lemma 11, we obtain the claim.

Expected relative Lipschitzness. We next provide bounds on the components of (2.56) correspond-

ing to Φsep and Φbilin, where we use the shorthand Φsep := (1 + γ)∇r− γ∇r(z̄) in the remainder of

this section. In particular, we provide a partial bound on the quantity λ0.

Lemma 28. Define {Φjk`,Φjk`′} : Z → Z∗ as in (2.58), (2.59), and define r : Z → R as in (2.53).

Letting w+(jk``′) be ws+1 in Algorithm 9 if j, k, `, `′ were sampled in iteration s, defining

Φfgjk`(w) := Φsep
jk`(w) + Φbilin

jk` (w),

Φfgjk`′(waux(jk`)) := Φsep
jk`′(waux(jk`)) + Φbilin

jk`′ (waux(jk`)),

we have

E
[〈

Φfgjk`′(waux(jk`))− Φfgjk`(w), waux(jk`)− w+(jk``′)
〉]

≤ λfgE
[
V rw (waux(jk`)) + V rwaux(jk`)

(w+(jk``′))
]
,

CHAPTER 2. ACCELERATION VIA PRIMAL-DUAL EXTRAGRADIENT METHODS 79

Algorithm 9: Minimax-Finitesum-Inner(Fmmfs-reg, z̄
x, z̄y, {z̄fi}i∈[n], {z̄gi}i∈[n]): Mini-

max finite sum optimization subroutine

1 Input: (2.50) satisfying Assumption 3, z̄x, {z̄fi}i∈[n] ∈ X , z̄y, {z̄gi}i∈[n] ∈ Y
2 Parameter(s): γ ≥ 1, λ > 0, N,S ∈ N
3 w0 ← z̄
4 for 0 ≤ τ < N do
5 Sample 0 ≤ σ < S uniformly at random
6 for 0 ≤ s ≤ σ do
7 Sample j, k, `, `′ ∈ [n] independently according to p, q, r, r respectively defined in

(2.57), and define

[Φsep]
x

:= (1 + γ)µxwx
s − γµxz̄x, [Φsep]

y
= (1 + γ)µywy

s − γµyz̄y,[
Φbilin

]x
:=

∑
i∈[n]∇fi

(
wfi
s

)
n

,
[
Φbilin

]y
:=

∑
i∈[n]∇gi (wgi

s)

n
,

Φx :=
[
Φh(w0)

]x
+
∇xh`(wx

s, w
y
s)−∇xh`(wx

0, w
y
0)

nr`
+ [Φsep]

x
+
[
Φbilin

]x
,

Φy :=
[
Φh(w0)

]y − ∇yh`(wx
s, w

y
s)−∇yh`(wx

0, w
y
0)

nr`
+ [Φsep]

y
+
[
Φbilin

]y
8 wx

s+1/2 ← wx
s − 1

λµx Φx, wy
s+1/2 ← wy

s − 1
λµy Φy

9 w
fj
s+1/2 ← w

fj
s − 1

nλpj

(
(1 + γ)w

fj
s − γz̄fj − wx

s

)
10 wgk

s+1/2 ← wfk
s − 1

nλpk
((1 + γ)wgk

s − γz̄gk − wy
s)

11 Define

[Φsep]
x

:= (1 + γ)µxwx
s+1/2 − γµ

xz̄x, [Φsep]
y

:= (1 + γ)µywy
s+1/2 − γµ

yz̄y,

[
Φbilin

]x
:=

∑
i∈[n]∇fi

(
wfi
s

)
n

+
∇fj

(
w

fj
s+1/2

)
−∇fj

(
w

fj
s

)
npj

,

[
Φbilin

]y
:=

∑
i∈[n]∇gi (wgi

s)

n
+
∇gk

(
wgk
s+1/2

)
−∇gk (wgk

s)

nqk
,

Φx :=
[
Φh(w0)

]x
+
∇xh`′(wx

s+1/2, w
y
s+1/2)−∇xh`′(wx

0, w
y
0)

nr`′
+ [Φsep]

x
+
[
Φbilin

]x
,

Φy :=
[
Φh(w0)

]y − ∇yh`′(wx
s+1/2, w

y
s+1/2)−∇yh`′(wx

0, w
y
0)

nr`′
+ [Φsep]

y
+
[
Φbilin

]y
12

13 wx
s+1 ← wx

s − 1
λµx Φx, wy

s+1 ← wy
s − 1

λµy Φy

14 w
fj
s+1 ← w

fj
s − 1

nλpj

(
(1 + γ)w

fj
s+1/2 − γz̄

fj − wx
s+1/2

)
15 wgk

s+1 ← wfk
s − 1

nλpk

(
(1 + γ)wgk

s+1/2 − γz̄
gk − wy

s+1/2

)
16 w̄fi ← wfi

σ − 1
nλpi

(
(1 + γ)wfi

σ − γz̄fi − wx
σ

)
for each i ∈ [n]

17 w̄gi ← wgi
σ − 1

nλqi
((1 + γ)wgi

σ − γz̄gi − wy
σ) for each i ∈ [n]

18 wxy
0 ← wxy

σ+1/2, wfi
0 ← w̄fi , wgi

0 ← w̄gi for all i ∈ [n]

19 Return: (wx
0, w

y
0, {∇fi(w

fi
0)}i∈[n], {∇gi(wgi

0)}i∈[n])

CHAPTER 2. ACCELERATION VIA PRIMAL-DUAL EXTRAGRADIENT METHODS 80

for

λfg = 2n(1 + γ) +

∑
i∈[n]

√
Lx
i√

nµx
+

∑
i∈[n]

√
Ly
i√

nµy
.

Partial variance bound. Finally, we provide bounds on the components of (2.56) corresponding

to Φh. Namely, we bound the quantity λ1, and complete the bound on λ0 within Proposition 5.

Lemma 29. Following notation of Lemma 28, and recalling the definition (2.61), for

λ1 := 32(λh)2,

where we define

λh :=
1

n

∑
i∈[n]

(
Λxx
i

µx
+

Λxy
i√
µxµy

+
Λyy
i

µy

)
. (2.61)

we have for any ρ > 0,

E
[〈

Φhjk`′(waux(jk`))− Φhjk`(w), waux(jk`)− w+(jk``′)
〉]

≤
(

2λh +
1

ρ

)
E
[
V rw (waux(jk`)) + V rwaux(jk`)

(w+(jk``′))
]

+ ρλ1E
[
V rw0

(w?) + V rw̄(`)(w?)
]
.

(2.62)

Combining the properties we prove above with Proposition 5, we obtain the following convergence

guarantee for each loop 0 ≤ τ < N of Lines 6 to 18 in Algorithm 9.

Proposition 6. Consider a run of Lines 6 to 18 in Algorithm 9 initialized at w0 ∈ Z, with

λ←

(
2n(1 + γ) +

2
∑
i∈[n]

√
Lx
i√

nµx
+

2
∑
i∈[n]

√
Ly
i√

nµy
+ 2λh

)
+

160(λh)2

γ
, S ← 5λ

γ
, (2.63)

where λh is defined in (2.61). Letting w̃ be the new setting of w0 in Line 18 at the end of the run,

E [V rw̃(w?)] ≤ 1

2
V rw0

(w?),

where w? solves the VI in Φ (defined in (2.55)).

2.9.4 Outer loop convergence analysis

We state the following convergence guarantee on our outer loop, Algorithm 8. The analysis is a some-

what technical modification of the standard proximal point analysis for solving VIs [415], to handle

approximation error. As a result, we state the claim here and defer a proof to Appendix A.10.3.

CHAPTER 2. ACCELERATION VIA PRIMAL-DUAL EXTRAGRADIENT METHODS 81

Proposition 7. Consider a single iteration 0 ≤ t < T of Algorithm 8, and let z? is the saddle point

to Fmmfs-pd (defined in (2.52)). Setting S as in (2.63) and

N := O (log (γλ)) , (2.64)

for an appropriately large constant in our implementation of Algorithm 9 and λ as in (2.63), we

have

EV rzt+1
(z?) ≤

4γ

1 + 4γ
V rzt(z?).

2.9.5 Main result

We now state and prove our main claim.

Theorem 9. Suppose Fmmfs in (2.50) satisfies Assumption 3, and has saddle point (x?, y?). Further,

suppose we have (x0, y0) ∈ X ×Y such that GapFmmfs-reg
(x0, y0) ≤ ε0. Algorithm 8 using Algorithm 9

with λ as in (2.63) returns (x, y) ∈ X × Y with EGapFmmfs-reg
(x, y) ≤ ε in Ntot iterations, using a

total of O(Ntot) gradient calls each to some fi, gi, or hi for i ∈ [n], where

Ntot = O
(
κmmfs log (κmmfs) log

(κmmfsε0
ε

))
,

for κmmfs := n+
1√
n

∑
i∈[n]

√Lx
i

µx
+

√
Ly
i

µy
+

Λxx
i

µx
+

Λxy
i√
µxµy

+
Λyy
i

µy

 .
(2.65)

In particular, we use Ntot = NTS for

T = O
(
γ log

(κfsε0
ε

))
, N = O (log (κmmfs)) , S = O

(
n+

κmmfs

γ
+

(λh)2

γ2

)
, γ =

λh√
n
.

Proof. By Lemma 24, the point (x?, y?) is consistent between (2.50) and (2.52). The complexity of

each iteration follows from observation of Algorithm 8 and 9.

Next, by Proposition 6 and Proposition 7, and our choices of T , N , and S for appropriately large

constants, we obtain a point (x, y) ∈ X × Y such that

EV r(x,y)(z?) ≤
ε

4

(
1

κmmfs

)2

.

Here we used an analogous argument to Lemma 15 to bound the initial divergence. We then use a

similar bound as in Lemma 16 to obtain the desired duality gap bound.

We now revisit the problem (2.49). We apply a generic reduction framework we develop in

Appendix A.8 to develop a solver for this problem under a relaxed version of Assumption 3, without

requiring strong convexity of individual summands.

CHAPTER 2. ACCELERATION VIA PRIMAL-DUAL EXTRAGRADIENT METHODS 82

Assumption 4. We assume the following about (2.49) for all i ∈ [n].

1. fi is Lx
i -smooth, and gi is Ly

i -smooth.

2. h has the following blockwise-smoothness properties: for all u, v ∈ X × Y,

‖∇xhi(u)−∇xhi(v)‖ ≤ Λxx
i ‖ux − vx‖+ Λxy

i ‖u
y − vy‖ ,

‖∇yhi(u)−∇yhi(v)‖ ≤ Λxy
i ‖u

x − vx‖+ Λyy
i ‖u

y − vy‖ .
(2.66)

For minimax finite sum optimization problems with this set of relaxed conditions, we conclude

with the following corollary of Theorem 9.

Corollary 5. Suppose the summands {fi, gi, hi}i∈[n] in (2.49) satisfy Assumption 4, and Fmmfs is

µx-strongly convex in x, µy-strongly convex in y, with saddle point (x?, y?). Further, suppose we

have (x0, y0) ∈ X × Y such that GapFmmfs
(x0, y0) ≤ ε0. Algorithm 66 using Algorithm 8 and 9 to

implement steps returns (x, y) ∈ X × Y with EGap(x, y) ≤ ε in Ntot iterations, using a total of

O(Ntot) gradient calls each to some fi, gi, or hi for i ∈ [n], where

Ntot = O
(
κmmfs log(κmmfs) log

(κmmfsε0
ε

))
,

for κmmfs := n+
1√
n

∑
i∈[n]

√Lx
i

µx
+

√
Ly
i

µy
+

Λxx
i

µx
+

Λxy
i√
µxµy

+
Λyy
i

µy

 .

Chapter 3

Stochastic Methods for Matrix

Games

This chapter is based on [111, 112], with Yair Carmon, Yujia Jin, and Aaron Sidford.

3.1 Introduction

Bilinear minimax problems of the form

min
x∈X

max
y∈Y

y>Ax where A ∈ Rm×n, (3.1)

are fundamental to machine learning, economics and theoretical computer science [393, 525, 157].

We focus on three important settings characterized by different domain geometries. When X and

Y are probability simplices—which we call the `1-`1 setting—the problem (3.1) corresponds to a

zero-sum matrix game and also to a linear program in canonical feasibility form. The `2-`1 setting,

where X is a Euclidean ball and Y is a simplex, is useful for linear classification (hard-margin support

vector machines) as well as problems in computational geometry [140]. Further, the `2-`2 setting,

where both X and Y are Euclidean balls (with general center), includes linear regression.

Many problems of practical interest are sparse, i.e., the number of nonzero elements in A, which

we denote by nnz, satisfies nnz� mn. Examples include: linear programs with constraints involving

few variables, linear classification with 1-hot-encoded features, and linear systems that arise from

physical models with local interactions. The problem description size nnz plays a central role in

several runtime analyses of algorithms for solving the problem (3.1).

However, sparsity is not an entirely satisfactory measure of instance complexity: it is not con-

tinuous in the elements of A and consequently it cannot accurately reflect the simplicity of “nearly

83

CHAPTER 3. STOCHASTIC METHODS FOR MATRIX GAMES 84

sparse” instances with many small (but nonzero) elements. Measures of numerical sparsity, such as

the `1 to `2 norm ratio, can fill this gap [260]. Indeed, many problems encountered in practice are

numerically sparse. Examples include: linear programming constraints of the form x1 ≥ 1
n

∑
i xi,

linear classification with neural network activations as features, and linear systems arising from

physical models with interaction whose strength decays with distance.

Existing bilinear minimax solvers do not exploit the numerical sparsity of A and their runtime

guarantees do not depend on it—the basic limitation of these methods is that they do not directly

access the large matrix entries, and instead sample the full columns and rows in which they occur.

To overcome this limitation, we propose methods that access A a single entry at a time, leverage

numerical sparsity by accessing larger coordinates more frequently, and enjoy runtime guarantees

that depend explicitly on numerical sparsity measures. For numerically sparse large-scale instances

our runtimes are substantially better than the previous state-of-the-art. Moreover, our runtimes

subsume the previous state-of-the-art dependence on nnz and rcs, the maximum number of nonzeros

in any row or column.

In addition to proposing algorithms with improved runtimes, we develop three techniques that

may be of broader interest. First, we design non-uniform sampling schemes that minimize regret

bounds; we use a general framework that unifies the Euclidean and (local norms) simplex geometries,

possibly facilitating future extension. Next, we propose novel stochastic variance reduced methods

for saddle point problems, which are capable of interpolating between the runtimes achieved by

accelerated gradient methods and those achieved by sublinear (fully-)stochastic gradient methods

using a proximal optimization framework of [415]. Lastly, we build a data structure capable of

efficiently maintaining and sampling from multiplicative weights iterations (i.e. entropic projection)

with a fixed dense component. This data structure overcomes limitations of existing techniques for

maintaining entropic projections and we believe it may prove effective in other settings where such

projections appear.

3.1.1 Our results

Table 3.2 summarizes our runtime guarantees and puts them in the context of the best existing

results. We consider methods that output (expected) ε-accurate solutions of the saddle-point prob-

lem (3.1), namely a pair x, y satisfying

E
[
max
v∈Y

v>Ax−min
u∈X

y>Au

]
≤ ε.

The algorithms in Table 3.2 are all iterative solvers for the general problem minx∈X maxy∈Y f(x, y),

specialized to f(x, y) = y>Ax. Each algorithm presents a different tradeoff between per-iteration

complexity and the required iteration count, corresponding to the matrix access modality: exact

gradient methods compute matrix-vector products in each iteration, row-column stochastic gradient

CHAPTER 3. STOCHASTIC METHODS FOR MATRIX GAMES 85

methods sample a row and a column in each iteration, and our proposed coordinate methods take

this tradeoff to an extreme by sampling a single coordinate of the matrix per iteration.1 In addition,

variance reduction (VR) schemes combine both fast stochastic gradient computations and infrequent

exact gradient computations, maintaining the amortized per-iteration cost of the stochastic scheme

and reducing the total iteration count for sufficiently small ε.

The runtimes in Table 3.2 depend on the numerical range of A through a matrix norm L that

changes with both the problem geometry and the type of matrix access; we use Lmv, Lrc and Lco to

denote the constants corresponding to matrix-vector products, row-column queries and coordinated

queries, respectively. Below, we describe these runtimes in detail. In the settings we study, our results

are the first theoretical demonstration of runtime gains arising from sampling a single coordinate of

A at a time, as opposed to entire rows and columns.

Variance reduction for matrix games. In recent years, minimax formulations for neural network

training rose to prominence [244, 378], leading to intense interest in algorithms for solving large

scale minimax games [198, 237, 323, 161, 297, 391]. However, the algorithmic toolbox for minimax

optimization is not as complete as the one for minimization. Variance reduction, a technique for

improving stochastic gradient estimators by introducing control variates, stands as a case in point. A

multitude of variance reduction schemes exist for finite-sum minimization [300, 472, 18, 92, 217], and

their impact on complexity is well-understood [539]. In contrast, only a few works apply variance

reduction to finite-sum minimax problems [55, 484, 121, 394], and the potential gains from variance

reduction are not well-understood.

We take a step towards closing this gap by designing variance-reduced minimax game solvers

that offer strict runtime improvements over non-stochastic gradient methods, similar to that of

optimal variance reduction methods for finite-sum minimization. Our starting point is Nemirovski’s

“conceptual prox-method” [415] for solving minx∈X maxy∈Y f(x, y), where f : X ×Y → R is convex

in x and concave in y. The method solves a sequence of subproblems parameterized by α > 0, each

of the form

find x, y s.t. ∀x′, y′ 〈∇xf(x, y), x− x′〉 − 〈∇yf(x, y), y − y′〉 ≤ αVx0(x′) + αVy0(y′) (3.2)

for some (x0, y0) ∈ X ×Y, where Va(b) is a norm-suitable Bregman divergence from a to b: squared

Euclidean distance for `2 and KL divergence for `1. Combining each subproblem solution with an

extragradient step, the prox-method solves the original problem to ε accuracy by solving Õ (α/ε)

1Interior point methods offer an alternative tradeoff between iteration cost and iteration count: the number of
required iterations depends on 1/ε only logarithmically, but every iteration is costly, requiring a linear system solution
which at present takes time Ω(min{m,n}2). In the `1-`1 geometry, the best known runtimes for interior point methods

are Õ((nnz + min{m,n}2)
√

min{m,n}) [349], Õ(max{m,n}ω) [144], and Õ(mn+ min{m,n}3) [517]. In this chapter
we are mainly interested in the large-scale low-accuracy regime with L/ε < min(m,n) where the runtimes described
in Table 3.2 are favorable (with the exception of [517] in certain cases). Our methods take only few passes over the
data, which are not the case for many interior-point methods [349, 144]. Also, our methods do not rely on a general
(ill-conditioned) linear system solver, which is a key ingredient in interior point methods.

CHAPTER 3. STOCHASTIC METHODS FOR MATRIX GAMES 86

Lmv (matrix-vector) Lrc (row-column) Lco (coordinate)

`1-`1 maxi,j |Aij | maxi,j |Aij | max
{

maxi ‖Ai:‖2 ,maxj ‖A:j‖2
}

`2-`1 maxi ‖Ai:‖2 maxi ‖Ai:‖2 max
{

maxi ‖Ai:‖1 , ‖A‖F
}†

`2-`2 ‖A‖op ‖A‖F max
{√∑

i ‖Ai:‖
2
1,
√∑

j ‖A:j‖21
}

Table 3.1: Dependence on A for different methods in different geometries. Comments: Ai:
and A:j denote the ith row and jth column of A, respectively. Numerically sparse instances
satisfy Lco = O(Lrc).

† In the `2-`1 setting we can also achieve Lco = Lrc
√

rcs and Lco =
max{maxi ‖Ai:‖1 ,

√
maxi ‖Ai:‖1 maxj ‖A:j‖1}.

Method Iteration cost Total runtime

Exact gradient [415, 420] O(nnz) Õ
(

nnz · Lmv · ε−1
)

Row-column [253, 140, 55] O(n+m) Õ
(

(m+ n) · L2
rc · ε−2

)
Row-column VR [55, 111] O(n+m) Õ

(
nnz +

√
nnz · (m+ n) · Lrc · ε−1

)
Sparse row-col (folklore) Õ (rcs) Õ

(
rcs · L2

rc · ε−2
)

Sparse row-col VR (Appendix B.5) Õ (rcs) Õ
(

nnz +
√

nnz · rcs · Lrc · ε−1
)

Coordinate (Section 3.3.1) Õ (1) Õ
(

nnz + L2
co · ε−2

)
Coordinate VR (Section 3.3.2) Õ (1) Õ

(
nnz +

√
nnz · Lco · ε−1

)
Table 3.2: Comparison of iterative methods for bilinear problems. Comments: nnz denotes the
number of nonzeros in A ∈ Rm×n and rcs ≤ max{m,n} denotes the maximum number of nonzeros
in any row and column of A. The quantities Lmv, Lco and Lrc depend on problem geometry (see
Table 3.1).

Task Method Runtime

MaxIB
[22] Õ

(
mn+ ρm

√
n · ε−1

)
Our method (Theorem 12) Õ

(
nnz + ρ

√
nnz · rcs · ε−1

)†
MinEB

(when m ≥ n)

[22] Õ
(
mn+m

√
n · ε−1/2

)
Our method (Theorem 13) Õ

(
nnz +

√
nnz · rcs · ε−1/2

)†
Regression

(A>A � µI)

AGD [417] Õ
(

nnz · ‖A‖op
1√
µ

)
[260] Õ

(
nnz + nnz2/3 ·

(∑
i∈[n] ‖A‖F · ‖Ai:‖1 · ‖Ai:‖2

)1/3
1√
µ

)
Our method (Theorem 14) Õ

(
nnz +

√
nnz ·max

{√∑
i ‖Ai:‖21,

√∑
j ‖A:j‖21

}
1√
µ

)
Table 3.3: Comparison of complexity for different applications. Comments: ρ denotes the radii ratio
of the minimum ball enclosing the rows of A and maximum ball inscribed in them. † For MaxIB and
MinEB, we refer the reader to Section 3.6.2 for a more fine-grained runtime bound.

CHAPTER 3. STOCHASTIC METHODS FOR MATRIX GAMES 87

subproblems.2 (Solving (3.2) with α = 0 is equivalent to to solving minx∈X maxy∈Y f(x, y).) A basic

form of our first contribution is showing that if a stochastic unbiased gradient estimator g̃ satisfies

the “variance” bound

E ‖g̃(x, y)−∇f(x0, y0)‖2∗ ≤ L
2 ‖x− x0‖2 + L2 ‖y − y0‖2 (3.3)

for some L > 0, then O(L2/α2) regularized stochastic mirror descent steps using g̃ solve (3.2) in

a suitable probabilistic sense. We call unbiased gradient estimators that satisfy (3.3) “centered.”

We will shortly discuss the design of such centered gradient estimators in various application, which

constitutes another contribution of this chapter.

As per the discussion above, to achieve accuracy ε our algorithm solves Õ (α/ε) subproblems.

Each subproblem takesO(nnz(A)) time for computing two exact gradients (one for variance reduction

and one for an extragradient step), plus an additional (m+n)L2/α2 time for the inner mirror descent

iterations, with L an appropriate Lipschitz constant of the problem. The total runtime is therefore

Õ

((
nnz(A) +

(m+ n)L2

α2

)
α

ε

)
.

By setting α optimally to be max{ε, L
√

(m+ n)/nnz(A)}, we obtain the runtime

Õ
(

nnz(A) +
√

nnz(A) · (m+ n) · L · ε−1
)
. (3.4)

Some problem instances admit a structured form of sparsity where every row and column has at

most rcs nonzero elements. In these settings, we develop sampling distributions and data structures

to allow the above framework to leverage row-column sparsity, reducing the amortized per-iteration

cost from O (m+ n) to Õ (rcs), and yielding improved tradeoffs of problem parameters.

Coordinate stochastic gradient methods. In conjunction with our novel variance reduction frame-

work, we develop coordinate stochastic gradient estimators which allow per-iteration cost Õ (1) and

iteration count Õ
(
n+m+ (Lco

ε)2
)
. We define Lco in Table 3.1; for each domain geometry, the

quantity Lco

Lrc
is a measure of the numerical sparsity of A, satisfying

1 ≤ L2
co

L2
rc

≤ rcs.

Every iteration of our method requires sampling an element in a row or a column with probability

proportional to its entries. Assuming a matrix access model that allows such sampling in time Õ (1)

2More precisely, the required number of subproblem solutions is at most Θ· α
ε

, where Θ is a “domain size” parameter
that depends on X , Y, and the Bregman divergence V . In the `1 and `2 settings considered in this chapter, we have
the bound Θ ≤ log(nm) and we use the Õ notation to suppress terms logarithmic in n and m. However, in other
settings—e.g., `∞-`1 games [483, 486]—making the parameter Θ scale logarithmically with the problem dimension is
far more difficult.

CHAPTER 3. STOCHASTIC METHODS FOR MATRIX GAMES 88

(similarly to [47, 487, 238]), the total runtime of our method is Õ
(
n+m+ (Lco

ε)2
)
. In this case, for

numerically sparse problems such that Lco = O(Lrc), the proposed coordinate methods outperform

row-column sampling by a factor of m + n. Moreover, the bound L2
co ≤ L2

rc(m + n) implies that

our runtime is never worse than that of row-column methods. When only coordinate access to the

matrix A is initially available, we may implement the required sampling access via preprocessing in

time O(nnz). This changes the runtime to Õ
(
nnz + (Lco

ε)2
)
, so that the comparison above holds only

when (Lco

ε)2 = Ω̃(nnz). In that regime, the variance reduction technique we describe below provides

even stronger guarantees.

Coordinate methods with variance reduction. By combining the two aforementioned contribu-

tions, we design a variance reduction algorithm with amortized per-iteration cost Õ (1), required

iteration count of Õ
(√

nnz · Lco

ε

)
and total running time Õ

(
nnz +

√
nnz · Lco

ε

)
. In the numerically

sparse regime Lco = O(Lrc), our runtime improves on row-column VR by a factor of
√

nnz/(m+ n),

and in general the bound Lco ≤ Lrc

√
m+ n guarantees it is never worse. Since variance reduction

methods always require a single pass over the data to compute an exact gradient, this compari-

son holds regardless of the matrix access model. In the `2-`2 setting we note that for elementwise

non-negative matrices, Lco = max{‖A1‖2, ‖A>1‖2} ≤ Lmv

√
m+ n, and consequently our method

outperforms exact gradient methods by a factor of
√

nnz/(m+ n), even without any numerical or

spectral sparsity in A. Notably, this is the same factor of improvement that row-column VR achieves

over exact gradient methods in the `1-`1 and `2-`1 regimes.

Optimality of the constant Lco. For the `1-`1 and `2-`2 settings, we argue that the constant Lco in

Table 3.1 is optimal in the restricted sense that no alternative sampling distribution for coordinate

gradient estimation can have a better variance bound than Lco (a similar sense of optimality also

holds for Lrc in each geometry). In the `2-`1 setting, a different sampling distribution produces an

improved (and optimal) constant max{maxi ‖Ai:‖1 , ‖|A|‖op}, where Ai: is the ith row of A, and

|A|ij = |Aij | is the elementwise absolute value of A. However, it is unclear how to efficiently sample

from this distribution.

Applications. We illustrate the implications of our results for two problems in computational

geometry, minimum enclosing ball (Min-EB) and maximum inscribed ball (Max-IB), as well as

linear regression. For Min-EB and Max-IB in the non-degenerate case m ≥ n, we apply our `2-`1

results to obtain algorithms whose runtime bounds coincide with the state-of-the-art [22] for dense

problems, but can be significantly better for sparse or row-column sparse instances. For linear

regression we focus on accelerated linearly converging algorithms, i.e., those that find x such that

‖Ax− b‖2 ≤ ε in time proportional to µ−
1
2 log 1

ε where µ is the smallest eigenvalue of A>A. Within

this class and in a number of settings, our reduced variance coordinate method offers improvement

over the state-of-the-art: for instances where ‖Ai:‖1 = O(‖Ai:‖2) and ‖A:j‖1 = O(‖A:j‖2) for all i, j

it outperforms [260] by a factor of nnz1/6, and for elementwise nonnegative instances it outperforms

accelerated gradient descent by a factor of
√

nnz/(m+ n). See Table 3.3 for a detailed runtime

CHAPTER 3. STOCHASTIC METHODS FOR MATRIX GAMES 89

comparison.

3.1.2 Our approach

We now provide a detailed overview of our algorithm design and analysis techniques, highlighting our

main technical insights. We focus on the `1-`1 geometry, since it showcases all of our developments.

Beyond our proposal of a new variance-reduced scheme for minimax optimization, our technical

contributions have two central themes:

1. Sampling schemes design. The key to obtaining efficient coordinate methods is carefully

choosing the sampling distribution. Here, local norms analysis of stochastic mirror descent [474]

on the one hand enables tight regret bounds, and on the other hand imposes an additional design

constraint since the stochastic estimators must be bounded for the analysis to apply. We achieve

estimators with improved variance bounds meeting this boundedness constraint by leveraging a

“clipping” operation introduced by [140]. Specifically, in the simplex geometry, we truncate large

coordinates of our estimators, and show that our method is robust to the resulting distortion.

2. Data structure design. Our goal is to perform iterations in Õ (1) time, but our mirror descent

procedures call for updates that change m+n variables in each step. We resolve this tension via

data structures that implicitly maintain the iterates. Variance reduction poses a considerable

challenge here, because every reduced-variance stochastic gradient contains a dense component

that changes all coordinates in a complicated way. In particular, existing data structures cannot

efficiently compute the normalization factor necessary for projection to the simplex. We design

a data structure that overcomes this hurdle via Taylor expansions, coordinate binning, and a

binomial heap-like construction. The data structure computes approximate mirror projections,

and we modify the standard mirror descent analysis to show it is stable under the particular

structure of the resulting approximation errors.

At the intersection of these two themes is a novel sampling technique we call “sampling from the

sum,” which addresses the same variance challenges as the “sampling from the difference” technique

of an earlier version of this work [111], but is more amenable to efficient implementation with a data

structure.

Coordinate stochastic gradient method

Our algorithm is an instance of stochastic mirror descent [416], which in the `1-`1 setting produces

a sequence of iterates (x1, y1), (x2, y2), . . . according to

xt+1 = Π∆ (xt ◦ exp{−ηg̃x(xt, yt)}) and yt+1 = Π∆ (yt ◦ exp{−ηg̃y(xt, yt)}) , (3.5)

CHAPTER 3. STOCHASTIC METHODS FOR MATRIX GAMES 90

where Π∆(v) = v
‖v‖1

is the projection onto the simplex (exp and log are applied to vectors elemen-

twise, and elementwise multiplication is denoted by ◦), η is a step size, and g̃x, g̃y are stochastic

gradient estimators for f(x, y) = y>Ax satisfying

Eg̃x(x, y) = ∇xf(x, y) = A>y and Eg̃y(x, y) = −∇yf(x, y) = −Ax.

We describe the computation and analysis of g̃x; the treatment of g̃y is analogous. To compute

g̃x(x, y), we sample i, j from a distribution p(x, y) on [m]× [n] and let

g̃x(x, y) =
yiAij
pij(x, y)

ej , (3.6)

where pij(x, y) denotes the probability of drawing i, j from p(x, y) and ej is the jth standard basis

vector—a simple calculation shows that Eg̃x = A>y for any p. We first design p(x, y) to guarantee

an Õ
(
(Lco

ε)2
)

iteration complexity for finding an ε-accurate solution, and then briefly touch on how

to compute the resulting iterations in Õ (1) time.

Local norms-informed distribution design. The standard stochastic mirror descent analysis [416]

shows that if E ‖g̃x(x, y)‖2∞ ≤ L2 for all x, y (and similarly for g̃y), taking η = ε
L2 and a choice of

T = Õ
(
(Lε)2

)
suffices to ensure that the iterate average 1

T

∑T
t=1(xt, yt) is an ε-accurate solution in

expectation. Unfortunately, this analysis demonstrably fails to yield sufficiently tight bounds for

our coordinate estimator: there exist instances for which any distribution p produces L ≥ nLrc. We

tighten the analysis using a local norms argument [?, cf.]Section 2.8]Shalev-Shwartz12, showing that

Õ
(
(Lε)2

)
iterations suffice whenever ‖ηg̃x‖∞ ≤ 1 with probability 1 and for all x, y

E ‖g̃x(x, y)‖2x ≤ L
2, where ‖γ‖2x =

∑
j

xjγ
2
j

is the local norm at x ∈ X . We take

pij = yi
A2
ij

‖Ai:‖22
(3.7)

(recalling that x, y are both probability vectors). Substituting into (3.6) gives

E ‖g̃x(x, y)‖2x =
∑
i,j

y2
iA

2
ijxj

pij
=
∑
i,j

yi ‖Ai:‖22 xj =
∑
i

yi ‖Ai:‖22 ≤ max
i
‖Ai:‖22 ≤ L

2
co,

with Lco = max{maxi ‖Ai:‖2 ,maxj ‖A:j‖2} as in Table 3.1.

While this is the desired bound on E ‖g̃x(x, y)‖2x, the requirement ‖ηg̃x‖∞ ≤ 1 does not hold when

A has sufficiently small elements. We address this by clipping g̃: we replace ηg̃x with clip(ηx̃x), where

[clip(v)]i := min{|vi|, 1} sign(vi),

CHAPTER 3. STOCHASTIC METHODS FOR MATRIX GAMES 91

the Euclidean projection to the unit box. The clipped gradient estimator clearly satisfies the desired

bounds on infinity norm and local norm second moment, but is biased for the true gradient. Following

the analysis of [140], we account for the bias by relating it to the second moment via

| 〈γ − clip(γ), x〉 | ≤ ‖γ‖2x ,

which allows to absorb the effect of the bias into existing terms in our error bounds. Putting together

these pieces yields the desired bound on the iteration count.

Efficient implementation. Data structures for performing the update (3.5) and sampling from

the resulting iterates in Õ (1) time are standard in the literature [?, e.g.,]]ShalevW16. We add to

these the somewhat non-standard ability to also efficiently track the running sum of the iterates. To

efficiently sample i, j ∼ p according to (3.7) we first use the data structure to sample i ∼ y in Õ (1)

time and then draw j ∈ [n] with probability proportional to A2
ij in time O(1), via either O(nnz)

preprocessing or an appropriate assumption about the matrix access model. The “heavy lifting” of

our data structure design is dedicated for supporting variance reduction, which we describe in the

next section.

Sampling distributions beyond `1-`1. Table 3.4 lists the sampling distributions we develop for

the various problem geometries. Note that for the `2-`1 setting we give three different distributions

for sampling the simplex block of the gradient (i.e., g̃y); each distribution corresponds to a different

parameter Lco (see comments following Table 3.1). The distribution qij ∝
√
yi |Aijxj | yields a

stronger bound L in the `2-`1 setting, but we do not know how to efficiently sample from it.

Coordinate variance reduction

To accelerate the stochastic coordinate method we apply our variance reduction framework. This

framework operates in α
ε epochs, where α is a design parameter that trades between full and stochas-

tic gradient computations. Each epoch consists of three parts: (i) computing the exact gradient at

a reference point (x0, y0), (ii) performing T iterations of regularized stochastic mirror descent to

produce the sequence (x1, y1), . . . , (xT , yT) and (iii) taking an extra-gradient step from the average

of the iterates in (ii). Setting κ = 1/(1 + ηα/2), the iterates xt follow the recursion

xt+1 = Π∆

(
xκt ◦ x1−κ

0 ◦ exp{−ηκ[gx0 + δ̃x(xt, yt)]}
)
, where Π∆(v) =

v

‖v‖1
, (3.8)

and gx0 = A>y0 is the exact gradient at the reference point, and δ̃x is a stochastic gradient difference

estimator satisfying

Eδ̃x(x, y) = ∇xf(x, y)−∇xf(x0, y0) = A>(y − y0).

CHAPTER 3. STOCHASTIC METHODS FOR MATRIX GAMES 92

The iteration for yt is similar. As discussed earlier, we show that if δ̃x satisfies

E‖δ̃x(x, y)‖2∞ ≤ L2
(
‖x− x0‖21 + ‖y − y0‖21

)
∀x, y (3.9)

and a similar bound holds on E‖δ̃y(x, y)‖2∞, then T = O(L
2

α2) iterations per epoch with step size

η = α
L2 suffice for the overall algorithm to return a point with expected error below ε.

We would like to design a coordinate-based estimator δ̃ such that the bound (3.9) holds for

L = Lco as in Table 3.1 and each iteration (3.8) takes Õ (1) time. Since every epoch also requires

O(nnz) time for matrix-vector product (exact gradient) computations, the overall runtime would be

Õ((nnz +
L2

co

α2) · αε). Choosing α = Lco/
√

nnz then gives the desired runtime Õ(nnz +
√

nnz · Lco

ε).

Distribution design (sampling from the difference). We start with a straightforward adaptation

of the general estimator form (3.6). To compute δ̃x(x, y), we sample i, j ∼ p, where p may depend

on x, x0, y and y0, and let

δ̃x(x, y) =
(yi − [y0]i)Aij

pij
ej , (3.10)

where ej is the jth standard basis vector. As in the previous section, we find that the require-

ment (3.9) is too stringent for coordinate-based estimators. Here too, we address this challenge

with a local norms argument and clipping of the difference estimate. Using the “sampling from the

difference” technique from an earlier version of this work [111], we arrive at

pij =
|yi − [y0]i|
‖y − y0‖1

·
A2
ij

‖Ai:‖22
. (3.11)

This distribution satisfies the local norm relaxation of (3.9) with L2 = L2
co.

Data structure design. Efficiently computing (3.8) is significantly more challenging than its

counterpart (3.5). To clarify the difficulty and describe our solution, we write

xt = Π∆(x̂t) = x̂t/ ‖x̂t‖1

and break the recursion for the unnormalized iterates x̂t into two steps

x̂′t = x̂κt ◦ exp{v}, and (3.12)

x̂t+1 = x̂′t ◦ exp{st}, (3.13)

where v = (1 − κ) log x0 − ηκgx0 is a fixed dense vector, and st = −ηδ̃x(xt, yt) is a varying 1-sparse

vector. The key task of the data structures is maintaining the normalization factor ‖x̂t‖1 in near-

constant time. Standard data structures do not suffice because they lack support for the dense

step (3.12).

Our high-level strategy is to handle the two steps (3.12) and (3.13) separately. To handle the

CHAPTER 3. STOCHASTIC METHODS FOR MATRIX GAMES 93

dense step (3.12), we propose the data structure ScaleMaintainer that efficiently approximates

‖x̂t‖1 in the “homogeneous” case of no sparse updates (i.e. st = 0 for all t). We then add support

for the sparse step (3.13) using a binomial heap-like construction involving O(log n) instances of

ScaleMaintainer.

The ScaleMaintainer data structure. When st = 0 for all t the iterates x̂t admit closed forms

x̂t+τ = x̂κ
τ

t ◦ exp

{
v

τ−1∑
t′=0

κt
′

}
= x̂κ

τ

t ◦ exp
{1− κτ

1− κ
v
}

= x̂t ◦ exp {[1− κτ]v̄} ,

where v̄ = v
1−κ − log xt. Consequently, we design ScaleMaintainer to take as initialization n̄-

dimensional vectors x̄ ∈ Rn̄≥0, and v̄ ∈ Rn̄ and provide approximations of the normalization factor

Zτ (x̄, v̄) = ‖x̄ ◦ exp{(1− κτ)v̄})‖1 (3.14)

for arbitrary values of τ ≥ 1. We show how to implement each query of Zτ (x̄, v̄) in amortized

time Õ (1). The data structure also supports initialization in time Õ (n̄) and deletions (i.e., setting

elements of x̄ to zero) in amortized time Õ (1).

To efficiently approximate the quantity Zτ (x̄, v̄) we replace the exponential with its order p =

O(log n) Taylor series. That is, we would like to write

Zτ (x̄, v̄) =
∑
i∈[n̄]

[x̄]ie
(1−κτ)[v̄]i ≈

∑
i∈[n̄]

[x̄]i

p∑
q=0

1

q!
(1− κτ)q[v̄]qi =

p∑
q=0

(1− κτ)q

q!
〈x̄, v̄q〉 .

The approximation
∑p
q=0

(1−κτ)q

q! 〈x̄, v̄q〉 is cheap to compute, since for every τ it is a linear combina-

tion of the p = Õ (1) numbers {〈x̄, v̄q〉}q∈[p] which we can compute once at initialization. However,

the Taylor series approximation has low multiplicative error only when |(1− κτ)[v̄]i| = O(p), which

may fail to hold, as we may have ‖v̄‖∞ = poly(n) in general. To handle this, suppose that for a fixed

τ we have an offset µ ∈ R and “active set” A ⊆ [n̄] such that the following conditions hold for a

threshold R = O(p): (a) the Taylor approximation is valid in A, e.g. we have |(1−κτ)(v̄i−µ)| ≤ 2R

for all i ∈ A, (b) entries outside A are small; (1 − κτ)[v̄i − µ] ≤ −R for all i /∈ A, and (c) at least

one entry in the active set is large; (1− κτ)[v̄i − µ] ≥ 0 for some i ∈ A. Under these conditions, the

entries in Ac are negligibly small and we can truncate them, resulting in the approximation

e(1−κτ)µ

[
p∑
q=0

(1− κτ)q

q!
〈x̄, (v̄ − µ)q〉A + e−R 〈x̄,1〉Ac

]
,

which we show approximates Zτ (x̄, v̄) to within eO(R+logn)−Ω(p) multiplicative error, where we used

〈a, b〉S :=
∑
i∈S aibi; here, we also require that log maxi x̄i

mini x̄i
= O(R), which we guarantee when

choosing the initial x̄.

CHAPTER 3. STOCHASTIC METHODS FOR MATRIX GAMES 94

The challenge then becomes efficiently mapping any τ to {〈x̄, (v̄ − µ)q〉A}q∈[p] for suitable µ

and A. We address this by jointly bucketing τ and v̄. Specifically, we map τ into a bucket index

k = blog2
1−κτ
1−κ c, pick µ to be the largest integer multiple of R/((1−κ)2k) such that µ ≤ maxi v̄i, and

set A = {i | |(1 − κ)2k(v̄i − µ)| ≤ R}. Since k ≤ kmax = blog2
1

1−κc = O(log n), we argue that pre-

computing 〈x̄, (v̄ − µ)q〉A for every possible resulting µ and A takes at most O(n̄p log 1
1−κ) = Õ (n̄)

time, which we can charge to initialization. We further show how to support deletions in Õ (1) time

by carefully manipulating the precomputed quantities.

Supporting sparse updates. Building on ScaleMaintainer, we design the data structure

ApproxExpMaintainer that (approximately) implements the entire mirror descent step (3.8) in time

Õ (1).3 The data structure maintains vectors x̄ ∈ ∆n and v̄ ∈ Rn and K = dlog2(n+ 1)e instances of

ScaleMaintainer denoted {ScaleMaintainerk}k∈[K]. The kth instance tracks a coordinate subset

Sk ⊆ [n] such that {Sk}k∈[K] partitions [n], and has initial data [x̄]Sk and [v̄]Sk . We let τk ≥ 0

denote the “time index” parameter of the kth instance. The data structure satisfies two invariants;

first, the unnormalized iterate x̂ satisfies

[x̂]Sk = [x̄ ◦ exp{(1− κτk)v̄}]Sk , for all k ∈ [K]. (3.15)

Second, the partition satisfies

|Sk| ≤ 2k − 1 for all k ∈ [K], (3.16)

where at initialization we let SK = [n] and Sk = ∅ for k < K, x̄ = x0, v̄ = v
1−κ − log x0 and τK = 0.

The invariant (3.15) allows us to efficiently (in time Õ (K) = Õ (1)) query coordinates of xt =

x̂t/ ‖x̂t‖1, since ScaleMaintainer allows us to approximate ‖x̂t‖1 =
∑
k∈[K] Zτk([x̄]Sk , [v̄]Sk) with

Z as defined in (3.14). To implement the dense step (3.12), we simply increment τk ← τk + 1 for

every k. Let j be the nonzero coordinate of st in the sparse step (3.13), and let k ∈ [K] be such

that j ∈ Sk. To implement (3.13), we delete coordinate j from ScaleMaintainerk, and create a

singleton instance ScaleMaintainer0 maintaining S0 = {j} with initial data [x̄]S0
= est x̂j , [v̄]S0

=

vj/(1−κ)− log(est x̂j) and τ0 = 0. Going from k = 1 to k = K, we merge ScaleMaintainerk−1 into

ScaleMaintainerk until the invariant (3.16) holds again. For example, if before the sparse step we

have |S1| = 1, |S2| = 3 and |S3| = 2, we will perform 3 consecutive merges, so that afterwards we

have |S1| = |S2| = 0 and |S3| = 7.

To merge two ScaleMaintainerk−1 into ScaleMaintainerk, we let S′k = Sk−1∪Sk and initialize

a new ScaleMaintainer instance with [x̄]S′k = [x̂]S′k ,4 [v̄]S′k = [v]S′k/(1 − κ) − log[x̂]S′k and τk = 0;

this takes Õ (|S′k|) = Õ
(
2k
)

time due to the invariant (3.16). Noting that a merge at level k can

3The data structures ApproxExpMaintainer and ScaleMaintainer structure support two additional operations
necessary for our algorithm: efficient approximate sampling from xt and maintenance of a running sum of x̂τ . Given
the normalization constant approximation, the implementation of these operations is fairly straightforward, so we do
not discuss them in the introduction.

4More precisely, for every j ∈ S′k we set x̄j = x̂j + εmaxi∈S′
k
x̂i, where ε is a small padding constant that ensures

the bounded multiplicative range necessary for correct operation of ScaleMaintainer.

CHAPTER 3. STOCHASTIC METHODS FOR MATRIX GAMES 95

only happen once in every Ω(2k) updates, we conclude that the amortized cost of merges at each

level is Õ (1), and (since K = Õ (1)), so is the cost of the sparse update.

Back to distribution design (sampling from the sum). Our data structure enables us to compute

the iteration (3.8) and query coordinates of the iterates xt and yt in Õ (1) amortized time. However,

we cannot compute δ̃x using the distribution (3.11) because we do not have an efficient way of

sampling from |yt − y0|; Taylor approximation techniques are not effective for approximating the

absolute value because it is not smooth. To overcome this final barrier, we introduce a new design

which we call “sampling from the sum,”

pij(x, y) =

(
1

3
yi +

2

3
[y0]i

)
·
A2
ij

‖Ai:‖22
. (3.17)

Sampling from the modified distribution is simple, as our data structure allows us to sample from yt.

Moreover, we show that the distribution (3.17) satisfies a relaxed version of (3.9) where the LHS is

replaced by a local norm as before, and the RHS is replaced by L2(Vx0
(xt) + Vy0

(yt)), where Vx(x′)

is the KL divergence between x and x′. In Table 3.5 we list the sampling distributions we design for

variance reduction in the different domain geometries.

3.1.3 Related work

Variance reduction for matrix games. Matrix games, the canonical form of discrete zero-sum games,

have long been studied in economics [426]. It is well-known that the classical mirror descent (i.e. no-

regret) method yields an algorithm with running time Õ
(
nnz(A)L2ε−2

)
[414]. Subsequent work [253,

415, 420, 140] improve this runtime as described above. Our work builds on the extragradient scheme

of [415] as well as the gradient estimation and clipping technique of [140].

[432] apply standard variance reduction [300] to bilinear `2-`2 games by sampling elements pro-

portional to squared matrix entries. Using proximal-point acceleration they obtain a runtime of

Õ
(

nnz(A) + ‖A‖F
√

nnz(A) max{m,n}ε−1 log 1
ε

)
, a rate we recover using our algorithm. However,

in this setting the mirror-prox method has runtime Õ
(
‖A‖op nnz(A)ε−1

)
, which may be better

than the result of [432] by a factor of
√
mn/nnz(A) due to the discrepancy in the norm of A. Naive

application of [432] to `1 domains results in even greater potential losses. [484] extend the method

of [432] to smooth functions using general Bregman divergences, but their extension is unaccelerated

and appears limited to a ε−2 rate.

[121] propose a variance-reduced extragradient method with applications to generative adversarial

training. In contrast to our algorithm, which performs extragadient steps in the outer loop, the

method of [121] performs stochastic extragradient steps in the inner loop, using finite-sum variance

reduction as in [300]. [121] analyze their method in the convex-concave setting, showing improved

stability over direct application of the extragradient method to noisy gradients. However, their

complexity guarantees are worse than those of linear-time methods. Following up on [121], [394]

CHAPTER 3. STOCHASTIC METHODS FOR MATRIX GAMES 96

Setting pij qij

`1-`1 yi ·
A2
ij

‖Ai:‖22
xj ·

A2
ij

‖A:j‖22

`2-`1 yi ·
|Aij |
‖Ai:‖1

A2
ij

‖A‖2F

`2-`1 yi ·
|Aij |
‖Ai:‖1

∝ x2
j · 1Aij 6=0

`2-`1 yi ·
|Aij |
‖Ai:‖1

Aij · x2
j∑

k∈[n] ‖A:k‖1 · x2
k

`2-`2
‖Ai:‖21∑

k∈[m] ‖Ak:‖21
· |Aij |
‖Ai:‖1

‖A:j‖21∑
k∈[n] ‖A:k‖21

· |Aij |
‖A:j‖1

`2-`2
yi

2

‖y‖22
· |Aij |
‖Ai:‖1

xj
2

‖x‖22
· |Aij |
‖A:j‖1

Table 3.4: The distributions p, q used in our coordinate gradient estimator. Comments: The estimator is
of the form g̃(x, y) =

(
1
pij

yiAij · ej ,− 1
qlk

Alkxk · el
)

where i, j ∼ p and l, k ∼ q.

Setting pij qij

`1-`1
yi + 2[y0]i

3
·
A2
ij

‖Ai:‖22

xj + 2[x0]j
3

·
A2
ij

‖A:j‖22

`2-`1
yi + 2[y0]i

3
· |Aij |
‖Ai:‖1

A2
ij

‖A‖2F

`2-`1
yi + 2[y0]i

3
· |Aij |
‖Ai:‖1

∝ [x− x0]2j · 1Aij 6=0

`2-`1
yi + 2[y0]i

3
· |Aij |
‖Ai:‖1

|Aij | · [x− x0]2j∑
k∈[n] ‖A:k‖1 · [x− x0]2k

`2-`2
‖Ai:‖21∑

k∈[m] ‖Ak:‖21
· |Aij |
‖Ai:‖1

‖A:j‖21∑
k∈[n] ‖A:k‖21

· |Aij |
‖A:j‖1

`2-`2
[y − y0]2i

‖y − y0‖22
· |Aij |
‖Ai:‖1

[x− x0]2j

‖x− x0‖22
· |Aij |
‖A:j‖1

Table 3.5: The distributions p, q used for our reduced variance coordinate gradient estimator. Comments:

The estimator is of the form g̃(x, y) =
(
A>y +

1

pij
(yi − y0,i)Aij · ej , −Ax − 1

qlk
Alk(xk − x0,k) · el

)
where

i, j ∼ p and l, k ∼ q and x0, y0 is a reference point.

CHAPTER 3. STOCHASTIC METHODS FOR MATRIX GAMES 97

propose to reduce the variance of the stochastic extragradient method by using the same stochastic

sample for both the gradient and extragradient steps. In the Euclidean strongly convex case, they

show a convergence guarantee with a relaxed variance assumption, and in the noiseless full-rank

bilinear case they recover the guarantees of [398]. In the general convex case, however, they only

show an ε−2 rate of convergence.

Coordinate methods for matrix games. Updating a single coordinate at a time—or more broadly

computing only a single coordinate of the gradient at every iteration—is a well-studied and suc-

cessful technique in optimization [540]. Selecting coordinates at random is key to obtaining strong

performance guarantees: [498] show this for linear regression, [475] show this for `1 regularized linear

models, and [423] shows this for general smooth minimization. Later works [347, 553, 425] propose

accelerated coordinate methods. These works share two common themes: selecting the gradient

coordinate from a non-uniform distribution (see also [455]), and augmenting the 1-sparse stochastic

gradient with a dense momentum term. These techniques play important roles in our development

as well.

To reap the full benefits of coordinate methods, iterations must be very cheap, ideally taking

near-constant time. However, most coordinate methods require super-constant time, typically in the

form of a vector-vector computation. Even works that consider coordinate methods in a primal-dual

context [477, 22, 547, 407, 476] perform the coordinate updates only on the dual variable and require

a vector-vector product (or more generally a component gradient computation) at every iteration.

A notable exception is the work of [531, 532] which develops a primal-dual stochastic coordinate

method for solving Markov decision processes, essentially viewing them as `∞-`1 bilinear saddle-

point problems. Using a tree-based `1 sampler data structure similar to the `1 sampler we use for

simplex domains for the sublinear case, the method allows for Õ (1) iterations and a potentially

sublinear runtime scaling as ε−2. [499] also consider bilinear saddle-point problems and variance

reduction. Unlike our work, they assume a separable domain, use uniform sampling, and do not

accelerate their variance reduction scheme with extra-gradient steps. The separable domain makes

attaining constant iteration cost time much simpler, since there is no longer a normalization factor

to track, but it also rules out applications to the simplex domain. While [499] report promising

empirical results, their theoretical guarantees do not improve upon prior work.

Our work develops coordinate methods with Õ (1) iteration cost for new types of problems.

Furthermore, it maintains the iteration efficiency even in the presence of dense components arising

from the update, thus allowing for acceleration via an extra-gradient scheme.

Data structures for optimization. Performing iterations in time that is asymptotically smaller

than the number of variables updated at every iteration forces us to carry out the updates implicitly

using data structures; several prior works employ data structures for exactly the same reason. One

of the most similar examples comes from [347], who design a data structure for an accelerated

coordinate method in Euclidean geometry. In our terminology, their data structure allows performing

CHAPTER 3. STOCHASTIC METHODS FOR MATRIX GAMES 98

each iteration in time O(rcs) while implicitly updating variables of size O(n). [203] design a data

structure based on balanced search trees that supports efficient Euclidean projection to the `1 ball

of vector of the form u + s where u is in the `1 ball and s is sparse. They apply it in a stochastic

gradient method for learning `1 regularized linear classifier with sparse features. Among the many

applications of this data structure, [407] adapt it to efficiently compute Euclidean projections into

the intersection of the simplex and a χ2 ball for 1-sparse updates. [476] and [531, 532], among

others, use binary tree data structures to perform multiplicative weights projection to the simplex

and sampling from the iterates.

A recent work of [486] develops a data structure which is similar to ApproxExpMaintainer, for

updates arising from a primal-dual method to efficiently solve `∞ regression. Their data structure

was also designed to handle updates to a simplex variable which summed a structured dense compo-

nent and a sparse component. However, the data structure design of that work specifically exploited

the structure of the maximum flow problem in a number of ways, such as bounding the sizes of

the update components and relating these bounds to how often the entire data structure should be

restarted. Our data structure can handle a broader range of structured updates to simplex variables

and has a much more flexible interface, which is crucial to the development of our variance-reduced

methods as well as our applications.

Another notable use of data structures in optimization appears in second order methods, where

a long line of work uses them to efficiently solve sequences of linear systems and approximately

compute iterates [316, 27, 349, 144, 352, 515, 517]. Finally, several works on low rank optimization

make use of sketches to efficiently represent their iterates and solutions [141, 543].

Numerical sparsity. Measures of numerical sparsity, such as the `2/`∞ or `1/`2 ratios, are

continuous and dimensionless relaxations of the `0 norm. The stable rank of a matrix A measures

the numerical sparsity of its singular values (specifically, their squared `2/`∞ ratio) [146].

For linear regression, stochastic methods generally outperform exact gradient methods only when

A is has low stable rank, cf. discussion in [111, Section 4.3], i.e., numerically sparse singular values.

In recent work, [260] develop algorithms for linear regression and eigenvector problems for matrices

with numerically sparse entries (as opposed to singular values). Our work further broadens the scope

of matrix problems for which we can benefit from numerical sparsity. Moreover, our results have

implications for regression as well, improving on [260] in certain numerically sparse regimes.

In recent work by [48], the authors develop primal-dual sublinear methods for `1-regularized linear

multi-class classification (bilinear games in `1-`∞ geometry), and obtain complexity improvements

depending on the numerical sparsity of the problem. Similarly to our work, careful design of the

sampling distribution plays a central role in [48]. They also develop a data structure that allows

iteration cost independent of the number of classes. However, unlike our work, [48] rely on sampling

entire rows and columns, have iteration costs linear in n+m, and do not utilize variance reduction.

We believe that our techniques can yield improvements in their setting.

CHAPTER 3. STOCHASTIC METHODS FOR MATRIX GAMES 99

3.1.4 Chapter organization

In Section 3.2, we set up our terminology, notation, the interfaces of our data structures, and the

different matrix access models we consider. In Section 3.3 we develop our algorithmic framework: we

present coordinate stochastic gradient methods in Section 3.3.1 and their reduced variance counter-

parts in Section 3.3.2. In Section 3.4 we apply both methods to solving `1-`1 matrix games; we show

how to implement the method using our data structures and analyze the runtime. In Section 3.5,

we discuss in detail the implementation and analysis of our data structures. Finally, in Section 3.6

we specialize our results to obtain algorithms for minimum enclosing ball and maximum inscribed

ball problems as well as linear regression. Many proof details as well as our algorithms for other

domain setups, i.e. `2-`1 and `2-`2 are deferred to the appendix.

For brevity in the main body of this chapter, we provide our “basic” instantiation of our variance

reduction framework (specialized with row-column sampling estimators, as opposed to coordinate

sampling estimators) in Appendix B.5.

3.2 Preliminaries

In Section 3.2.1, we abstract the properties of the different domains we handle into a general notion

of a “local norm” setup under which we develop our results. In Section 3.2.2, we give the definition

and optimality criterion of the bilinear saddle-point problem we study. In Section 3.2.3, we give

the matrix access models used in the algorithms we design. In Section 3.2.4, we summarize the

interfaces and complexity of the data structures we design, deferring their detailed implementations

to Section 3.5.

3.2.1 Local norm setups

The analyses of our algorithms cater to the geometric of each specific domain. To express our

results generically, for each pair of domains Z = X ×Y, we define an associated “local norm setup”,

which contains various data tailored for our analyses. While initially this notation may appear

complicated or cumbersome, later it helps avoid redundancy in the paper. Further, it clarifies the

structure necessary to generalize our methods to additional domain geometries.

Definition 2. A local norm setup is the quintuplet (Z, ‖·‖·, r, Θ, clip) , where

1. Z is a compact and convex subset of Z∗ := Rn × Rm.

2. ‖·‖· is a local norm: for every z ∈ Z, the function ‖·‖z : Z∗ → R≥0 is a norm on Z∗.

3. r : Z → R is a convex distance generating function: its induced Bregman divergence

Vz(z
′) := r(z′)− r(z)− 〈∇r(z), z′ − z〉 .

CHAPTER 3. STOCHASTIC METHODS FOR MATRIX GAMES 100

`1-`1 `2-`1 `2-`2

X ∆n Bn Bn

Y ∆m ∆m Bm

‖δ‖z
√∑

k∈[n+m][z]k[δ]2k

√
‖δx‖22 +

∑
i∈[m][z

y]i[δy]2i ‖δ‖2
r

∑
k∈[n+m][z]k log[z]k

1
2 ‖z

x‖22 +
∑
i∈[m][z

y]i log[zy]i
1
2 ‖z‖

2
2

Θ log(mn) 1
2 + log(m) 1

clip(δ) sign(δ) ◦min{1, |δ|} (δx, sign(δy) ◦min{1, |δy|}) δ

Table 3.6: Local norm setups. Comments: In each case, Z = X × Y, ∆n is the probability simplex
{x | x ∈ Rn≥0,1

>
n x = 1}, Bn is the Euclidean ball {x | x ∈ Rn, ‖x‖2 ≤ 1}, the operations sign, min,

and | · | are performed entrywise on a vector, and ◦ stands for the entrywise product between vectors.

satisfies

〈γ, z − z′〉 − Vz(z′) ≤
1

2
‖γ‖2∗ :=

1

2
max
s∈Z
‖γ‖2s for all z, z′ ∈ Z and γ ∈ Z∗. (3.18)

4. Θ = maxz,z′∈Z{r(z)− r(z′)} is the range of r. For z∗ ∈ argminz∈Zr(z) we have Θ is an upper

bound on the range of Vz∗(z) ≤ Θ for all z ∈ Z.

5. clip : Z∗ → Z∗ is a mapping that enforces a local version of (3.18):

| 〈clip(γ), z − z′〉 | − Vz(z′) ≤ ‖γ‖2z for all z, z′ ∈ Z and γ ∈ Z∗, (3.19)

and satisfies the distortion guarantee

| 〈γ − clip(γ), z〉 | ≤ ‖γ‖2z for all z ∈ Z and γ ∈ Z∗. (3.20)

Table 3.6 summarizes the three local norm setups we consider. Throughout the paper,

for a vector z ∈ X × Y, we denote its X and Y blocks by zx and zy.

In addition, we write coordinate i of any vector v as [v]i.

Proposition 8. The quintuplets (Z, ‖·‖·, r, Θ, clip) in Table 3.6 satisfy the local norm setup

requirements in Definition 2.

While Proposition 8 is not new, for completeness and compatibility with our notation we prove it

in Appendix B.1.

In each local norm setup, we slightly overload notation and use ‖·‖ (without a subscript) to

CHAPTER 3. STOCHASTIC METHODS FOR MATRIX GAMES 101

denote the dual norm of ‖·‖∗, i.e., ‖η‖ := maxδ:‖δ‖∗≤1 δ
>η. In each domain geometry ‖·‖ and ‖·‖∗

are as follows:

‖η‖ =

√
‖ηx‖21 + ‖ηy‖21 ‖δ‖∗ =

√
‖δx‖2∞ + ‖δy‖2∞ for `1-`1

‖η‖ =

√
‖ηx‖22 + ‖ηy‖21 ‖δ‖∗ =

√
‖δx‖22 + ‖δy‖2∞ for `2-`1

‖η‖ = ‖η‖2 ‖δ‖∗ = ‖δ‖2 for `2-`2 .

(3.21)

3.2.2 The problem and optimality criterion

Throughout, we consider the bilinear saddle point problem

min
x∈X

max
y∈Y

f(x, y), where f(x, y) := y>Ax+ b>x− c>y, for A ∈ Rm×n, b ∈ Rn and c ∈ Rm. (3.22)

We will always assume that every row and column of A has at least one nonzero entry (else removing

said row or column does not affect the problem value), so that the number of nonzeros nnz is at least

m+n−1. To simplify the exposition of the `1-`1 and `2-`1 setups we will assume b = 0n and c = 0m

as is standard in the literature. Adding linear terms to these setups is fairly straightforward and does

not affect the complexity (up to logarithmic factors) of our designed algorithms using data structures

designed in this chapter (specifically ApproxExpMaintainer in Section 3.2.4); see Section 3.6 for an

example. The gradient mapping associated with (3.22) for z = (zx, zy) ∈ Z = X × Y is

g(z) := (∇xf(z),−∇yf(z)) = (A>zy + b,−Azx + c). (3.23)

The mapping g is continuous and monotone, where we call g monotone if and only if

〈g(z′)− g(z), z′ − z〉 ≥ 0, ∀z, z′ ∈ Z.

This holds due to the convexity-concavity (indeed, bilinearity) of function f . Our goal is to de-

sign randomized algorithms for finding an (expected) ε-accurate saddle point z ∈ Z such that, in

expectation,

EGap(z) := E
[
max
y′∈Y

f(zx, y′)− min
x′∈X

f(x′, zy)

]
≤ ε. (3.24)

In order to do so, we aim to find a sequence z1, z2, . . . , zK with (expected) low average regret,

i.e., such that Emaxu∈Z

{
1
K

∑K
k=1 〈g(zk), zk − u〉

}
≤ ε. Due to bilinearity of f we have

EGap

(
1

K

K∑
k=1

zk

)
= Emax

u∈Z

{
1

K

K∑
k=1

〈g(zk), zk − u〉

}
≤ ε.

Finally, we make the explicit assumption that whenever we are discussing an algorithm in this

CHAPTER 3. STOCHASTIC METHODS FOR MATRIX GAMES 102

chapter with a simplex domain (e.g. in `1-`1 or `2-`1 case), the quantity Lco/ε is bounded by (m+n)3,

as otherwise we are in the high-accuracy regime where the runtimes of interior point methods or

cutting-plane methods [350, 296] are favorable. Specifically for `1-`1 matrix games in this regime,

interior-point methods [349, 144, 517] are always faster, see footnote in Section 3.1.1. We make this

assumption for notational convenience when discussing logarithmic factors depending on multiple

quantities, such as m, n, Lco, and ε−1.

3.2.3 Matrix access models

We design randomized algorithms which require accessing and sampling from the matrix A ∈ Rn×m

in a variety of ways. Here, we list these operations, where we assume each takes constant time.

Specific algorithms only require access to a subset of this list; we make a note of each algorithm’s

requirements when presenting it.

A1. For i, j ∈ [m]× [n], return Aij .

A2. For i ∈ [m] and p ∈ {1, 2}, draw j ∈ [n] with probability |Aij |p/ ‖Ai:‖pp.

A3. For j ∈ [n] and p ∈ {0, 1, 2}, draw i ∈ [m] with probability |Aij |p/ ‖A:j‖pp.

A4. For i ∈ [m] (j ∈ [n]) and p ∈ {1, 2}, return ‖Ai:‖p (‖A:j‖p).

A5. For p ∈ {1, 2}, return maxi∈[m] ‖Ai:‖p, maxj∈[n] ‖A:j‖p, nnz, rcs, and ‖A‖F.

Given any representation of the matrix as a list of nonzero entries and their indices, we can always

implement the access modes above (in the assumed constant time) with O(nnz) time preprocessing;

see e.g. [526] for an implementation of the sampling (in a unit cost RAM model). Our variance-

reduced algorithms have an additive O(nnz) term appearing in their runtimes due to the need to

compute at least one matrix-vector product to implement gradient estimators. Thus, their stated

runtime bounds hold independently of matrix access assumptions.

3.2.4 Data structure interfaces

We rely on data structures to maintain and sample from the iterates of our algorithms. Below, we

give a summary of the operations supported by our data structures and their runtime guarantees.

We show how to implement these data structures in Section 3.5.

IterateMaintainerp

Given p ∈ {1, 2}, we design a data structure IterateMaintainerp which maintains an implicit

representation of the current iterate x ∈ Rn and a running sum s of all iterates. At initialization,

CHAPTER 3. STOCHASTIC METHODS FOR MATRIX GAMES 103

Category Function Runtime

initialize Init(x0, v): x← x0, s← 0 O(n)

update

Scale(c): x← cx O(1)

AddSparse(j, c): [x]j ← [x]j + c (if p = 1, we require c ≥ −[x]j) O(log n)†

AddDense(c): x← x+ cv (supported if p = 2) O(1)

UpdateSum(): s← s+ x O(1)

query

Get(j): Return [x]j O(1)

GetSum(j): Return [s]j O(1)

GetNorm(): Return ‖x‖p O(1)

sample† Sample(): Return j with probability [x]pj/ ‖x‖
p
p O(log n)

† An alternative implementation does not support Sample, but performs AddSparse in time O(1).

this data structure takes as input the initial iterate x0 to be maintained and for p = 2, the data

structure also takes as input a fixed vector v. It then supports the following operations.

The implementation of IterateMaintainerp is given in Section 3.5.1. In Sections B.3.2 and B.4.3

we use variants of this data structure WeightedIterateMaintainer2 and CenteredIterateMaintainer2,

and defer the detailed discussions of their implementations to Appendix B.8.

ApproxExpMaintainer

To maintain multiplicative weights updates with a fixed dense component, we design a data structure

ApproxExpMaintainer initialized with an arbitrary point x0 ∈ ∆n, a direction v ∈ Rn, a decay

constant κ ∈ [0, 1] and an approximation error parameter ε. In order to specify the implementation

of our data structure, we require the following definition.

Definition 3 (β-padding). For x, x′ ∈ ∆n, we say x′ is a β-padding of x if x′ = x̃/ ‖x̃‖1, for a

point x̃ ∈ Rn≥0 with x̃ ≥ x entrywise and ‖x̃− x‖1 ≤ β.

Notions similar to β-padding appear in previous literature [331]. A key technical property of β-

paddings is that they do not increase entropy significantly (see Lemma 34).

ApproxExpMaintainer has maintains two vectors x, x̂ ∈ ∆n that, for an error tolerance parameter

ε, satisfy the invariant

x̂ is a ε-padding of x. (3.25)

an error tolerance parameter ε. We now specify the interface, where ◦ denotes elementwise product,

[xκ]j = [x]κj denotes elementwise power, Π∆(z) = z/ ‖z‖1 normalizes z ∈ Rn≥0 to lie in the simplex,

and ‖s‖0 denotes the number of nonzeroes in vector s. To state our runtimes, we define

ω := max

(
1

1− κ
,
n

λε

)
.

CHAPTER 3. STOCHASTIC METHODS FOR MATRIX GAMES 104

For most of our applications of ApproxExpMaintainer, ω is a polynomial in m and n (our iterate

dimensions), so log(ω) = O(log(mn)) (with the exception of our maximum inscribed ball application,

where our runtimes additionally depend polylogarithmically on the size of the hyperplane shifts b;

see Remark 2). We defer a more fine-grained runtime discussion to Section 3.5.3.

Category Function Runtime

initialize Init(x0, v, κ, ε, λ) : κ ∈ [0, 1), ε > 0, minj [x0]j ≥ λ O(n log n log2 ω)

update

MultSparse(g): x← ε-padding of Π∆(x ◦ exp(g)) O(‖g‖0 log2 n log2 ω)

DenseStep(): x← Π∆(xκ ◦ exp(v)) O(log n)

UpdateSum(): s← s+ x̂ (recall invariant (3.25)) O(log n logω)

query
Get(j): Return [x̂]j O(log n logω)

GetSum(j): Return [s]j O(log2 ω)

sample Sample(): Return j with probability [x̂]j O(log n logω)

The role of ApproxExpMaintainer is in to efficiently implement the regularized and reduced-

variance stochastic mirror descent steps of the form (3.8). To do this, we initialize the data structure

with v = (1− κ) log x0 − ηκgx0. Then, the iteration (3.8) consists of calling DenseStep() followed by

MultSparse(−ηκδ̃x).

3.3 Framework

In this section, we develop our algorithmic frameworks. The resulting algorithms have either sub-

linear or variance-reduced complexities. We develop our sublinear coordinate method framework in

Section 3.3.1, and its variance-reduced counterpart in Section 3.3.2.

3.3.1 Sublinear coordinate methods

In Section 3.3.1 we introduce the concept of a local gradient estimator, which allow stronger guar-

antees for stochastic mirror descent with clipping (Algorithm 10) via local norms analysis. Then,

in Section 7 we state the form of the specific local gradient estimators we use in our coordinate

methods, and motivate the values of Lco in Table 3.1.

Convergence analysis

Definition 4. For local norm setup (Z, ‖·‖·, r, Θ, clip) , we call a stochastic gradient estimator

g̃ : Z → Z∗ an L-local estimator if it satisfies the following properties for all z ∈ Z:

1. Unbiasedness: E[g̃(z)] = g(z).

2. Second moment bound: for all w ∈ Z, E[‖g̃(z)‖2w] ≤ L2.

CHAPTER 3. STOCHASTIC METHODS FOR MATRIX GAMES 105

The following lemma shows that L-local estimators are unbiased for L-bounded operators.

Lemma 30. A gradient mapping that admits an L-local estimator satisfies ‖g(z)‖∗ ≤ L for all

z ∈ Z.

Proof. For every z ∈ Z, the function ‖·‖2z is convex. Thus by Jensen’s inequality,

‖g(z)‖2z = ‖Eg̃(z)‖2z ≤ E ‖g̃(z)‖2z ≤ L
2.

Taking supremum over z ∈ Z gives ‖g(z)‖2∗ ≤ L2.

We note that the same result does not hold for g̃ because maximum and expectation do not commute.

That is, E ‖g̃‖2∗ is not bounded by L2. This fact motivates our use of local norms analysis.

Below, we state Algorithm 10, stochastic mirror descent with clipping, and a guarantee on its rate

of convergence using local gradient estimators. We defer the proof to Appendix B.2 and note here

that it uses the “ghost iterates” technique due to [416] in order to rigorously bound the expected

regret with respect to the best response to our iterates, rather than a pre-specified point. This

technique is purely analytical and does not affect the algorithm. We also note that the second

inequality in Proposition 9 holds with any convex-concave function f ; the first uses bilinearity of

our problem structure.

Algorithm 10: Stochastic mirror descent

1 Input: Matrix A ∈ Rm×n, L-local gradient estimator g̃, clipping function clip(·);
2 Output: A point with O(Θ

ηT + ηL2) expected duality gap ;

3 Parameters: Step-size η, number of iterations T ;
4 z0 ← argminz∈Zr(z);
5 for t = 1, . . . , T do
6 zt ← arg minz∈Z

{
〈clip(ηg̃(zt−1)), z〉+ Vzt−1

(z)
}

;

7 Return: 1
T+1

∑T
t=0 zt;

Proposition 9. Let (Z, ‖·‖·, r, Θ, clip) be a local norm setup, let L, ε > 0, and let g̃ be an L-local

estimator. Then, for η ≤ ε
9L2 and T ≥ 6Θ

ηε ≥
54L2Θ
ε2 , Algorithm 10 outputs a point z̄ such that

EGap(z̄) ≤ E

[
sup
u∈Z

1

T + 1

T∑
t=0

〈g(zt), zt − u〉

]
≤ ε.

CHAPTER 3. STOCHASTIC METHODS FOR MATRIX GAMES 106

Coordinate gradient estimators

We now state the general form which our local gradient estimators g̃ take. At a point z ∈ Z, for

specified sampling distributions p(z), q(z), sample ix, jx ∼ p(z) and iy, jy ∼ q(z). Then, define

g̃(z) :=

(
Aixjx [z

y]ix

pixjx(z)
ejx ,
−Aiyjy [zx]jy
qiyjy(z)

eiy

)
+ g(0) where g(0) = (b, c). (3.26)

It is clear that regardless of the distributions p(z), q(z), for the gradient operator in (I.20), g̃(z) is

an unbiased gradient estimator (E[g̃(z)] = g(z)) and g̃(z)− g(0) is 2-sparse.

Optimal values of Lco. In the remainder of this section we assume for simplicity the g(0) = 0

(i.e. the objective f in (3.22) has not linear terms). Here we compute the optimal values of L for

local gradient estimators (see Definition 4) of the form (3.26) for each of the local norm setups we

consider. This motivates the values of Lco we derive in the following sections. First, in the `1-`1

case, the second moment of ‖g̃x(z)‖2wx (the local norm of the X block of g̃(z) at point w) is

E

[
[wx]jx

(
Aixjx [z

y]ix

pixjx(z)

)2
]

=
∑

i∈[m],j∈[n]

A2
ij [z

y]2i [w
x]j

pij(z)
≥

 ∑
i∈[m],j∈[n]

|Aij |[zy]i
√

[wx]j

2

.

Since zy ∈ ∆m and
√
wx ∈ Bn with

∥∥√wx
∥∥

2
= 1, the above lower bound is in the worst case

maxi ‖Ai:‖22. Similarly, the best possible bound on the Y is maxj ‖A:j‖22. Therefore, in the `1-`1

setup, no local estimator has parameter L smaller than Lco in Table 3.1.

Next, in the `2-`2 case, the (`2) second moment of the X block is

E

[(
Aixjx [z

y]ix

pixjx(z)

)2
]

=
∑

i∈[m],j∈[n]

A2
ij [z

y]2i
pij(z)

≥

 ∑
i∈[m],j∈[n]

|Aij |[zy]i

2

=

∑
i∈[m]

‖Ai:‖1 [zy]i

2

.

In the worst case, this is at least (
∑
i∈[m] ‖Ai:‖1)2; similarly, the best second moment bound for the

Y block is (
∑
j∈[n] ‖A:j‖1)2, which means that Lco is similarly unimprovable in the `2-`2 setup.

Finally, in the `2-`1 case, where X = Bn and Y = ∆m, we again have that the `2 second moment

of the X (ball) block is at least

E

[(
Aixjx [z

y]ix

pixjx(z)

)2
]
≥

 ∑
i∈[m],j∈[n]

|Aij |[zy]i

2

.

Here, since zy ∈ ∆m, the worst-case lower bound of the variance is maxi ‖Ai:‖21. Further, the local

CHAPTER 3. STOCHASTIC METHODS FOR MATRIX GAMES 107

norm (at w) second moment of the Y (simplex) block is at least

E

[
[wy]iy

(
Aiyjy [z

x]jy

qiyjy(z)

)2
]
≥

 ∑
i∈[m],j∈[n]

|Aij |[zx]j
√

[wy]i

2

.

Since zx ∈ Bn and
√
wy ∈ Bm, in the worst case this second moment can be as high as ‖|A|‖op, where

we use |A| to denote the elementwise absolute value of A. This is better than the Lco in Table 3.1,

suggesting there is room for improvement here. However, the sampling probabilities inducing this

optimal variance bound are of the form

qij(z;w) ∝ |Aij |
√

[wy]i · [zx]j ,

and it unclear how to efficiently sample from this distribution. Improving our `2-`1 gradient estimator

(or proving that no improvement is possible) remains an open problem.

3.3.2 Variance-reduced coordinate methods

In this section, we develop the algorithmic framework we use in our variance-reduced methods. We

first define a type of “centered-local” gradient estimator, modifying the local gradient estimators of

the previous section. We then give the general form of a variance-reduced method and analyze it in

the context of our gradient estimators and the error incurred by our data structure maintenance.

General convergence result

Definition 5. For local norm setup (Z, ‖·‖·, r, Θ, clip), and given a reference point w0 = (wx
0, w

y
0),

we call a stochastic gradient estimator g̃w0 : Z → Z∗ an L-centered-local estimator if it satisfies the

following properties:

1. Unbiasedness: E[g̃w0
(z)] = g(z).

2. Relative variance bound: for all w ∈ Z, E[‖g̃w0
(z)− g(w0)‖2w] ≤ L2Vw0

(z).

Remark 1. Similarly to Lemma 30, a gradient mapping that admits an L-centered-local estimator

also satisfies ‖g(z)− g(w0)‖2∗ ≤ L2Vw0(z), by Jensen’s inequality.

Algorithm 11 below is an approximate variant of the variance reduction algorithm in an earlier

version of this work [111] which closely builds upon the “conceptual prox-method” of [415]. How-

ever, for self-containment of this chapter we specialize our presentation of our variance reduction

framework to our implementation in the coordinate sampling setting.

The algorithm repeatedly calls a stochastic oracle O : Z → Z to produce intermediate iterates,

and then performs an extragradient (linearized) proximal step using the intermediate iterate. The

CHAPTER 3. STOCHASTIC METHODS FOR MATRIX GAMES 108

main modification compared to [111] is Line 8, which accommodates slight perturbations to the extra-

gradient step results. These perturbations arise due to input requirements of our data structures:

we slightly pad coordinates in simplex blocks to ensure they are bounded away from zero.

Algorithm 11: OuterLoop(O) (conceptual prox-method [415])

1 Input: Target approximation quality εouter, (α, εinner)-relaxed proximal oracle O(z) for
gradient mapping g and some εinner < εouter, distance-generating r;

2 Parameters: Number of iterations K;

3 Output: Point z̄K with EGap(z̄) ≤ αΘ
K + εouter;

4 z0 ← argminz∈Zr(z) ;
5 for k = 1, . . . ,K do
6 zk−1/2 ← O(zk−1) . We implement O(zk−1) by calling InnerLoop(zk−1, g̃zk−1

, α) ;

7 z?k := Proxαzk−1
(g(zk−1/2)) = argminz∈Z

{〈
g
(
zk−1/2

)
, z
〉

+ αVzk−1
(z)
}

;

8 zk ← any point satisfying Vzk(u)− Vz?k (u) ≤ εouter−εinner

α , for all u ∈ Z

9 Return: z̄K = 1
K

∑K
k=1 zk−1/2;

The following definition summarizes the key property of the oracle O.

Definition 6. Let operator g be monotone and α, εinner > 0. An (α, εinner)-relaxed proximal oracle

for g is a (possibly randomized) map O : Z → Z such that z′ = O(z) satisfies

E
[
max
u∈Z

{
〈g(z′), z′ − u〉 − αVz(u)

}]
≤ εinner.

The following proposition shows that despite the error permitted tolerated in Line 8, the algo-

rithm still converges with rate 1/K. We defer its proof to Appendix B.2.

Proposition 10. Let O be an (α, εinner)-relaxed proximal oracle with respect to gradient mapping

g, distance-generating r with range at most Θ and some εinner ≤ εouter. Let z1/2, z3/2, . . . , zK−1/2 be

iterates of Algorithm 11 and let z̄K be its output. Then

EGap(z̄K) ≤ Emax
u∈Z

1

K

K∑
k=1

〈
g(zk−1/2), zk−1/2 − u

〉
≤ αΘ

K
+ εouter.

Algorithm 12 is a variant of the variance-reduced inner loop of an earlier version of this work [111],

adapted for local norms and inexact iterates (again, due to approximations made by the data struc-

ture). It tolerates error in three places:

1. Instead of estimating the gradient at the previous iterate wt−1, we estimate it at a point ŵt−1

such that wt−1−ŵt−1 has small norm and similar divergence from the reference point w0 (Line 5).

2. Instead of letting the next iterate be the exact mirror descent step w?t , we let be a point wT that

is close to w?t in norm and has similar divergences to from w0 and to any any point in Z (Line 7).

CHAPTER 3. STOCHASTIC METHODS FOR MATRIX GAMES 109

3. The output w̃ can be an approximation of the average of the iterates, as long as its difference to

the true average has bounded norm (Line 8).

We quantify the effect of these approximations in Proposition 11, which gives a runtime guarantee

for Algorithm 12 (where we recall the definition of ‖·‖ as the dual norm of ‖·‖∗, see (3.21)). The

proof is deferred to Appendix B.2.

Algorithm 12: InnerLoop(w0, g̃w0 , ϕ)

1 Input: Initial w0 ∈ Z, L-centered-local gradient estimator g̃w0 , oracle quality α > 0;

2 Parameters: Step size η, number of iterations T , approximation tolerance ϕ;

3 Output: Point w̃ satisfying Definition 6;

4 for t = 1, . . . , T do

5 ŵt−1 ≈ wt−1 satisfying (a) Vw0(ŵt−1)− Vw0(wt−1) ≤ ϕ
α and (b) ‖ŵt−1 − wt−1‖ ≤ ϕ

LD ;

6 w?t ← argminw∈Z
{
〈w, clip(ηg̃w0(ŵt−1)− ηg(w0)) + ηg(w0)〉+ αη

2 Vw0(w) + Vwt−1(w)
}

;

7 wt ≈ w?t satisfying

(a) maxu
[
Vwt(u)− Vw?t (u)

]
≤ ηϕ,

(b) Vw0
(wt)− Vw0

(w?t) ≤ ϕ
α , and

(c) ‖wt − w?t ‖ ≤
ϕ

2LD

8 Return: w̃ ≈ 1
T

∑T
t=1 wt satisfying

∥∥∥w̃ − 1
T

∑T
t=1 wt

∥∥∥ ≤ ϕ
LD .

Proposition 11. Let (Z, ‖·‖·, r, Θ, clip) be any local norm setup. Let w0 ∈ Z, α ≥ εinner > 0,

and g̃w0
be an L-centered-local estimator for some L ≥ α. Assume the domain is bounded by

maxz∈Z ‖z‖ ≤ D, that g is L-Lipschitz, i.e. ‖g(z)− g(z′)‖∗ ≤ L ‖z − z′‖, that g is LD-bounded, i.e.

maxz∈Z ‖g(z)‖∗ ≤ LD, and that ŵ0 = w0. Then, for η = α
10L2 , T ≥ 6

ηα ≥
60L2

α2 , and ϕ = εinner

6 ,

Algorithm 12 outputs a point ŵ ∈ Z such that

Emax
u∈Z

[〈g(w̃), w̃ − u〉 − αVw0(u)] ≤ εinner, (3.27)

i.e. Algorithm 12 is an (α, εinner)-relaxed proximal oracle.

Remark 2 (Assumption of boundedness on g). The assumption that g is LD-bounded in the dual

norm is immediate from other assumptions used in Proposition 11 in the case of the applications in

Section 3.4, where we develop methods for solving `1-`1 matrix games and assume that g(0) = 0.

In applications in Section 3.6, due to the existence of extra linear terms b, c 6= 0, all complexity

bounds will have an additional dependence on log(‖[b; c]‖∗) which we pay in the implementation of

data structure ApproxExpMaintainer (i.e. the parameter L in the bound on g is larger if ‖[b; c]‖∗ is

large). We hide this extra polylogarithmic factor in the Õ notation.

We also remark that (up to constants) the bounds on the range of εinner ≤ α ≤ L in the statement

of Proposition 11 correspond to the cases where the inner and outer loop consist of a single iteration.

CHAPTER 3. STOCHASTIC METHODS FOR MATRIX GAMES 110

Variance-reduced coordinate gradient estimators

We now state the general form which our centered-local estimators g̃w0 take, given a reference

point w0 ∈ Z. At a point z, for sampling distributions p(z;w0), q(z;w0) to be specified, sample

ix, jx ∼ p(z;w0) and iy, jy ∼ q(z;w0). Then, define

g̃w0(z) =

(
Aixjx [z

y − wy
0]ix

pixjx(z;w0)
ejx ,
−Aiyjy [zx − wx

0]jy

qiyjy(z;w0)
eiy

)
+ g(w0). (3.28)

It is clear that regardless of the distributions p(z;w0), q(z;w0), this is an unbiased gradient

estimator (E[g̃w0
(z)] = g(z)). Furthermore, g̃w0

(z)− g(w0) is always 2-sparse.

Finally, we remark that we give another instantiation of our variance reduction framework using

gradient estimators based on sampling rows and columns in Appendix B.5. While the resulting

complexity bounds do not improve upon our coordinate methods (up to logarithmic factors), the

estimator design and analysis is conceptually simpler, and the interested reader may first read

Appendix B.5 as a precursor to our coordinate-based sampling methods.

3.4 Matrix games

In this section we instantiate the algorithmic framework of Section 3.3 in `1-`1 setup without linear

terms, i.e. b = c = 0 in the objective (3.22). This is the fundamental “matrix game” problem

min
x∈∆m

max
y∈∆n

y>Ax.

We give two algorithms for approximately solving matrix games. In Section 3.4.1 we develop a

stochastic coordinate method based on Algorithm 10 with potentially sublinear runtime Õ
(
(L1,1

co /ε)
2
)
.

In Section B.3 we develop a coordinate variance-reduction based on Algorithm 11 with runtime

Õ
(
nnz +

√
nnz · L1,1

co /ε
)

that improves on the former runtime whenever it is Ω(nnz). In both cases

we have

L1,1
co := max

{
max
i
‖Ai:‖2 ,max

j
‖A:j‖2

}
(3.29)

as in Table 3.1.

Instantiations for the `2-`1 and `2-`2 setups follow similarly. We carry them out in Appendices B.3

(for stochastic coordinate methods) and B.4 (for variance reduction methods).

Remark 3. For simplicity in this section (and the remaining implementations in Appendices B.3, B.4),

we will set g(0) = 0 whenever the setup is not `2-`2, as is standard in the literature. We defer a

discussion of how to incorporate arbitrary linear terms in simplex domains to Section 3.6; up to

additional logarithmic terms in the runtime, this extension is supported by ApproxExpMaintainer.

Assumptions. Throughout (for both Sections 3.4.1 and 3.4.2), we assume access to entry queries,

CHAPTER 3. STOCHASTIC METHODS FOR MATRIX GAMES 111

`2 norms of rows and columns, and `2 sampling distributions for all rows and columns. We use the

`1-`1 local norm setup (Table 3.6). We also define Lmax := ‖A‖max = maxi∈[m],j∈[n] |Aij |.

3.4.1 `1-`1 sublinear coordinate method

Gradient estimator

For z ∈ ∆n ×∆m and desired accuracy ε > 0, we specify the sampling distributions p(z), q(z):

pij(z) := [zy]i
A2
ij

‖Ai:‖22
and qij(z) := [zx]j

A2
ij

‖A:j‖22
. (3.30)

We first state and prove the local properties of this estimator.

Lemma 31. In the `1-`1 setup, estimator (3.26) using the sampling distribution in (3.30) is a
√

2L1,1
co -local estimator.

Proof. Unbiasedness holds by definition. For arbitrary wx, we have the variance bound:

E
[
‖g̃x(z)‖2wx

]
≤

∑
i∈[m],j∈[n]

pij(z) ·

(
[wx]j ·

(
Aij [z

y]i
pij(z)

)2
)

=
∑

i∈[m],j∈[n]

[wx]j
A2
ij [z

y]2i
pij(z)

≤
∑

i∈[m],j∈[n]

[wx]j [z
y]i ‖Ai:‖22 ≤ max

i∈[m]
‖Ai:‖22 ≤ (Lco

1,1)2.

Similarly, we have

E
[
‖g̃y(z)‖2wy

]
≤ (Lco

1,1)2.

The definition ‖g̃(z)‖2w = ‖g̃x(z)‖2wx + ‖g̃y(z)‖2wy yields the claimed variance bound.

Implementation details

In this section, we discuss the details of how to leverage the IterateMaintainer1 data structure

to implement the iterations of our algorithm. The algorithm we analyze is Algorithm 10, using the

local estimator defined in (3.26), and the distribution (3.30). We choose

η =
ε

18
(
L1,1
co

)2 and T =

⌈
6Θ

ηε

⌉
≥

108
(
L1,1
co

)2
log(mn)

ε2
.

Lemma 31 implies that our estimator satisfies the remaining requirements for Proposition 9, giving

the duality gap guarantee in T iterations. In order to give a runtime bound, we claim that each

iteration can be implemented in log(mn) time, with O(m+ n) additional runtime.

Data structure initializations and invariants. At the start of the algorithm, we spend O(m+ n)

time initializing data structures via IMx1.Init(1
n1n,0n) and IM

y
1.Init(1

m1m,0m), where IMx1, IM
y
1 are

CHAPTER 3. STOCHASTIC METHODS FOR MATRIX GAMES 112

appropriate instantiations of IterateMaintainer1 data structures. Throughout, we preserve the

invariant that the points maintained by IMx1, IM
y
1 correspond to the x and y blocks of the current

iterate zt at iteration t of the algorithm.

Iterations. For simplicity, we only discuss the runtime of updating the x block as the y block

follows symmetrically. We divide each iteration into the following substeps, each of which we show

runs in time O(logmn). We refer to the current iterate by z = (zx, zy), and the next iterate by

w = (wx, wy).

Sampling. Recall that

pij(z) := [zy]i
A2
ij

‖Ai:‖22
.

We first sample coordinate i via IM
y
1.Sample() in O(logm). Next, we sample j ∈ [n] with probability

proportional to A2
ij using the data structure corresponding to Ai: in O(1) by assumption of the

matrix access model.

Computing the gradient estimator. To compute c := clip(Aij [z
y]i/pij), it suffices to compute Aij ,

[zy]i, and pij . Using an entry oracle for A we obtain Aij , and we get [zy]i by calling IM
y
1.Get(i).

Computing pij using the precomputed ‖Ai:‖2 and the values of Aij , [z
y]i therefore takes O(1) time.

Performing the update. For the update corresponding to a proximal step, we have

wx ← ΠX (zx ◦ exp(−ηg̃x(z))) =
zx ◦ exp(−ηg̃x(z))
‖zx ◦ exp(−ηg̃x(z))‖1

.

We have computed g̃x(z), so to perform this update, we call

ξ ← IMx1.Get(j);

IMx1.AddSparse(j, (exp(−ηc)− 1)ξ);

IMx1.Scale(IterateMaintainerx.GetNorm()−1);

IMx1.UpdateSum().

By assumption, each operation takes time O(log n), giving the desired iteration complexity. It is

clear that at the end of performing these operations, the invariant that IMx1 maintains the x block

of the iterate is preserved.

Averaging. After T iterations, we compute the average point z̄x:

[z̄x]j ←
1

T
· IMx1.GetSum(j),∀j ∈ [n].

By assumption, this takes O(n) time.

CHAPTER 3. STOCHASTIC METHODS FOR MATRIX GAMES 113

Algorithm guarantee

Theorem 10. In the `1-`1 setup, the implementation in Section 3.4.1 has runtime

O

((
L1,1
co

)2
log2(mn)

ε2
+m+ n

)
,

and outputs a point z̄ ∈ Z such that EGap(z̄) ≤ ε..

Proof. The runtime follows from the discussion in Section 3.4.1. The correctness follows from Propo-

sition 9.

Remark 4. Using our IterateMaintainer1 data structure, the `1-`1 algorithm of [253] runs in time

O(rcs ‖A‖2max log2(mn)/ε2), where rcs is the maximum number of nonzeros in any row or column.

Our runtime universally improves upon it since (Lco
1,1)2 ≤ rcs‖A‖2max.

3.4.2 `1-`1 variance-reduced coordinate method

Gradient estimator

Given reference point w0 ∈ ∆n × ∆m, for z ∈ ∆n × ∆m and a parameter α > 0, we specify the

sampling distributions p(z;w0), q(z;w0):

pij(z;w0) :=
[zy]i + 2[wy

0]i
3

·
A2
ij

‖Ai:‖22
and qij(z;w0) :=

[zx]j + 2[wx
0]j

3
·

A2
ij

‖A:j‖22
. (3.31)

We remark that this choice of sampling distribution, which we term “sampling from the sum” (of

the current iterate and reference point), may be viewed as a computationally-efficient alternative to

the distribution specified in [111], which was based on “sampling from the difference”. In particular,

sampling from the difference is an operation which to the best of our knowledge is difficult to

implement in sublinear time, so we believe that demonstrating that this alternative distribution

suffices may be of independent interest. In order to show its correctness, we need the following

claim, whose proof we defer to Appendix B.4.1.

Lemma 32. For y, y′ ∈ ∆m, divergence Vy(y′) generated by r(y) =
∑
i∈[m][y]i log[y]i− [y]i satisfies

Vy(y′) ≥ 1

2
‖y′ − y‖2 3

2y+y′
=

1

2

∑
i∈[m]

([y]i − [y′]i)
2

2
3 [y]i + 1

3 [y′]i
.

We now show the local properties of this estimator.

Lemma 33. In the `1-`1 setup, estimator (3.28) using the sampling distribution in (3.31) is a
√

2L1,1
co -centered-local estimator.

CHAPTER 3. STOCHASTIC METHODS FOR MATRIX GAMES 114

Proof. Unbiasedness holds by definition. For arbitrary wx, we have the variance bound:

E
[∥∥g̃xw0

(z)− gx(w0)
∥∥2

wx

]
=

∑
i∈[m],j∈[n]

pij(z;w0) ·

(
[wx]j ·

(
Aij ([zy]i − [wy

0]i)

pij(z;w0)

)2
)

=
∑

i∈[m],j∈[n]

[wx]j
A2
ij ([zy]i − [wy

0]i)
2

pij(z;w0)

≤
∑

i∈[m],j∈[n]

[wx]j
([zy]i − [wy

0]i)
2

1
3 [zy]i + 2

3 [wy
0]i
‖Ai:‖22

≤ 2
(

max
i
‖Ai:‖22

)
Vwy

0
(zy),

where in the last inequality we used Lemma 32. Similarly, we have for arbitrary wy,

E
[∥∥g̃yw0

(z)− gy(w0)
∥∥2

wy

]
≤ 2

(
max
j
‖A:j‖22

)
Vwx

0
(zx).

Combining these and using

‖g̃w0
(z)− g(w0)‖2w :=

∥∥g̃xw0
(z)− gx(w0)

∥∥2

wx +
∥∥g̃yw0

(z)− gy(w0)
∥∥2

wy

yields the desired variance bound.

Implementation details

In this section, we discuss the details of how to leverage the ApproxExpMaintainer data structure

to implement the iterations of our algorithm. We first state one technical lemma on the effect

of β-padding (Definition 3) on increasing entropy, used in conjunction with the requirements of

Proposition 11 to bound the error tolerance required by our ApproxExpMaintainer data structure.

The proof is deferred to Appendix B.4.1.

Lemma 34. Let x′ ∈ ∆n be a β-padding of x ∈ ∆n. Then,

∑
j∈[n]

x′j log x′j −
∑
j∈[n]

xj log xj ≤
βn

e
+ β(1 + β).

This leads to the following divergence bounds which will be used in this section.

Lemma 35. Let x′ ∈ ∆n be a β-padding of x ∈ ∆n. Then

Vx′(u)− Vx(u) ≤ β, ∀u ∈ Z

CHAPTER 3. STOCHASTIC METHODS FOR MATRIX GAMES 115

and if ‖log(x0)‖∞ ≤M , then

Vx0
(x′)− Vx0

(x) ≤ β
(

2M +
n

e
+ 1 + β

)
Proof. Throughout this proof, let x̃ be the point in Definition 3 such that ‖x̃− x‖1 ≤ β and x′ =

x̃/ ‖x̃‖1.

The first claim follows from expanding

Vx′(u)− Vx(u) =
∑
j∈[n]

uj log
xj
x′j

=
∑
j∈[n]

uj log

(
xj
x̃j
· ‖x̃‖1

)
≤ log(‖x̃‖1) ≤ β.

The first inequality used u ∈ ∆n and x̃ ≥ x entrywise, and the last inequality used log(1 + β) ≤ β.

For the second claim, we have by the triangle inequality

‖x− x′‖1 ≤ ‖x− x̃‖1 + ‖x̃− x′‖1 ≤ β + (‖x̃‖1 − 1) ‖x′‖1 ≤ 2β.

The claim then follows from expanding

Vx0(x′)− Vx0(x) =
∑
j∈[n]

x′j log x′j −
∑
j∈[n]

xj log xj + 〈log x0, x− x′〉 ,

and applying Lemma 34.

The algorithm we analyze is Algorithm 11 with K = 3αΘ/ε, εouter = 2ε/3, εinner = ε/3 using

Algorithm 12 as an (α, εinner)-relaxed proximal oracle. The specific modification we perform to

define the iterates {zk} of Algorithm 11 as modifications of the ideal iterates {z?k} uses the following

definition.

Definition 7. For a simplex variable x′ ∈ ∆n, we define truncate(x′, δ) to be the point x ∈ ∆n with

xj ∝ max(x′j , δ) for all j ∈ [n]. For a variable z on two blocks, we overload notation and define

truncate(z, δ) to be the result of applying truncate(·, δ) to each simplex block of z.

For our implementation, in each step of Algorithm 11, we will compute the point z?k exactly,

and apply the operation zk ← truncate(z?k, δ), for δ = εouter−εinner

α(m+n) . We now quantify the effect of

truncation in terms of Bregman divergence to an arbitrary point.

Lemma 36 (Effect of truncation). Let x′ ∈ ∆n, and let x = truncate(x′, δ). Then, for any u ∈ ∆n,

and where divergences are with respect to entropy,

Vx(u)− Vx′(u) ≤ δn.

Proof. Note that x is a δn-padding of x′, as it is the result of adding at most δ to each coordinate

and renormalizing to lie in the simplex. Consequently, the result follows from Lemma 35.

CHAPTER 3. STOCHASTIC METHODS FOR MATRIX GAMES 116

Lemma 255 thus implies our iterates satisfy the requirements of Algorithm 11. Our implemen-

tation of Algorithm 12 will use approximation tolerance ϕ = εinner/6 = ε/18, where we always

set

L1,1
co ≥ α ≥ εinner. (3.32)

This matches the requirements of Proposition 11. In the implementation of Algorithm 12, we use

the centered-local gradient estimator defined in (3.28), using the sampling distribution (3.31). For

each use of Algorithm 12, we choose

η =
α

20
(
L1,1
co

)2 and T =

⌈
6

ηα

⌉
≥

120
(
L1,1
co

)2
α2

.

Our discussion will follow in four steps: first, we discuss the complexity of all executions in

Algorithm 11 other than calls to the oracles. Next, we discuss the complexity of all initializations

of ApproxExpMaintainer data structures. Then, we discuss the complexity of all other iterations

of Algorithm 12. For simplicity, when discussing Algorithm 12, we will only discuss implementation

of the x-block, and the y-block will follow symmetrically, while most runtimes are given considering

both blocks. Lastly, we discuss complexity of computing the average iterate in the end of the inner

loop. Altogether, the guarantees of Proposition 10 and Proposition 11 imply that if the guarantees

required by the algorithm hold, the expected gap of the output is bounded by ε.

Outer loop extragradient steps. Overall, we execute K = 3αΘ/ε iterations of Algorithm 11, with

εouter = 2ε/3, εinner = ε/3 to obtain the desired gap, where Θ = log(mn) in the `1-`1 setup. We

spend O(nnz) time executing each extragradient step in Algorithm 11 exactly to compute iterates z?k,

where the dominant term in the runtime is computing each g(zk−1/2), for k ∈ [K]. We can maintain

the average point z̄ throughout the duration of the algorithm, in O(m+n) time per iteration. Finally,

we spend an additional O(m+ n) time per iteration applying truncate to each iterate z?k.

Data structure initializations and invariants.

We consider the initialization of data structures for implementing an (α, εinner = ε/3)-relaxed

proximal oracle with error tolerance ϕ = ε/18. First, note that the point wx
0 used in the initial-

ization of every inner loop, by the guarantees of truncate operation, has no two coordinates with

multiplicative ratio larger than δ = ε/(3α(m+ n)) ≥ (m+ n)−4, by our choice α ≤ L1,1
co (3.32) and

our assumptions on L1,1
co /ε (cf. Section 3.2.2). Since clearly a simplex variable in ∆n has a coordinate

at least 1/n, the entries of w0 are lower bounded by λ = (m+ n)−5.

Next, we discuss the initial parameters given to AEMx, an instance of ApproxExpMaintainer

which will support necessary operations for maintaining the x variable (we will similarly initialize

an instance AEMy). Specifically, the invariant that we maintain throughout the inner loop is that in

iteration t, the“exact vector” x maintained by AEMx corresponds to the x block of the current iterate

wt, and the “approximate vector” x̂ maintained corresponds to the x block of the approximate

CHAPTER 3. STOCHASTIC METHODS FOR MATRIX GAMES 117

iterate ŵt, as defined in Algorithm 12.

We will now choose ε̃ so that if AEMx is initialized with error tolerance ε̃, all requirements of

Proposition 11 (e.g. the bounds stipulated in Algorithm 12) are met. We first handle all divergence

requirements. In a given iteration, denote the x blocks of w?t , wt and ŵt by x?t , xt and x̂t respectively,

and recall AEMx guarantees xt is a ε̃-padding of x?t , and x̂t is a ε̃-padding of x?t . The former of these

guarantees is true by the specification of MultSparse (which will be used in the implementation of

the step, see “Performing the update” below), and the latter is true by the invariant on the points

supported by AEMx. Lines 5 and 7 of Algorithm 12 stipulate the divergence requirements, where

x0 := wx
0,

max {Vx0
(xt)− Vx0

(x?t) , Vx0
(x̂t)− Vx0

(xt)} ≤
ϕ

2α
=

ε

36α
(3.33)

and

max
u

[
Vxt(u)− Vx?t (u)

]
≤ ηϕ

2
=
ηε

36
. (3.34)

Clearly, combining this guarantee with a similar guarantee on the y blocks yields the desired bound.

Since we derived ‖logw0‖∞ ≤ 5 log(mn), we claim that choosing

ε̃ ≤ ε

36α(m+ n)

suffices for the guarantees in (3.33). By the first part of Lemma 35, for all sufficiently large m+ n,

max {Vx0(xt)− Vx0 (x?t) , Vx0 (x̂t)− Vx0 (xt)} ≤ ε̃
(

10 log(mn) +
n

e
+ 1 + ε̃

)
≤ ε

36α
.

Similarly for guarantees in (3.34), by the second part of Lemma 35 we know it suffices to choose

ε̃ ≤ ε2

720
(
L1,1
co

)2 ≤
εα

720
(
L1,1
co

)2 =
ηε

36
.

Here, we used the restriction εinner ≤ α ≤ L1,1
co . Next, the norm requirements of Algorithm 12 (the

guarantees in Lines 5, 7, and 8) imply we require

ε̃ ≤ ε

18
√

2L1,1
co

,

where we used that g is ‖A‖max ≤ L1,1
co -Lipschitz and the diameter of Z is bounded by

√
2. Using

our assumptions on the size of parameters in Section 3.2.2, it suffices to set the error tolerance

ε̃ = (m+ n)−8.

CHAPTER 3. STOCHASTIC METHODS FOR MATRIX GAMES 118

To give the remainder of specified parameters, AEMx is initialized via Init(wx
0, v, κ, ε̃) for

κ :=
1

1 + ηα/2
, v := (1− κ) logwx

0 − ηκgx(w0).

To motivate this form of updates, note that each iteration of Algorithm 12 requires us to compute

argmin

{
〈ctej + gx(w0), x〉+

α

2
Vwx

0
(x) +

1

η
Vwx

t
(x)

}
.

We can see that the solution to this update is given by

[
w?t+1

]x ← Π∆ ([wx
t]
κ ◦ exp ((1− κ) logwx

0 − ηκgx(w0)) ◦ exp(−ηκctej)) . (3.35)

This form of update is precisely supported by our choice of κ and v, as well as the DenseStep and

MultSparse operations. By the choice of parameters, we note that 1− κ ≥ (m+ n)−8.

Finally, in order to support our sampling distributions and gradient computations, we compute

and store the vectors w0 and g(w0) in full using O(nnz(A)) time at the beginning of the inner loop.

In O(m + n) time, we also build two data structures which allow us to sample from entries of the

given fixed vectors wx
0, and wy

0, in constant time respectively.

Following Section 3.2.4, we defined the parameter

ω := max

(
1

1− κ
,
n

λε̃

)
≤ (m+ n)13, so that log(ω) = O(log(mn)).

Altogether, these initializations take time O(nnz + (m+ n) log3(mn)), following Section 3.2.4.

Inner loop iterations. We discuss how to make appropriate modifications to the x-block. For

simplicity we denote our current iterate as z, and the next iterate as w. Also, we denote ẑ as the con-

catenation of implicit iterates that the two ApproxExpMaintainer copies maintain (see Section 3.2.4

for more details), which is ε̃ close in `1 distance to z, the prior iterate, so that we can query or sample

entries from ẑ using AEMx and AEMy. Each inner loop iteration consists of using a gradient estimator

at ẑ satisfying ‖ẑ − z‖1 ≤ ε̃, sampling indices for the computation of g̃w0
(ẑ), computing the sparse

part of g̃w0
(ẑ), and performing the approximate update to the iterate. We show that we can run each

substep using data structure AEMx in time O(log4(mn)), within the error tolerance of Proposition 11

due to the definition of ε̃. Combining with our discussion of the complexity of initialization, this

implies that the total complexity of the inner loop, other than outputting the average iterate, is

O(T log4(mn) + nnz + (m+ n) log3(mn)) = O

((
L1,1
co

)2 · log4(mn)

α2
+ nnz + (m+ n) log3(mn)

)
.

CHAPTER 3. STOCHASTIC METHODS FOR MATRIX GAMES 119

Sampling. Recall that the distribution we sample from is given by

pij(ẑ;w0) :=
[ẑy]i + 2[wy

0]i
3

·
A2
ij

‖Ai:‖22
.

First, with probability 2/3, we sample a coordinate i from the precomputed data structure for sam-

pling from wy
0 in constant time; otherwise, we sample i via AEMy.Sample(). Then, we sample an entry

of Ai: proportional to its square via the precomputed data structure (cf. Section 3.2.3) in constant

time. This takes in total O(logmn) time.

Computing the gradient estimator. Proposition 11 requires us to compute the sparse component

of the gradient estimator (3.28) at point ẑ. To do this for the x block, we first query [wx
0]j and

[ẑy]i ← AEMy.Get(i), and then access the precomputed norm ‖Ai:‖2 and entry Aij . We then compute

c = clip

(
Aij [ẑy − wy

0]i ·
3

[ẑy]i + 2[wy
0]i
·
‖Ai:‖22
A2
ij

)
.

By the guarantees of ApproxExpMaintainer, this takes total time bounded by O(log(mn)).

Performing the update. To perform the update, by observing the form of steps in Algorithm 12 with

our choice of entropy regularizer, the update form given by the regularized mirror-descent step is

(as derived in the discussion of the initialization of AEMx, see (3.35))

[w?
x ← Π∆((wx)κ ◦ exp((1− κ) logwx

0 − ηκgx(w0)− ηκcej)).

To implement this, recalling our choice of the vector v in the initialization of AEMx, it suffices to call

AEMx.DenseStep();

AEMx.MultSparse(−ηκcej);

AEMx.UpdateSum().

By assumption, each operation takes time bounded by O(log4(mn)), where we note the vector used

in the MultSparse operation is 1-sparse. The implementation of this update is correct up to a

ε̃-padding, whose error we handled previously. By the discussion in the data structure initialization

section, this preserves the invariant that the x block of the current iterate is maintained by AEMx.

Average iterate computation. At the end of each run of Algorithm 12, we compute and return

the average iterate via calls AEMx.GetSum(j) for each j ∈ [n], and scaling by 1/T , and similarly query

AEMy. The overall complexity of this step is O((m + n) log2(mn)). The correctness guarantee, i.e.

that the output approximates the average in `1 norm up to ϕ/LD, is given by the choice of ε̃ and

CHAPTER 3. STOCHASTIC METHODS FOR MATRIX GAMES 120

the guarantees of ApproxExpMaintainer, where in this case the domain size D is bounded by
√

2.

This is never the dominant factor in the runtime, as it is dominated by the cost of initializations.

Algorithm guarantee

Theorem 11. In the `1-`1 setup, let nnz′ := nnz + (m + n) log3(mn). The implementation in

Section 3.4.2 with the optimal choice of α = max
(
ε/3, L1,1

co log2 (mn) /
√

nnz′
)

has runtime

O

((
nnz′ +

(
L1,1
co

)2
log4(mn)

α2

)
α log(mn)

ε

)
= O

(
nnz′ +

√
nnz′L1,1

co log3(mn)

ε

)

and outputs a point z̄ ∈ Z such that

EGap(z̄) ≤ ε.

Proof. The correctness of the algorithm is given by the discussion in Section 3.4.2 and the guarantees

of Proposition 10 with K = 3αΘ/ε, εouter = 2ε/3, εinner = ε/3, Proposition 11 with ϕ = ε/15, and

the data structure ApproxExpMaintainer with our choice of

ε̃ := (m+ n)−8,

to meet the approximation conditions in Line 5, 7 and 8 of Algorithm 12. The runtime bound is

given by the discussion in Section 3.4.2, and the optimal choice of α is clear.

3.5 Data structure implementation

In this section, we give implementations of our data structures, fulfilling the interface and runtime

guarantees of Section 3.2.4. In Section 3.5.1 we provide the implementation of IterateMaintainerp

for p ∈ {1, 2} used for sublinear coordinate methods. In Section 3.5.2, we provide an implementa-

tion of ApproxExpMaintainer used in variance-reduced coordinate methods for simplex domains,

provided we have an implementation of a simpler data structure, ScaleMaintainer, which we then

provide in Section 3.5.3.

3.5.1 IterateMaintainerp

The IterateMaintainerp, p ∈ {1, 2} data structure is described in Section 3.2.4 and used for

tracking the iterates in our fully stochastic methods and the Euclidean part of our the iterates in our

variance-reduced methods. The data structure maintains an internal representation of x, the current

iterate, and s, a running sum of all iterates. The main idea behind the efficient implementation of

the data structure is to maintain x and s as a linear combination of sparsely-updated vectors. In

particular, the data structure has the following state: scalars ξu, ξv, σu, σv, ι, ν; vectors u, u′, v,

CHAPTER 3. STOCHASTIC METHODS FOR MATRIX GAMES 121

and the scalar ‖v‖22; the vector v is only relevant for variance reduction and is therefore set 0 for the

non-Euclidean case p = 1.

We maintain the following invariants on the data structure state at the end of every operation:

• x = ξuu+ ξvv, the internal representation of x

• s = u′ + σuu+ σvv, the internal representation of running sum s

• ι = 〈x, v〉, the inner product of the iterate with fixed vector v

• ν = ‖x‖p, the appropriate norm of the iterate

In addition, to support sampling, our data structure also maintains a binary tree distx of depth

O(log n). Each leaf node is associated with a coordinate j ∈ [n], and each internal node is associated

with a subset of coordinates corresponding to leaves in its subtree. For the node corresponding to

S ⊆ [n] (where S may be a singleton), we maintain the sums
∑
j∈S [u]pj ,

∑
j∈S [u]j [v]j , and

∑
j∈S [v]pj .

We now give the implementation of each operation supported by IterateMaintainerd, followed

by proofs of correctness and of the runtime bounds when applicable.

Initialization

• Init(x0, v). Runs in time O(n).

If p = 1 set v ← 0n; otherwise we compute and store ‖v‖22. Initialize the remaining data struc-

ture state as follows: (ξu, ξv, u)← (1, 0, x0), (σu, σv, u
′)← (0, 0,0n), (ι, ν)← (〈x0, v〉 , ‖x0‖p).

Initialize distx, storing the relevant sums in each internal node.

It is clear that x = ξuu + ξvv, s = u′ + σuu + σvv, and that the invariants of ι, ν hold. Each

step takes O(n) time; for the first 4 steps this is immediate, and the final recursing upwards from

the leaves spends constant time for each internal node, where there are O(n) nodes.

Updates

• Scale(c): x← cx. Runs in time O(1).

Multiply each of ξu, ξv, ν, ι by c.

• AddSparse(j, c): [x]j ← [x]j + c, with the guarantee c ≥ −[x]j if p = 1. Runs in time O(log n).

1. u← u+ c
ξu
ej .

2. u′ ← u′ − cσu
ξu
ej .

3. If p = 1, ν ← ν + c. If p = 2, ν ←
√
ν2 + 2c[ξuu+ ξvv]j + c2.

4. ι← ι+ c[v]j .

CHAPTER 3. STOCHASTIC METHODS FOR MATRIX GAMES 122

5. For internal nodes of distx on the path from leaf j to the root, update
∑
j∈S [u]pj ,∑

j∈S [u]j [v]j appropriately.

• AddDense(c): x← x+ cv. Runs in time O(1). (Supported only for p = 2).

Set ξv ← ξv + c, ν ←
√
ν2 + 2cι+ c2 ‖v‖22, and ι← ι+ c ‖v‖22.

• UpdateSum(): s← s+ x. Runs in time O(1).

Set σu ← σu + ξu and σv ← σv + ξv.

Each of the runtime bounds clearly hold; we now demonstrate that the necessary invariants are

preserved. Correctness of Scale and UpdateSum are clear. Regarding correctness of AddSparse,

note that (ignoring the v terms when p = 1)

ξu

(
u+

c

ξu
ej

)
+ ξvv = ξuu+ ξvv + cej ,(

u′ − cσu
ξu

ej

)
+ σu

(
u+

c

ξu
ej

)
+ σvv = u′ + σuu+ σvv.

When p = 1, the update to ν is clearly correct. When p = 2, because only [x]j changes,

[ξuu+ ξvv + cej]
2
j = [ξuu+ ξvv]2j + 2c[ξuu+ ξvv]j + c2,

([ξuu+ ξvv + cej]j) · [v]j = ([ξuu+ ξvv]j) · [v]j + c[v]j .

Thus, the updates to the norm and inner product are correct. Regarding correctness of AddDense

when p = 2, we have

ξuu+ (ξv + c)v = ξuu+ ξvv + cv,

‖x+ cv‖22 = ν2 + 2cι+ c2 ‖v‖22 ,

〈x+ cv, v〉 = ι+ c ‖v‖22 .

Here, we use the invariants that ν = ‖x‖2 and ι = 〈x, v〉.

Queries

• Get(j): Return [x]j . Runs in time O(1).

Return ξu[u]j + ξv[v]j .

• GetSum(j): Return [s]j . Runs in time O(1).

Return [u′]j + σu[u]j + σv[v]j .

• Norm(): Return ‖x‖p. Runs in time O(1).

CHAPTER 3. STOCHASTIC METHODS FOR MATRIX GAMES 123

Return ν.

By our invariants, each of these operations is correct.

Sampling

The method Sample returns a coordinate j with probability proportional to [x]pj in time O(log n).

To implement it, we recursively perform the following procedure, where the recursion depth is at

most O(log n), starting at the root node and setting S = [n]:

1. Let S1, S2 be the subsets of coordinates corresponding to the children of the current node.

2. Using scalars ξu, ξv, and the maintained
∑
j∈Si [u]pj ,

∑
j∈Si [u]j [v]j ,

∑
j∈Si [v]pj when appropri-

ate, compute
∑
j∈Si [x]pj =

∑
j∈Si [ξuu+ ξvv]pj for i ∈ {1, 2}.

3. Sample a child i ∈ {1, 2} of the current node proportional to
∑
j∈Si [x]pj by flipping an appro-

priately biased coin. Set S ← Si.

It is clear that this procedure samples according to the correct probabilities. Furthermore, step

2 can be implemented in O(1) time using precomputed values, so the overall complexity is O(log n).

3.5.2 ApproxExpMaintainer

In this section, we give the implementation of ApproxExpMaintainer which supports dense update

to simplex mirror descent iterates. For convenience, we restate its interface, where we recall the

notation ‖g‖0 for the number of nonzero entries in g, Definition 3 of an ε-padding, the invariant

x̂ is a ε-padding of x, (3.36)

and the notation

ω := max

(
1

1− κ
,
n

λε

)
.

Category Function Runtime

initialize Init(x0, v, κ, ε, λ) : κ ∈ [0, 1), ε > 0, minj [x0]j ≥ λ O(n log n log2 ω)

update

MultSparse(g): x← ε-padding of Π∆(x ◦ exp(g)) O(‖g‖0 log2 n log2 ω)

DenseStep(): x← Π∆(xκ ◦ exp(v)) O(log n)

UpdateSum(): s← s+ x̂ (recall invariant (3.25)) O(log n logω)

query
Get(j): Return [x̂]j O(log n logω)

GetSum(j): Return [s]j O(log2 ω)

sample Sample(): Return j with probability [x̂]j O(log n logω)

CHAPTER 3. STOCHASTIC METHODS FOR MATRIX GAMES 124

We build ApproxExpMaintainer out of a simpler data structure called ScaleMaintainer, which

maintains the simplex projection of fixed vectors raised elementwise to arbitrary powers; this suffices

to support consecutive DenseStep calls without MultSparse calls between them. To add support

for MultSparse, we combine O(log n) instances of ScaleMaintainer in a formation resembling a

binomial heap: for every entry updated by MultSparse we delete it from the ScaleMaintainer

instance currently holding it, put it in a new singleton ScaleMaintainer instance (after appropriate

scaling due to MultSparse), and merge this singleton into existing instances. We now give a brief

description of the ScaleMaintainer interface, and based on it, describe the implementation of

ApproxExpMaintainer. We will provide the implementation of ScaleMaintainer in Section 3.5.3.

ScaleMaintainer is initialized with vectors x̄ ∈ Rn′≥0 and δ̄ ∈ Rn′ (with n′ ≤ n) and supports

efficient approximate queries on vectors of the form

x[σ] := x̄ ◦ exp
(
σδ̄
)
,

for any scalar σ ∈ [σmin, 1]. More specifically, the data structure allows efficient computation of

‖x[σ]‖1 (to within small multiplicative error εscm), as well as entry queries, sampling and running

sum accumulation from a vector x̂[σ] satisfying

x̂[σ] is a εscm-padding of Π∆

(
x̄ ◦ exp

(
σδ̄
))

=
x[σ]

‖x[σ]‖1
. (3.37)

We make the following assumptions on the input to the data structure:

λscm ≤ [x̄]i ≤ 1 for all i ∈ [n′] and σ ∈ (σmin, 1).

The upper bounds on x̄ and σ are arbitrary, and we may choose λscm and σmin to be very small since

the data structure runtime depends on them only logarithmically. To summarize this dependence,

we define

ωscm := max

{
1

σmin
,

n

λscmεscm

}
.

With these assumptions and notation, we define the formal interface of ScaleMaintainer.

Category Function Runtime

initialize Init(x̄, δ̄, σmin, εscm, λscm) O(n′ log n log2 ωscm)

update
Del(j): Remove coordinate j from x̄, δ̄ O(1)

UpdateSum(γ, σ): s← s+ γx̂[σ], with x̂[σ] defined in (3.37) O(logωscm)

query

Get(j): Return [x̂[σ]]j O(logωscm)

GetSum(j): Return [s]j . O(log2 ωscm)

GetNorm(σ): Return 1± ε approx. of
∥∥x̄ ◦ exp(σδ̄)

∥∥
1

O(logωscm)

sample Sample(σ): Return j with probability [x̂[σ]]j O(log n logωscm)

CHAPTER 3. STOCHASTIC METHODS FOR MATRIX GAMES 125

ApproxExpMaintainer state

Throughout this section, we denote K := dlog ne. ApproxExpMaintainer maintains a partition of

[n] into K sets S1 . . . , SK (some of them possibly empty) that satisfy the invariant

|Sk| ≤ 2k for all k ∈ [K]. (3.38)

We refer to the index k as “rank” and associate with each rank k ∈ [K] the following data

1. Scalar γk ≥ 0 and nonnegative integer τk.

2. Vectors x̄k, δ̄k ∈ R|Sk| such that λscm ≤ [x̄k]i ≤ 1 for all i ∈ [|Sk|], where λscm = min(ε/n, λ).

3. A ScaleMaintainer instance, denoted ScaleMaintainerk, initialized with x̄k, δ̄k and λscm

defined above, σmin = 1− κ and εscm = ε/10, so that logωscm = O(logω).

ApproxExpMaintainer also maintains a vector u ∈ Rn for auxiliary running sum storage.

Define the vector δ ∈ Rn by

[δ]Sk = log
(
γk
[
x̄k ◦ exp

(
(1− κτk)δ̄k

)])
, k ∈ {1, . . . ,K}, (3.39)

where [δ]Sk denotes the coordinates of δ in Sk. Recall that x denotes the point in ∆n maintained

throughout the operations of ApproxExpMaintainer; we maintain the key invariant that the point

x is proportional to exp(δ), i.e.,

x =
exp(δ)

‖exp(δ)‖1
. (3.40)

Specifically, we show in Section 3.5.2 that our implementation of DenseStep modifies x̄, δ̄, {τk}Kk=0,

{γk}Kk=0 so that the resulting effect on δ, per definition (3.40), is

δ ← κδ + v. (3.41)

Similarly, our implementation of MultSparse modifies the state so that the resulting effect on δ is

exp(δ)

‖exp(δ)‖1
← ε-padding of

exp(δ + v)

‖exp(δ + v)‖1
. (3.42)

We remark that the role of γk is to scale x̄k so that it lies coordinatewise in the range [λscm, 1],

conforming to the ScaleMaintainer input requirement. This is also the reason we require the

ε-padding operation in the definition of MultSparse.

CHAPTER 3. STOCHASTIC METHODS FOR MATRIX GAMES 126

ε-padding point x̂

We now concretely define the point x̂, which is the ε-padding of x that ApproxExpMaintainer

maintains. Let

Γ :=

K∑
k=1

γkScaleMaintainerk.GetNorm(1− κτk), (3.43)

be the approximation of exp(δ) derived from the ScaleMaintainer instances. For any j ∈ [n], let

kj be such that j ∈ Skj , and let ij be the index of j in Skj . The jth coordinate of x̂ is

[x̂]j :=
γkjScaleMaintainerkj .GetNorm(1− κτkj)

Γ
· ScaleMaintainerkj .Get(ij , 1− κτkj). (3.44)

Since for each k,
∑
j∈Sk ScaleMaintainerk.Get(j, 1− κτk) = ScaleMaintainerk.GetNorm(1− κτk)

we have that x̂ ∈ ∆n. We now prove that x̂ is a ε-padding of x. To do so, we prove the following

lemma.

Lemma 37. Let εscm ≤ 1
10 and {Sk}Kk=1 be a partition of [n]. Suppose for each k ∈ [K], x̂k ∈ ∆|Sk|

is an εscm-padding of xk ∈ ∆|Sk|. Further, suppose we have positive scalars {νk}Kk=1, {ν̂k}Kk=1

satisfying

(1− εscm)νk ≤ ν̂k ≤ (1 + εscm)νk, for all 1 ≤ k ≤ K.

Then, for N =
∑K
k=1 νk and N̂ =

∑K
k=1 ν̂k, we have that x̂ :=

∑K
k=1

ν̂k
N̂
x̂k is a 10εscm-padding of

x :=
∑K
k=1

νk
N xk.

Proof. For every k ∈ [K], let x̃k to be such that x̃k ≥ xk elementwise, x̂k = x̃k/ ‖x̃k‖1, and

‖x̃k − xk‖1 ≤ εscm. Consider the point

x̃ :=

K∑
k=1

ν̃k

N̂
x̃k, where ν̃k := ν̂k

maxk∈[K] ‖x̃k‖1
‖x̃k‖1

· 1 + εscm

1− εscm
,

so that x̂ = x̃/ ‖x̃‖1. Since x̃k ≥ xk elementwise, ν̂k ≥ (1− εscm)νk and N̂ ≤ (1 + εscm)N , we have

that x̃ ≥ x elementwise. Furthermore, we have ν̂k ≤ (1 + εscm)νk and N̂ ≥ (1 − εscm)N , and the

properties x̃k ≥ xk and ‖x̃k − xk‖1 imply 1 ≤ ‖x̃k‖1 ≤ 1 + εscm as well as
maxk∈[K]‖x̃k‖1

‖x̃k‖1
≤ 1 + εscm.

Therefore

‖x̃− x‖1 ≤
K∑
k=1

νk
N

∥∥∥∥ (1 + εscm)3

(1− εscm)2
x̃k − xk

∥∥∥∥
1

≤
(

(1 + εscm)3

(1− εscm)2
− 1

)
(1 + εscm) + εscm ≤ 10εscm,

where the final bound is verified numerically for εscm ≤ 1/10.

The ScaleMaintainer interface guarantees that calls to ScaleMaintainerk.GetNorm return∥∥x̄k ◦ exp((1− κτk)δ̄k)
∥∥

1
to within a 1 ± εscm multiplicative factor, and moreover that Get returns

CHAPTER 3. STOCHASTIC METHODS FOR MATRIX GAMES 127

entries from an εscm-padding of Π∆(x̄k ◦ exp((1 − κτk)δ̄k)). Thus, applying Lemma 37 with our

definition of x̂ in (3.44) yields that x̂ is a 10εscm = ε-padding of x.

ApproxExpMaintainer initialization and updates

We give the implementation and prove runtimes of Init, MultSparse, DenseStep, and UpdateSum.

Init. Upon initialization of ApproxExpMaintainer, we set γK = maxj∈[n][x0]j and τk = 0

for all k. We let SK = [n] (so that Sk = ∅ for all k < K) and instantiate a single instance of

ScaleMaintainer of rank K with parameters

x̄K =
x0

γK
, δ̄K =

v

1− κ
− log x0, εscm =

ε

10
, λscm = min

(ε
n
, λ
)
.

It is clear that the invariant (3.40) holds at initialization, and that the coordinates of x̄K lie in the

appropriate range, since we assume that x0 ∈ [λ, 1]n. We will use the same choices of εscm, λscm for

every ScaleMaintainer instance. The overall complexity of this operation is O(n log n log2 ω).

MultSparse. We state the implementation of MultSparse, prove that the resulting update is

(3.42), and finally give its runtime analysis. We perform MultSparse(g) in sequence for each nonzero

coordinate of g. Let j denote such nonzero coordinate and let kj be such that j ∈ Skj ; the operation

consists of the following steps.

1. Remove j from Skj and delete the corresponding coordinate from ScaleMaintainerkj (via a

call to Del).

2. Let S0 = j and initialize ScaleMaintainer0 with initial data x̄ and δ̄ described below.

3. For k going from 1 to K, set Sk ← Sk ∪ Sk−1 and Sk−1 = ∅, merging ScaleMaintainerk and

ScaleMaintainerk−1 as described below. If the new set Sk satisfies |Sk| ≤ 2k, break the loop;

else, proceed to the next k.

We now state the initial data given to each ScaleMaintainer upon initialization in the steps

above. Whenever a ScaleMaintainerk is created supporting Sk ⊆ [n], we first compute δi for each

i ∈ Sk according to (3.40). When creating the singleton instance ScaleMaintainer0 we perform the

update

δj ← δj + gj ; (3.45)

this implements multiplication of the jth coordinate by exp(gj). To instantiate ScaleMaintainerk,

we set τk = 0, γk ← maxi∈Sk exp([δ]i) and modify δ according to

[δ]Sk ← max {[δ]Sk , log (λscm · γk)} . (3.46)

In other words, we raise very small entries of [δ]Sk to ensure that the ratio between any two entries

CHAPTER 3. STOCHASTIC METHODS FOR MATRIX GAMES 128

of [exp(δ)]Sk is in the range [λ−1
scm, λscm]. We then give ScaleMaintainerk the initial data

x̄k =
1

γk
[exp (δ)]Sk , δ̄k =

[
v

1− κ
− δ
]
Sk

. (3.47)

It is clear that entries of x̄k are in the range [λscm, 1], and invariant (3.40) holds at initialization,

as τk = 0. Therefore, the operation (3.45) implements x ← Π∆(x ◦ exp(g)) exactly; it remains to

show that the operation (3.46) amounts to an ε-padding of exp(δ)/ ‖exp(δ)‖1. We do so by invoking

the following lemma, substituting the values of δ before (3.45) for δ− and δ+ respectively, and

λscm ≤ ε/n for ρ.

Lemma 38. Let δ−, δ+ ∈ Rn satisfy

[δ+]i = max

{
[δ−]i,max

j
[δ−]j + log ρ

}
for all j ∈ [n] and ρ ≤ 1.

Then, exp(δ+)/ ‖exp(δ+)‖1 is a ρn-padding of exp(δ−)/ ‖exp(δ−)‖1.

Proof. Let x = exp(δ−)/ ‖exp(δ−)‖1, x′ = exp(δ+)/ ‖exp(δ+)‖1, and x̃ = exp(δ+)/ ‖exp(δ−)‖1.

Clearly x′ = x̃/ ‖x̃‖1 and x̃ ≥ x element-wise. Moreover, letting M = maxj exp([δ−]j), we have

‖x̃− x‖1 =
‖exp(δ+)− exp(δ−)‖1

‖exp(δ−)‖1
≤ ρM |{i | [δ+]i 6= [δ−]i}|

‖exp(δ−)‖1
≤ ρM · n
‖exp(δ−)‖1

≤ ρn,

establishing the ρn-padding property.

Finally, we discuss runtime. Recall that the cost of initializing a ScaleMaintainer with |S|
elements is O(|S| log n log2 ω). So, step 1 of our implementation of MultSparse, i.e., calling Del

once and initializing a rank-1 ScaleMaintainer per nonzero element, costs O(‖g‖0 log n log2 ω). We

now discuss costs of merging in step 2. We show these merges cost an amoritized O(log2 n log2 ω) per

nonzero coordinate of g, leading to the claimed bound. Specifically, we show the cost of T deletions

and initializations due to nonzero entries of MultSparse arguments is O(T log2 n log2 ω). Consider

the number of times a rank-k set can be created through merges: we claim it is upper bounded by

O
(
T/2k

)
. It follows that the overall complexity of step 2 is

O

(
K∑
k=0

2k
T

2k
log n log2 ω

)
= O(T log2 n log2 ω).

The claimed bound on the number of rank-k merges holds because at least 2k−1 deletions (and hence

that many MultSparse calls) must occur between consecutive rank-k merges. To see this, for each

k, maintain a potential Φk for the sum of cardinalities of all rank ` sets for ` < k. Each deletion

increases Φk by at most 1. For an insertion merge to create a rank-k set, Φk must have been at least

CHAPTER 3. STOCHASTIC METHODS FOR MATRIX GAMES 129

2k−1 + 2; after the merge, it is 0, as in its creation, all rank-` sets for ` < k must have been merged.

So, there must have been at least 2k−1 deletions in between merges.

DenseStep. To implement DenseStep we simply increment τk ← τk + 1 for all k; clearly, this

takes time O(log n). We now show that (3.40) is maintained, i.e., that the resulting update to the

variable δ under DenseStep is (3.41). Recall that ScaleMaintainerk is initialized according (3.47).

Clearly, (3.40) holds at initialization for the set Sk, as 1 − κ0 = 0. We now show that it continues

to hold after any number of DenseStep calls. Let δ0 be the value of [δ]Sk when ScaleMaintainerk

is initialized, and let δτ be the value of [δ]Sk after τ calls to DenseStep, each performing the update

x← Π∆(xκ ◦ exp(v)). This is consistent with the update δτ+1 = κδτ + [v]Sk , which requires

δτ = κτδ0 +

τ−1∑
τ ′=0

κτ
′
[v]Sk = κτδ0 +

1− κτ

1− κ
[v]Sk = log(γkx̄k) + (1− κτ)δ̄k,

where in the final transition we substituted δ0 = log(γkx̄k) and [v]Sk = (1 − κ)[δ̄k + δ0] according

to (3.47). We see that the required of form of δτ is identical to its definition (3.39) and consequently

that (3.40) holds.

UpdateSum. We maintain the running sum s via the invariant

[s]Sk = [u]Sk + ScaleMaintainerk.GetSum(), ∀k ∈ [K], (3.48)

which we preserve in two separate procedures. First, whenever UpdateSum() is called, we compute

the quantity Γ defined in (3.43), and for each k ∈ [K] call

ScaleMaintainerk.UpdateSum

(
γkScaleMaintainerk.GetNorm(1− κτk)

Γ

)
.

It is straightforward to see that this indeed preserves the invariant (3.48) for our definition of x̂ in

(3.44), and takes timeO(log n logω). Next, whenever a coordinate is deleted from a ScaleMaintainerk

instance, or an entire ScaleMaintainerk instance is deleted due to a merge operation, we update

uj ← uj + ScaleMaintainerk.GetSum(j)

for every deleted coordinate j, or j involved in the merge, respectively. We charge the cost of this

operations to that of new ScaleMaintainer instance, which we accounted for in the analysis of

MultSparse.

Queries

Get(j). Recalling our definition of x̂ (3.44), we compute Γ in time O(log n logω) by obtaining

GetNorm(1− κτk) for each k, and then call Get(j, 1− κτk) in time O(logω) for the relevant k.

CHAPTER 3. STOCHASTIC METHODS FOR MATRIX GAMES 130

GetSum(j). Recalling our definition of s (3.48), we implement GetSum(j) in O(logω) time via a

single call to GetSum on the relevant ScaleMaintainer instance, and querying a coordinate of u.

Sample. Recalling (3.44), we first compute Γ, as well as all γkScaleMaintainerk.GetNorm(1 −
κτk), in O(log n logω) time. We then sample an instance ScaleMaintainerk, for 0 ≤ k ≤ K,

proportional to the value γkScaleMaintainerk.GetNorm(1− κτk), in O(log n) time. Finally, for the

sampled instance, we call ScaleMaintainerk.Sample(1−κτk) to output a coordinate in O(log n logω)

time. By the definition of x̂ used by ApproxExpMaintainer, as well as the definitions used by each

ScaleMaintainerk instance, it is clear this preserves the correct sampling probabilities.

3.5.3 ScaleMaintainer

Finally, we provide a self-contained treatment of ScaleMaintainer, the main building block in the

implementation of ApproxExpMaintainer described above.

Interface

For ease of reference we restate the interface of ScaleMaintainer, where for the sake of brevity we

drop the subscript scm from ε and λ, and use n rather than n′ to denote the input dimension. Recall

that for the vectors x̄ and δ̄ given at initialization, the data structure keeps track of vectors of the

form

x̂[σ] := a ε-padding of Π∆

(
x̄ ◦ exp

(
σδ̄
))
, (3.49)

where σ is any scalar in the range {0} ∪ [σmin, 1].

The implementation of the data structure relies on three internal parameters: polynomial ap-

proximation order p ∈ N, truncation threshold R ≥ 0, and σ discretization level K ∈ N. To satisfy

the accuracy requirements we set these as

R = Θ(1) log
1

ελ
, p = Θ(1) log

1

ελ
, and K =

⌈
log

1

σmin

⌉
;

we give the runtime analysis in terms of these parameters.

Category Function Runtime

initialize Init(x̄, δ̄, σmin, ε, λ): require x̄ ∈ [λ, 1]n O(npK log n)

update
Del(j): Remove coordinate j from x̄, δ̄ O(1)

UpdateSum(γ, σ): s← s+ γx̂[σ] O(p)

query

Get(j, σ): Return [x̂[σ]]j O(p)

GetSum(j): Return [s]j . O(pK)

GetNorm(σ): Return 1± ε approx. of
∥∥x̄ ◦ exp(σδ̄)

∥∥
1

O(p)

sample Sample(σ): Return j with probability [x̂[σ]]j O(p log n)

CHAPTER 3. STOCHASTIC METHODS FOR MATRIX GAMES 131

Overview

We now outline our design of ScaleMaintainer, where the main challenge is supporting efficient

GetNorm operations under no assumptions on the numerical range of the input δ̄.

Exponential approximation via Taylor expansion. Our main strategy is to replace the exponential

in the definition of x̂[σ] with its Taylor expansion of order p = O(log n
ελ), giving the following

approximation to the GetNorm(σ)

∥∥x̄ ◦ exp
(
σδ̄
)∥∥

1
≈

〈
x̄,

p∑
q=0

1

q!
(σδ̄)q

〉
=

p∑
q=0

σq

q!

〈
x̄, δ̄q

〉
,

where qth powers are applied to δ̄ elementwise. By pre-computing all the inner products {
〈
x̄, δ̄q

〉
}pq=0

at initialization, we may evaluate this Taylor approximation of GetNorm in time O(p). The validity

of the approximation relies on the following well-known fact.

Fact 2 (Theorem 4.1 in [466]). Let ε′, R ≥ 0. A Taylor series fp(t) =
∑p
q=0

tq

q! of degree p =

O(R+ log 1
ε′) satisfies

| exp(t)− fp(t)| ≤ exp(t)ε′ for all t ∈ [−R, 0].

Truncating small coordinates and σ discretization. For Fact 2 to directly imply the desired

approximation guarantee for GetNorm, the entries of σδ̄ must all lie in [−R, 0] for some R = Õ (1).

However, this will not hold in general, as our data structure must support any value of δ̄. For a

fixed value of σ, we can work instead with a shifted and truncated version of δ̄, i.e.,

δ̃[σ, µ] := max{δ̄ − µ,−R/σ},

where the offset µ is roughly the maximum element of δ̄. Fact 2 allows us to approximate the

exponential of σδ̃[σ, µ], and for R = Θ(log(nελ)) we argue that the truncation of the smallest entries

of δ results in small multiplicative error. Unfortunately, the dependence of δ̃[σ, µ] on σ would defeat

the purpose of efficient computation, because it is impossible to precompute {
〈
x̄, δ̃[σ, µ]q

〉
}pq=0 for

every σ ∈ [σmin, 1]. To address this, we argue that truncation of the form δ̃[σ̂, µ] is accurate enough

for any σ ∈ [σ̂/2, σ̂]. Therefore, it suffices to to discretize [σmin, 1] into K = dlog 1
σmin
e levels

σ̂k := 2k−1σmin

and precompute
〈
x̄, δ̃[σ̂k, µ]q

〉
for every k ∈ [K] in q ≤ p. This allows us to compute GetNorm(σ) in

O(p) = Õ (1) time, with O(npK) = Õ (n) preprocessing time.

Supporting deletion via lazy offset selection. Had the dataset not supported deletions, we could

have simply set µ to be the largest entry of δ̄ (independent of k). However, with deletions the

CHAPTER 3. STOCHASTIC METHODS FOR MATRIX GAMES 132

largest entry of δ̄ could change, potentially invalidating the truncation. To address this, we maintain

a different threshold µk for every k ∈ [K], and argue that the approximation remains valid if the

invariant

δ̄max ≤ µk ≤ δ̄max +
R

2σ̂k
for every k ∈ [K] (3.50)

holds, where δ̄max := maxj δ̄j . Writing

δ̃[k] := δ̃[σ̂k, µk] = max

{
δ̄ − µk,−

R

σ̂k

}
for every k ∈ [K], (3.51)

the data structure only needs to maintain µk and
〈
x̄, δ̃[k]q

〉
for every k ∈ [K] in q ≤ p.

When deleting coordinate j, for every k we test whether the invariant (3.50) remains valid.5 If

it does, we keep µk the same and implement deletion (for this value of k) in time O(p) = Õ (1)

by subtracting [x̄]j [δ̃[k]]qj from
〈
x̄, δ̃[k]q

〉
for every q ≤ p. If the invariant is no longer valid, we

reset µk to the new value of δ̄max and recompute
〈
x̄, δ̃[k]q

〉
for every q ≤ p. Note that the re-

computation time is proportional to the number of un-truncated coordinates in the newly defined

δ̃[k]. The key observation here is that every re-computation decreases µk by at least R/(2σ̂k) and

so no element of δ̄ can remain un-truncated for more than two re-computation. Therefore, the cost

of recomputing inner products due to deletions, for the entire lifetime of the data structure, is at

most O(npK) = Õ (n), which we charge to the cost of initialization.

Explicit expression for x̂[σ]. Following the preceding discussion, for any σ ≥ σmin we set

k? =

⌈
log2

σ

σmin

⌉
, so that σ ∈

[
σ̂k?

2
, σ̂k?

]
,

and define

Z[σ] := eσµk?
p∑
q=0

σq

q!

〈
x̄, δ̃[k?]q

〉
≈
∥∥x̄ ◦ exp

(
σδ̄
)∥∥

1
(3.52)

x̂[σ] :=
eσµk?

Z[σ]

p∑
q=0

σq

q!
x̄ ◦ δ̃[k?]q ≈ Π∆

(
x̄ ◦ exp

(
σδ̄
))
, (3.53)

with δ̃ as defined in (3.51).

Correctness

We now prove that the approximation guarantees of ScaleMaintainer hold.

Proposition 12. There exist R = O(1) · log n
ελ and p = O(1) · log n

ελ such that for all σ ∈ [σmin, 1], if

the invariant (3.50) holds we have that Z[σ] is an ε multiplicative approximation of
∥∥x̄ ◦ exp

(
σδ̄
)∥∥

1

5We can query the maximum entry of δ̄ under deletions in O(1) time via a standard data structure, e.g. a doubly-
linked list of the sorted entries of δ̄.

CHAPTER 3. STOCHASTIC METHODS FOR MATRIX GAMES 133

and x̂[σ] is a ε-padding of Π∆

(
x̄ ◦ exp

(
σδ̄
))

, with Z[σ] and x̂[σ] defined in Eq.s (3.52) and (3.53)

respectively.

Proof. To simplify notation, we write µ = µk? and σ̂ = σ̂k? . We begin by noting that the inequal-

ities (3.50) and σ ≤ σ̂ imply that σδ̃i[k
?] ∈ [−R, 0] for every i ∈ [n] and we may therefore apply

Fact 2 to obtain

p∑
q=0

σq

q!
x̄j δ̃i[k

?]q ≥ (1− ε′)x̄i exp(σδ̃i[k]) ≥ (1− ε′)e−σµx̄i exp(σδ̄i[k]) (3.54)

for every i ∈ [n]. Therefore, we have

Z[σ] ≥ (1− ε′)
∥∥x̄ ◦ exp

(
σδ̄
)∥∥

1
. (3.55)

Similarly, we have

p∑
q=0

σq

q!
x̄j δ̃i[k

?]q ≤ (1 + ε′)x̄i exp(σδ̃i[k]) ≤ (1 + ε′)e−σµx̄i(exp(σδ̄i[k]) + exp(−σR/σ̂))

Note that the condition (3.50) also implies that δ̃j [k
?] ≥ −R/(2σ̂) for some j ∈ [n] (namely the

maximal element of δ̄). Using also x̄j ≥ λ, we have

eσµ exp(−σR/σ̂) ≤ exp(−σR/(2σ̂))
x̄j
λ

exp(σδ̄j).

Taking R ≥ 2 log 2n
λε′ and recalling that σ ≥ σ̂/2, we have exp(−σR/(2σ̂)) ≤ λε′/(2n) and conse-

quently

eσµ exp(−σR/σ̂) ≤ ε′x̄j exp(σδ̄j) ≤
ε′

n

∥∥x̄ ◦ exp
(
σδ̄
)∥∥

1
.

Substituting back and using x̄i ≤ 1 and ε′ < 1 gives

eσµ
p∑
q=0

σq

q!
x̄j δ̃i[k

?]q ≤ (1 + ε′)x̄i exp(σδ̄i) +
ε′

n

∥∥x̄ ◦ exp
(
σδ̄
)∥∥

1
. (3.56)

Summing over i ∈ [n], we obtain

Z[σ] ≤ (1 + 2ε′)
∥∥x̄ ◦ exp

(
σδ̄
)∥∥

1
(3.57)

Therefore, Z[σ] is a 2ε′-multiplicative approximation of
∥∥x̄ ◦ exp

(
σδ̄
)∥∥

1
.

It remains to show that x̂[σ] is a ε-padding of x[σ] := Π∆

(
x̄ ◦ exp

(
σδ̄
))

. First, if we define

x̃ = 1+2ε′

1−ε′ x̂[σ] then the bounds (3.54) and (3.57) imply that x̃ ≥ x[σ] elementwise. Also, the

CHAPTER 3. STOCHASTIC METHODS FOR MATRIX GAMES 134

bounds (3.55) and (3.56) imply that

x̂i[σ]− xi[σ] ≤ (1 + ε′)xi[σ] + ε′/n

1− ε′

for every i ∈ [n]. Therefore, for ε′ < 1/10,

‖x̃− x[σ]‖1 ≤
(

1 + 2ε′

1− ε′

)2

− 1 ≤ 10ε′,

so that x̂[σ] is a 10ε′ padding of x[σ]. Taking ε′ = ε/10 concludes the proof.

Implementation: data structure state and initialization

Besides storing x̄ and δ̄, the data structure maintains the following fields.

1. An offset µk ∈ R for every k ≤ K =
⌈
log 1

σmin

⌉
, initialized as µk = maxj [δ̄]j for all k.

2. A balanced binary tree with n leaves. For node v in the tree, k ∈ [K] and q ∈ {0, . . . , p}, we

store

Av[k, q] :=
〈
x̄, δ̃[k]q

〉
Sv
,

where δ̃[k] = max{δ̄ − µk,−R/σ̂k} as before, the set Sv contains the leaves in the subtree

rooted in v, and 〈a, b〉S :=
∑
i∈S aibi. When referring to the root of the tree we omit the

subscript, i.e., we write

A[k, q] :=
〈
x̄, δ̃[k]q

〉
.

3. A vector u ∈ Rn and coefficients ck,q ∈ R for every k ∈ [K] and q ∈ {0, . . . , p}, for maintaining

the running sum. We initialize them all to be 0. The running sum obeys the following invariant:

s = u+

K∑
k=1

p∑
q=0

ck,q
q!
x̄ ◦ δ̃[k]q. (3.58)

4. A doubly linked list of the sorted entries of δ̄, with a pointer to the maximal element of δ̄ as

well as pointers to the largest element smaller than µk −R/σ̂k for every k ∈ [K].

Initializing the data structure for maintaining the maximum element takes time O(n log n) due

to the need to sort δ̄. With it, initializing µk is trivial and so is the initialization of u and cq,k.

Initializing the data stored in the binary tree takes time O(npK), since for every value k and q and

internal node v with children v′, v′′ we can recursively compute Av[k, q] as Av′ [k, q] +Av′′ [k, q]. We

will also charge some additional deletion costs to the initialization runtime, resulting in the overall

complexity O(npK log n).

CHAPTER 3. STOCHASTIC METHODS FOR MATRIX GAMES 135

Implementation: queries and sampling

GetNorm(σ). We compute k? =
⌈
log2

σ
σmin

⌉
and return Z[σ] = eσk

?∑p
q=0

σq

q! A[k?, q]. Clearly, this

takes O(p) time and Proposition 12 provides the claimed approximation guarantee.

Get(j, σ). We compute Z[σ] and k? as described above and return eσµk?

Z[σ]

∑p
q=0

σq

q! x̄j δ̃j [k
?]q in

accordance with the form (3.53) of x̂[σ]. Again, this takes O(p) time and Proposition 12 provides

the claimed approximation guarantee.

GetSum(j). Recalling the invariant (3.58), we return uj+
∑K
k=1

∑p
q=0

ck,q
q! x̄j δ̃j [k]q in time O(pK).

Sample(σ). We perform a random walk from the root of our binary tree data structure to a leaf.

A each internal node v with children v′ and v′′, we select node v′ with probability

〈1, x̂[σ]〉Sv′
〈1, x̂[σ]〉Sv

=

∑p
q=0

σq

q! Av′ [k
?, q]∑p

q=0
σq

q! Av[k
?, q]

,

and otherwise select v′′, where k? =
⌈
log2

σ
σmin

⌉
. We return the index associated with the leaf in

which we end the walk; the probability of returning index j is exactly [x̂[σ]j . Each step in the walk

takes time O(p) and there are O(log n) steps, so the total time is O(p log n).

Implementation: updates

UpdateSum(σ). Recalling the invariant (3.58) and the form (3.53) of x̂[σ], we compute k? and Z[σ]

as in the GetNorm implementation, and update update

ck?,q ← ck?,q +
eσµk?σq

Z[σ]

for every q ∈ {0, . . . , p}. This takes time O(p).

Del(j). We set [δ̄j]← −∞, remove the element corresponding to index j from the doubly linked

list, and perform the following operations for each k ∈ [K] separately. First, we check if the new

maximum element of δ̄ is a least µk−R/(2σ̂k). If it is, we leave µk unchanged and we simply update

Av[k, q]← Av[k, q]− x̄j δ̃j [k]q

for every q ≤ p and node v on the path from the root to the leaf corresponding to index j. Since

the length of the path is O(log n), this update takes time O(p log n).

Otherwise, the new maximum element is less than µk−R/(2σ̂k), and we must change µk in order

to maintain the invariant (3.50). Let µnew
k be the new maximum element of δ̄, and let

Uk =

{
i

∣∣∣∣ [δ̄]i ≥ µnew
k +

R

σ̂k

}
be the new set of un-truncated indices. (We find the elements in this set when we update the pointer

CHAPTER 3. STOCHASTIC METHODS FOR MATRIX GAMES 136

to the first element smaller than µk −R/σ̂k). We recompute Av[k, q] =
〈
x̄, δ̃[k]q

〉
Sv

for every q ≤ p
and every node v with a child in Uk. Performing the computation recursively from leaf to root, this

take at most O(|Uk|p log n) time. To maintain the invariant (3.58) as the definition of δ̃[k] changes,

we update

uj ← uj +

p∑
q=0

ck,q
q!
x̄j
(
[δ̄j − µnew

k]q − [max
{
δ̄j − µk,−R/σ̂k

}
]q
)

for every j ∈ Uk;

this update takes O(|Uk|p) time. Finally, we update µk ← µnew
k .

Summing over k ∈ [K], deletion operations of the first kind (with µk unchanged) take at most

O(Kp log n) time per call to Del. Operations of the second kind (with µk decreased) take time

O(Np log n) throughout the data structure lifetime, where N =
∑
t≥1

∑K
k=1 |U

(t)
k | and for each

k ∈ [K] we write U
(1)
k , U

(2)
k , . . . to denote the different sets Uk generated by all calls to Del. For

each k, if µk is decreased at all then it must decrease by at least R/(2σ̂k). Therefore, by definition

of Uk, an index j can belong to U
(t)
k for at most 2 values of t. Consequently, we have N = O(nK).

Therefore, deletion operations of the second kind contribute at most O(nKp log n) to the total

runtime, which we charge to initialization.

3.6 Applications

In this section, we leverage the techniques of this chapter to obtain improved runtimes for solving

certain structured optimization problems.

In Sections 3.6.1 and 3.6.2, we use a variant of our variance-reduced coordinate method in the

`2-`1 setup to obtain algorithms for solving the maximum inscribed ball (Max-IB) and minimum

enclosing ball (Min-EB) problems. Our algorithms improve upon the runtimes of those in [22] by

a factor depending on the sparsity of the matrix. This improvement stems from a preprocessing

step in [22] where the input is randomly rotated to improve a norm dependence of the algorithm.

Our methods avoid this preprocessing and obtain runtimes dependent on the both the sparsity

and numerical sparsity of the data, providing universal improvements in the sparse regime, in the

non-degenerate case where the span of the points is full-rank.

In Section 3.6.3, we use the results of our variance-reduced algorithm in the `2-`2 setup (cf.

Section B.4.2) to obtain improved regression algorithms for a variety of data matrices, including

when the matrix is numerically sparse or entrywise nonnegative.

Our methods in this section rely on an extension of the outer loop of this chapter (Algorithm 11)

for strongly monotone minimax problems, developed in our previous work [111]. Specifically, for a

separable regularizer r(x, y) = rx(x) + ry(y) on a joint space for any of our setups, consider the

CHAPTER 3. STOCHASTIC METHODS FOR MATRIX GAMES 137

following composite bilinear minimax problem:

min
x∈X

max
y∈Y

f(x, y) := y>Ax+ µxφ(x)− µyψ(y), where φ = V x
x′ , ψ = V y

y′ . (3.59)

We call such problem a (µx, µy)-strongly monotone problem; this is a special case of a general-

ization of the notion of strong convexity, in the case of convex minimization. For general strongly-

monotone problems, [111] provided a variant of Algorithm 11 with the following guarantee.

Proposition 13 (Proposition 5, [111]). For problem (3.59), denote µ :=
√
µxµy and ρ :=

√
µx/µy.

Let O be an (α,ε)-relaxed proximal oracle for operator g(x, y) := (∇xf(x, y),−∇yf(x, y)), let Θ be

the range of r, and let ‖(∇xf(z),−∇yf(z′))‖∗ ≤ G, for all z, z′ ∈ Z. Let zK be the output of K

iterations of OuterLoopStronglyMonotone, Algorithm 7 of [111]. Then

EGap(zK) ≤
√

2G

√√√√((α

µ+ α

)K (
ρ+

1

ρ

)
Θ +

ε

µ

)
.

Each iteration k ∈ [K] consists of one call to O, producing a point zk−1/2, and one step of the form

zk ←
{〈
g(zk−1/2), z

〉
+ αV̂zk−1

(z) + µV̂zk−1/2
(z)
}
, (3.60)

where V̂ := ρV x + ρ−1V y. In particular, by setting

ε =
µε2

4G2
,

using K = Õα/µ iterations, we have the guarantee EGap(zK) ≤ ε.

For self-containment, we give a proof of (a generalization of) Proposition 19 in Appendix B.7.

The (α,ε)-relaxed proximal oracle works similarly as in Algorithm 12 except for the additional

composite terms. For completeness we include the algorithm with its theoretical guarantees and

implementation in Section B.5.2 (see Algorithm 68, Proposition 58 and Section 8).

In all of our applications discussed in this section, the cost of each step (3.60) is O(nnz), stemming

from the computation of g(x, y). The resulting algorithms therefore have runtime

Õ

(
(nnz + (cost of implementing O)) · α

µ

)
.

3.6.1 Maximum inscribed ball

In the maximum inscribed ball (Max-IB) problem, we are given a polyhedron P ⊂ Rn defined by

m halfspaces {Hi}i∈[m], each characterized by a linear constraint Hi = {x ∈ Rn : 〈ai, x〉 + bi ≥ 0},
i.e. P = ∩i∈[n]Hi. The goal is to (approximately) find a point x∗ ∈ P that maximizes the smallest

CHAPTER 3. STOCHASTIC METHODS FOR MATRIX GAMES 138

distance to any of the bounding hyperplanes Hi, i.e.

x∗ ∈ argmaxx∈P min
i∈[n]

〈ai, x〉+ bi
‖ai‖2

.

More formally, if the optimal radius of the maximum inscribed ball is r∗, the goal is to find an

ε-accurate solution, i.e. a point in P which has minimum distance to all bounding hyperplanes at

least (1− ε)r∗.
Given halfspace information A, b where Ai: = ai for all i ∈ [m], the polytope is defined by

P = {x | Ax + b ≥ 0}. We use the following notation in this section: B := ‖b‖∞, r∗ is the value

of the maximum inscribed ball problem, R is the radius of the minimum enclosing ball, which is

defined as the Euclidean ball containing P with smallest radius possible, x∗ is the center of the

maximum inscribed ball, and ρ is an upper bound on the aspect ratio R/r∗. As in [22], we will make

the following assumptions:

1. The polytope is bounded, and thus m ≥ n. This is without loss of generality since when the

polytope is unbounded, the aspect ratio ρ =∞, and our runtime result holds trivially.

2. ‖Ai:‖22 = 1 for all i ∈ [m], so ‖A‖2→∞ = 1, by properly scaling A (one can consider the trivial

case when for some i, ai = 0 separately).

3. The origin is inside polytope P , i.e. O ∈ P , by properly shifting P .

We also define the following constant (see Appendix B.4.3) in this section with respect to the

rescaled matrix A,

L2,1
co := min

{
L2,1,(1)
co , L2,1,(2)

co , L2,1,(3)
co

}
≤
√

rcs · L2,1
rc ≤

√
rcs,

given the definitions of L
2,1,(1)
co , L

2,1,(2)
co , L

2,1,(3)
co as in (B.33), (B.34), and (B.35), and the second

assumption above (namely, that L2,1
rc = maxi∈[m] ‖Ai:‖2 = 1).

[22] show that solving Max-IB is equivalent to the following minimax problem:

r∗ := max
x∈Rn

min
y∈∆m

f(x, y) := y>Ax+ y>b, (3.61)

and moreover, to solve the problem to ε-multiplicative accuracy, it suffices to find x∗ε that solves the

minimax problem to ε-multiplicative accuracy in terms of the one-sided gap of the x block, i.e.

min
y∈∆m

f(x∗ε , y) ≥ (1− ε)f(x∗, y∗),

where (x∗, y∗) is the optimal saddle point of problem (3.61). We first state several bounds on the

parameters of the problem from [22].

CHAPTER 3. STOCHASTIC METHODS FOR MATRIX GAMES 139

Fact 3 (Geometric properties of Max-IB). We have ‖x∗‖2 ≤ 2R, and

r∗ = max
x∈Rn

min
y∈∆m

f(x, y) := y>Ax+ y>b ≤ B ≤ 2R.

These facts imply that we can instead consider the constrained minimax problem (where we

overload our definition of f for the rest of the section):

r∗ := max
x∈Bn

min
y∈∆m

f(x, y) = y>Ãx+ y>b, where Ã = 2R ·A. (3.62)

We first use a “warm start” procedure to find a constant multiplicative estimate of r∗, which uses

the strongly monotone algorithm OuterLoopStronglyMonotone of [111] together with Algorithm 68

of Section B.5.2 as a relaxed proximal oracle on the (µ, µ)-strongly monotone problem

max
x∈Bn

min
y∈∆m

fµ(x, y) := y>Ãx+ y>b+ µ
∑
i∈[m]

[y]i log[y]i −
µ

2
‖x‖22 ,

and a line search over parameter µ. The following lemma is an immediate consequence of Proposi-

tion 19 and Corollary 58, whose proof we defer to Appendix B.6.1.

Lemma 39. We can spend Õnnz + ρ
√

nnz · L2,1
co time preprocessing to obtain a 8-multiplicative

approximation r̂ of r∗, i.e.
r̂

8
≤ r∗ ≤ r̂.

Finally, we use our variance-reduced coordinate algorithm, namely Algorithm 68 as a relaxed

proximal oracle in OuterLoopStronglyMonotone together with Proposition 19 once more to solve

(3.62) to the desired accuracy. The implementation in Section 8 and complexity results in Sec-

tion B.4.3 yield the runtime. This implementation crucially uses our development of the ApproxExpMaintainer

data structure in order to obtain a runtime depending directly on rcs rather than dimensions of the

matrix, as well as independence on B. For completeness, a proof can be found in Appendix B.6.1.

Theorem 12. The algorithm of Section B.4.3 can be used to find an ε-accurate solution x∗ε to

Max-IB satisfying miny∈∆m
f(x∗ε , y) ≥ (1− ε)r∗ with high probability in time 6

Õ

(
nnz +

ρ
√

nnz · L2,1
co

ε

)
= Õ

(
nnz +

ρ
√

nnz · rcs

ε

)
.

Remark 5. Because we assumed m ≥ n, in the case A is dense, up to logarithmic terms our runtime

improves upon the runtime of Õρm
√
n/ε in [22] by a factor of at least√

mn

nnz
· m

rcs

6Here Õ is hiding an additional factor of polylog(‖b‖∞) due to the additional cost in the runtime of
ApproxExpMaintainer, caused by the linear term b (see Remark 2).

CHAPTER 3. STOCHASTIC METHODS FOR MATRIX GAMES 140

generically. This is an improvement when A is sparse or column-sparse, i.e. nnz� mn, or rcs� m.

Such a saving is larger when A has numerical sparsity so that e.g.
(
L2,1
co

)2 ≤ maxi∈[m] ‖Ai:‖21 +(
maxi∈[m] ‖Ai:‖1

) (
maxj∈[n] ‖A:j‖1

)
< rcs ·maxi∈[m] ‖Ai‖

2
2.

3.6.2 Minimum enclosing ball

In the minimum enclosing ball (Min-EB) problem, we are given a set of data points {a1, . . . , am}
with a1 = 0,maxi∈[m] ‖ai‖ = 1.7 The goal is to find the minimum radius R∗ such that there exists

a point x with distance at most R∗ to all points. Following the presentation of [22], we consider

Min-EB in an equivalent form. Define the vector b to have bi = 1
2 ‖ai‖

2
2 entrywise. Then, Min-EB is

equivalent to the minimax problem

R∗ := min
x∈Rn

max
y∈∆m

1

2

∑
i

yi‖x− ai‖22 = min
x∈Rn

max
y∈∆m

f(x, y), where f(x, y) := y>Ax+ y>b+
1

2
‖x‖22 .

(3.63)

By assumption, ‖A‖2→∞ = 1. We let (x∗, y∗) be the optimal solution to the saddle point problem.

We first state several bounds on the quantities of the problem. These bounds were derived in [22]

and obtained by examining the geometric properties of the problem.

Fact 4. The following bounds hold: ‖x∗‖2 ≤ 1, and R∗ ≥ 1/8.

To achieve a multiplicative approximation, since R∗ ≥ 1/8 by Fact 4, it suffices to obtain a pair

(x∗ε , y
∗
ε) achieving maxy f(x∗ε , y) − minx f(x, y∗ε) ≤ ε/8. In light of minimax optimality, Lemma 40

(proved in Section B.6.2) shows that it suffices to consider, for ε′ = Θ(ε/ logm), solving the following

(1, ε′)-strongly monotone problem to sufficient accuracy:

min
x∈Rn

max
y∈∆m

fε′(x, y) := y>Ax+ y>b− ε′
∑
i∈[m]

[y]i log[y]i +
1

2
‖x‖22 . (3.64)

Lemma 40. Setting ε′ = ε/(32 logm), an ε/16-accurate solution or (3.64) is an ε/8-accurate solu-

tion to the original problem (3.63).

As an immediate result of the above lemma, the runtime in Section B.4.3 and the correctness

proofs of Proposition 19 and Corollary 58, we obtain the following guarantee.

Theorem 13. The strongly monotone algorithm OuterLoopStronglyMonotone of [111], using Al-

gorithm 68 of Section B.5.2 and the estimator of Section B.4.3 as a relaxed proximal oracle, finds

an ε-accurate solution x∗ε to Min-EB satisfying R∗ ≤ maxy f(x∗ε , y) ≤ (1 + ε)R∗ with high probability

in time

Õnnz +

√
nnz · L2,1

co√
ε

= Õnnz +

√
nnz · rcs√

ε
.

7This can be assumed without loss of generality by shifting and rescaling as in [22] and considering the trivial case
when all ai, i ∈ [m] are equal.

CHAPTER 3. STOCHASTIC METHODS FOR MATRIX GAMES 141

Remark 6. When m ≥ n,8 up to logarithmic terms our runtime improves the Õm
√
n/
√
ε runtime

of [22] by a factor of √
mn

nnz
· m

rcs

generically. This is an improvement when A is sparse or column-sparse, i.e. nnz� mn, or rcs� m.

As in Section 3.6.1, the improvement is larger when A is numerically sparse, i.e. when
(
L2,1
co

)2 ≤
maxi∈[m] ‖Ai:‖21 +

(
maxi∈[m] ‖Ai:‖1

) (
maxj∈[n] ‖A:j‖1

)
< rcs ·maxi∈[m] ‖Ai‖

2
2.

3.6.3 Regression

We consider the standard `2 linear regression problem in a data matrix A ∈ Rm×n and vector

b ∈ Rm, i.e. minx∈Rn ‖Ax− b‖2. In particular, we consider the equivalent primal-dual form,

min
x∈Rn

max
y∈Bm

f(x, y) := y>(Ax− b). (3.65)

Throughout, we assume the smallest eigenvalue of A>A is µ > 0 and denote an optimal solution

to (3.65) by z∗ = (x∗, y∗) (where x∗ is the unique solution to the regression problem). Our strategy

is to consider a sequence of modified problems, parameterized by β > 0, x′ ∈ Rn:

min
x∈Rn

max
y∈Bm

fβx′(x, y) := y>(Ax− b) +
β

2
‖x− x′‖22 −

β

2
‖y‖22 . (3.66)

We denote the optimal solution to (3.66) by z∗(β,x′) = (x∗(β,x′), y
∗
(β,x′)); when clear from context, for

simplicity we drop β and write z∗x′ = (x∗x′ , y
∗
x′) (as β =

√
µ throughout our algorithm). Lemma 41

(proved in Section B.6.3) states a known relation between the optimal solutions for (3.65) and (3.66).

Lemma 41. Letting (x∗, y∗) be the optimal solution for (3.65) and (x∗x′ , y
∗
y′) be the optimal solution

for (3.66), the following relation holds:

‖x∗x′ − x∗‖2 ≤
1

1 + µ
β2

‖x′ − x∗‖2 .

We give a full implementation of the regression algorithm in Algorithm 69 (see Section B.6.3), and

state its correctness and runtime in Theorem 14. The algorithm repeatedly solves problems of the

form (3.66) in phases, each time using Lemma 41 to ensure progress towards x∗. Observing that each

subproblem is (β, β)-strongly monotone, each phase is conducted via OuterLoopStronglyMonotone,

an algorithm of [111], using the `2-`2 algorithms of Section B.4.2 as a proximal oracle. Due to the

existence of composite terms, our inner loop steps are slightly different than in Section B.4.2; we

give a more formal algorithm for the relaxed proximal oracle and its implementation in Algorithm 68

and Appendix B.5.2. We remark that by a logarithmic number of restarts per phase, a standard

8When m < n, the runtime of the algorithm in [22] still holds and is sometimes faster than ours.

CHAPTER 3. STOCHASTIC METHODS FOR MATRIX GAMES 142

argument boosts Theorem 14 to a high-probability claim.

Theorem 14. Given data matrix A ∈ Rm×n, vector b ∈ Rm, and desired accuracy ε ∈ (0, 1),

assuming A>A � µI for µ > 0, Algorithm 69 outputs an expected ε-accurate solution x̃, i.e.

E [‖x̃− x∗‖2] ≤ ε,

and runs in time

Õ

nnz +
√

nnz ·
max

{√∑
i ‖Ai:‖21,

√∑
j ‖A:j‖21

}
√
µ

 .

We give two settings where the runtime of Algorithm 69 improves upon the state of the art.

Entrywise nonnegative A. In the particular setting when all entries of A are nonnegative,9 by

Proposition 55 our complexity as stated in Theorem 14 improves by a factor of
√

nnz/(m+ n) the

runtime of accelerated gradient descent [417], which is the previous state-of-the-art in certain regimes

with runtime O
(
nnz · ‖A‖op/

√
µ
)
. This speedup is most beneficial when A is dense.

Numerically sparse A. For numerically sparse A with ‖Ai:‖1/ ‖Ai:‖2 = O(1), ‖A:j‖1/ ‖A:j‖2 =

O(1) for all i ∈ [m], j ∈ [n], we can choose α =
√
µ in Algorithm 69 and obtain the runtime

O

(
nnz +

max
{∑

i ‖Ai:‖21,
∑
j ‖A:j‖21

}
µ

)
= O

(
nnz +

‖A‖2F
µ

)

using the argument in Theorem 14. Under a (similar, but weaker) numerically sparse condition

‖Ai:‖1/ ‖Ai:‖2 = O(1), the prior state-of-the-art stochastic algorithm [300] obtains a runtime of

O(nnz + rcs · ‖A‖2F /µ), and the recent state-of-the-art result in the numerically sparse regime [260]

improves this to O(nnz + (‖A‖2F /µ)1.5) when rcs = Ω(‖A‖F /
√
µ). Improving universally over both,

our method gives O(nnz + ‖A‖2F /µ) in this setting.

9More generally, this holds for arbitrary A ∈ Rm×n satisfying ‖|A|‖op ≤ ‖A‖op.

Chapter 4

Faster Approximate `∞ Regression

and Maximum Flow

This chapter is based on [486], with Aaron Sidford.

4.1 Introduction

The classic problem of `∞ regression corresponds to finding a point x∗ such that

x∗ = argminx∈Rm‖Ax− b‖∞, for A ∈ Rn×m, b ∈ Rn.

In this chapter, we are primarily concerned with developing iterative algorithms for approximately

solving this problem. We use OPT to denote ‖Ax∗ − b‖∞ and our goal is to find an ε-approximate

minimizer of the `∞-regression function, i.e. a point x ∈ Rm such that

OPT ≤ ‖Ax− b‖∞ ≤ OPT + ε.

This problem has fundamental implications in statistics and optimization [482, 348, 349, 487]. In

many of these settings, it is also useful to design iterative method machinery for the following more

general problem of finding

x∗ = argminx∈S ‖Ax− b‖∞, for A ∈ Rn×m, b ∈ Rn, S = {x ∈ Rm : xj ∈ [lj , rj] ∀j ∈ [m]}

for some m pairs of scalar lj ≤ rj (possibly infinite). Note that this constrained problem is strictly

more general than the standard one as setting lj = −∞, rj =∞, ∀j ∈ [m] recovers the unconstrained

problem. In this chapter, for simplicity, the domain constraint will only be x ∈ [−1, 1]m (though

143

CHAPTER 4. FASTER APPROXIMATE `∞ REGRESSION AND MAXIMUM FLOW 144

our results apply to the more general case; see Appendix C.1.2 for a formal statement).

Definition 8 (Box-constrained `∞ regression). We call the problem of solving, for regression matrix

A ∈ Rn×m and demands b ∈ Rn,

min
x∈[−1,1]m

‖Ax− b‖∞ ,

the box-constrained `∞ regression problem. We refer to any x′ ∈ [−1, 1]m such that

‖Ax′ − b‖∞ − min
x∈[−1,1]m

‖Ax− b‖∞ ≤ ε

as an ε-approximate minimizer.

Many natural optimization problems can be written in the form of box-constrained `∞ regres-

sion, e.g. the maximum flow problem and more broadly linear programming [349], and thus faster

methods for solving box-constrained `∞ regression can imply faster algorithms for common prob-

lems in theoretical computer science. Therefore, the central goal of this chapter is to provide faster

algorithms for computing ε-approximate minimizers to `∞-regression, that when specialized to the

maximum flow problem, achieve faster running times.

4.1.1 Regression results

In this chapter we show how to apply ideas from the literature on coordinate descent methods (see

Section 4.1.3) to obtain faster algorithms for approximately solving box-constrained `∞ regression.

We show that by assuming particular sampling and smoothness oracles (which are implementable

given sparsity assumptions on A), we obtain a randomized algorithm which improves upon the

the classic gradient descent based methods across a broad range of parameters and attains an ε−1

dependence in the runtime. We show the following in Section 4.3.4.

Theorem 15 (Accelerated box-constrained `∞ regression). There is an algorithm initialized that

ε-approximately minimizes the box-constrained `∞ regression problem (Definition 8) in time

Õ

mc+

(
min(m,n) +

√
mmin(n, s)

)
c ‖A‖∞

ε

 ,

where each column of A ∈ Rn×m has at most c non-zero entries, and the optimizer x∗ has ‖x∗‖2 ≤ s.

Note that since s ≤ m, the runtime is always at most Õ(mc ‖A‖∞ /ε). Moreover, Theorem 15

generically achieves a runtime of Õ(
√
mnc ‖A‖∞ /ε) in the case n = O(m). We give a proof of the

following simple extension, encapsulating the general box-constrained case as well as the uncon-

strained case, in Appendix C.1.2, which follows via a reduction to Theorem 15. We simplified the

bounds for easy statement, but we remark that as they follow by a reduction, they admit similar

improvements when e.g. n, s� m.

CHAPTER 4. FASTER APPROXIMATE `∞ REGRESSION AND MAXIMUM FLOW 145

Corollary 6. There is an algorithm that ε-approximately minimizes the box-constrained `∞ regres-

sion problem

min
x∈[−r,r]m

‖Ax− b‖∞

in Õ (mcr‖A‖∞/ε) time where each column of A ∈ Rn×m has at most c non-zero entries. Moreover,

there is an algorithm that ε-approximately minimizes the unconstrained `∞ regression problem

min
x∈Rm

‖Ax− b‖∞

in Õ (mcr‖A‖∞/ε) time, where the optimizer is x∗, and ‖x0 − x∗‖∞ ≤ r for some given x0.

The only other known box-constrained `∞ regression algorithm achieving an ε−1 dependence

(improving upon the standard ε−2 dependence) without paying a dimension-dependent penalty is

the recent breakthrough result of [483]. Pessimistic bounds on our guarantees attain a runtime

matching that of [483] across a broad range of parameters (for example in the uniform sparsity case

wheremc = O(nnz(A))). In instances with more structured regression matrices, with sharper bounds

on parameters n, s, we obtain improved runtimes. These improvements are attainable by modifying

the algorithm to take steps in a nonuniform diagonal norm, obtaining tighter dependences on sparsity

measures of the matrix and optimal solution, which we elaborate on in Sections 4.3 and 4.5. Because

of these tighter dependencies, in many parameter regimes, including those for the maximum flow

problem for even slightly dense graphs, our result improves upon [483].

Our work provides an alternative approach for accelerating `∞ gradient descent for certain highly

structured optimization problems, i.e. `∞ regression. Whereas Sherman’s work introduced an

intriguing notion of area convexity and new regularizations of `∞ regression, our results are achieved

by working with the classic smoothing of the `∞ norm and by providing a new accelerated coordinate

descent method. We achieve our tighter bounds by exploiting local smoothness properties of the

problem and dynamically sampling by these changing smoothnesses.

Our algorithm is inspired by, and builds upon, advances in non-uniform sampling for coordinate

descent [553, 449, 425], as well as extragradient proximal methods [415, 420], and is similar in spirit

to work on accelerated algorithms for approximating packing and covering linear programs [23] which

too works with non-standard notions of smoothness. Our work overturns conventional wisdom that

these techniques do not extend nicely to `∞ regression and the maximum flow problem. Interestingly,

our algorithms gain an improved dependence on dimension and sparsity over [483] in certain cases

while losing the parallelism of [483]. It is an open direction for future work as to see whether or not

these approaches can be combined for a more general approach to minimizing `∞-smooth functions.

CHAPTER 4. FASTER APPROXIMATE `∞ REGRESSION AND MAXIMUM FLOW 146

4.1.2 Maximum flow results

The classic problem of maximum flow roughly asks for a graph G with m (capacitated) edges and

n vertices, how to send as many units of flow can be sent from a specified “source” vertex to a

specified “sink” vertex while preserving flow conservation at all other vertices and without violating

edge capacity constraints (i.e. the flow cannot put more units on an edge than the edge’s capacity).

The maximum flow problem is known to be easily reducible to the more general problem of

minimum congestion flow. Instead of specifying s and t this problem takes as input a vector d ∈ RV

such that d>1 = 0, where 1 is the all-ones vector. The goal of minimum congestion flow is to find a

flow f ∈ RE which routes d meaning, mean that the imbalance of f at vertex v is given by dv, and

subject to this constraint minimizes the congestion,

max
e∈E(G)

∣∣∣∣ feue
∣∣∣∣

where fe is the flow on some edge, and ue is the capacity on that edge. We refer to the vector with

entries fe/ue as the congestion vector. We call any flow which routes an amount within a 1 + ε

multiplicative factor to the optimum an ε-approximate maximum flow.

A recent line of work beginning in [482, 318] solves the maximum flow problem by further reducing

to constrained `∞ regression. To give intuition for the reduction used in this work, broadly inspired

by [482, 318], we note that maximum flow in uncapacitated graphs can be rephrased as asking for

the smallest congestion of a feasible flow, namely to solve the problem

f∗ = argminBf=d‖f‖∞

where the restriction Bf = d for B the edge-vertex incidence matrix of a graph, and d the demands,

enforces the flow constraints. This can be solved up to logarithmic factors in the running time by

fixing some value F for ‖f‖∞ and asking to optimally solve the problem

f∗ = argmin‖f‖∞≤F ‖Bf − d‖∞

where we note that the constraint ‖f‖∞ ≤ F can be decomposed as the indicator of a box so that

this objective matches the form of (4.1). The exact reduction we use has a few modifications: the

box constraint is more simply replaced by ‖f‖∞ ≤ 1, and the regression objective is in a matrix

RB, where R is a combinatorially-constructed preconditioner whose goal is to improve the condition

number (and convergence rate) of the problem, and the problem is scaled for capacitated graphs

(for a more detailed description, see Section 4.4.2).

In this chapter we show how to modify our algorithm for structured `∞ regression in order to

obtain faster algorithms for maximum flow. We do so by leveraging the tighter dependence on the

domain size (in the `2 norm rather than `∞) and coordinate smoothness properties of the function

CHAPTER 4. FASTER APPROXIMATE `∞ REGRESSION AND MAXIMUM FLOW 147

to be minimized (due to the structure of the regression matrix). In particular we show the following.

Theorem 16 (`2 accelerated approximate maximum flow). There is an algorithm that takes time

Õ(m+ max(n,
√
ns)/ε) to find an ε-approximate maximum flow, where s is the squared `2 norm of

the congestion vector of any optimal flow.

Our running time improves upon the previous fastest running time of this problem of Õ(m/ε).

Since s ≤ m we achieve a faster running time whenever the graph is slightly dense, i.e. m = Ω(n1+δ)

for any constant δ > 0.

Interestingly our algorithm achieves even faster running times when there is a sparse maximum

flow, i.e. a maximum flow in which the average path length in the flow decomposition of the optimal

flow is small. Leveraging this, in Section 4.4.4 we provide several new results on exact undirected

and directed maximum flow on uncapacitated graphs as well.

Theorem 17 (Improved algorithms for exact maximum flows). There are algorithms for finding an

exact maximum flow in the following types of uncapacitated graphs.

• There is an algorithm which finds a maximum flow in an undirected, uncapacitated graph with

maximum flow value F in time Õ(m+ min(
√
mnF 3/4,m3/4n1/4

√
F)).

• There is an algorithm which finds a maximum flow in an undirected, uncapacitated graph with

a maximum flow that uses at most s edges in time Õ(m+
√
msn1/4 max(n, s)1/4).

Each of these runtimes improves upon previous work in some range of parameters. For example,

the bound of Õ(m+m3/4n1/4
√
F) for undirected, uncapacitated graphs improves upon the previous

best running times of Õ(m
√
F) achievable by [483] whenever n = o(m) and of Õ(m+nF) achievable

by [314] whenever m = o(nF 2/3).

We also separately include the following result (which has no dependence on the sparsity s) for

finding exact flows in general uncapcitated directed graphs, as it improves upon the running time

of Õ(m ·max{m1/2, n2/3}) achieved by [242] whenever m = ω(n) and m = o(n5/3).

Theorem 18 (Exact maximum flow for directed uncapacitated graphs). There is an algorithm which

finds a maximum flow in a directed, uncapacitated graph in time Õ(m5/4n1/4). When the maximum

flow is s-sparse, there is an algorithm which finds a maximum flow in a directed, uncapacitated graph

in time Õ(mn1/4 max(n, s)1/4).

Although the runtime of [242] has been improved by the recent works of [377] achieving runtime

O(m10/7) and of [348] achieving runtime Õ(m
√
n), which dominate our Õ(m5/4n1/4) runtime, they

do it using sophisticated advances in interior point methods, whereas our algorithm operates using

a first-order method which only queries gradient information of the objective function, rather than

second-order Hessian information. In particular, our algorithm is the first to improve runtimes for

directed graphs while relying only on first-order information of the objective function. We find

CHAPTER 4. FASTER APPROXIMATE `∞ REGRESSION AND MAXIMUM FLOW 148

it interesting that our result achieves any running time improvement for unit capacity maximum

flow over [242] without appealing to interior point machinery and think this may motivate further

research in this area, namely designing first-order methods for structured linear programs.

4.1.3 Previous work

Here we embark on a deeper dive into the context of the problems and tools discussed in this chapter.

Solving the `∞ regression problem. For a non-differentiable function such as f(x) = ‖x‖∞, it is pos-

sible to use the toolkit for linear programming (including interior point and cutting plane [348, 349])

to obtain iterative algorithms for approximate minimization. However, these particular algorithms

have a larger dependence on dimension, and it is widely believed that the iteration complexity is

inherently dimension-dependent. A first-order iterative algorithm with a better dependence on di-

mension for approximately solving the regression problem was developed by [419] and proceeds in

two stages. First, the algorithm constructs a smooth approximation to the original function, which

is typically explicitly derived via regularizing the dual function using a regularizer which is both

smooth and bounded in range. The smooth approximation is constructed such that approximately

minimizing the approximate function is sufficient to approximately minimize the original function.

Second, a first-order method such as gradient descent in a particular norm, or one of its many

variants, is applied to approximately minimize the smoothed function.

One of the earlier works to develop algorithms using first-order methods under this framework to

solve the regression problem is [419]. One regularizer used in this work for optimization over a dual

variable in the simplex was the entropy regularizer, which yields the smooth approximation to the

`∞ norm defined by smaxα(x) = α log(
∑
j exp(xj/α)). Essentially, the methods presented in this

work converge to an ε-approximate solution in a number of iterations proportional to either O(ε−2)

or O(
√
mε−1), hiding problem-specific dependencies on smoothness and domain size. However, the

cost of each iteration involves computing a whole gradient, which incurs another multiplicative loss

of the dimension in the runtime.

Several other works which aimed to solve the regression problem via considering a smooth min-

imax formulation, including [415] and [420], incurred the same fundamental barrier in convergence

rate. These works aimed to pose the (smooth) regression problem as finding the saddle point of

a convex-concave function via a specially-constructed first-order method. The main barrier to im-

proving prior work up to this point has been the inability to construct regularizers of small range

which are strongly convex with respect to the `∞ norm. For some time, these issues posed a barrier

towards finding faster algorithms for the regression problem, and many related problems.

Very recently, Sherman [483] presented an alternative method which was able to break this barrier

and attain an O(1/ε) iteration count for finding approximate solutions to the regression problem,

where each iteration can be applied in time to compute a gradient. The algorithm used was a

variation of Nesterov’s dual extrapolation method [420] for approximately finding a saddle point

CHAPTER 4. FASTER APPROXIMATE `∞ REGRESSION AND MAXIMUM FLOW 149

Year Author Method Iteration Complexity Iteration Cost Norm

2003 [419] Smoothing O(ε−2) O(m) `∞

O(ε−1) O(m) `2

2004 [415] Mirror prox O(ε−2) O(m) `∞

O(
√
mε−1) O(m) `∞

2005 [420] Dual extrapolation O(ε−2) O(m) `∞

O(
√
mε−1) O(m) `∞

2017 [483] Area-convexity O(ε−1) O(m) `∞

2018 This chapter Local smoothness O(
√
mε−1) Õ(d) `2

Table 4.1: Dependencies of algorithms for `∞ regression inA ∈ Rn×m on various problem parameters.
Note that there is up to an O(

√
m) discrepancy between the `2 and `∞ norms. Here, d is the

maximum number of nonzero entries in any column of A.

in a convex-concave function, adapted to work for regularizers satisfying a weaker property known

as area convexity, and an analysis of its convergence. As a corollary, this obtained the currently

fastest-known algorithm for approximate maximum flow.

Abbreviated history of first-order methods, emphasizing coordinate-based methods. First-order meth-

ods for convex optimization have a long history. Gradient descent methods with error decaying in k

iterations as O(1/
√
k) for Lipschitz functions and O(1/k) for smooth functions have been well stud-

ied (for example, see [418] or [98] for a more detailed exposition), and applied in many important

settings.

Nesterov gave the first gradient-based algorithm for minimizing functions smooth in the Euclidean

norm which converged at the rate O(1/k2). The method is optimal in the sense that it matched

known lower bounds for smooth functions. Unfortunately, this method does not apply generically

to functions which are smooth in other norms, in the same way that unaccelerated variants do,

without possibly paying an additional dependence on the dimension. In particular, the accelerated

convergence rate depends on the regularizer that the mirror descent steps use, and thus the analysis

incurs a loss based on the size of the regularizer, which is the barrier in the aforementioned `∞-

smooth function case. Specifically, it is a folklore result that any function strongly-convex over

[−1, 1]n in the `∞ norm has range at least n/2, which we show in Appendix C.1.1.

There has been much interest in applying randomized first order methods to more efficiently

obtain an approximate minimizer on expectation, when the convex optimization problem has certain

structure. One example of these randomized methods in the literature is coordinate descent, studied

first in [423]. The main idea is that using crude, computationally efficient, approximations to the

full gradient, one is still able to find an approximate minimizer on expectation. One benefit is

that coordinate descent admits a more fine-grained analysis of convergence rate, based on structural

properties of the function, i.e. the smoothness of the function in each coordinate.

CHAPTER 4. FASTER APPROXIMATE `∞ REGRESSION AND MAXIMUM FLOW 150

Generalizations of standard coordinate descent have received much attention recently, both for

their powerful theoretical and practical implications. [423] provided an accelerated version of the

standard coordinate descent algorithm, but the naive implementation of its steps were inefficient,

taking linear time in the dimension. The study of efficient accelerated coordinate descent methods

(which converge at the rate O(1/k2) without an additional dependence on dimension) was pioneered

by [347], and since then a flurry of other works, including [222, 553, 449] have improved the rate of

convergence and generalized the methods to composite functions with a separable composite term,

of the form F (x) = f(x) +
∑
j ψj(xj). We remark that our box constraint can be represented as

such a separable composite term in the objective, and our constrained accelerated coordinate descent

algorithm is an adaptation of such composite methods. For a more detailed history of the study of

coordinate descent methods, we refer the reader to [222].

Accelerated coordinate based methods have proven to be useful in many ways when applied to

problems in theoretical computer science. For example, the authors of [347] framed graph Laplacian

system solvers as a coordinate descent problem to give better runtime guarantees. One particularly

interesting example that highlighted the potential for using accelerated coordinate descent in mini-

mizing entropy-based functions was the work of [23] in solving packing and covering LPs, where the

constraint matrix is nonnegative, in which they also attained a O(1/ε) method complexity. Con-

ventional wisdom is that these results are specific to the structure of the particular problem, so any

exploration of accelerated methods in greater generality is particularly interesting.

Maximum flow. The maximum flow problem is a fundamental problem in combinatorial optimiza-

tion that has been studied extensively for several decades. Until recently, the toolkit used to solve

the problem has been primarily combinatorial, culminating in algorithms with runtime roughly

Õ(min{mn2/3,m3/2}) for finding a maximum flow in graphs with m edges and n vertices and poly-

nomially bounded capacities [242], and Õ(m+nF) for finding a maximum flow in undirected graphs

with m edges, n vertices, and a maximum flow value of F [314].

Breakthroughs in the related problem of electrical flow using tools from continuous optimization

and numerical linear algebra were first achieved by Spielman and Teng [491] who showed that solving

a linear system in the Laplacian of a graph could be done in nearly linear time, which is equivalent

to computing an electrical flow.

Notably, the electric flow problem corresponds to approximately solving an `2 regression problem

‖Ax− b‖2, and the maximum flow problem corresponds to approximately solving an `∞ regression

problem ‖Ax− b‖∞. Accordingly, using the faster algorithms for electric flow combined with a mul-

tiplicative weights approach, the authors of [139] were able to make a breakthrough to approximately

solve maximum flow with a runtime of Õ(mn1/3), where Õ hides logarithmic factors. Finally, using

constructions presented in [376], the authors of [482] and [318] were able to reduce this runtime to

almost linear, essentially using variants of preconditioned gradient descent in the `∞ norm. This

CHAPTER 4. FASTER APPROXIMATE `∞ REGRESSION AND MAXIMUM FLOW 151

Year Author Complexity Weighted Directed

1998 [242] Õ(min(m3/2,mn2/3)) Yes Yes

1998 [313] Õ(m
√
nε−1) Yes No

2002 [314] Õ(m+ nF) Yes No

2011 [139] Õ(mn1/3ε−11/3) Yes No

2012 [343] Õ(mn1/3ε−2/3) No No

2013 [482], [318] Õ(m1+o(1)ε−2) Yes No

2013 [377] Õ(m10/7) No Yes

2014 [348] Õ(mn1/2) Yes Yes

2016 [441] Õ(mε−2) Yes No

2017 [483] Õ(mε−1) Yes No

2018 This chapter Õ(m+ (n+
√
ns)ε−1) Yes No

Table 4.2: Complexity of maximum flow since [242] for undirected graphs with n vertices, m edges,
where s is the `22 of the maximum flow’s congestion, and F is the maximum flow value.

runtime was reduced to Õ(m/ε2) by Peng in [441] by using a recursive construction of the combi-

natorial preconditioner. As previously mentioned, the ε−2 dependence in the runtime was a barrier

typical of algorithms for minimizing `∞-smooth functions without worse dimension dependence, and

was broken in [483], who attained a runtime of Õ(m/ε).

4.1.4 Organization

The rest of this chapter is organized as follows. Many proofs are deferred to the appendices.

• Section 4.2: Overview. We introduce the definitions and notation we use throughout the

chapter, and give a general framework motivating our work.

• Section 4.3: Regression. We first give a framework for accelerated randomized algorithms

which minimize the box-constrained `∞ regression function based on uniform sampling, as well

as a faster one based on non-uniform sampling which assumes access to a coordinate smoothness

and sampling oracle. To do so, we develop a new analysis of coordinate descent under a box

constraint, amenable to dynamic coordinate sampling distributions, and show how to accelerate

it via a primal-dual proximal point method. We then give efficient implementations for these

oracles for structured problems.

• Section 4.4: Maximum flow. We state the reduction from the maximum flow problem to

box-constrained `∞ regression problem. We first show how to attain a faster algorithm for

maximum flow by exploiting combinatorial structure of the flow regression problem, using the

regression algorithm we developed in the prior section. We then state the improved runtimes

CHAPTER 4. FASTER APPROXIMATE `∞ REGRESSION AND MAXIMUM FLOW 152

which follow from a randomized primal-dual variation of our regression algorithm, given in

Section 4.5. Further, we give the exact maximum flow runtimes achieved via rounding the

resulting approximate flow of our improved method.

• Section 4.5: Primal-dual coordinate acceleration. We develop an algorithm with im-

proved runtimes for the structured `∞ regression problem which results from the maximum

flow reduction, and correspondingly yields further-improved flow runtimes.

4.2 Overview

4.2.1 Basic definitions

First, we define some basic objects and properties which we use throughout this paper.

General notations. We use Õ(f(n)) to denote runtimes of the following form: O(f(n) logc f(n))

where c is a constant. With an abuse of notation, we let Õ(1) denote runtimes hiding polynomials

in log n when the variable n is clear from context, and refer to such runtimes as “nearly constant.”

Generally, we work with functions whose arguments are vector-valued variables in m-dimensional

space, and may depend on a linear operator A : Rm → Rn. Correspondingly we use j ∈ [m] and

i ∈ [n] to index into these sets of dimensions, where [m] is the set {1, 2, . . .m}. We use ej to denote

the jth standard basis vector, i.e. the vector which is 1 in dimension j and 0 everywhere else. We

use u ◦ v to denote the vector which is the coordinate-wise product, i.e. its jth coordinate is ujvj .

Matrices. In this work, we deal with matrices A ∈ Rn×m unless otherwise specified. Accordingly,

we index into rows of A with i ∈ [n], and into columns with j ∈ [m]. We refer to rows of A via Ai:

or ai when it is clear from context, and columns via A:j . We use nnz(A) to denote the number of

nonzero entries of A, and assume nnz(A) ≥ n+m− 1, else we may drop a row or column.

We use diag(w) to denote the diagonal matrix whose diagonal entries are the coordinates of a

vector w. We call a square symmetric matrix A positive semi-definite if for all vectors x, x>Ax ≥ 0

holds. For positive semi-definite matrices A,B we apply the Loewner ordering and write A � B if

for all vectors x, x>Ax ≤ x>Bx holds.

Finally, we say that a matrix is c-column-sparse if no column of A has more than c nonzero

entries.

Norms. We use ‖ · ‖ to denote an arbitrary norm when one is not specified. For scalar valued p ≥ 1,

including p = ∞, we use ‖x‖p := (
∑
j x

p
j)

1/p to denote the `p norm. For vector valued w ∈ Rm≥0,

we use ‖x‖2w :=
∑
j wjx

2
j to denote the weighted quadratic norm, and for positive semidefinite

matrix A, we define ‖x‖2A = x>Ax. Further, we let ∆n be the simplex in n dimensions, e.g.

p ∈ ∆n ⇐⇒ ‖p‖1 = 1, p ≥ 0 entrywise.

For a norm ‖ · ‖, the dual norm ‖ · ‖∗ is defined by ‖x‖∗ := max‖y‖≤1y
>x. It is well known that

the dual norm of `p is `q for 1/p + 1/q = 1. For matrix A and a vector norm ‖ · ‖, we define the

CHAPTER 4. FASTER APPROXIMATE `∞ REGRESSION AND MAXIMUM FLOW 153

matrix norm ‖A‖ := max‖x‖=1 ‖Ax‖. For example, ‖A‖∞ is the largest `1 norm of a row of A.

Functions. We will primarily be concerned with minimizing convex functions f(x) subject to the

argument being restricted by a box constraint, where the domain is some scaled box Bc∞ unless

otherwise specified. Whenever the function is clear from context, x∗ will refer to any minimizing

argument of the function. We use the term ε-approximate minimizer of a function f to mean any

point x such that f(x∗) ≤ f(x) ≤ f(x∗) + ε. Furthermore, we define the OPT operator to be such

that OPT(f) is the optimal value of f , when this optimal value is well-defined.

For differentiable functions f we let ∇f(x) be the gradient and let ∇2f(x) be the Hessian. We

let ∇jf(x) be the value of the jth partial derivative; we also abuse notation and use it to denote the

vector ∇jf(x)ej when it is clear from context.

Properties of functions. We say that a function is L-smooth with respect to some norm ‖ · ‖ if it

obeys ‖∇f(x) − ∇f(y)‖∗ ≤ L‖x − y‖, the dual norm of the gradient is Lipschitz continuous. It is

well known in the optimization literature that when f is convex, this is equivalent to f(y) ≤ f(x) +

∇f(x)>(y − x) + L
2 ‖y − x‖

2 for y, x ∈ dom(f) and, for twice-differentiable f , y>∇2f(x)y ≤ L‖y‖2.

We say that a function is Lj-coordinate smooth in the jth coordinate if the restriction of the

function to the coordinate is smooth, i.e. |∇jf(x + cej) − ∇jf(x)| ≤ Lj |c| ∀x ∈ dom(f), c ∈ R.

Equivalently, for twice-differentiable convex f , ∇2
jjf(x) ≤ Lj .

Finally, we say a function is µ-strongly convex with respect to ‖ · ‖ if for all x, y, f(y) ≥ f(x) +

∇f(x)>(y − x) + µ
2 ‖y − x‖

2. When f is twice-differentiable, equivalently y>∇2f(x)y ≥ µ ‖y‖2.

Graphs. We primarily study capacitated undirected graphs G = (V,E, u) with edge set E ⊆ V × V ,

edge capacities u : E → R+. When referring to graphs, we let m = |E| and n = |V |. Throughout

this paper, we assume that G is strongly connected.

We associate the following matrices with the graph G, when the graph is clear from context.

The matrix of edge weights U ∈ RE×E is defined as U := diag(u). Orienting the edges of the graph

arbitrarily, the vertex-edge incidence matrix B ∈ RV×E is defined as Bs,(u,v) := −1 if s = u, 1 if

s = v and 0 otherwise.

Divergences. In the analysis of mirror descent variants, a first-order method flexible to geometric

constraints on its arguments, we require the concept of a Bregman divergence with respect to a

regularizer r. For a convex function r, we define the (nonnegative) Bregman divergence to be

V rx (y) = r(y)− r(x)−∇r(x)>(y − x).

We drop the r for convenience when it is clear from context. The Bregman divergence satisfies the

well-known equality

〈∇V rx (y), u− y〉 = V rx (u)− V rx (y)− V ry (u). (4.1)

CHAPTER 4. FASTER APPROXIMATE `∞ REGRESSION AND MAXIMUM FLOW 154

4.2.2 Overview of our algorithms

Here, we give an overview of the main ideas used in our algorithms for approximately solving `∞

regression problems. The main ideological contribution of this work is that it uses a new variation

of coordinate descent which uses the novel concept of local coordinate smoothness in order to get

tighter guarantees for accelerated algorithms.

`∞ regression algorithm

The first piece of our algorithm is developed in Section 4.3.2, where we show how to use a primal-dual

proximal point method inspired by the “conceptual mirror-prox” algorithm of [415] to reduce the

task of designing an accelerated scheme for the `∞ regression problem to designing an unaccelerated

procedure for minimizing a regularized approximation of the regression objective. Next, we show

in Section 4.3.3 how to improve the complexity of the standard coordinate descent algorithm for an

appropriately regularized `∞-smooth approximation to the regression problem by using the concept

of local coordinate smoothnesses, which we introduce. To analyze its convergence, we develop a novel

analysis of coordinate descent under dynamic sampling probabilities subject to a box constraint.

Finally, in order to implement the steps of the algorithm, it is necessary to efficiently compute

overestimates to the local coordinate smoothnesses, and furthermore sample coordinates proportional

to these overestimates; this procedure is given in Lemma 51.

Acceleration via proximal point reduction. In Section 4.3.2, we show how we can reduce minimizing

the original `∞ objective to efficiently finding high-precision minimizers to a sequence of regularized

approximations, via a proximal scheme of [415], which we refer to as the primal-dual proximal point

method, or proximal point method for short.1 This reduction constructs a sequence of iterates by

calling a high-precision minimization oracle for each regularized approximation, where the regu-

larization amount is parameterized by a scalar quantity α > 0. A larger α will result in simpler

subproblems, but will require more calls to the oracle; trading off these complexities via the pa-

rameter α results in our accelerated runtime. More formally, note that we may rewrite the original

regression problem by introducing a dual variable (after appropriately doubling the constraints to

account for signs; see discussion in Section 4.3.1)

min
x∈[−1,1]m

‖Ax− b‖∞ = min
x∈[−1,1]m

max
p∈∆n

p>(Ax− b).

The proximal point method with parameter α constructs a sequence of points {zt} as follows: from

an iterate zt = (xt, pt), define the next iterate zt+1 = (xt+1, pt+1) to be the solution to a proximal

subproblem (here and throughout, s := ‖x∗‖22 where x∗ is the optimizer of the box-constrained `∞

1The proximal point method in this paper is slightly different than the “conceptual mirror-prox” algorithm of
[415]. In [415], each iteration takes two steps, the first of which solves a regularized proximal problem to sufficiently
high accuracy, and the second of which is an extragradient adjustment step. We bypass the need for this adjustment
step via more stringent requirements on the accuracy level of the solution of the proximal problem.

CHAPTER 4. FASTER APPROXIMATE `∞ REGRESSION AND MAXIMUM FLOW 155

regression problem)

zt+1 = argminx∈[−1,1]m argmaxp∈∆n p>(Ax− b) +
α

2s
‖x− xt‖22 − α

∑
i

pi log
pi

[pt]i
. (4.2)

To explain further, the most prevalent first-order method approach to convex optimization, and its

primal-dual generalization (for example found in mirror descent and gradient descent) for solving a

problem of the form minx∈[−1,1]m maxp∈∆n p>(Ax−b) with gradient operator g(x, p), is to repeatedly

construct regularized linearizations of the form, for some regularizer function r,

zt+1 = argminz 〈g(zt), z〉+ V rzt(z).

The proximal method instead sets the next iterate zt+1 to be the result of a proximal problem,

without the linearization; we set the regularizer r(x, p) to be 1
2s ‖x‖

2
2 +

∑
i pi log pi. Overall, if the

regularizer r has range bounded by Θ, then the proximal point method converges in roughly αΘ/ε

iterations to an ε-approximate saddle point, which suffices for our purposes.

We give the convergence analysis of the proximal point method under approximate solutions

to the subproblems defining the iterates {zt} in Section 4.3.2. Therefore, the main algorithmic

workhorse can be reduced to computing high-accuracy saddle points to problems of the form

argminx∈[−1,1]m α log
∑
i∈[n]

exp

(
1

α
[Ax− bt]i

)
+
α

2s
‖x− xt‖22 . (4.3)

Note that the problem (6.21) is the same as (4.2), where we maximized over p explicitly; the vector

bt is obtained via a linear shift of the vector b (details can be found in Section 4.3.2). Our remaining

algorithmic development deals with this subproblem; combining a fast iterative method for this

subproblem with the optimal choice of α yields the runtime for regression. To obtain our more

fine-grained runtimes in Section 4.4, we also generalize to diagonally-reweighted `22 regularizers.

Local coordinate smoothness. In this work, we introduce the concept of local coordinate smoothness

at a point x. This generalizes the concept of global coordinate smoothness to a particular point.

This definition is crucial to the analysis throughout the rest of the paper.

Definition 9 (Local coordinate smoothness). Twice-differentiable function f is Lj(x) locally coor-

dinate smooth in coordinate j at x, if for all |c| ≤ |∇jf(x)/Lj(x)|, ∇2
jjf(x+ cej) ≤ Lj(x).

We state a useful equivalent characterization to Definition 9; the proof is standard and follows

by integration (once and twice respectively).

Lemma 42. For twice-differentiable f , f is Lj(x) locally coordinate smooth if and only if |∇jf(y)−
∇jf(y′)| ≤ Lj(x)|y − y′| for all y, y′ between x ±∇jf(x)/Lj(x)ej. If f is Lj(x) locally coordinate

smooth then for all y between x±∇jf(x)/Lj(x)ej, f(y) ≤ f(x) +∇fj(x)(yj − xj) +
Lj(x)

2 |yj − xj |2.

CHAPTER 4. FASTER APPROXIMATE `∞ REGRESSION AND MAXIMUM FLOW 156

Note that this says that a coordinate descent step using local smoothnesses at a point exhibits

roughly the same behavior as a single step of coordinate descent with global smoothnesses. In

particular, for the point which the coordinate descent algorithm would step to, the function values

exhibit the same quadratic upper bound along the coordinate. For a more motivating discussion of

this definition, we refer the reader to an analysis of coordinate descent presented in Appendix C.1.5.

We will drop the x from the notation Lj(x) when the point we are discussing is clear, i.e. a particular

iterate of one of our algorithms.

Bounding the progress of coordinate descent in `∞-smooth functions. Here, we sketch the main idea

underlying our improved runtime for the problem (6.21), whose first component is `∞-smooth. Why

is it possible to hope to improve gradient methods in the `∞ norm via coordinate descent? One

immediate reason is that smoothness in this norm is a strong assumption on the sum S of the local

coordinate smoothness values of f .

As we recall in Appendix C.1, gradient descent for an `∞-smooth function initialized at x0 ∈ Rm

takes roughly
L‖x0−x∗‖2∞

ε iterations to converge to a solution which has ε additive error, whereas

coordinate descent with appropriate sampling probabilities
Lj
S , for S =

∑
j Lj , takes

S‖x0−x∗‖22
ε

iterations to converge to the same quality of solution.

When the norm in the gradient descent method is ‖ · ‖∞, we have ‖x0 − x∗‖22 ≤ m‖x0 − x∗‖2∞,

but the iterates can be m times cheaper because they do not require a full gradient computation.

So, if we can demonstrate S ≤ L, we can hope to match and improve the runtime. To be more

concrete, we will demonstrate the following fact.

Lemma 43. Suppose for some point x, f : Rm → R is convex and L-smooth with respect to ‖ · ‖∞,

Λj(x) = ∇2
jjf(x), and S =

∑
j Λj(x). Then S ≤ L.

Proof. Fix x, and define M := ∇2f(x) and S := Tr(M). Consider drawing y uniformly at random

from {−1, 1}m. By the smoothness assumption, we have y>My ≤ L‖y‖2∞ = L. Also, note that

E[y>My] = E

∑
i,j

Mijyiyj

 = Tr(M) = S

Thus, by the probabilistic method, there exists some y such that S ≤ y>My ≤ L, as desired.

While this gives a bound on the number of iterations required by a coordinate descent algorithm,

it requires being able to compute and sample by the Lj(x); as we take coordinate descent steps, it is

not clear how the local coordinate smoothnesses Lj(x
k) will change, and how to update and compute

them. Naively, at each iteration, we could recompute the local smoothnesses, but this requires as

much work as a full gradient computation if not more. Furthermore, we need to implement sampling

the coordinates in an appropriate way, and show how the algorithm behaves under acceleration.

However, a key idea in our work is that if we can take steps within regions where the smoothness

values do not change by much, we can still make iterates computationally cheap, which we will show.

CHAPTER 4. FASTER APPROXIMATE `∞ REGRESSION AND MAXIMUM FLOW 157

Box-constrained coordinate descent under dynamic sampling. One technical difficulty that arises in

the analysis of coordinate descent methods under local coordinate smoothnesses is the fact that the

sampling distribution changes from iteration to iteration. In prior analyses of coordinate descent

subject to a separable convex (i.e. box) constraint [222, 449], a key technical fact of the iterates

was the fact that they could be written as a convex combination of prior iterates. Under dynamic

sampling distributions, this may no longer be the case. In this work, we give a new analysis of coor-

dinate descent under a box constraint, and show that the progress of each iteration can be directly

analyzed by using the geometry of the box constraint. We develop this analysis in Section 4.3.3, and

combining it with our local coordinate smoothness analysis yields the faster oracle for minimizing

problem (6.21).

Implementation of local smoothness estimates. One useful property of coordinate descent is that

as long as we implement the algorithm with overestimates to the local smoothness values, the

convergence rate scales with the sum of the overestimates. Our full algorithm for solving (6.21)

proceeds by showing how to compute and sample proportional to slight overestimates to the local

smoothnesses, for regression problems in a column-sparse matrix. We do so by first proving that

the smooth approximation to `∞ regression admits local smoothnesses which can be bounded in

a structured way, in Section 4.3.3. Further, using a lightweight data structure, we are able to

maintain these overestimates and sample by them in nearly-constant time, yielding a very efficient

implementation, which we show in Section 4.3.5.

Maximum flow algorithm

In Section 4.4, we study the maximum flow problem as an example of a problem which can be

reduced to `∞ regression in a column-sparse matrix. We first describe a reduction from approximate

maximum flow to structured instances of `∞ regression, already-present in the literature [482, 318,

441]. We first show that a direct application of our accelerated `∞ regression algorithm yields

the fastest currently known approximate maximum flow algorithm, roughly giving a runtime of

Õ(m+(n+
√
ms)/ε). We also show that a slight modification of our accelerated regression algorithm,

where the norm we measure smoothness and strong-convexity of the box-constrained variable is

weighted by columns of the matrix, yields a runtime of Õ(m+
√
mn/ε), generically improving upon

the runtime of [483] for slightly-dense graphs.

Finally, in Section 4.5, we show that by opening up the algorithm further into a fully primal-

dual method, we can use a novel analysis of a variance-reduced mirror prox method based on local

coordinate smoothness estimates in order to obtain an improved runtime of Õ(m + (n +
√
ns)/ε).

Our randomized mirror prox method requires the development of a somewhat more-complicated data

structure, based on efficient polynomial approximations to the exponential, in order to approximately

query and sample from a simplex variable under dense updates.

CHAPTER 4. FASTER APPROXIMATE `∞ REGRESSION AND MAXIMUM FLOW 158

4.3 `∞ regression subject to a box constraint

We now show how to turn the framework presented in the previous section into improved algorithms

for the problem of box-constrained regression in the `∞ norm. Recall that our goal is to compute an

ε-approximate minimizer of the constrained `∞ regression problem with a O(1/ε) method complexity

(see Definition 8).

In the style of previous approaches to solving `∞ regression, because ‖x‖∞ is not a smooth

function, we choose to minimize a suitable smooth approximation instead. Intuitively, the O(1/ε)

rate comes from accelerating gradient descent for a function which is O(1/ε)-smooth. One would

then expect the function error of the T th iterate with respect to OPT is proportional to (1/ε)/T 2,

so if we wish for an ε-approximate minimizer, it suffices to pick T = O(1/ε). Because our method

is not a typical accelerated method, and is instead based on reducing the proximal point method to

solving a series of subproblems (6.21), the runtime analysis proceeds somewhat differently. We will

show (roughly speaking) how to solve a subproblem of type (6.21) in

Õ

(
m+

min(m,n)

α
+

s

α2

)

iterations, where each iteration can be implemented in time Õ(c), where c is the maximum number

of nonzero entries in any column of A. Because each problem (6.21) results from a regularization

based on a regularizer r of nearly-constant range, it suffices to solve Õ(α/ε) such problems to

yield an ε-approximate solution. Finally, each reduction to the subproblem is complemented by an

extragradient step, which takes time O(nnz(A)). The accelerated runtime is then roughly

Õ

((
nnz(A) +

min(m,n)

α
+

s

α2

)
α

ε

)
= Õ

(
nnz(A) +

min(m,n) +
√

nnz(A)s

ε

)
,

where the choice of α was to appropriately balance the terms.

4.3.1 Constructing the smooth approximation to regression

In this section, we define the smooth approximation for `∞ regression we use through the paper

and provide some technical facts about this approximation. Note that these approximations are

standard in the literature. First, we define the smax function which is used throughout. This

function is smooth in the `∞ norm, which can be seen because it is the result of the following

conjugate problem

max
p∈∆n

〈p, x〉 − α
∑
i

pi log pi;

because the function r(p) =
∑
i pi log pi is 1-strongly convex in the `1 norm, its dual, the softmax

function, is smooth in the `∞ norm.

CHAPTER 4. FASTER APPROXIMATE `∞ REGRESSION AND MAXIMUM FLOW 159

Definition 10 (Softmax). For all real valued vectors x we let smaxα(x) := α log(
∑
j exp(

xj
α)).

Fact 5 (Softmax additive error). ∀x ∈ Rm, maxj∈[m] xj ≤ smaxα(x) ≤ α logm+ maxj∈[m]xj.

Proof. It follows from monotonicity of log and positivity of exp: letting j∗ be the maximal index of

x, smaxα(x) ≥ α log(exp(xj∗/α)) = xj∗ , and smaxα(x) ≤ α log(m exp(xj∗/α)) = α logm+ xj∗ .

Note that these properties are about the quality of approximation smax provides on the maximum

element of a vector, instead of its `∞ norm. To apply this to an `∞ objective, we used the standard

reduction of applying it to the regression problem in twice the original dimension, defined with a

proxy matrix A′ =
(
A
−A

)
and a proxy vector b′ =

(
b
−b

)
. For notational convenience, we will focus

on minimizing f(x) defined above, but with A ∈ Rn×m and b ∈ Rn in the original dimensionalities,

which preserves all dependencies on the dimension and structural sparsity assumptions used later

in this work up to a constant. Next, we state some technical properties of our approximation. We

drop the α from many definitions because the α we choose for all our methods is fixed.

Definition 11. For x ∈ Rm let p(x) ∈ Rm be defined as pj(x) :=
exp(xj/α)∑
j′ exp(xj′/α) .

Note that for any x the above pj(x) form a probability distribution. Moreover, they are defined

in this way because they directly are used in the calculation of the gradient and Hessian of smax.

The following facts can be verified by direct calculation.

Fact 6 (Softmax calculus). ∇smaxα(x) = p(x), 0 � ∇2smaxα(x) � α−1diag(p(x)).

4.3.2 Acceleration via proximal point method

In this section, we give an analysis of a proximal point method inspired by [415], tailored to our

purposes. The method reduces the problem of finding an ε-approximate saddle point to a minimax

convex-concave objective to iteratively solving a proximal subproblem to sufficiently high accuracy.

Consider a saddle point problem of the form

min
x∈X

max
p∈P

f(x, p),

where f is convex in its restriction to the first argument and concave in its restricton to the second.

Define the duality gap of a pair (x, p) to be

max
p′∈P

f(x, p′)− min
x′∈X

f(x′, p).

Note that when we define the associated gradient operator

g(x, p) := (∇xf(x, p),−∇pf(x, p)) ,

CHAPTER 4. FASTER APPROXIMATE `∞ REGRESSION AND MAXIMUM FLOW 160

convexity-concavity shows we may upper bound the duality gap with respect to some pair (x′, p′)

by the regret 〈g(x, p), (x, p)− (x′, p′)〉, in the sense of

f(x, p′)− f(x′, p) ≤ 〈∇xf(x, p), x− x′〉 − 〈∇pf(x, p), p− p′〉 = 〈g(x, p), (x, p)− (x′, p′)〉 .

The proximal point algorithm, with a possibly randomized prox oracle, defines a sequence {zt},
where each iterate is the result of calling a proximal oracle on the previous iterate. Formally, the

method is defined as follows.

Definition 12 (Primal-dual proximal point method). Initalize some z0 = (x0, p0), and let q(x) and

r(p) be convex distance generating functions; let Vz(w) be the Bregman divergence on the joint space

with respect to their sum, i.e. for z = (x, p) and z′ = (x′, p′),

Vz(z
′) := V qx (x′) + V rp (p′).

We define the primal-dual proximal point method to be the iteration of the following procedure: on

iteration t, from the point zt = (xt, pt), let zt+1 = (xt+1, pt+1) be any point such that

max
u∈X×P

{
〈g(zt+1), zt+1 − u〉 − αVzt(u) + αVzt+1

(u)
}
≤ ε.

We remark that this definition of zt+1 is motivated by the fact that the (exact) solution of

min
x∈X

max
p∈P

f(x, p) + αV qxt(x)− αV rpt(p) (4.4)

has this property with ε = 0; the conceptual prox method implies that any efficient algorithm

for finding a high-precision saddle point to the prox problem suffices. Our algorithm for computing

iterates will ultimately be randomized; we will union bound the probability that the iterate produced

does not have the necessary property over all iterations by an inverse polynomial in n.

Lemma 44. The iterates resulting from running the primal-dual proximal point method for T iter-

ations satisfy, for any u ∈ X × P,

1

T

∑
t∈[T]

〈g(zt), zt − u〉 ≤
αVz0(u)

T
+ ε.

Proof. Consider some particular iterate t. By the definition of zt+1, we have for all u,

〈g(zt+1), zt+1 − u〉 ≤ α
(
Vzt(u)− Vzt+1

(u)
)

+ ε.

Summing over all iterations, taking an average, and using nonnegativity of V yields the conclusion.

CHAPTER 4. FASTER APPROXIMATE `∞ REGRESSION AND MAXIMUM FLOW 161

We now specialize the required oracle for computing the {zt} to our particular saddle-point

problem (in the case of `∞ regression). In our setting (after the constraints A have been appropriately

doubled to account for sign), we wish to solve

min
x∈[−1,1]m

‖Ax− b‖∞ = min
x∈[−1,1]m

max
p∈∆n

p>(Ax− b).

The associated gradient operator for a point (x, p) is

g(x, p) =
(
A>p, b−Ax

)
. (4.5)

For the rest of this section, whenever we write g(x, p) and the associated A, b in the regression

problem are clear from context, we mean (4.5). We note that to solve the original (primal-only)

regression problem, it suffices to obtain duality gap in the primal-dual regression problem with

respect to (x∗, p′) for any p′, where x∗ = argminx∈[−1,1]m ‖Ax− b‖∞, as quantified in the following.

Lemma 45. Let z = (x, p) ∈ [−1, 1]m × ∆n be a pair such that for all u = (x∗, p′), where x∗ ∈
[−1, 1]m is fixed and p′ ∈ ∆n is arbitrary,

〈g(z), z − u〉 ≤ ε.

Then, we have

‖Ax− b‖∞ − ‖Ax
∗ − b‖∞ ≤ ε.

Proof. Choose p′ so that p′>(Ax− b) = ‖Ax− b‖∞. Then,

〈g(z), z − u〉 = p> ((Ax− b)− (Ax∗ − b)) + (b−Ax)>(p− p′) ≥ ‖Ax− b‖∞ − ‖Ax
∗ − b‖∞ .

The only inequality follows from p>(Ax∗ − b) ≤ ‖Ax∗ − b‖∞ for any p ∈ ∆n.

In our definition of the proximal point method (Definition 12), we choose q(x) = 1
2s ‖x‖

2
2, and

r(p) =
∑
i∈[n] pi log pi, where s := ‖x∗‖22. It is simple to compute that from these definitions,

V qx (x′) =
1

2s
‖x− x′‖22 , V

r
p (p′) =

∑
i∈[n]

p′i log
p′i
pi
.

Moreover, it is well-known that when p ∈ ∆n is the uniform distribution 1
n1, the range of V rp (p′)

is bounded by log n. Therefore, Lemma 44 and Lemma 45 imply that we only need to take Õ(α/ε)

iterations of the proximal point method to obtain an ε-approximate minimizer to the regression

problem. We complete the analysis of this framework by showing that in order to return a sequence

{zt} with the necessary properties, it suffices to approximately compute the saddle point to problems

of the form (4.4).

CHAPTER 4. FASTER APPROXIMATE `∞ REGRESSION AND MAXIMUM FLOW 162

Lemma 46. From a point z = (x, p), let z̄ = (x̄, p̄) be the solution to the problem

argminx′∈[−1,1]margmaxp′∈∆np′>(Ax′ − b) +
α

2s
‖x− x′‖22 − α

∑
i∈[n]

p′i log
p′i
pi
.

Then, for ε < 1, any x′ with

‖x′ − x̄‖∞ ≤ min

(
ε

16 ‖A‖∞
,
εs

8αm
,

εα

64 ‖A‖2∞

)
,

and setting p′ ∈ ∆n to be

p′ ∝ exp

(
1

α
(Ax′ − b+ α log p)

)
,

letting z′ = (x′, p′), for all u ∈ [−1, 1]m ×∆n,

〈g(z′), z′ − u〉 − αVz(u) + αVz′(u) ≤ ε.

Proof. By the optimality conditions of the definition of z̄, we see that for all u ∈ [−1, 1]m ×∆n,

〈g(z̄), z̄ − u〉 ≤ α(Vz(u)− Vz̄(u)− Vz(z̄)) ≤ α(Vz(u)− Vz̄(u)).

Therefore, it suffices to show that

〈g(z′)− g(z̄), z̄ − u〉+ 〈g(z′), z′ − z̄〉+ α(Vz̄(u)− Vz′(u)) ≤ ε. (4.6)

We first derive a simple bound on ‖p̄− p′‖1. Note that by the definition of p̄ as the optimal response

to x̄, we have that Ax̄− b+ α log(p/p̄) is a multiple of the all-ones vector, so

p̄ ∝ exp

(
1

α
(Ax̄− b+ α log p)

)
.

Therefore, the multiplicative ratio between each entry of p′ and p̄ is bounded by

exp

(
2

α
‖A‖∞ ‖x̄− x

′‖∞

)
≤ exp

(
ε

32 ‖A‖∞

)
≤ 1 +

ε

16 ‖A‖∞
. (4.7)

This immediately implies that ‖p̄− p′‖1 ≤ ε ‖p′‖1 /(16 ‖A‖∞) = ε/(16 ‖A‖∞). Finally, we conclude

by noting that by `1-`∞ Hölder, and ‖x′ − x‖∞ ≤ ε/(16 ‖A‖∞),

〈g(z̄)− g(z′), z̄ − u〉 ≤ 2 ‖A‖∞ ‖x̄− x
′‖∞ + 2 ‖A‖∞ ‖p̄− p

′‖1 ≤
ε

4
,

〈g(z′), z′ − z̄〉 ≤ ‖A‖∞ ‖x̄− x
′‖1 + ‖A‖∞ ‖p̄− p

′‖1 ≤
ε

4
.

CHAPTER 4. FASTER APPROXIMATE `∞ REGRESSION AND MAXIMUM FLOW 163

Moreover, by using the definitions of Bregman divergences and ‖x‖1 ≤ m for x ∈ [−1, 1]m, and noting

that similarly to the derivation of (4.7), p′/p is entrywise bounded by exp(ε/4α) via ‖x′ − x‖∞ ≤
ε/(16 ‖A‖∞),

α(V qx̄ (ux)− V qx′(ux)) =
α

2s
‖x̄− ux‖22 −

α

2s
‖x′ − ux‖

2
2 =

α

s
〈ux, x′ − x̄〉+

α

2s
〈x′ + x̄, x′ − x̄〉

≤ α

s

(
‖ux‖1 +

1

2
‖x′ + x̄‖1

)
‖x′ − x̄‖∞ ≤

2αm

s
‖x′ − x̄‖∞ ≤

ε

4
,

α(V rp̄ (up)− V rp′(up)) = α
∑
i∈[n]

[up]i log
p′i
p̄i
≤ αmax

i∈[n]
log

p′i
p̄i
≤ ε

4
.

Finally, (4.6) follows by combining the above bounds.

Finally, note that for z̄ = (x̄, p̄) the solution to the problem

argminx′∈[−1,1]margmaxp′∈∆np′>(Ax′ − b) +
α

2s
‖x− x′‖22 − α

∑
i∈[n]

p′i log
p′i
pi
,

we can equivalently write that x̄ is the solution to the problem

argminx∈[−1,1]m α log
∑
i∈[n]

exp

(
1

α

[
Ax− b̃

]
i

)
+
α

2s
‖x′ − x‖22 , b̃ := b− α log p.

We will show in the following section how to efficiently compute an approximate minimizer to this

problem with high probability.

4.3.3 Constructing the subproblem oracle

In this section, we develop a new analysis of (unaccelerated) coordinate descent under local coordi-

nate smoothness estimates and a box constraint, and show how to use it to compute a high-accuracy

solution to the subproblems required by our proximal point method. More specifically, we develop

an efficient iterative method for solving the problem (abusing some notation for simplicity of this

self-contained section)

argminx∈[−1,1]m α log
∑
i∈[n]

exp

(
1

α
[Ax− b]i

)
+
α

2s
‖x− x̄‖22 . (4.8)

Box-constrained coordinate descent under dynamic sampling

In this section, we first develop a general coordinate descent analysis under a box constraint,

amenable to dynamic sampling probabilities. Let X be an arbitrary box, e.g. product of one-

dimensional intervals, and let f be an `2 µ-strongly convex function. Suppose at each point x, we

CHAPTER 4. FASTER APPROXIMATE `∞ REGRESSION AND MAXIMUM FLOW 164

have local coordinate smoothness estimates {Lj(x)} such that for

x′ = argminx′∈X

{
f(x) + 〈∇jf(x), x′ − x〉+

Lj(x)

2
‖x′ − x‖22

}
,

we have that the upper bound (recalling Definition 9) holds, e.g.

f(x′) ≤ f(x) + 〈∇jf(x), x′ − x〉+
Lj(x)

2
‖x′ − x‖22 .

Further, define

S(x) =
∑
j∈[m]

Lj(x),

and assume that there is a global upper bound S on S(x). Consider the following “local smoothness”

variant of the standard coordinate descent algorithm.

Definition 13 (Locally smooth coordinate descent). Given a function f with local coordinate

smoothnesses {Lj(x)} at each point x, define the local smoothness coordinate descent algorithm

as iteratively performing the following (resetting x′ ← x) every iteration:

1. Sample j ∝ Lj(x).

2. Update x′ ← argminx′∈X

{
f(x) + 〈∇jf(x), x′ − x〉+

Lj(x)
2 ‖x′ − x‖22

}
.

We will now prove a bound on its multiplicative progress in a single iteration.

Lemma 47.

E[f(x′)]− f(x∗) ≤
(

1− µ

2S

)
(f(x)− f(x∗)).

Proof. First, define

Prog↓ := f(x)− min
x↓∈X

{
f(x) +

〈
∇f(x), x↓ − x

〉
+
µ

2

∥∥x↓ − x∥∥2

2

}
,

x↓ := argminx↓∈X

{
f(x) +

〈
∇f(x), x↓ − x

〉
+
µ

2

∥∥x↓ − x∥∥2

2

}
.

We have by strong convexity that f(x)− f(x∗) ≤ Prog↓. We also define g↓ := x−x↓, and note that

g↓ agrees with ∇f(x) in the sign of each coordinate. Further, by separability of the box constraint,

0 ≤ |g↓j | ≤
1

µ
|∇jf(x)|, ∀j ∈ [m]. (4.9)

We can explicitly write that

Prog↓ =
∑
j∈[m]

Prog↓j , where Prog↓j := g↓j

(
∇jf(x)− µ

2
g↓j

)
.

CHAPTER 4. FASTER APPROXIMATE `∞ REGRESSION AND MAXIMUM FLOW 165

Similarly, we define for each j ∈ [m],

Prog↑j := f(x)− min
x′∈X

{
f(x) + 〈∇jf(x), x′ − x〉+

Lj(x)

2
‖x′ − x‖22

}
.

We let g↑ be the vector such that g↑j agrees with [x−x′]j if coordinate j was sampled. In particular,

g↑ agrees with ∇f(x) in the sign of each coordinate and by separability ∀j ∈ [m],

0 ≤ |g↑j | ≤
1

Lj(x)
|∇jf(x)|. (4.10)

We can explicitly write

Prog↑j = g↑j

(
∇jf(x)− Lj(x)

2
g↑j

)
.

First, we claim that for each j ∈ [m],

Prog↑j ≥
µ

2Lj(x)
Prog↓j . (4.11)

Note that if coordinate j was sampled, and x′j is on the boundary of X , then g↑j = g↓j , since the

minimization problem defining g↓ involves a larger step size. Conversely, if [x↓]j is not on the

boundary of X , then neither is x′j , and the upper bounds of (4.9), (4.10) are tight. In both these

cases and the third where [x↓]j is on the boundary and x′j is not, the following inequality holds:

|g↑j | ≥
µ

Lj(x)
|g↓j |.

We further note that ∣∣∣∣∇jf(x)− Lj(x)

2
g↑j

∣∣∣∣ ≥ 1

2
|∇jf(x)| ≥ 1

2

∣∣∣∇jf(x)− µ

2
g↓j

∣∣∣ .
Combining these two facts with the definitions of Prog↑j , Prog↓j shows (4.11). Now, we have

E[f(x′)] ≤ f(x)− E[Prog↑j]

= f(x)−
∑
j∈[m]

Lj(x)

2S(x)
Prog↑j

≤ f(x)−
∑
j∈[m]

µ

2S(x)
Prog↓j

= f(x)− µ

2S
Prog↓.

Subtracting f(x∗) from both sides and using the lower bound on Prog↓ gives the result.

CHAPTER 4. FASTER APPROXIMATE `∞ REGRESSION AND MAXIMUM FLOW 166

By iteratively applying Lemma 47, and Markov’s inequality, we have the following corollary.

Corollary 7. Box-constrained locally smooth coordinate descent initialized at x0, applied to an `2

µ-strongly convex function f converges to an ε-approximate minimizer with probability at least 1− δ
in

O

(
S

µ
log

(
f(x0)− f(x∗)

εδ

))
iterations.

We also remark that this analysis generalizes easily to strong convexity in any diagonal norm

given by a (nonnegative) diagonal matrix D. In particular, let f be µ-strongly-convex in the D

norm, where D = diag (() d) is some (positive) diagonal matrix, and assume we have the local

coordinate smoothness bounds {Lj(x)}j∈[m] (note that the smoothness bound is still in the `2 norm,

i.e. independent of the strong convexity measurement matrix). We briefly discuss how to modify

the guarantee of Lemma 47. The algorithm is given as follows.

Definition 14 (Local smoothness coordinate descent in a diagonal norm). Given a function f with

local coordinate smoothnesses {Lj(x)} at each point x, define the local smoothness coordinate descent

algorithm in the D norm as iteratively performing the following (resetting x′ ← x) every iteration:

1. Sample j ∝ κj(x) :=
Lj(x)
dj

.

2. Update x′ ← argminx′∈X

{
f(x) + 〈∇jf(x), x′ − x〉+

Lj(x)
2 ‖x′ − x‖22

}
.

We also define S(x) =
∑
j∈[m] κj(x), and let S be a global upper bound. We modify the

definitions

Prog↓ := f(x)− min
x∗∈X

{
f(x) + 〈∇f(x), x∗ − x〉+

µ

2
‖x∗ − x‖2D

}
,

x∗ := argminx∗∈X

{
f(x) + 〈∇f(x), x∗ − x〉+

µ

2
‖x∗ − x‖2D

}
,

g↓ := x− x∗.

We also clearly have by the same argument that

0 ≤ |g↓j | ≤
1

µdj
|∇jf(x)|.

Therefore, the same arguments allow us to conclude that for each j ∈ [m],

Prog↑j ≥
µdj

2Lj(x)
Prog↓j , where we recall Prog↑j = g↑j

(
∇jf(x)− Lj(x)

2
g↑j

)
.

Finally, our given sampling probabilities imply that we have the desired

E[f(x′)]− f(x∗) ≤
(

1− µ

2S

)
(f(x)− f(x∗)).

CHAPTER 4. FASTER APPROXIMATE `∞ REGRESSION AND MAXIMUM FLOW 167

This yields the following corollary.

Corollary 8. Box-constrained local smoothness coordinate descent in the diagonal D norm initialized

at x0, applied to a µ-strongly convex function f in the D norm, converges to an ε-approximate

minimizer with probability at least 1− δ in

O

(
S

µ
log

(
f(x0)− f(x∗)

εδ

))
iterations.

Minimizing the regularized softmax objective

We now use the developments of the prior section to obtain the runtime of an efficient oracle for

solving (4.8) to high precision; we restate the objective here:

h(x) := α log
∑
i∈[n]

exp

(
1

α
[Ax− b]i

)
+
α

2s
‖x− x̄‖22 .

The complexity of minimizing this objective function using the box-constrained coordinate descent

under local coordinate smoothnesses follows from estimates given in the following lemma.

Lemma 48 (Local coordinate smoothnesses of regularized softmax). At a point x ∈ [−1, 1]m, and

for all j ∈ [m], define

Lj(x) =
8

α
‖A:j‖∞

(
〈|A:j |, p(x)〉+

2α

s

)
+
α

s
.

Then, h is Lj(x) locally-coordinate smooth at x for all j ∈ [m].

Proof. Recalling Definition 9, we prove the following: for y = x+ γej , γ ∈
[
± 1
Lj(x) |∇jh(x)|

]
,

∇2
jjh(y) ≤ Lj(x). (4.12)

Defining p(x) ∝ exp((Ax−b)/α), by Fact 6, ∇2
jjh(y) ≤ 1

α ‖A:j‖2p(y) + α
s . Therefore, it clearly suffices

to show that p(y) ≤ 8p(x) entrywise. Note that as long as we show that entrywise

exp

(
Ay − b
α

)
∈
[

1

e
, e

]
exp

(
Ax− b
α

)
,

we have the conclusion by e2 < 8. Now, using the bound on γ, this is equivalent to showing for all

i that | 〈Ai:, x− y〉 | ≤ α. Recalling ∇jh(x) = 〈A:j , p(x)〉+ α
s (xj − x̄j), the following suffices:

|Aij |
∣∣∣∣∇jh(x)

Lj(x)

∣∣∣∣ =

∣∣∣∣∣ |Aij |
(
〈A:j , p(x)〉+ α

s (xj − x̄j)
)

8
α ‖A:j‖∞

(
〈|A:j |, p(x)〉+ 2α

s

)
+ α

s

∣∣∣∣∣ ≤ α.
The conclusion follows.

CHAPTER 4. FASTER APPROXIMATE `∞ REGRESSION AND MAXIMUM FLOW 168

Minimizing the diagonally regularized softmax objective

By a simple modification of the regularizer q(x) used in the proximal point method, we show how

to obtain improved smoothness parameters in the regime n < m, independent of the sparsity of the

optimal solution. In particular, for D = diag (() {‖A:j‖∞}), the diagonal matrix whose entries are

the {‖A:j‖∞}, consider running the mirror prox procedure with the regularizer q(x) = 1
2n‖A‖∞

‖x‖2D;

the range of q(x) over the box [−1, 1]m is clearly at most a constant, since the sum of (absolute

values of) entries of A is bounded by Õ(n ‖A‖∞). Therefore, it suffices to design an efficient iterative

method for, in the vein of (4.8), solving subproblems

hd(x) := α log
∑
i∈[n]

exp

(
1

α
[Ax− b]i

)
+

α

2n ‖A‖∞
‖x− x̄‖2D . (4.13)

In lieu of Lemma 48, we have the following local smoothness bounds on this subproblem.

Lemma 49 (Local coordinate smoothnesses of diagonally regularized softmax). Let d be the vector

whose entries are ‖A:j‖∞ such that D = diag (() d). At a point x ∈ [−1, 1]m, and for all j ∈ [m],

define

Lj(x) =
8

α
‖A:j‖∞

(
〈|A:j |, p(x)〉+

2α

n ‖A‖∞
‖A:j‖∞

)
+

α

n ‖A‖∞
‖A:j‖∞ .

Then, hd is Lj(x) locally-coordinate smooth at x for all j ∈ [m].

Proof. The proof is similar to that of Lemma 48. Recalling Definition 9, for y = x + γej , γ ∈[
± 1
Lj(x) |∇jhd(x)|

]
, we wish to show

∇2
jjhd(y) ≤ Lj(x). (4.14)

Defining p(x) ∝ exp((Ax − b)/α), by Fact 6, ∇2
jjhd(y) ≤ 1

α ‖A:j‖2p(y) + α
n‖A‖∞

‖A:j‖∞. Therefore,

it clearly suffices to show that p(y) ≤ 8p(x) entrywise. It suffices to show that for all i that

| 〈Ai:, x− y〉 | ≤ α, or recalling the definition of ∇jh(x) = 〈A:j , p(x)〉+ α
n‖A‖∞

‖A:j‖∞ (xj − x̄j),

|Aij |
∣∣∣∣∇jh(x)

Lj(x)

∣∣∣∣ =

∣∣∣∣∣∣
|Aij |

(
〈A:j , p(x)〉+ α

n‖A‖∞
‖A:j‖∞ (xj − x̄j)

)
8
α ‖A:j‖∞

(
〈|A:j |, p(x)〉+ 2α

n‖A‖∞
‖A:j‖∞

)
+ α

n‖A‖∞
‖A:j‖∞

∣∣∣∣∣∣ ≤ α.
The conclusion follows.

4.3.4 Putting it all together: accelerated `∞ regression

We now state our main runtime result for `∞ regression. We combine previous developments to

bound the number of coordinate descent iterations needed under local coordinate smoothness es-

timates needed to find an ε-approximate minimizer to the box-constrained `∞ regression problem

CHAPTER 4. FASTER APPROXIMATE `∞ REGRESSION AND MAXIMUM FLOW 169

(Definition 8). We remark that the theorem statement assumes access to query and sampling oracles

for the local coordinate smoothnesses; we show how to design efficient oracles for column-sparse A

in Section 4.3.5. The combination of the following two theorems formally show Theorem 15.

Theorem 19 (Coordinate acceleration for `∞ regression). The proximal point method (Defini-

tion 12) with regularizers q(x) = 1
2s ‖x‖

2
2 and r(p) =

∑
i∈[n] pi log pi, with each iterate defined by the

local smoothness coordinate descent method (Definition 13) applied to the appropriate subproblem,

results (with high probability) in an ε-approximate minimizer to the box-constrained `∞ regression

problem in time

Õ

(((
s ‖A‖2∞
α2

+
min(m,n) ‖A‖∞

α
+m

)
· Titer + nnz(A)

)
· α
ε

)
,

where Titer is the cost of sampling proportional to Lj(x) and computing the value of Lj(x) for an

iterate x of local smoothness coordinate descent. For α = max(ε,
√
s/m ‖A‖∞) and Titer = O(c log n)

from Section 4.3.5, where c is the column sparsity of A, the runtime is

Õ

(
mc+

(min(m,n) +
√
ms) c ‖A‖∞

ε

)
.

Proof. We first discuss the complexity of returning an iterate of the proximal point method. Lemma 46,

and the discussion following, imply that for a function of form (4.8) with optimal argument x∗t , it

suffices to find any point x′ with ‖x′ − x∗t ‖∞ bounded by an inverse polynomial in parameters

‖A‖∞ ,m, s, ε−1, α−1 to implement the proximal point method. By Fact 5, the range of the function

(where the linear term bt is appropriately shifted)

h(x) = α log
∑
i∈[n]

exp

(
1

α
[Ax− bt]i

)
+
α

2s
‖x− x̄‖22

is at most α log n + 2 ‖A‖∞ + αm
2s , where the second term comes from the range of ‖Ax− b‖∞

over [−1, 1]m, and the third from a simple bound ‖x− x̄‖22 ≤ m for all x ∈ [−1, 1]m. Moreover,

strong-convexity of h(x) in the `2 norm, and optimality of x∗t , yields

h(x′)− h(x∗t) ≥ 〈∇h(x∗t), x
′ − x∗t 〉+

α

2s
‖x′ − x∗t ‖

2
2 ≥

α

2s
‖x′ − x∗t ‖

2
2 ,

which implies

‖x′ − x∗t ‖∞ ≤ ‖x
′ − x∗t ‖2 ≤

√
2s (h(x′)− h(x∗t))

α
. (4.15)

CHAPTER 4. FASTER APPROXIMATE `∞ REGRESSION AND MAXIMUM FLOW 170

Note that for any point x, we can define an upper bound on the sum of values Lj(x) in Lemma 48,

S :=
8

α
‖A‖2∞ +

16 min(m,n)

s
‖A‖∞ +

mα

s
≥
∑
j∈[m]

8

α
‖A:j‖∞

(
〈|A:j |, p(x)〉+

2α

s

)
+
α

s
. (4.16)

Here, we used that the sum of entries in the matrix is at most n ‖A‖∞, and the largest entry in any

column is at most ‖A‖∞. Then, by Corollary 7 with strong convexity parameter µ = α/s, we see

that a sufficient x′ may be found with high probability in time

Õ

((
s ‖A‖2∞
α2

+
min(m,n) ‖A‖∞

α
+m

)
· Titer

)
.

Finally, due to our choice of the regularizers q and r in the proximal point method and Lemma 44,

Õ(α/ε) iterations of proximal point suffice, for any α ≥ ε. Combining these bounds yields the first

runtime claim. To see the second, we simplified using nnz(A) ≤ mc.

Before we give our result for accelerating `∞ regression via a diagonal norm regularization,

we state a technical result on the degree of accuracy required by solutions of the proximal point

subproblems, the analog of Lemma 46 in the diagonal norm (throughout, D := diag({‖A:j‖∞})).

Lemma 50. From a point z = (x, p), let z̄ = (x̄, p̄) be the solution to the problem

argminx′∈[−1,1]margmaxp′∈∆np′>(Ax′ − b) +
α

2n ‖A‖∞
‖x− x′‖2D − α

∑
i∈[n]

p′i log
p′i
pi
.

Then, for ε < 1, any x′ with

‖x′ − x̄‖∞ ≤ min

(
ε

16 ‖A‖∞
,
εn

8αm
,

εα

64 ‖A‖2∞

)
,

and setting p′ ∈ ∆n to be

p′ ∝ exp

(
1

α
(Ax′ − b+ α log p)

)
,

letting z′ = (x′, p′), for all u ∈ [−1, 1]m × ∆n, and where divergences are with respect to q(x) :=
1

2n‖A‖∞
‖x‖2D and r(p) =

∑
i∈[n] pi log pi,

〈g(z′), z′ − u〉 − αVz(u) + αVz′(u) ≤ ε.

Proof. By the optimality conditions of the definition of z̄, we see that for all u ∈ [−1, 1]m ×∆n,

〈g(z̄), z̄ − u〉 ≤ α(Vz(u)− Vz̄(u)− Vz(z̄)) ≤ α(Vz(u)− Vz̄(u)).

CHAPTER 4. FASTER APPROXIMATE `∞ REGRESSION AND MAXIMUM FLOW 171

Therefore, it suffices to show that

〈g(z′)− g(z̄), z̄ − u〉+ 〈g(z′), z′ − z̄〉+ α(Vz̄(u)− Vz′(u)) ≤ ε. (4.17)

By exactly the same logic as in Lemma 46, we have the multiplicative ratio between every entry

of p′ and p̄ is bounded by 1 + ε/(16 ‖A‖∞), and ‖p̄− p′‖1 ≤ ε/(16 ‖A‖∞). Finally, we conclude by

noting that by `1-`∞ Hölder, and ‖x′ − x‖∞ ≤ ε/(16 ‖A‖∞),

〈g(z̄)− g(z′), z̄ − u〉 ≤ 2 ‖A‖∞ ‖x̄− x
′‖∞ + 2 ‖A‖∞ ‖p̄− p

′‖1 ≤
ε

4
,

〈g(z′), z′ − z̄〉 ≤ ‖A‖∞ ‖x̄− x
′‖1 + ‖A‖∞ ‖p̄− p

′‖1 ≤
ε

4
.

Moreover, by using the definitions of Bregman divergences, ‖x‖1 ≤ m for x ∈ [−1, 1]m, p′/p is

entrywise bounded by exp(ε/4α), and ‖A‖∞ is larger than every entry of D,

α(V qx̄ (ux)− V qx′(ux)) =
α

2n ‖A‖∞
‖x̄− ux‖2D −

α

2n ‖A‖∞
‖x′ − ux‖

2
D

=
α

n ‖A‖∞
uxD(x′ − x̄) +

α

2n ‖A‖∞
(x′ + x̄)D(x′ − x̄)

≤ α

n

(
‖ux‖1 +

1

2
‖x′ + x̄‖1

)
‖x′ − x̄‖∞ ≤

2αm

n
‖x′ − x̄‖∞ ≤

ε

4
,

α(V rp̄ (up)− V rp′(up)) = α
∑
i∈[n]

[up]i log
p′i
p̄i
≤ αmax

i∈[n]
log

p′i
p̄i
≤ ε

4
.

Finally, (4.17) follows by combining the above bounds.

Theorem 20 (Coordinate acceleration for `∞ regression in a diagonal norm). The proximal point

method (Definition 12) with regularizers q(x) := 1
2n‖A‖∞

‖x‖2D for D = diag({‖A:j‖∞}) and r(p) =∑
i∈[n] pi log pi, with each iterate defined by the local smoothness coordinate descent method in the

D norm (Definition 14) applied to the appropriate subproblem, results (with high probability) in an

ε-approximate minimizer to the box-constrained `∞ regression problem in time

Õ

(((
n ‖A‖2∞
α2

+
n ‖A‖∞

α
+m

)
· Titer + nnz(A)

)
· α
ε

)
,

where Titer is the cost of sampling proportional to Lj(x)/dj and computing the value of Lj(x) for an

iterate x of local smoothness coordinate descent. For α = max(ε,
√
n/m ‖A‖∞) and Titer = O(c log n)

from Section 4.3.5, where c is the column sparsity of A, the runtime is

Õ

(
mc+

(n+
√
mn) c ‖A‖∞
ε

)
.

Proof. We first note that without loss of generality, every entry of D is at least ε/m; indeed, adding

CHAPTER 4. FASTER APPROXIMATE `∞ REGRESSION AND MAXIMUM FLOW 172

ε/m to an arbitrary nonzero entry of each column only perturbs the value of ‖Ax− b‖∞ over [−1, 1]m

by an additive ε. Thus, in lieu of (4.15) in the proof of Theorem 19, it suffices to solve to a degree of

accuracy polynomially larger in problem parameters, where we use that the objective is 1/(n ‖A‖∞)-

strongly convex in the D norm, and the D norm is at most ε/m times smaller than the `2 norm

(Lemma 50 bounds the accuracy we require in our subproblem solutions in `∞).

We next bound the sum of local smoothnesses (relative to dj) induced by Lemma 49, and the

resulting complexity of solving the subproblems induced by the proximal point method with a

diagonal regularizer; the remainder of the proof follows identically from Theorem 19. Note that

∑
j∈[m]

Lj(x)

dj
=
∑
j∈[m]

8

α

(
〈|A:j |, p(x)〉+

2α

n ‖A‖∞
‖A:j‖∞

)
+

α

n ‖A‖∞
= O

(
‖A‖∞
α

+ 1 +
mα

n ‖A‖∞

)
.

The strong convexity parameter of the induced subproblems in the diagonal norm, of the form (4.13),

is α/(n ‖A‖∞). Thus, applying Corollary 8 implies each iterate of the mirror prox method can be

found with high probability in time

Õ

((
n ‖A‖2∞
α2

+
n ‖A‖∞

α
+m

)
· Titer

)
.

Finally, due to the choice of regularizers, the domain size is still Õ(1), so Õ(α/ε) iterations of

proximal point suffice, giving the first claim; the second claim follows by choice of α.

4.3.5 Cheap iterations for `∞ regression in column-sparse matrices

In this section, we show how to attain cheap iterations for A whose columns have bounded sparsity.

In particular, suppose A is c-column-sparse. We show how to, for the local coordinate smoothness

estimates

Lj(x) =
8

α
‖A:j‖∞

(
〈|A:j |, p(x)〉+

2α

s

)
+
α

s
(4.18)

defined in Lemma 48, implement maintenance of the Lj(x) and sampling by the quantities Lj(x) for

each iteration of the local smoothness coordinate descent procedure applied to the problem (4.8), in

time Titer = O(c log n). This shows that the runtime of the efficient implementation of our algorithm

is, up to a Õ(c) multiplicative factor, the same as the iteration count; in particular, for c = Õ(1), we

are able to implement each step in Õ(1) time, without affecting the number of iterations by more

than a Õ(1) factor. More formally, in this section we show the following.

Lemma 51 (Efficient implementation of iterates). Suppose we implement local smoothness coordi-

nate descent (Definition 13) for the problem (4.8) for some c-column-sparse A. Then, with nnz(A)

precomputation cost, throughout the lifetime of the algorithm for local coordinate smoothness esti-

mates Lj(x) (4.18) where x is an iterate, it is possible to (1) maintain the sum
∑
j∈[m] Lj(x), (2)

CHAPTER 4. FASTER APPROXIMATE `∞ REGRESSION AND MAXIMUM FLOW 173

compute for any j the value Lj(x), and (3) sample from the distribution {pj ∝ Lj(x)} in time

O(c log n) per iteration.

Proof. We will describe the Lj(x) maintenance and sampling procedures separately.

Maintaining smoothness overestimates.

We first show how to (implicitly) maintain the quantities

pi(x) =
exp(1

α [Ax− b]i)∑
i′∈[n] exp(1

α [Ax− b]i′)

in O(c) time per iteration. In particular, because each iteration of (local smoothness) coordinate

descent, starting at x and stepping to x′, only affects a single coordinate, and by column-sparsity

this only affects at most c of the values exp(1
α [Ax − b]i), we can maintain their sum in O(c) time,

and also maintain the vector exp(1
α (Ax− b)).

Next, we discuss how to maintain
∑
j∈[m] Lj(x) and query any Lj(x) in O(c) time per iteration.

In O(nnz(A)) time we precompute and store all values

16 ‖A:j‖∞
s

+
α

s
,

and there are at most c entries in A:j , so querying Lj(x) can be performed in O(c) time, because we

can compute any entry of p(x) using the stored exp(1
α (Ax− b)) and its maintained sum. Moreover,

in computing the sum

∑
j∈[m]

Lj(x) =

∑
j∈[m]

16 ‖A:j‖∞
s

+
mα

s

+

 8

α

∑
i∈[n]

pi(x)
∑
j∈[m]

|Aij | ‖A:j‖∞

 ,

all quantities other than the pi(x) can be precomputed; the second summand can be computed with

respect to the unnormalized vector exp(1
α (Ax− b)), and then scaled uniformly using its sum.

Sampling from the distribution.

In this part of the proof, we describe how to implement sampling from the distribution pro-

portional to Lj(x). First, in the prior discussion note that we maintain the sum of the Lj(x) by

computing the values of the two summands

∑
j∈[m]

16 ‖A:j‖∞
s

+
mα

s
,

8

α

∑
i∈[n]

pi(x)
∑
j∈[m]

|Aij | ‖A:j‖∞ .

We first flip an appropriately biased coin to choose a summand. If the first is selected, then we

sample a coordinate j ∈ [m] with probability proportional to

16 ‖A:j‖∞
s

+
α

s
;

CHAPTER 4. FASTER APPROXIMATE `∞ REGRESSION AND MAXIMUM FLOW 174

this can be done in constant time via precomputation [528].

To sample from the second summand, it clearly suffices to first sample the rows of A by a distri-

bution proportional to p(x), and then sample the indices of that row proportional to |Aij | ‖A:j‖∞,

the latter of which takes constant time via precomputation [528]. To sample the rows, we use the

well-known strategy that it suffices to maintain an augmented binary search tree data structure

whose leaves dynamically maintain the set of exp(1
α [Ax − b]i) for the current iterate x. As previ-

ously argued, each iteration changes only c of these values, so maintaining the augmented binary

search tree takes O(c log n) per iteration.

4.4 Accelerating maximum flow

The primary goal of this section is to show how to use the development of Section 4.3, tailored

to the regression problem associated with maximum flow, and give tighter analyses on its runtime

guarantees to demonstrate how it yields faster algorithms. The reduction to `∞ regression is the

same as introduced in [482], and is included for completeness.

4.4.1 Maximum flow preliminaries

The maximum flow problem is defined as follows: given a graph, and two of its vertices s and t

labeled as source and sink, find a flow f ∈ Rm which satisfies the capacity constraints such that the

discrete divergence at the sink, (Bf)t, is as large as possible, and (Bf)s = −(Bf)t, (Bf)v = 0 for

v 6= s, t.

Following the framework of [482], we consider instead the equivalent problem of finding a min-

imum congestion flow; intuitively, if we route 1 unit of flow from s to t and congest edges as little

as possible, we can find the maximum flow by just taking the multiple of the minimum congestion

flow which just saturates edges. The congestion incurred by a flow f is
∥∥U−1f

∥∥
∞ where U is the

diagonal matrix of edge capacities, and we say f routes demands d if Bf = d. The problem of

finding a minimum congestion flow for a given demand vector, and its dual, the maximum congested

cut, can be formulated as follows:

min.
f

‖U−1f‖∞ s.t. Bf = d, f ≥ 0.

max.
v

d>v s.t. ‖UB>v‖1 ≤ 1.
(4.19)

Let dS :=
∑
u∈S du and c(S, T) denote the total weight of edges from S to T . It is well-known that

for the second problem, one of the threshold cuts with respect to v achieves dS/c(S, V − S) ≥ d>v.

Whenever the flow problem is clear from context, we will refer to any optimal flow by fOPT.

CHAPTER 4. FASTER APPROXIMATE `∞ REGRESSION AND MAXIMUM FLOW 175

4.4.2 From maximum flow to constrained `∞ regression

First, we show how to transform the maximum flow problem into a constrained regression problem.

The key tool used here is the concept of a good congestion approximator [482], and associated

properties.

Definition 15 (Congestion approximator). An α-congestion approximator for G is a matrix R such

that for any demand vector d, ‖Rd‖∞ ≤ OPTd ≤ α ‖Rd‖∞ .

For undirected graphs, it is known that Õ(1)-congestion approximators can be computed in nearly

linear time [376, 482, 318, 441]. Further, the certain variants of these congestion approximator have

additional nice properties. We use the following construction from [441].

Theorem 21 (Summary of results in [441]). There is an algorithm which given an m-edge n-vertex

undirected graph runs in time Õ(m) and with high probability produces an α-congestion approximator

R, for α = Õ(1). Furthermore, the matrix A := 2αRBU has the following properties: (1) each

column of A has at most Õ(1) nonzero entries, (2) ‖A‖∞ = Õ(1), (3) A has O(n) rows, and (4) A

can be computed in time Õ(m).

The above theorem is the result of a construction in [441]. Properties 2, 3, and 4 are direct

results of the construction given in the paper (where 3 follows from the fact that the congestion

approximator comes from routing on a graph which is a tree). Property 1 results from the way in

which the tree is constructed, such that the depth of the congestion-approximating tree is Õ(1), so

each edge in the original graph G is only routed onto a polylogarithmic number of edges.

Our analysis of reducing the flow problem to the regression problem follows that of [482]. In

particular, the reduction is given as follows.

Lemma 52. Let G be an undirected graph and d be a demand vector. Assume we are given an

α-congestion approximator R, and the associated matrix A = 2αRBU . Furthermore, let 2αRd := b.

In order to multiplicatively approximately solve the maximum flow problem given by Equation (4.19),

it suffices to solve an associated box-constrained regression problem ‖Ax− b‖∞ over x ∈ [−1, 1]m a

nearly-constant number of times to an ε-additive approximation, and pay an additional Õ(m) cost,

which under the change of variables x := U−1f recovers a corresponding flow. We call the full

algorithm Flow-To-Regress.

In particular, we are able to use R from the statement of Theorem 21. For completeness, we will

prove Lemma 52 in the appendices, but on a first read one may skip the proof and use the reduction

statement as a black box result for the remaining analysis.

4.4.3 Runtimes for accelerated maximum flow

Here, we provide a full description of how to implement relevant machinery for applying the tools

from Section 4.3 for accelerating the minimization of a constrained `∞ function to the regression

CHAPTER 4. FASTER APPROXIMATE `∞ REGRESSION AND MAXIMUM FLOW 176

problem given in Lemma 52. Due to the arguments presented in Appendix C.2, it suffices to bound

the runtime of approximately solving the initial regression problem.

Definition 16 (Flow regression problem). The maximum flow regression problem asks to ε-approximately

minimize the function ‖Ax− b‖∞ subject to x ∈ [−1, 1]m, ‖b‖∞ ≤ 1, and for Õ(1)-column-sparse A

with ‖A‖∞ = Õ(1).

Lemma 52 implies that the cost of finding an ε-approximate maximum flow is (up to logarithmic

factors) the same as solving the flow regression problem once.

Applications of Section 4.3

We first show how to use the methods of Section 4.3 to obtain an improved maximum flow algo-

rithm. First, note that by applying Theorem 19 directly, combining with the properties given in

Theorem 21 of the regression matrix A, we immediately obtain a runtime of Õ (m+ (n+
√
ms)/ε)

for the maximum flow problem, where the additive factor Õ(m) comes from the preprocessing re-

quired in Section 4.3.5, as well as the cost of computing the matrix A. Here, we used min(m,n) = n

in the case of the flow regression matrix. We further can apply Theorem 20 to obtain a runtime

of Õ (m+
√
mn/ε), where the dominant term is

√
mn as m = Ω(n). Taking the better of these

runtimes implies the following.

Theorem 22. There is an algorithm that takes time Õ(m + (n +
√
mmin(n, s))/ε) to find, with

high probability, an ε-approximate maximum flow, where s is the squared `2 norm of the congestion

vector of any optimal flow.

Tighter runtime dependence

We develop an algorithm with an improved runtime for the flow regression problem in Section 4.5,

based on directly applying a randomized mirror prox method to the primal-dual regression objective.

Its runtime guarantee is stated here, and its full details are given in Section 4.5.

Theorem 23. There is an algorithm, initialized at x0, for finding an ε-approximate minimizer to

the flow regression problem (Definition 16), with high probability, in time Õ(m + max(n,
√
ns)/ε),

where s = ‖x0 − x∗‖22.

By combining this improved algorithm with the reduction procedure of Lemma 52, we obtain

our fastest algorithm for maximum flow, generically improving upon Theorem 22.

Theorem 24. There is an algorithm that takes time Õ(m + max(n,
√
ns)/ε) to find, with high

probability, an ε-approximate maximum flow, where s is the squared `2 norm of the congestion

vector of any optimal flow.

CHAPTER 4. FASTER APPROXIMATE `∞ REGRESSION AND MAXIMUM FLOW 177

4.4.4 Exact maximum flows in uncapacitated graphs

Here, we describe several corollaries of our approach, for rounding to an exact maximum flow for

several types of uncapacitated graphs. In an uncapacitated graph, s = ‖f∗‖22 ≤ Fn where F is the

maximum flow value, because the maximum flow is a 0-1 flow, and thus can be decomposed into F

s− t paths with length at most n. We assume here that all the graphs are simple, and thus m ≤ n2;

it is not difficult to generalize these results to non-simple graphs. As preliminaries, we state the

following standard techniques for rounding to exact maximum flows.

Lemma 53 (Theorem 5 in [343]). There is a randomized algorithm that runs in expected time Õ(m)

which takes a fractional flow of value F on an uncapacitated graph, and returns an integral flow of

value bF c.

We will thus always assume that we have applied the rounding to an integral flow as a pre-

processing step, as it will not affect our asymptotic runtime.

Lemma 54 (Augmenting paths). There is an algorithm that runs in time O(m) which takes a non-

maximal integral flow of value F on an uncapacitated graph, and returns an integral flow of value

F + 1.

Suppose we have a flow with value (1 − ε)F , where the maximum flow value is F . The two

lemmas for rounding and augmenting a flow therefore imply that the additional runtime required to

attain an exact maximum flow is O(εFm).

Undirected uncapacitated graphs

We state several corollaries of Theorem 24 which apply to finding exact maximum flows in various

types of undirected uncapacitated graphs. All of these results only hold with high probability.

Corollary 9 (Undirected graphs). There is an algorithm which finds a maximum flow in an undi-

rected, uncapacitated graph in time Õ(m5/4n1/4).

Proof. We run the algorithm from Theorem 24 for ε = n1/4/m3/4, and then run augmenting paths

for O(εm2) iterations. Note that the maximum flow value and sparsity are bounded by m, and thus

this will yield a maximum flow. Furthermore the runtime of the approximate algorithm is bounded

by m+
√
nm/ε. Putting together these two runtimes yields the result.

Corollary 10 (Undirected graphs with small maximum flow value). There is an algorithm which

finds a maximum flow in an undirected, uncapacitated graph with maximum flow value F in time

Õ(m+ min(
√
mnF 3/4,m3/4n1/4

√
F)).

Proof. The analysis here is the same as in Corollary 9, but instead we note that the bound on

s is min(m,Fn), where the latter factor results from combining F paths of length at most n. If

CHAPTER 4. FASTER APPROXIMATE `∞ REGRESSION AND MAXIMUM FLOW 178

the better bound is Fn, our runtime is bounded by Õ(m + (n +
√
n2F)/ε + εFm), and choosing

ε = n1/2/(F 1/4m1/2) yields the result. If the better bound is m, our runtime is bounded by Õ(m+
√
nm/ε+ εFm), and choosing ε = n1/4/(

√
Fm1/4) yields the result.

Corollary 11 (Undirected graphs with sparse optimal flow). There is an algorithm which finds a

maximum flow in an undirected, uncapacitated graph with a maximum flow that uses at most s edges

in time Õ(m+
√
msn1/4 max(n, s)1/4).

Proof. The analysis here is the same as in Corollary 9, but instead we note that the bound on the

maximum flow value is also s. Thus, our runtime is bounded by Õ(m + max(n,
√
ns)/ε + εsm). If

n ≤ s, choosing ε = n1/4/(s1/4m1/2) yields the result; otherwise, we choose ε =
√
n/ms.

Directed graphs

We follow the standard reduction of finding a maximum flow in a directed graph to finding a

maximum flow in an undirected graph described in, for example, [363]. In short, an undirected

graph with maximum flow value O(m) is created, such that we can initialize the algorithm in

Theorem 24 at a flow which is off from the true maximum flow by s in `22 distance. We give this

reduction in Appendix C.2.2, and refer the reader to [363] for a more detailed exposition.

Thus, after applying this reduction, the only difference in the runtimes given by the previous

section are that the rounding algorithm will always take time O(εm2) instead of O(εFm). This

immediately yields the following runtimes for exact maximum flows in directed graphs.

Corollary 12 (Directed graphs). There is an algorithm which finds a maximum flow in a directed,

uncapacitated graph in time Õ(m5/4n1/4).

Corollary 13 (Directed graphs with a sparse optimal flow). There is an algorithm which finds a

maximum flow in a directed, uncapacitated graph in time Õ(mn1/4 max(n, s)1/4).

4.5 Improved flow runtimes via primal-dual coordinate re-

gression

In this section, we prove Theorem 23 by giving the algorithm and analyzing its runtime. Throughout,

as in the statement of the flow regression problem (Definition 16), A ∈ Rn×m has Õ(1)-sparse

columns, ‖A‖∞ ≤ 1, and ‖b‖∞ ≤ 1, where we drop logarithmic factors in ‖A‖∞ for simplicity. We

describe how to obtain a point x̂ with ‖x̂‖∞ ≤ 1, and

‖Ax̂− b‖∞ − ε ≤ OPT := ‖Ax∗ − b‖∞ , where x∗ := argminx|‖x‖∞≤1 ‖Ax− b‖∞ .

CHAPTER 4. FASTER APPROXIMATE `∞ REGRESSION AND MAXIMUM FLOW 179

The runtime we will prove for the algorithm (initialized at the origin) is, as in Theorem 24,

Õ

(
m+

n+
√
ns

ε

)
, where s := ‖x∗‖22 .

Note if we wish to supply the algorithm with an initial point which is not the origin, as is the case for

our results on maximum flow in directed graphs, it suffices to modify the definition of b appropriately

and shift by the initial point (see Appendix C.1.2 for a more formal treatment).

4.5.1 Overview

We first give an outline of our algorithm. The main motivation for the form it takes is to obtain the

“best of both worlds” runtime of the form
√
ns/ε. In terms of the dependence of Theorem 19 on

s, i.e. the sparsity of the optimal point, a standard (unweighted) Euclidean regularizer is necessary

for the primal point x ∈ [−1, 1]m. In terms of the dependence of Theorem 20 trading off an n

factor for an m, we require more fine-grained estimates on local coordinate smoothnesses based on

dual information and properties of the matrix. We obtain both of these improvements in our final

runtime via a fully primal-dual coordinate regression algorithm.

Throughout, all divergences on x space are with respect to q(x) = 1
2s ‖x‖

2
2, on y space2 are with

respect to r(y) =
∑
i yi log yi, and on the product space are with respect to the direct sum (we drop

superscripts in definitions of Bregman divergences in this section, as the regularizer will be fixed).

Regularized subproblem. The first step of our method is to define the following function, a

regularized variant of the primal-dual formulation of the box-constrained ‖Ax− b‖∞ objective:

h(x, y) := y>(Ax− b) +
ε

2
q(x)− ε

4 log n
r(y). (4.20)

Throughout, we refer to the saddle point to the regularized objective h by x̃ ∈ [−1, 1]m, ỹ ∈ ∆n.

The motivation for considering the regularized problem is related to technical issues which arise

when generalizing Lemma 44 to interact with a randomized algorithm; as we will see, returning the

average iterate is computationally expensive for our coordinate method. We bypass this by providing

a last-iterate guarantee via regularization, by arguing we can repeatedly return a point in each phase

halving the distance to the saddle point.

The following lemma shows that to solve the box-constrained `∞ regression problem, it suffices

to solve the regularized problem

min
x∈[−1,1]m

max
y∈∆n

h(x, y)

to high accuracy. We also show that the regularized optimizer’s `2 sparsity is not too large.

Lemma 55. ‖x̃‖22 ≤ 2s, and ‖Ax̃− b‖∞ ≤ OPT + ε
2 .

2In this section, we use y rather than p to denote dual points, as they evolve separately; in our previous algorithms,
p was typically a probability distribution induced by a primal point x.

CHAPTER 4. FASTER APPROXIMATE `∞ REGRESSION AND MAXIMUM FLOW 180

Proof. Recall that the definition of smaxα(x) implies

smaxα(x) = max
y∈∆n

y>(Ax− b)− αr(y).

By Fact 5,

‖Ax− b‖∞ ≤ smaxε/4 logn(x) ≤ ‖Ax− b‖∞ +
ε

4
.

Correspondingly, we have the following chain of inequalities:

h(x̃, ỹ) ≤ h(x∗, ỹ) ≤ smaxε/4 logn(x∗) +
ε

2
q(x∗) ≤ OPT +

ε

4
+
ε

4
= OPT +

ε

2
.

The first inequality follows from minimality of x̃ with respect to ỹ, the second from considering the

terms in h corresponding to y, and the last by the definition of OPT and s. Now, we also have

h(x̃, ỹ) = smaxε/4 logn(x̃) +
ε

2
q(x̃) ≥ ‖Ax̃− b‖∞ +

ε

4s
‖x̃‖22 .

Putting these together and using ‖Ax̃− b‖∞ ≥ OPT by definition,

OPT +
ε

4s
‖x̃‖22 ≤ OPT +

ε

2
⇒ ‖x̃‖22 ≤ 2s.

Similarly, the other conclusion follows by nonnegativity of ε
4s ‖x̃‖

2
2.

Consequently, an algorithm which is capable of obtaining a high-accuracy saddle point to h

suffices for minimizing the original objective.

Randomized mirror prox method. We now describe one phase of our algorithm, which takes an

initial point zk−1,0 = (xk−1,0, yk−1,0), and returns a point zk,0 = (xk,0, yk,0) with

E[Vzk,0(x̃, ỹ)] ≤ 1

2
Vzk−1,0

(x̃, ỹ). (4.21)

Here, the expectation is over randomness used in the kth phase, i.e. the randomness used to define

the point zk,0. Combining this recursive guarantee via iterating expectations with the following

initial bound (which uses Lemma 55) gives us a logarithmic bound on the number of phases.

Lemma 56. Let x0,0 be the all-zeroes vector and y0,0 = 1
n1. Then, Vx0,0,y0,0(x̃, ỹ) ≤ Θ0 := 1+log n.

In order to obtain the guarantee (4.21), our starting point is Nemirovski’s mirror prox method

[415], which can be viewed as a fixed-point iteration approximating the proximal point method

(Definition 12). Note that optimality conditions imply that iterating (4.4) in the proximal point

method produces a sequence of iterates satisfying

zt+1 ← argminz {〈g(zt+1), z〉+ αVzt(z).}

CHAPTER 4. FASTER APPROXIMATE `∞ REGRESSION AND MAXIMUM FLOW 181

However, this method is not implementable, as zt+1 uses its own gradient operator in its definition.

Nemirovski’s mirror prox approximates this process via a fixed-point iteration, by defining a two-step

sequence

wt ← argminw

{
1

κ
〈g(zt), w〉+ Vzt(w)

}
, zt+1 ← argminz

{
1

κ
〈g(wt), z〉+ Vzt(z)

}
. (4.22)

Here, the parameter κ must be chosen to meet certain criteria so that the fixed-point iteration

provably converges to a sufficient quality, and also governs the iteration count. Typically, κ depends

on the strong convexity of the regularizers q and r, which leads to a dimension dependence in the

runtime in the case of `∞ regression. [483] bypassed this by identifying a weaker criteria for the

sequence (4.22) to converge. We obtain further improvements via a randomized variation of (4.22).

Note that the gradient operator of the problem (4.20) is:

g(x, y) :=

(
A>y +

ε

2s
x, b−Ax+

ε

4 log n
log y

)
.

A natural attempt at an unbiased estimator for g, inspired by the algorithm of Section 4.3, is

(for some sampling probabilities {pj}) to randomly sample a coordinate of the primal block of g, i.e.

gj(x, y) :=

(
1

pj

(
A>:jy +

ε

2s
xj

)
ej , b−Ax+

ε

4 log n
log y

)
, (4.23)

We would then define a step by: sample j ∼ {pj}, then iterate

wt ← argminw

{
1

κ
〈gj(zt), w〉+ Vzt(w)

}
, zt+1 ← argminz

{
1

κ
〈gj(wt), z〉+ Vzt(z)

}
.

However, in order to obtain our tight runtimes by leveraging a primal-dual analog of local coor-

dinate smoothnesses, we require “sharing randomness” between these iterates, i.e. using the same

coordinate j in both steps. Note that in doing so, it no longer makes sense to say that gj(wt) is an

unbiased estimator for g(wt), as the choice of j was used in the definition of wt. We bypass this

by defining an “aggregate point” w̄t which gj(wt) is unbiased for, over the randomness of wt. We

remark that this design strategy is a somewhat bespoke application of developments in Section 2.6,

tailored to our purposes.

We then use a tight characterization of the convergence of our randomized method via local coor-

dinate smoothnesses to argue about the quality of the average iterates w̄t, and show that randomly

sampling one over Õ(m + (n +
√
ns)/ε) iterations halves the divergence to (x̃, ỹ) in expectation.

For this last step, we use the strong monotonicity3 of the objective h to convert regret bounds into

divergence bounds. Our complete algorithm concludes by repeating this procedure for Õ(1) phases.

Roadmap. Section 4.5.2 states the algorithm, a randomized variation of mirror prox which uses

3Strong monotonicity is a primal-dual analog of strong convexity.

CHAPTER 4. FASTER APPROXIMATE `∞ REGRESSION AND MAXIMUM FLOW 182

the local coordinate smoothness ideas developed in Section 4.3 in its analysis. It first develops a

one-phase analysis, which leverages strong monotonicity of the objective h in order to halve the

distance to the true saddle point (x̃, ỹ) in Õ(m + max(n,
√
ns)/ε) iterations constituting a phase.

It then uses the output of each phase as the starting point for the next phase, culminating in a

high-accuracy saddle point in a logarithmic number of phases.

A key technical hurdle is that the iterates of the algorithm no longer have the sparse update

structure used in the data structure development of Section 4.3.5. In Section 4.5.3, we show how to

carefully use the structure of the updates to design a data structure based around Taylor approx-

imation to perform iterations in batches, using nearly-constant amoritized time per iteration. We

remark that the data structure we develop in this section is in some sense generalized by the data

structure used for `1-`1 games in Chapter 3.

4.5.2 Algorithm

Throughout, we index phases of the algorithm by k ∈ [K], and iterates within a phase by t ∈ [T].

As discussed in the overview, we will choose T = Õ(m+ (n+
√
ns)/ε), and K = Õ(1).

Section 4.5.2 defines local coordinate smoothness quantities which will factor into the algorithm.

Section 4.5.2 gives an analysis of a single phase of the algorithm, which outputs a point with

expected divergence halved from the phase input. At the end of this section, we give a complete

implementation of the phase, where we highlight issues with inexact implementation (which will

be treated formally in Section 4.5.3). Section 4.5.2 leverages this single-phase method to give the

complete algorithm, and proves the final runtime guarantee.

Preliminaries

We first define some parameters used in the algorithm. For any y ∈ ∆n we define for all j,

Lj(y) := s ‖A:j‖∞ |A:j |>y + ε ‖A:j‖∞ ,

L̃j(y) :=

√s ‖A:j‖∞
∑
i∈[n]

√
|Aij |yi +

√
ε ‖A:j‖∞

2

.

where |A:j | is element-wise. These quantities will serve the role of local coordinate smoothness

estimates in our algorithm and analysis. It is immediate that for all j,

Õ(1)Lj(y) ≥ L̃j(y) ≥ Lj(y), (4.24)

where the Õ(1) factor is due to Cauchy-Schwarz and that each A:j has Õ(1) non-zero entries.

Lemma 57. For any y,
∑
j

√
L̃j(y) ≤ C

√
ns+

√
mnε, for some C = Õ(1).

CHAPTER 4. FASTER APPROXIMATE `∞ REGRESSION AND MAXIMUM FLOW 183

Proof. Let all columns of A have at most c = Õ(1) nonzero entries. Then,

∑
j∈[m]

∑
i∈[n]

√
‖A:j‖∞ yi|Aij |

2

=

∑
j∈[m]

√
‖A:j‖∞ ·

√c ·√∑
i∈[n]

yi|Aij |

2

≤ c

∑
j∈[m]

‖A:j‖∞

∑
j∈[m]

∑
i∈[n]

yi|Aij |

≤ nc

∑
i∈[n]

yi‖Ai‖1

 ≤ nc.
(4.25)

Here, the first line follows from Cauchy-Schwarz and using the fact that the sum
∑
i∈[n]

√
yi|Aij |

is c-sparse, the second line follows from Cauchy-Schwarz again, and the third line follows from the

assumption ‖A‖∞ ≤ 1. Thus,

∑
j∈[m]

√
L̃j(y) =

√
s
∑
j∈[m]

∑
i∈[n]

√
‖A:j‖∞ |Aij |yi +

∑
j∈[m]

√
ε ‖A:j‖∞

≤
√
nsc+

√
ε

√
m
∑
j∈[m]

‖A:j‖∞ ≤
√
nsc+

√
mnε.

It suffices to choose C =
√
c, where we used the column sparsity assumption.

Finally, we define the following sampling distribution at any point y:

pj(y) =
C
√
ns

C
√
ns+

√
mnε

·
√
s ‖A:j‖∞

∑
i

√
|Aij |yi∑

j

√
s ‖A:j‖∞

∑
i

√
|Aij |yi

+

√
mnε

C
√
ns+

√
mnε

·
√
ε ‖A:j‖∞∑

j

√
ε ‖A:j‖∞

≥

√
L̃j(y)

C
√
ns+

√
mnε

.

(4.26)

The last inequality follows from the bounds from Lemma 57,

∑
j

√
s ‖A:j‖∞

∑
i

√
|Aij |yi ≤ C

√
ns,

∑
j

√
ε ‖A:j‖∞ ≤

√
mnε.

We also make the simplifying assumption that at any y, all the sampling probabilities pj(y) are

at least 1/(2m). To see why this is a valid assumption, our algorithm ultimately has a runtime

depending linearly on our bound on
∑
j∈[m]

√
L̃j(y). By treating each

√
L̃j(y) as its sum with the

average square root coordinate smoothness, this only doubles the overall sum (and therefore the

bound in Lemma 57), but enforces the lower bound on the sampling probabilities. This can be

always be implemented by uniform sampling with half probability.

CHAPTER 4. FASTER APPROXIMATE `∞ REGRESSION AND MAXIMUM FLOW 184

Single phase analysis

In this section we give an analysis of the kth phase. We drop subscript k from all iterates for

simplicity, within the context of this section, until the very end. We define

κ := mε+ 8
√
mnε+ 8C

√
ns+ 16n,

the parameter which will ultimately govern the iteration count of the phase. We briefly discuss

where each summand comes from in the analysis.

1. The factor of mε is used to account for terms of the form ε
2pj

[xt]j showing up in the randomized

gradient estimator, which can be as large as mε, in Lemma 62. This is the key lemma used to

bound the progress of a single iteration.

2. The factor of 8
√
mnε is used to ensure the stability of the simplex variable in a single iteration,

due to the effects of terms of the form ε
2pj

[xt]j , in Lemmas 59 and 60. It is never the leading-

order term, due to the terms mε and 16n.

3. The factor of 8C
√
ns is used for both the error analysis and stability, due to effects of terms

of the form 1
pj
A∆

(j)
t , in Lemmas 59, 60, and 62.

4. The factor of 16n is used to guarantee that κ = Ω(n). This is necessary in bounding the

movement due to a fixed, dense term in the gradient updates, in the runtime analysis of

Section 4.5.3. In particular, it ensures we do not have to restart the data structure for simplex

variable maintenance too frequently.

We now give one iteration of the phase, starting at a point zt = (xt, yt).

1. Sample j ∝ pj(yt)

2. x
(j)

t+ 1
2

← argminx∈[−1,1]m

{〈
1
κpj

(A>:jyt + ε
2s [xt]j)ej , x

〉
+ Vxt(x)

}
.

3. yt+ 1
2
← argminy∈∆n

{〈
1
κ

(
b−Axt + ε

4 logn log yt

)
, y
〉

+ Vyt(y)
}

.

4. ∆
(j)
t := x

(j)

t+ 1
2

− xt.

5. x
(j)
t+1 ← argminx∈[−1,1]m

{〈
1
κpj

(A>:jyt+ 1
2

+ ε
2s [x

(j)

t+ 1
2

]j)ej , x
〉

+ Vxt(x)
}

.

6. y
(j)
t+1 ← argminy∈∆n

{〈
1
κ

(
b−A

(
xt + 1

pj
∆

(j)
t

)
+ ε

4 logn log yt+ 1
2

)
, y
〉

+ Vyt(y)
}

.

We remark that in all but possibly the jth coordinate, x
(j)

t+ 1
2

and x
(j)
t+1 are identical to xt. We write

zt = (xt, yt), w
(j)
t =

(
x

(j)

t+ 1
2

, yt+ 1
2

)
, z

(j)
t+1 =

(
x

(j)
t+1, y

(j)
t+1

)
.

CHAPTER 4. FASTER APPROXIMATE `∞ REGRESSION AND MAXIMUM FLOW 185

We briefly remark on the form of the iterates. The gradient estimators inducing the points x
(j)

t+ 1
2

,

x
(j)
t+1 are precisely those described by (4.23), where we note that the point yt+ 1

2
is deterministic

(conditioned on zt). Moreover, the gradient estimator inducing y
(j)
t+1 is chosen so that our algorithm

has the following property, which implies in each iteration, there is an “aggregate point” w̄t whose

regret we can bound. In this sense, the term 1
pj

∆
(j)
t can be viewed as a debiasing step.

Lemma 58. Let x̄t+ 1
2

= xt +
∑
j ∆

(j)
t , the point taking all coordinate steps from xt, and denote

gj(w
(j)
t) =

(
1

pj

(
A>:jyt+ 1

2
+

ε

2s

[
x

(j)

t+ 1
2

]
j

)
ej , b−A

(
xt +

1

pj
∆

(j)
t

)
+

ε

4 log n
log yt+ 1

2

)
.

Then, we have for z̃ = (x̃, ỹ),

Ej
[〈
gj(w

(j)
t), w

(j)
t − z̃

〉]
= 〈g(w̄t), w̄t − z̃〉 ,

where w̄t = (x̄t+ 1
2
, yt+ 1

2
).

Proof. Recall that x
(j)

t+ 1
2

and x̄t+ 1
2

agree in the jth coordinate. Then, expanding we have

Ej
[〈
gj(w

(j)
t), w

(j)
t − z̃

〉]
=
∑
j

pj

(〈
1

pj
A>:jyt+ 1

2
, x̄t+ 1

2
− x̃
〉

+

〈
1

pj

ε

2s
[x̄t+ 1

2
]j , x̄t+ 1

2
− x̃
〉

+

〈
b−A

(
xt +

1

pj
∆

(j)
t

)
, yt+ 1

2
− ỹ
〉

+

〈
ε

4 log n
log yt+ 1

2
, yt+ 1

2
− ỹ
〉)

=
〈
A>yt+ 1

2
, x̄t+ 1

2
− x̃
〉

+
〈 ε

2s
x̄t+ 1

2
, x̄t+ 1

2
− x̃
〉

+
〈
b−Ax̄t+ 1

2
, yt+ 1

2
− ỹ
〉

+

〈
ε

4 log n
log yt+ 1

2
, yt+ 1

2
− ỹ
〉

= 〈g(w̄t), w̄t − z̃〉 .

Next, we require the following bound on the size of the updates.

Lemma 59. For any t, call the updates to the simplex variables due to the bilinear term

δt :=
1

κ
(b−Axt), δ(j)

t+ 1
2

:=
1

κ

(
b−A

(
xt +

1

pj
∆

(j)
t

))
.

Then, we have

max
(
‖δt‖∞ ,

∥∥∥δ(j)

t+ 1
2

∥∥∥
∞

)
≤ 1

4
.

CHAPTER 4. FASTER APPROXIMATE `∞ REGRESSION AND MAXIMUM FLOW 186

Proof. First, the bound on δt follows by ‖b−Axt‖∞ ≤ 2 and κ is sufficiently large. Note that we

may also conclude a stronger bound, that ‖δt‖∞ ≤
1
8 . By triangle inequality, it suffices to show∥∥∥∥ 1

κpj
A∆

(j)
t

∥∥∥∥
∞
≤ 1

8
for all j ∈ [m].

Firstly, observe that ∆
(j)
t is 1-sparse, and can be bounded by noting (where med takes a median)

[
x

(j)

t+ 1
2

]
j

= med

(
−1, [xt]j −

1

κpj

(ε
2

[xt]j + s ·A>:jyt
)
, 1

)
,

so that by definition of ∆
(j)
t = x

(j)

t+ 1
2

− xt,

∥∥∥∆
(j)
t

∥∥∥
∞
≤ ε

2κpj
|[xt]j |+

s

κpj

∣∣A>:jyt∣∣ .
Recall that

pj(yt) ≥

√
L̃j(yt)

C
√
ns+

√
mnε

≥
8
√
Lj(yt)

κ
. (4.27)

Here, the first inequality was from (H.12), and the second was from the definition of κ and (4.24).

We now bound the size of entries of 1
κpj

A∆
(j)
t , recalling ‖xt‖∞ ≤ 1:

1

κpj

∥∥∥A∆
(j)
t

∥∥∥
∞
≤ ε

2κ2p2
j

‖A:j‖∞ +
s

κ2p2
j

‖A:j‖∞
∣∣A>:jyt∣∣

=
1

κ2

1

p2
j

(ε
2
‖A:j‖∞ + s ‖A:j‖∞ |A

>
:jyt|

)
≤ 1

64Lj(yt)

(ε
2
‖A:j‖∞ + s ‖A:j‖∞ |A

>
:jyt|

)
≤ 1

64
.

The last line follows from (4.27). This yields the claim, as Lj(yt) = s ‖A:j‖∞ |A:j |>yt+ε ‖A:j‖∞.

Leveraging this, the following lemma shows multiplicative stability of the simplex variables within

a single iteration, which allows us to show that local smoothness estimates do not drift significantly.

This proof is somewhat technical, and is deferred until the end of Section 4.5.3, as it requires opening

up our implementation, which will yield the fact that the simplex points are not too unstable.

Lemma 60. Coordinate-wise for any j, yt+ 1
2
, y

(j)
t+1 multiplicatively approximate yt by a factor of at

most 8. That is (where division is coordinate-wise), max
(
yt+ 1

2
/yt, y

(j)
t+1/yt

)
≤ 8.

We also require the following (standard) local norms bound on the divergence of entropy.

Lemma 61 (Local norms). Let y, y′ be on the simplex. Then for V the divergence with respect to

entropy, Vy(y′) ≥ 1
2 ‖y − y

′‖2diag(() max(y,y′))−1 .

CHAPTER 4. FASTER APPROXIMATE `∞ REGRESSION AND MAXIMUM FLOW 187

Proof. Let yα = (1− α)y + αy′. By a Taylor expansion, letting h be entropy, we have

Vy(y′) =

∫ 1

0

∫ β

0

(y′ − y)∇2h(yα)(y′ − y)dαdβ ≥ 1

2
‖y − y′‖2diag(() max(y,y′))−1 .

We now give a one-step convergence analysis of our algorithm, where use the definitions

gj(zt) :=

(
1

pj

(
A>:jyt +

ε

2s
[xt]j

)
ej , b−Axt +

ε

4 log n
log yt

)
,

gj(w
(j)
t) :=

(
1

pj

(
A>:jyt+ 1

2
+

ε

2s

[
x

(j)

t+ 1
2

]
j

)
ej , b−A

(
xt +

1

pj
∆

(j)
t

)
+

ε

4 log n
log yt+ 1

2

)
.

Lemma 62. On any iteration t, we have (where expectations are over the randomness of the coor-

dinate j in the iteration)

E
[

1

κ

〈
gj(w

(j)
t), w

(j)
t − z̃

〉]
≤ E

[
Vzt(z̃)− Vz(j)

t+1
(z̃)
]
.

Proof. Applying the first-order optimality conditions defining the two steps, as well as (F.1) following

from the definition of Bregman divergences,

1

κ

〈
gj(zt), w

(j)
t − z

(j)
t+1

〉
≤ Vzt(z

(j)
t+1)− V

w
(j)
t

(z
(j)
t+1)− Vzt(w

(j)
t)

1

κ

〈
gj(w

(j)
t), z

(j)
t+1 − z̃

〉
≤ Vzt(z̃)− Vz(j)

t+1
(z̃)− Vzt(z

(j)
t+1).

Summing and rearranging slightly, we have

1

κ

〈
gj(w

(j)
t), w

(j)
t − z̃

〉
≤ Vzt(z̃)− Vz(j)

t+1
(z̃)

+
1

κ

〈
gj(w

(j)
t)− gj(zt), w(j)

t − z
(j)
t+1

〉
− V

w
(j)
t

(z
(j)
t+1)− Vzt(w

(j)
t).

Taking an expectation, we have the conclusion up to proving the following claim, where we recall

κ = mε+ 8
√
mnε+ 8C

√
ns+ 16n:

E
[〈
gj(w

(j)
t)− gj(zt), w(j)

t − z
(j)
t+1

〉]
≤ κE

[
V
w

(j)
t

(z
(j)
t+1) + Vzt(w

(j)
t)
]
.

We will instead show the stronger claim that this is true for any particular j ∈ [m]:〈
gj(w

(j)
t)− gj(zt), w(j)

t − z
(j)
t+1

〉
≤ κ

(
V
w

(j)
t

(z
(j)
t+1) + Vzt(w

(j)
t)
)
. (4.28)

We will roughly do so by splitting the left hand side into three pieces, and then bounding them

CHAPTER 4. FASTER APPROXIMATE `∞ REGRESSION AND MAXIMUM FLOW 188

separately. First, we rewrite it as (recalling ∆
(j)
t = x

(j)

t+ 1
2

− xt is 1-sparse)

〈
gj(w

(j)
t)− gj(zt), w(j)

t − z
(j)
t+1

〉
=

1

pj

(〈
A>:j (yt+ 1

2
− yt)ej , x(j)

t+ 1
2

− x(j)
t+1

〉
+
〈
A>:j (y

(j)
t+1 − yt+ 1

2
)ej , x

(j)

t+ 1
2

− xt
〉)

+
ε

2spj

〈([
x

(j)

t+ 1
2

]
j
− [xt]j

)
ej , x

(j)

t+ 1
2

− x(j)
t+1

〉
+

ε

4 log n

〈
log

yt+ 1
2

yt
, yt+ 1

2
− y(j)

t+1

〉
.

(4.29)

We bound the first term. By Lemma 61, and as Lemma 60 gives coordinatewise y
(j)
t+1, yt+ 1

2
≤ 8yt,

V
w

(j)
t

(z
(j)
t+1) + Vzt(w

(j)
t) ≥ 1

16

∥∥∥y(j)
t+1 − yt+ 1

2

∥∥∥2

diag(()y−1
t)

+
1

2s

∥∥∥x(j)
t+1 − x

(j)

t+ 1
2

∥∥∥2

2

+
1

16

∥∥∥yt+ 1
2
− yt

∥∥∥2

diag(()y−1
t)

+
1

2s

∥∥∥x(j)

t+ 1
2

− xt
∥∥∥2

2
.

We see that by a2 + b2 ≥ 2ab and Cauchy-Schwarz,

√
‖A:j‖∞ |A:j |>yt

(
1

16

∥∥∥y(j)
t+1 − yt+ 1

2

∥∥∥2

diag(()y−1
t)

+
1

2s

∥∥∥x(j)

t+ 1
2

− xt
∥∥∥2

2

)
≥
√
|A2

:j |>yt
(

1√
8s

∣∣∣∣[x(j)

t+ 1
2

− xt
]
j

∣∣∣∣ ∥∥∥y(j)
t+1 − yt+ 1

2

∥∥∥
diag(()y−1

t)

)

=

(
1√
8s

∣∣∣∣[x(j)

t+ 1
2

− xt
]
j

∣∣∣∣) ·√∑
i

A2
ij [yt]i

√√√√∑
i

[y
(j)
t+1 − yt+ 1

2
]2i

[yt]i

≥
(

1√
8s

∣∣∣∣[x(j)

t+ 1
2

− xt
]
j

∣∣∣∣) ·∑
i

|Aij ||[y(j)
t+1 − yt+ 1

2
]i|

≥ 1√
8s

〈
A>:j (y

(j)
t+1 − yt+ 1

2
)ej , x

(j)

t+ 1
2

− xt
〉
.

Similarly, we have

√
‖A:j‖∞ |A:j |>yt

(
1

16

∥∥∥yt+ 1
2
− yt

∥∥∥2

diag(y−1
t)

+
1

2s

∥∥∥x(j)
t+1 − x

(j)

t+ 1
2

∥∥∥2

2

)
≥ 1√

8s

〈
A>:j (yt+ 1

2
− yt)ej , x(j)

t+ 1
2

− x(j)
t+1

〉
.

Therefore, by the three above equations,√
‖A:j‖∞ |A:j |>yt

√
8s

pj

(
V
w

(j)
t

(z
(j)
t+1) + Vzt(w

(j)
t)
)

≥ 1

pj

(〈
A>:j (y

(j)
t+1 − yt+ 1

2
)ej , x

(j)

t+ 1
2

− xt
〉

+
〈
A>:j (yt+ 1

2
− yt)ej , x(j)

t+ 1
2

− x(j)
t+1

〉)
.

(4.30)

CHAPTER 4. FASTER APPROXIMATE `∞ REGRESSION AND MAXIMUM FLOW 189

Now, we consider the second term. Directly applying strong-convexity and Cauchy-Schwarz gives

ε

2spj

〈([
x

(j)

t+ 1
2

]
j
− [xt]j

)
ej , x

(j)

t+ 1
2

− x(j)
t+1

〉
≤ ε

2pj

(
1

2s

∥∥∥x(j)

t+ 1
2

− xt
∥∥∥2

2
+

1

2s

∥∥∥x(j)

t+ 1
2

− x(j)
t+1

∥∥∥2

2

)
≤ ε

2pj

(
Vxt(x

(j)

t+ 1
2

) + V
x

(j)

t+ 1
2

(x
(j)
t+1)

)
.

(4.31)

Finally, we consider the third term. It is straightforward to note that for any convex r (in this case,

entropy), 〈∇r(b)−∇r(a), b− c〉 ≤ Va(b) + Vb(c) for any three points a, b, c. Applying this,

ε

4 log n

〈
log

yt+ 1
2

yt
, yt+ 1

2
− y(j)

t+1

〉
≤ ε

4 log n

(
Vyt(yt+ 1

2
) + Vy

t+ 1
2

(y
(j)
t+1)

)
. (4.32)

Combining (4.30), (4.31), (4.32), we obtain

〈gj(wt)− gj(zt), wt − zt+1〉 ≤

√
‖A:j‖∞ |A:j |>yt

√
8s

pj
+

ε

2pj

(Vxt(x(j)

t+ 1
2

) + V
x

(j)

t+ 1
2

(x
(j)
t+1)

)

+

√
‖A:j‖∞ |A:j |>yt

√
8s

pj
+

ε

4 log n

(Vyt(yt+ 1
2
) + Vy

t+ 1
2

(y
(j)
t+1)

)
.

Finally, to prove (4.28), it remains to bound the size of the coefficients of the divergences by κ, and

use nonnegativity of divergences. We claim the following holds:√
‖A:j‖∞ |A:j |>yt

√
8s

pj
+

ε

2pj
≤ κ = 16n+ 8

√
mnε+ 8C

√
ns+mε.

To see this, recall we assumed pj ≥ 1
2m , and further that 1

pj
≤ C

√
ns+
√
mnε√

L̃j(yt)
by (H.12). Therefore,

√
‖A:j‖∞ |A:j |>yt

√
8s

pj
+

ε

2pj
≤
√

8(C
√
ns+

√
mnε) +mε ≤ κ.

Similarly, it is easy to see that the following holds (corresponding to the coefficient of the divergences

on the y side), concluding the proof:√
‖A:j‖∞ |A:j |>yt

√
8s

pj
+

ε

4 log n
≤ κ.

We require the following helper lemma which upper bounds divergence via regret, which allows

CHAPTER 4. FASTER APPROXIMATE `∞ REGRESSION AND MAXIMUM FLOW 190

us to finally convert our regret bound into a divergence bound for the output iterate.

Lemma 63. For any point z, we have 〈g(z), z − z̃〉 ≥ ε
4 lognVz(z̃), where we recall for z = (x, y),

g(z) =

(
A>y +

ε

2s
x, b−Ax+

ε

4 log n
log y

)
.

Proof. Recall that because z̃ is the saddle point of the convex-concave function g is the gradient

operator of, by first-order optimality,

〈g(z̃), z − z̃〉 ≥ 0 ∀z.

Therefore, noting terms
〈
A>(y − ỹ), x− x̃

〉
− 〈A(x− x̃), y − ỹ〉 cancel,

〈g(z), z − z̃〉 ≥ 〈g(z)− g(z̃), z − z̃〉 =
ε

2s
‖x− x̃‖22 +

ε

4 log n

〈
log

y

ỹ
, y − ỹ

〉
≥ εVx(x̃) +

ε

4 log n
Vy(ỹ) ≥ ε

4 log n
Vz(z̃).

The last line used nonnegativity of the Bregman divergence and 〈∇r(y)−∇r(ỹ), y − ỹ〉 ≥ Vy(ỹ).

We now give the method in phase k, initialized at (xk,0, yk,0). Here, we briefly comment on

inexactness issues. The algorithm requires maintenance of variable y on the simplex, and various

quantities which are functions of y, which we can only approximately compute (cheaply): the method

outlined in Section 4.3.5 no longer applies, because updates to the variable are dense. Formally, we

define Y-Oracle, a data structure which maintains an internal representation of the simplex variables.

Y-Oracle supports the following operations in each iteration (k, t), in amoritized Õ(1) time:

• Y-Oracle.Sample(): Samples j ∈ [m] from pj(yk,t). Returns (j, pj(yk,t)).

• Y-Oracle.Coord(i): Returns [y̆k,t]i such that |[y̆k,t]i − [yk,t]i| < n−100.

• Y-Oracle.Update-Half(v): Updates the internal representation of yk,t+ 1
2
.

• Y-Oracle.Coord-Half(i): Returns [y̆k,t+ 1
2
]i such that |[y̆k,t+ 1

2
]i − [yk,t+ 1

2
]i| < n−100.

• Y-Oracle.Update(v): Updates the internal representation of yk,t+1.

We develop Y-Oracle in Section 4.5.3. The following is the algorithm for phase k.

1. Let κ = mε+ 8
√
mnε+ 8C

√
ns+ 16n where C is the constant of Lemma 57.

2. Let T =
⌈

8κ logn
ε

⌉
be the number of iterations per phase.

3. Sample a stopping iteration uniformly at random t∗k ∈ [T].

CHAPTER 4. FASTER APPROXIMATE `∞ REGRESSION AND MAXIMUM FLOW 191

4. For iteration t ∈ [t∗k − 1]:

(a) Call Y-Oracle.Sample to obtain j, pj(yk,t) (for shorthand, denoted pj).

(b) For each non-zero entry Aij of A:j , call Y-Oracle.Coord(i) to obtain [y̆k,t]i.

(c) xk,t+ 1
2
← argminx∈[−1,1]m

{〈
1
κpj

(A>:j y̆k,t + ε
2s [xk,t]j)ej , x

〉
+ Vxk,t(x)

}
.

(d) yk,t+ 1
2
← argminy∈∆n

{〈
1
κ

(
b−Axk,t + ε

4 logn log yk,t

)
, y
〉

+ Vyk,t(y)
}

.

(e) ∆k,t := xk,t+ 1
2
− xk,t.

(f) For each non-zero entry Aij of A:j , call Y-Oracle.Coord(i) to obtain [y̆k,t+ 1
2
]i.

(g) xk,t+1 ← argminx∈[−1,1]m

{〈
1
κpj

(A>:j y̆k,t+ 1
2

+ ε
2s [xk,t+ 1

2
]j)ej , x

〉
+ Vxk,t(x)

}
.

(h) yk,t+1 ← argminy∈∆n

{〈
1
κ

(
b−A

(
xk,t + 1

pj
∆k,t

)
+ ε

4 logn log yk,t+ 1
2

)
, y
〉

+ Vyk,t(y)
}

.

5. For iteration t = t∗k:

(a) ∀j ∈ [m], ∆
(j)
k,t := argminx∈[−1,1]m

{〈
1
κpj

(A>:jyk,t + ε
2s [xk,t]j)ej , x

〉
+ Vxk,t(x)

}
− xk,t.

(b) Compute ∆
(j)
k,t for all j ∈ [m].

(c) Define xk+1,0 = xk,t +
∑
j ∆

(j)
k,t.

(d) Define yk+1,0 = argminy∈∆n

{〈
1
κ

(
b−Axk,t + ε

4 logn log yk,t

)
, y
〉

+ Vyk,t(y)
}

.

6. Output (xk+1,0, yk+1,0).

We remark that in each loop of step 4, steps (c), (e) and (g) are implemented directly in Õ(1)

time, step (d) is implemented implicitly using Y-Oracle.Update-Half, and step (h) is implemented

implicitly using Y-Oracle.Update. We will discuss the efficient implementation of the procedures

supported by Y-Oracle in Section 4.5.3.

We now come to the main export of this section, which shows that the expected divergence to

the saddle point halves in every phase. In this lemma, we assume exact implementation of the steps;

we discuss how to deal with inexactness issues in the analysis in Section 4.5.3.

Lemma 64. Suppose phase k is initialized with zk,0 = (xk,0, yk,0). Then, the output zk+1,0 =

(xk+1,0, yk+1,0) satisfies (where expectations are taken over the randomness used in phase k)

E
[
Vzk+1,0

(x̃, ỹ)
]
≤ 1

2
Vzk,0(x̃, ỹ).

Proof. Consider running for all of the T =
⌈

8κ logn
ε

⌉
iterations. Taking an expectation of Lemma 62

over the entire phase, telescoping, and using nonnegativity of divergences, we obtain (for z̃ = (x̃, ỹ))

E

 1

T

∑
t∈[T]

〈gjt(wk,t), wk,t − z̃〉

 ≤ κVzk,0(z̃)

T
≤ ε

8 log n
Vzk,0(z̃).

CHAPTER 4. FASTER APPROXIMATE `∞ REGRESSION AND MAXIMUM FLOW 192

Here, jt is the coordinate sampled in the tth iteration. Applying Lemma 58, we instead have

E

 1

T

∑
t∈[T]

〈g(w̄k,t), w̄k,t − z̃〉

 ≤ ε

8 log n
Vzk,0(z̃).

Now, because we randomly sampled a t ∈ [T] to be the index t∗k and passed w̄t∗k to the k+ 1st phase

as zk+1,0 = (xk+1,0, yk+1,0), we obtain

E [〈g(zk+1,0), zk+1,0 − z̃〉] ≤
ε

8 log n
Vzk,0(z̃).

The conclusion follows from applying Lemma 63.

Algorithm statement

We now state the full algorithm, which is composed of phases, each of which halves the expected

divergence to the saddle point.

1. Initialize x0,0 = 0, y0,0 = 1
n1.

2. Let Θ0 = 1 + log n be the initial divergence bound (Lemma 56). Let K =
⌈
log2

(
16sΘ0

ε2

)⌉
.

3. For phase k ∈ [K]:

(a) Run the procedure in Section 4.5.2, initialized at zk,0, to produce the point zk+1,0.

4. Return x̂ := xK,0.

We now analyze the correctness and runtime of this algorithm. We assume the following lemma,

which will be proven in Section 4.5.3.

Lemma 65. Every n iterations of each phase can be implemented in Õ(n) time. Furthermore, for

each phase k, iteration t∗k can be implemented in Õ(m) time.

Theorem 25. The algorithm has runtime

Õ

(
m+

n+
√
ns

ε

)
,

and satisfies E[‖x̂− x̃‖2] ≤ ε
2 , where the expectation is over all randomness in the algorithm.

Proof. To prove the first statement, note that the algorithm computes at most K points of the form

w̄k,t∗k , and takes at most KT steps. Thus, by Lemma 65 this yields a runtime of

Õ (KT) + Õ(mK) = Õ
(κ
ε

+m
)

= Õ

(
mε+

√
mnε+

√
ns+ n

ε

)
= Õ

(
m+

n+
√
ns

ε

)
.

CHAPTER 4. FASTER APPROXIMATE `∞ REGRESSION AND MAXIMUM FLOW 193

We used that
√
mn/ε is never larger than m + n/ε, as it is their geometric mean. To prove the

second statement, we apply Lemma 64 for K ≥ log
(

16sΘ0

ε2

)
:

E [‖x̂− x̃‖2]
2 ≤ E

[
‖x̂− x̃‖22

]
= 4sE[Vx̂(x̃)] ≤ 4sΘ0

2K
≤
(ε

2

)2

.

The first inequality used convexity of the square, and the second inequality repeatedly used Lemma 64

and iterated expectations. This implies the desired bound.

We then see that x̂ is our desired approximate minimizer, in expectation.

Corollary 14. We have ‖x̂‖∞ ≤ 1, and E[‖Ax̂− b‖∞] ≤ OPT + ε.

Proof. The first statement is immediate from the algorithm, since in each iteration xk,t lies in

[−1, 1]m, and for each j, xk,t + ∆
(j)
k,t is also defined to lie in [−1, 1]m, and the region decomposes

coordinatewise. The second statement follows from ‖A‖∞ ≤ 1, and

E[‖Ax̂− b‖∞] ≤ ‖Ax̃− b‖∞ + E[‖A(x̂− x̃)‖∞] ≤ OPT +
ε

2
+ E[‖x̂− x̃‖2] ≤ OPT + ε.

By Markov’s inequality, this means that with half probability we have a 2ε-approximate mini-

mizer. This can be boosted to probability 1− δ using log 1
δ independent runs, and it does not affect

runtime asymptotically since computing objective value takes time Õ(m).

4.5.3 Runtime

This section proves Lemma 65, which states that we can implement each iteration of each phase in

amoritized Õ(1) time for each t 6= t∗k, and that we can implement the last iteration in Õ(m) time. As

discussed in Section 4.5.2, it suffices to show that Y-Oracle. {Sample, Coord, Update, Update-Half}
may be implemented in amoritized time Õ(n) every n iterations. In particular, assuming these

operations are supported, it is simple to see that we can implement the updates to the x variables

in Õ(1) time per iteration by sparsity. Finally, the last iteration can be implemented in Õ(m) time

simply by performing the updates to the x variable m times.

Reducing sampling from and computing pj to sampling from and computing
√
y

We first reduce the implementation of Y-Oracle.Sample in an iteration (k, t) to being able to effi-

ciently sample proportional to
√

[yk,t]i (we drop (k, t) for simplicity). Recall we sample from

pj =
C
√
ns

C
√
ns+

√
mnε

·
√
s ‖A:j‖∞

∑
i

√
|Aij |yi∑

j

√
s ‖A:j‖∞

∑
i

√
|Aij |yi

+

√
mnε

C
√
ns+

√
mnε

·
√
ε ‖A:j‖∞∑

j

√
ε ‖A:j‖∞

.

CHAPTER 4. FASTER APPROXIMATE `∞ REGRESSION AND MAXIMUM FLOW 194

First flip a coin which is heads with probability C
√
ns/(C

√
ns +

√
mnε). If it comes up tails,

we sample a j proportional to
√
ε ‖A:j‖∞; clearly we may precompute all of these probabilities, and

place them at the leaves of a binary tree (along with each of the subtree sums stored at roots of

subtrees), flipping Õ(1) appropriately biased coins to sample from this distribution. Next, in order

to sample from a distribution over j proportional to
√
s ‖A:j‖∞

∑
i

√
|Aij |yi, it clearly suffices to

instead sample an i proportional to
√
yi, and then sample a j proportional to

√
s ‖A:j‖∞ |Aij |; this

latter distribution we can precompute.

We now discuss computing a particular pj in Õ(1) time: we need to in fact compute the true

pj which we sampled from, because otherwise we will not have an unbiased estimator. To do so, it

clearly suffices to compute the conditional probabilities√
s ‖A:j‖∞

∑
i

√
|Aij |yi∑

j

√
s ‖A:j‖∞

∑
i

√
|Aij |yi

,

√
ε ‖A:j‖∞∑

j

√
ε ‖A:j‖∞

.

The latter of these is simple to pre-compute. To compute the former, let

qij :=

√
s ‖A:j‖∞ |Aij |∑

i

√
s ‖A:j‖∞ |Aij |

.

We observe that for any j, at most Õ(1) of the qij are non-zero, and we can also precompute all the

qij . Finally, the conclusion follows from√
s ‖A:j‖∞

∑
i

√
|Aij |yi∑

j

√
s ‖A:j‖∞

∑
i

√
|Aij |yi

=
∑
i

√
yi∑

i

√
yi
· qij .

Now, we only need to evaluate Õ(1) nonzero summands. In conclusion, in order to sample from

and compute pj in time Õ(1) per iteration, it suffices to sample from and compute a probability

distribution proportional to
√
y (we remark that our sampling procedure will be exact).

Sparse combinations

In this section we describe how to maintain vt, vt+ 1
2

which are log yt, log yt+ 1
2

up to an additive

multiple of the ones vector, via a linear combination of sparsely updated vectors qt, rt, st. The reason

for this representation is so that we may update the representation in time Õ(1) per iteration, and

further, for any coordinate i, we may compute exp([vt]i) in constant time by simply taking the

appropriate linear combination of the vectors. The word “sparse” in this section denotes any vector

with Õ(1) nonzero entries. We begin by recalling the notation from Lemma 59,

δt :=
1

κ
(b−Axt), δ(j)

t+ 1
2

:=
1

κ

(
b−A

(
xt +

1

pj
∆

(j)
t

))
.

CHAPTER 4. FASTER APPROXIMATE `∞ REGRESSION AND MAXIMUM FLOW 195

Now we write the updates to yt+ 1
2
, y

(j)
t+1 in the following form, for c = ε

4κ logn :

yt+ 1
2
∝ exp (log yt − c log yt − δt) , y(j)

t+1 ∝ exp
(

log yt − c log yt+ 1
2
− δ(j)

t+ 1
2

)
.

Letting vectors vt, vt+ 1
2

satisfy yt ∝ exp(vt), yt+ 1
2
∝ exp(vt+ 1

2
) for all t, we have the recursion

vt+ 1
2

= (1− c)vt − δt, vt+1 = vt − cvt+ 1
2
− δ(j)

t+ 1
2

.

Recalling the structure of these updates, we see that we can further decompose δ
(j)

t+ 1
2

into δt + ζt,

where ζt = − 1
κpj

A∆
(j)
t is sparse. Next, observing ‖b−Axt‖∞ ≤ 2 and κ ≥ 16n, we can assume

‖δt‖∞ ≤
1

8n . We additionally note that δt − δt−1 = − 1
κA(xt − xt−1) is sparse, since xt − xt−1 is

1-sparse and A has sparse columns. Altogether, this yields

vt+1 = (1− c+ c2)vt − (1− c)δt − ζt

⇒ vt+1 − vt = (1− c+ c2)(vt − vt−1)− (1− c)(δt − δt−1)− (ζt − ζt−1)

⇒ vt+1 = (2− c+ c2)vt − (1− c+ c2)vt−1 − (1− c)(δt − δt−1)− (ζt − ζt−1)

⇒ vt+1 = c1vt − c2vt−1 − c3µt − νt.

Here, we have defined c1 = 2 − c + c2, c2 = 1 − c + c2, c3 = 1 − c, µt = δt − δt−1, νt = ζt − ζt−1.

Further, c1 ≤ 2 and c2 ≤ 1. Similarly, we can compute

vt+ 1
2

= (1− c)vt − δt ⇒ vt+ 1
2
− vt− 1

2
= (1− c)(vt − vt−1)− (δt − δt−1)

⇒ vt+ 1
2

= c3vt − c3vt−1 + vt− 1
2
− µt.

In matrix-vector multiplication notation, this update is (where M is clearly full rank)(
vt+1 vt+ 1

2
vt

)
=
(
vt vt− 1

2
vt−1

)
M −

(
c3µt + νt µt 0

)
,

M =

c1 c3 1

0 1 0

−c2 −c3 0

 .

Now, suppose we have maintained a representation(
vt vt− 1

2
vt−1

)
=
(
qt rt st

)
M t.

CHAPTER 4. FASTER APPROXIMATE `∞ REGRESSION AND MAXIMUM FLOW 196

We then require the update(
qt+1 rt+1 st+1

)
M t+1 =

(
qt rt st

)
M t+1 − (

(
c3µt + νt µt 0

)
M−t−1)M t+1.

We can maintain M−t−1 in closed form by simply performing a single matrix multiplication of 3× 3

matrices each iteration, so the updates to qt+1, rt+1 and st+1 are sparse:(
qt+1 rt+1 st+1

)
=
(
qt rt st

)
−
(
c3µt + νt µt 0

)
M−t−1.

Maintaining the sum of exponentials

The previous section states that we can maintain a representation of vt in Õ(1) time per iteration,

such that we can query for any i, the value exp([vt]i) in constant time (respectively, exp([vt+ 1
2
]i)).

Consequently, in order to support Y-Oracle.Coord (respectively, Y-Oracle.Coord-Half), we need

to be able to approximate ∑
i∈[n]

exp([vt]i) (4.33)

multiplicatively by 1 + 1
n100 . In this section we will discuss how to do so over n iterations in time

Õ(n). We then discuss how to sample from this distribution, and modify this maintenance to also

support approximate coordinate queries from yt+ 1
2
. We will not formally discuss how to extend this

analysis to query and sample from a distribution proportional to
√
yt, as required by 4.5.3, as it is an

immediate generalization; we simply also implement Y-Oracle with the vectors 1
2vt, which clearly

suffices. For the scope of this section, define the constant

c =
ε

4κ log n
, κ > 16n.

The implementation problem is: for every iteration t ∈ [n], we are given vectors δt, ζt, such that

• ‖ζt‖∞ ≤
1
8 , and ζt is sparse.

• ‖δt‖∞ ≤
1

8n .

• Vectors vt are defined recursively via vt+1 := (1− c)vt + δt + ζt.

• We are able to maintain a representation of vt as a linear combination αtqt + βtrt + γtst, for

sparsely changing qt, rt, st, and scalars αt, βt, γt.

These bounds follow from the analysis in Lemma 59. We also require the following fact on the effect

of a certain “squishing” operation, which states that we may take any coordinate of vt which is

significantly smaller than another, and raise it within a certain range.

CHAPTER 4. FASTER APPROXIMATE `∞ REGRESSION AND MAXIMUM FLOW 197

Lemma 66. Let v ∈ Rn, and let y ∈ ∆n be such that y ∝ exp(v). Consider the following operation:

let i∗, i′ be coordinates of v such that vi′ < vi∗ − 16 logn
ε , and set v̂ = v in every coordinate, except

v̂i′ ← vi∗ − 16 logn
ε . Then, for ŷ ∝ exp(v̂), assuming ε < 1

7 ,

Vy(ỹ)− Vŷ(ỹ) > −n−100.

Proof. We explicitly compute

Vy(ỹ)− Vŷ(ỹ) =
∑
i

ỹi log
ŷi
yi
.

Note that the only possible i such that ŷi
yi
≥ 1 is i = i′. Furthermore, for every other coordinate i,

yi
ŷi

=

exp(vi)
‖exp(v)‖1

exp(ṽi)
‖exp(ṽ)‖1

=
‖exp(ṽ)‖1
‖exp(v)‖1

<
1 + n−

16
ε

1
.

Here, we used that exp(v̂i′) can be at most exp(− 16 logn
ε) of the sum, due to the contribution of the

vi∗ term, and all coordinates i 6= i′ have v̂i = vi. Finally,

∑
i

ỹi log
ŷi
yi
≥ −

∑
i 6=i′

ỹi log(1 + n−100) ≥ −n−100.

We assume that in the first iteration, we have spent O(n) time computing v0 explicitly, using

our sparse representation, and squishing so its coordinates lie in the range [0, 16 logn
ε].

The case ζt = 0.

We first handle the case when all of the ζt = 0. At iteration 0, suppose we have spent O(n)

time to compute i∗ = argmaxi[v0]i. Also, recall we guaranteed [v0]i∗ − [v0]i ≤ 16 logn
ε . We use the

following fact:

Fact 7 (Taylor expansion of exponential). Let |x| ≤ 1
2 . Then, letting Tayd(x) be the degree d Taylor

approximation of the exponential, we can bound |Tayd(x)− exp(x)| ≤ 1
2d

.

To approximate (4.33) on iteration t, we will maintain a scalar σt with the guarantee

‖v0 − σt1− vt‖∞ ≤
1

2
. (4.34)

We will explicitly compute [vt]i∗ each iteration t, and set

σt+1 = σt + c[vt]i∗ . (4.35)

First of all, we show the invariant (4.34).

CHAPTER 4. FASTER APPROXIMATE `∞ REGRESSION AND MAXIMUM FLOW 198

Lemma 67. Every iteration t ≤ n, and for all i, |[vt]i − [vt]i∗ | ≤ 17 logn
ε .

Proof. We claim that the range of the coordinates of vt is never larger than 17 logn
ε : certainly, this

implies the conclusion. To show this, we inductively claim that the range satisfies

max
i

[vt]i −min
j

[vt]j ≤
16 log n

ε
+

t

4n
.

Taking t ≤ n yields the result. Clearly for t = 0 this is true; now, for t+1, recall vt+1 = (1−c)vt+δt.
Let i = argmaxi[vt]i, j = argminj [vt]j . Then,

[vt+1]i − [vt+1]j = (1− c)([vt]i − [vt]j) + ([δt]i − [δt]j) ≤
16 log n

ε
+

t

4n
+

1

4n
.

Here we used the inductive guarantee and the range of δt (we may clearly assume log n/ε > 1).

Lemma 68. Every iteration t ≤ n, (4.34) holds.

Proof. For some particular i, we show it holds; this implies the `∞ guarantee. Note that

|[v0]i − σt+1 − [vt+1]i| ≤ |[v0]i − σt − [vt]i|+ |([vt]i − [vt+1]i)− c[vt]i∗ |.

Here we used triangle inequality and the definitions of σ, v̄. Now, we have

|([vt]i − [vt+1]i)− c[vt]i∗ | ≤ |c[vt]i − c[vt]i∗ |+ |[δt]i| ≤
3

8n
+

1

8n
≤ 1

2n
.

Thus, inductively we have that

|[v0]i − σt − [vt]i| ≤
t

2n
.

Using t ≤ n yields the result.

Finally, we describe how to compute an accurate approximation (4.33) by Taylor expansion in

Õ(1) time per iteration. We approximate, for some d = O(log n),∑
i∈[n]

exp([vt]i) =
∑
i∈[n]

exp ([v0]i − σt) exp ([vt]i − ([v0]i − σt))

≈ exp(−σt)
∑
i∈[n]

exp ([v0]i) Tayd (αt[qt]i + βt[rt]i + γt[st]i − ([v0]i − σt)) .
(4.36)

We now group by the degree of the Taylor expansion, 0 ≤ k ≤ d, and each quintuple 0 ≤ d1 + d2 +

CHAPTER 4. FASTER APPROXIMATE `∞ REGRESSION AND MAXIMUM FLOW 199

d3 + d4 + d5 = k ≤ d:

exp(−σt)
∑
i∈[n]

exp([v̄t]i)
∑

0≤k≤d

(αt[qt]i + βt[rt]i + γt[st]i − ([v0]i − σt))k

k!

= exp(−σt)
∑
i∈[n]

exp([v0]i)
∑

d1,d2,d3,d4,d5

(
k

d1,d2,d3,d4,d5

)
k!

(αt)
d1(βt)

d2(γt)
d3(−1)d4 [qt]

d1
i [rt]

d2
i [st]

d3
i [v0]d4

i [σt]
d5

= exp(−σt)
∑

d1,d2,d3,d4,d5

(
k

d1,d2,d3,d4,d5

)
k!

(αt)
d1(βt)

d2(γt)
d3(−1)d4

∑
i∈[n]

exp([v0]i)[qt]
d1
i [rt]

d2
i [st]

d3
i [v0]d4

i [σt]
d5 .

Consider the complexity of computing the last expression. There are at most (d + 1)5 = O(d5)

quintuplets d1, d2, d3, d4, d5 with 0 ≤ d1 + d2 + d3 + d4 + d5 ≤ d. For each quintuplet, we maintain

∑
i∈[n]

exp([v0]i)[qt]
d1
i [rt]

d2
i [st]

d3
i [v0]d4

i [σt]
d5 .

Because each of qt, rt, st, are sparsely changing, we can spend Õ(d5) time updating the relevant

terms in each of these summations. Furthermore, [σt]
d5 is simply a scalar so we can rescale its

contribution to the entire sum in constant time. Now, in order to compute the overall sum, we can

spend constant time computing each coefficient(
k

d1,d2,d3,d4,d5

)
k!

(αt)
d1(βt)

d2(γt)
d3(−1)d4 ;

this takes Õ(d5) time altogether. Lastly, updating exp(−σt), the scaling of the entire sum, takes

constant time, and computing the overall sum thus takes Õ(d5).

Finally, we must argue that performing this procedure for d = O(log n) suffices for a multiplicative

guarantee of 1 + 1
nO(1) . Comparing the approximation in (4.36) to the required (4.33), the only

difference is each of the approximations

exp([vt]i − ([v0]i − σt)) ≈ Tayd([vt]i − ([v0]i − σt)).

Because the left hand side is bounded between exp(± 1
2), an additive approximation is (up to con-

stants) a multiplicative approximation as well. Further, Fact 7 implies that d = O(log n) suffices for

this quality of approximation, as desired.

Binomial heap data structures for ζt.

In this section, we reduce the general case to the case where ζt = 0 via a binomial heap data

structure, a fairly general reduction. We note that the analysis in the previous section also clearly

holds when the number of iterations is less than n, and when there are less than n coordinates. The

main idea of the reduction is that we will maintain data structures for sets {Sk} for 0 ≤ k ≤ dlog ne,

CHAPTER 4. FASTER APPROXIMATE `∞ REGRESSION AND MAXIMUM FLOW 200

such that a Sk either contains no elements, or between 2k−1 + 1 and 2k elements. In particular, we

maintain on every iteration

• A hashmap which, for each i ∈ [n], tracks which Sk it belongs to.

• For each Sk,

– The cardinality of Sk.

–
∑
i∈[n] exp([v0]i)[qt]

d1
i [rt]

d2
i [st]

d3
i [v0]d4

i [σt]
d5 , for each quintuplet 0 ≤ d1+d2+d3+d4+d5 ≤

d.

The main difficulty is maintaining the invariant that there is at most one set of each rank (we call k

the “rank” of a nonempty Sk). To this end, if there are two sets Sk, S
′
k both with cardinality between

2k−1 + 1 and 2k elements, e.g. of rank k, we allow the operation Merge(Sk, S
′
k) which creates a new

Sk+1 of rank k + 1, containing all of the coordinates associated with either Sk or S′k.

Whenever we perform a merge, we explicitly compute all coordinates involved in the merge,

designate the largest as i∗ for the updates to σt for that particular set, and squish if necessary

to guarantee that the range of the set is at most 16 logn
ε ; clearly, given our sparse representation

qt, rt, st, αt, βt, γt, we can appropriately modify a coordinate of say qt to handle the squishing. We

also instantiate all relevant quintuplet sums for our particular set. Furthermore, if |S′k|+|Sk| ≤ 2k+1,

Merge will also spend Õ(2k+1−|S′k|− |Sk|) time to create “initialization credits”, so that the sum of

the initialization credits and the size of Sk+1 is always exactly 2k+1; these credits will be useful for

our amoritized analysis. It takes time Õ(2k+1) to update the hashmap, reinstantiate all the relevant

quintuplet sums, and create credits, for Sk+1. We note we may need to recursively call Merge if

there was already a set of rank k + 1.

At the start of the n iterations, we initialize a single set of rank dlog ne, and put all of the

coordinates in this set (and pay any additional cost required for initialization credits), in time Õ(n).

Each iteration t + 1 will proceed in three stages. In the first stage, we compute the approximation

(4.36) to the sum of exponentials as in the previous section, ignoring the effect of ζt. The complexity

of this stage is at most O(log n) times its complexity in the previous section, because we may need

to perform updates for each Sk; thus, it can be implemented in amoritized time Õ(1).

In the second stage, for each coordinate in the support of ζt, we delete it from its corresponding

Sk and instantiate a new set of rank 0, now explicitly factoring in the effect of ζt. Furthermore, if

this causes its corresponding Sk to become rank k − 1, e.g. if before the deletion Sk had 2k−1 + 1

elements, and there was already a set of rank k− 1, we will call the Merge operation on the two sets

of rank k − 1. The amoritized cost of the second stage is Õ(1). To see this, every time we create a

new set of rank 0, we spend Õ(1) time to both initialize the rank 0 set, and pay for Õ(1) “deletion

credits”. Now, whenever we must use the Merge operation to create a new set of rank k, we can

pay for the operation (which costs Õ(2k), both to merge and pay for new initialization credits) by

CHAPTER 4. FASTER APPROXIMATE `∞ REGRESSION AND MAXIMUM FLOW 201

using existing credits: between when Sk was initialized and when it needed to be reinitialized due

to becoming rank k − 1, the sum of its initialization credits and the deletion credits created by

removing elements is at least Õ(2k). We call any such merges Type-1 merges.

In the third stage, we recursively call Merge, starting from the rank 0 sets, in order to maintain

the invariant that there is at most one set of any given rank. We call any such merges Type-2

merges. We claim the amoritized cost of all Type-2 merges over all n iterations is Õ(n). Consider

the number of times a rank k set can be created through Type-2 merges: we claim it is upper

bounded by Õ
(
n
2k

)
. If this is true, overall the complexity of the third stage is at most

Õ

dlogne∑
k=0

2k
n

2k

 = Õ(n).

The number of deletions due to the ζt throughout n iterations is at most Õ(n). Thus, it suffices to

prove that between creations of rank k sets due to Type-2 merges, there must have been at least

2k−1 deletions. To see this, for each rank k, maintain a potential Φk for the sum of the cardinalities

of all rank l sets for l < k. Each deletion increases Φk by at most 1. Each Type-1 merge does not

increase Φk, because it can only cause coordinates to belong to sets which increase in rank. In order

for a Type-2 merge to be used to create a rank k set, Φk must have been at least 2k−1 + 2; after the

merge, it is 0, because in its creation, all rank l sets for l < k must have been merged. Thus, for

the potential to become large enough to require a merge again, there must have been at least 2k−1

deletions, as desired.

Finally, we remark that the analysis of each constituent data structure, i.e. the case when ζt = 0

for the supported coordinates, remains correct under deletions. In particular, (4.35) may still use

the original value of [vt]i∗ in its recursion, even if the coordinate i∗ is deleted; it is easy to see that

by the original boundedness of the range of supported coordinates, the analysis still holds.

Maintaining yt+ 1
2
.

In order to compute coordinates of yt+ 1
2
, we discuss approximating the sum

∑
i∈[n]

exp
([
vt+ 1

2

]
i

)
.

It is easy to see that because vt+ 1
2

and (1− c)vt never vary by more than a small additive constant
1

8n , and furthermore we also maintain a sparsely updated representation of vt+ 1
2

in terms of qt, rt, st,

we may suitably modify the approximation (4.36) to approximate this sum. In particular, we may

compute an appropriate scaling σt+ 1
2

by estimating all coordinates of cvt by scaling some particular

coordinate, and estimate the coefficients of the quintuplet sums in terms of the coefficients in the

linear combination. The complexity of this computation in each step is at most O(d5) in each step,

which never asymptotically dominates.

CHAPTER 4. FASTER APPROXIMATE `∞ REGRESSION AND MAXIMUM FLOW 202

Sampling from the sum of exponentials.

Here, we discuss how to sample from the sum of the exponentials. We use the following fact

about rejection sampling.

Fact 8 (Rejection sampling). Suppose P and Q are probability distributions over [n], and P [i]
Q[i] ∈ [1

2 , 2]

for all i ∈ [n]. Further, suppose we may sample from P in time Õ(1). The following strategy samples

exactly from Q in expected O(1) time: sample a coordinate of i according to P , and accept with

probability Q[i]
2P [i] ; repeat until acceptance.

In our setting, in each iteration P is the distribution over coordinates i ∈ Sk proportional to

exp([v0]i − σt), where we overload the definitions of v0, σt to refer to the point the set Sk uses to

approximate the Taylor expansion. We can sample from this distribution P by maintaining for each

of the Õ(1) sets Sk,
∑
i∈Sk exp([v0]i − σt), by initializing it with the sum when σt = 0, and then

appropriately scaling the sums each iteration. Further, we may initialize each set Sk with a binary

tree data structure for sampling proportional to [v0]i for each i ∈ Sk, because the uniform scaling

exp(−σt) does not affect this distribution. In conclusion, we sample from P by first sampling a set

Sk proportional to its weight given by P , and then sampling a coordinate in the set appropriately.

We then rejection sample from P with respect to Q, the true distribution. By the invariant

(4.34), this rejection sampling scheme meets the requirements to succeed in expected time Õ(1),

which yields the conclusion.

Cleaning up: effects of approximate sums and squishing

We first prove Lemma 60, using additional structure afforded by our data structure implementation.

Proof of Lemma 60. Recall the notation and bounds from Lemma 59,

δt :=
1

κ
(b−Axt), δ(j)

t+ 1
2

:=
1

κ

(
b−A

(
xt +

1

pj
∆

(j)
t

))
,

‖δt‖∞ ,
∥∥∥δ(j)

t+ 1
2

∥∥∥
∞
≤ 1

4
.

We write the updates to yt+ 1
2
, y

(j)
t+1 in the form, for c = ε

4κ logn :

yt+ 1
2
∝ exp (log yt − c log yt − δt) , y(j)

t+1 ∝ exp
(

log yt − c log yt+ 1
2
− δ(j)

t+ 1
2

)
.

Letting vectors vt, vt+ 1
2

satisfy yt ∝ exp(vt), yt+ 1
2
∝ exp(vt+ 1

2
) for all t, the goal of this lemma is to

show that ‖vt+1 − vt‖∞,
∥∥∥vt+ 1

2
− vt

∥∥∥
∞

are both bounded by 1. Indeed, we have the recursion

vt+ 1
2

= (1− c)vt − δt, vt+1 = vt − cvt+ 1
2
− δ(j)

t+ 1
2

.

CHAPTER 4. FASTER APPROXIMATE `∞ REGRESSION AND MAXIMUM FLOW 203

Based on the bounds on δt and δ
(j)

t+ 1
2

, it suffices to show that ‖cvt‖∞,
∥∥∥cvt+ 1

2

∥∥∥
∞
≤ 3

4 . By the

squishing operations performed by the data structure, at the beginning of n iterations (when the

data structure is restarted), the range of vt is contained in [0, 16 log n/ε].

Over the course of n iterations, this fact is preserved for each particular data structure supporting

a set of coordinates. Moreover, we recall that we used squishing whenever we initialize a new data

structure in the binomial heap to maintain the fact that the additive range over all coordinates is

O(log n/ε). The final issue which may come up is the additive drift caused by the vectors δt or

δ
(j)

t+ 1
2

; however, over the course of n iterations, this can only shift the largest coordinate of vt by n/4.

Altogether, it is clear we may assume ‖vt‖∞ < n
4 + 33 logn

ε � 3
4c ; the conclusion follows. Similarly,

we inductively have
∥∥∥vt+ 1

2

∥∥∥
∞
� 3

4c by bounding its difference to vt.

We now consider the effect of only approximately maintaining the sums of exponentials in our

algorithm, and applying squishing. In particular, the inequality in Lemma 62 only holds up to an

additive constant. The additive error comes into play in two ways: the first-order optimality condi-

tion only holds up to the discrepancy between yt and y̆t, and each time we apply squishing affects

the value of E
[
Vzt+1

(z̃)
]
. Regarding the former, all problem parameters and the number of phases

of our algorithm are all bounded by a small polynomial in n, so the guarantees of Y-Oracle.Coord

mean that the cumulative error does not amount to more than n−90 � ε (we assume ε > n−3, else

an interior point method achieves our stated runtime). Similarly, regarding the latter, Lemma 255

implies that even if we squish O(n) coordinates each iteration, the cumulative error in the Bregman

divergence does not amount to more than n−90.

Chapter 5

Semi-Streaming Combinatorial

Optimization

This chapter is based on [293, 39], with Sepehr Assadi, Arun Jambulapati, Yujia Jin, and Aaron

Sidford.

5.1 Introduction

We study the fundamental problem of designing semi-streaming algorithms for maximum cardinality

matching in bipartite graphs (MCM). We consider the insertion-only problem where an unknown

n-vertex m-edge undirected bipartite graph is presented as a stream of edge insertions. Our goal

is to compute an ε-approximate MCM (a matching with value ≥ 1 − ε times the optimum) in the

semi-streaming model [221], i.e. using Õ(n) space,1 and as few passes as possible.

Due to its canonical and prevalent nature, MCM is well-studied in the graph streaming literature.

In a single pass, a simple greedy algorithm achieves a 1
2 -approximation in O(n) space (cf. Lemma 71)

and obtaining better than a (1
1+ln 2) ≈ 0.59 approximation requires n1+Ω(1/ log log (n)) space [309] (see

also [240, 308]). Correspondingly, there is a line of research on designing multi-pass algorithms for

ε-approximating MCM. In this chapter, we focus on Õ(poly(ε−1))-pass semi-streaming algorithms.

Here, the state-of-the-art includes the O(ε−2)-pass O(n)-space algorithm of [42] (see also [12]) and

the O(ε−1 log n)-pass Õ(n · poly(ε−1))-space algorithm of [13].2

For different ranges of ε, these semi-streaming MCM algorithms provide non-trivial trade-offs

1Throughout, we measure space in machine words of size Θ(logn) and use Õ to hide factors polylogarithmic in n,
ε−1, and Cmax, the largest edge weight of the relevant problem. In all our applications, without loss of generality,
ε−1 and Cmax are O(poly(n)). Consequently, in our applications an Õ(n) space algorithm is a semi-streaming, i.e.
O(n · poly(log(n)), algorithm for our applications.

2Streaming MCM has been studied under several other variants and parameter settings; see Section 5.1.4 for
details.

204

CHAPTER 5. SEMI-STREAMING COMBINATORIAL OPTIMIZATION 205

between space and pass complexity. While [13] provides an improved Õ(ε−1) passes compared to

O(ε−2) in [42], the space complexity of [13] is larger by poly(ε−1) factors3 and therefore only adheres

to the semi-streaming restriction of using Õ(n) space when ε ≥ (polylog (n))−1. The central question

we address in this paper is whether this trade-off is necessary:

Is it possible to obtain an Õ(ε−1)-pass semi-streaming algorithm for ε-approximating

maximum bipartite matchings for the entire range of ε > 0?

In this paper we answer this question in the affirmative. We provide multiple ways to lever-

age recent advances in continuous and combinatorial optimization for this goal. For example, in

Appendix D.5 we show how to obtain this result by a careful application of recent results on the

box-constrained Newton method [145] and streaming sparsification [388].

Our main result is a simple algorithm that further improves the space complexity. Our starting

point is to demonstrate that the advances in area convexity [483] (see also Section 2.5), which

achieved a state-of-the-art algorithm for approximate maximum flow, are applicable to match-

ing and transportation problems as well through similar “soft Lagrangian” formulations. By di-

rectly applying these tools, we develop a direct, efficient parallel solver for optimal transport in

Appendix D.1. We further leverage these new optimization methods to provide an O(n)-space

and O(ε−1 · log (ε−1) · log n)-pass algorithm for semi-streaming bipartite matching. This space-

dependency is optimal, as Ω(n) space is needed to simply output the final matching. Further,

this algorithm is deterministic, in contrast to the previous Õ(ε−1)-pass algorithm of [13], and the

method’s runtime is Õ(m · ε−1).

To obtain this result we introduce a more general algorithmic framework of independent interest.

We design semi-streaming algorithms which can approximately determine the value of and produce

low-space implicit fractional solutions to linear programs, given in the form of box-simplex games,

when rows of the constraint matrix are presented in a stream. We obtain our MCM results by

applying this optimization method to a linear programming representation of the problem and show

that this implicit solution can be converted into a sparse solution in low space.

We believe our results demonstrate the power of recent optimization advances for solving stream-

ing problems. Beyond resolving the space complexity of Õ(ε−1)-pass algorithms, we show that our

techniques extend to yield the following additional results.

• Exact MCM in o(n) passes for all densities. Recent work [368] asked whether the O(n log n)-

pass semi-streaming algorithm for exact MCMs following from a careful implementation of the

classical Hopcroft-Karp algorithm [274] is improvable. The authors designed an Õ(n)-space

algorithm based on interior-point methods using Õ(
√
m) passes, which is o(n) passes except

for in dense graphs. By combining our approximate MCM method with recent advances in

3We remark that the introduction and main theorem statements of [13] are written for constant ε. However, for
subconstant ε it is straightforward to see their space requirement incurs a poly(ε−1) dependence.

CHAPTER 5. SEMI-STREAMING COMBINATORIAL OPTIMIZATION 206

streaming reachability [290], we obtain an O(n
3
4 +o(1))-pass, Õ(n)-space algorithm for exact

MCM, thereby answering the main open problem of [368] for all densities. Interestingly, this

improvement is a direct byproduct of resolving our motivating question as the space-pass

trade-offs in [13] and [42] prevent either method from obtaining nontrivial semi-streaming

exact MCM algorithms even when combined with [290] (see Remark 7).

• Optimal transport. Closely-related to computing MCMs, the discrete optimal transport prob-

lem has received widespread recent interest due to applications in machine learning [151, 25].

Several recent works have designed different optimization algorithms (influenced by develop-

ments for matching) [450, 82] solving the problem on a support size of n using Õ(n2ε−1) total

work; we give a presentation of a new, direct method attaining this rate in Appendix D.1.

In this chapter, we further provide the first semi-streaming algorithm in this setting within

Õ(ε−1) passes, O(n) space, and comparable work.

• Transshipment and shortest path. Yet another application of our method is to solving the

transshipment problem, a type of uncapacitated minimum cost flow problem, on undirected

graphs. Several recent works have focused on this problem in streaming and parallel models [67,

358, 29] and used this to obtain approximate shortest path algorithms. We provide a semi-

streaming algorithm that achieves an ε-approximation to transshipment within Õ(ε−1) passes,

Õ(n) space, and Õ(mε−1) work. As a direct corollary of this result, we obtain ε-approximate

semi-streaming algorithms for the s-t shortest path problem with same complexities. Our

results on transshipment and shortest path improve upon the previous best semi-streaming

algorithms of [67] by Õ(ε−1) factors in passes and work.

5.1.1 Problem setup

The basic (and motivating) problem we consider in this work is that of computing an approximate

MCM in bipartite graph, G = (V,E), given as an insertion-only stream defined as follows.

Definition 17 (Semi-streaming graph model). In the semi-streaming graph model, a graph G =

(V,E) with vertex set V = [n] is presented to the algorithm as an arbitrarily ordered stream of edges

(u, v) for u, v ∈ V (the tuple contains the weight for weighted graphs). The algorithm can read this

stream in sequential passes and is constrained to use Õ(n) space.

We typically let n = |V | and m = |E|. M∗ denotes the the size of the MCM in G, and L,R ⊆ V
with L ∩ R = ∅ and L ∪ R = V denotes the vertex bipartition. A key goal of this paper is to

efficiently compute approximate MCMs in the semi-streaming graph model. Formally, we refer to

any flow x ∈ [0, 1]E such that the total flow adjacent to any v ∈ V is ≤ 1 as a fractional matching

and call the matching integral if x ∈ {0, 1}E ; we say such a matching is a ε-approximate MCM if

‖x‖1 ≥ (1 − ε)M∗. The outputs of our algorithms typically include both the approximate problem

CHAPTER 5. SEMI-STREAMING COMBINATORIAL OPTIMIZATION 207

value and an approximate solution. For MCM problems with value M∗, the algorithm returns this

value within a (1− ε) factor and an integral matching that achieves this approximate value.

To obtain our main result, we develop streaming algorithms for a more general set of problems.

These problems are linear programming in the form of box-simplex games, i.e. bilinear minimax

games between a box, or `∞-constrained player, and simplex, or nonnegative `1-constrained player:

min
x∈∆m

max
y∈[−1,1]n

y>A>x+ c>x− b>y. (5.1)

Maximizing over y for a fixed x, problem (5.1) is equivalent to the following variant of `1-regression:

min
x∈∆m

c>x+
∥∥A>x− b∥∥

1
. (5.2)

We call x ∈ ∆m an ε-approximate minimizer for (5.2) if it satisfies c>x+
∥∥A>x− b∥∥

1
≤ minx′∈∆m c>x′+∥∥A>x′ − b∥∥

1
+ ε. We relate (5.1), (5.2) to MCM via reduction: we construct an appropriate in-

stance of (5.1), (5.2) such that any approximate minimizer to (5.2) can be efficiently converted

into an approximate MCM. We note the semi-streaming solver we develop in Section 5.3 attains an

approximate solution for (5.1), but in applications we only ever use that the x block approximately

minimizes (5.2).

Interestingly, we provide a general streaming algorithm for approximating the value of (5.1),

(5.2) (and implicitly representing an optimal solution) in the following access model.

Definition 18 (Semi-streaming matrix model). In the semi-streaming matrix model, a matrix

A ∈ Rm×n and a vector c ∈ Rm are presented to the algorithm respectively as an arbitrarily ordered

stream of rows {Ai:}i∈[m], and a similarly ordered stream of coordinates {ci}i∈[m] (the ordering on

[m] is arbitrary, but each {Ai:, ci} pair is given together). The algorithm can read this stream in

sequential passes and is constrained to use Õ(n) space.

By choosing A to be the incidence matrix of a graph and setting c to be the weights if applicable,

Definition 18 generalizes Definition 17. Note that obtaining semi-streaming algorithms for this

problem is nontrivial only when m = ω(n).

Further applications. In Section 5.5, we study additional combinatorial optimization problems which

are also reducible to box-simplex games. In the problem of discrete optimal transportation, a com-

plete bipartite graph G = (V,E) where E = L × R has associated demands ` ∈ ∆L, r ∈ ∆R, and

edge costs c ∈ RE . The demands `, r are probability distributions on domains of equal size, and

the goal is to compute the minimum cost transport plan which attains the prescribed marginals

on the vertex sets L and R. The semi-streaming access model gives the cost of each edge as it is

presented; note that the marginals `, r can be stored explicitly in O(n) space. In this setting, our

designed algorithm gives an approximate value of the optimal transportation, as well as a fractional

transportation plan x ∈ ∆E that meets the demands exactly (has the correct marginals at every

CHAPTER 5. SEMI-STREAMING COMBINATORIAL OPTIMIZATION 208

vertex) and achieves an approximately optimal value. Using our techniques we also give a result

for computing maximum weight matchings (MWMs), which is competitive with the state-of-the-art

when the optimal matching is highly saturated (e.g. when the MWM value is within a constant

factor of ‖w‖∞ n in a graph with weights w, the largest possible value).

Finally, in Section 5.6 we go beyond “bipartite matching-type” applications of our framework

and consider the transshipment problem. Given a demand vector d ∈ RV on vertices of an undi-

rected graph with non-negative edge weights, the goal of transshipment is to route a flow satisfying

this demand while minimizing the sum of weighted flow magnitude over all edges. Among other

applications, setting demands of any pairs of vertices s, t in the transshipment problem to 1 and

−1 respectively, and other vertices to zero, reduces the s-t shortest path problem to transshipment.

Combining our techniques with standard tools, we give a semi-streaming algorithm for transshipment

improving the state-of-the-art by roughly an ε−1-factor in the number of passes and work.

5.1.2 Our results

Here we state several key results of our paper. The following is our main result.

Theorem 26 (Approximate MCM). There is a deterministic semi-streaming algorithm which given

any bipartite G = (V,E) with |V | = n, |E| = m, finds a ε-multiplicatively approximate MCM in

O
(
log n · log(ε−1) · ε−1

)
passes, O(n) space, and O(m log2 n · ε−1) total work.

The result most closely related to our Theorem 26 is the semi-streaming algorithm of [13] that

achieves a ε-approximate MCM using O(ε−1 · log n) passes and O(n · poly(log n, ε−1)) space. Theo-

rem 26 improves the space dependency to the optimal bound of O(n) at a cost of a log ε−1 factor in

the number of passes. Additionally, our algorithm is arguably more straightforward than [13] and

is deterministic (the randomized algorithm of [13] works with high probability).

An interesting feature of our algorithm in Theorem 26 its space complexity has no dependence on

the parameter ε. Consequently, this algorithm can obtain a very accurate approximation of MCM in

O(n) space, albeit at a cost of a large pass complexity. We leverage this feature and complement the

algorithm with standard augmenting path approaches for MCM, implemented efficiently using recent

advances on PRAM (and semi-streaming) algorithms for directed reachability problem in [290]. This

yields the following result for exactly computing an exact MCM, resolving an open problem of [368]

on obtaining o(n)-pass semi-streaming algorithms for exact MCM (note however that [368] handles

weights, while we primarily focus on MCM).

Theorem 27 (Exact MCM). There is a randomized semi-streaming algorithm which given any

bipartite G = (V,E) with |V | = n, finds an exact MCM with high probability in O(n
3
4 +o(1)) passes.

Our techniques in obtaining Theorem 26 yields results for several other semi-streaming combi-

natorial optimization problems, such as the following.

CHAPTER 5. SEMI-STREAMING COMBINATORIAL OPTIMIZATION 209

Theorem 28 (Optimal transport). There is a deterministic semi-streaming algorithm which given

any optimal transport instance on a complete bipartite graph on V = L∪R, costs c ∈ RE≥0, and two

sets of demands ` ∈ ∆L, r ∈ ∆R, finds an ε ‖c‖∞-additive approximate optimal transport plan using

O
(
ε−1 log n log ε−1

)
passes, O (n) space, and O

(
n2ε−1 log n log ε−1

)
work.

To our knowledge, this is the first non-trivial semi-streaming algorithm for optimal transport

(however, it is plausible one can use existing semi-streaming algorithms for b-matching such as [12]

in conjunction with the reduction of [82] to obtain non-trivial semi-streaming algorithms.) We

further give an algorithm for MWM using similar techniques (see Section 5.5.3).

Finally, yet another application of our techniques is to the transshipment problem. We define

transshipment and prove the following result in Section 5.6.

Theorem 29 (Approximate transshipment and shortest path). There is a randomized semi-streaming

algorithm which given weighted undirected G = (V,E,w) and demand vector d ∈ Rn, finds an ε-

multiplicatively approximate minimizer to the minimum transshipment cost in O(logO(1) n · ε−1)

passes, O(n logO(1) n) space, and O(m logO(1) n · ε−1) total work with high probability in n. This, in

particular, yields a semi-streaming algorithm that ε-multiplicative approximates the s-t shortest path

problem with the same pass, space, and work complexities.

5.1.3 Our techniques

In this section, we overview our approach. We first give an overview of a natural reformulation of

MCM as an appropriate `1-regression problem. We then discuss the two main components of our

semi-streaming MCM implementation, which are representative of our overall framework in other

applications. The first component is a low-space solver for general `1 regression problems in the form

of box-simplex games, which returns an implicit representation of an approximate (possibly dense)

solution. The second component is a rounding procedure which sparsifies implicit approximate

solutions and rounds them to feasibility and (in certain contexts) integrality.

Our main contribution is to give efficient semi-streaming implementations and applications of

each of these components. Our semi-streaming methods for optimal transport, MWM, and trans-

shipment similarly follow from our framework, via appropriately formulating these applications as

regression problems, applying our semi-streaming tools to approximate the regression problem, and

rounding the approximate solution to an explicit sparse solution of no worse objective value.

MCM as `1-regression. The first piece of our MCM algorithm is to formulate an appropriate

`1-regression problem, whose approximate solution also implies an approximately optimal matching.

Variants of this (fairly natural) reduction have found previous use, but its proof of correctness is

suggestive of our overall approach, so we describe it here for completeness. To obtain this reduction,

we follow a “penalizing overflow” approach which has also found recent applications to approximate

maximum flow [482, 318, 441, 483, 486]. We remark that in Appendix D.1, this strategy is also

CHAPTER 5. SEMI-STREAMING COMBINATORIAL OPTIMIZATION 210

followed to develop a solver for approximate optimal transport based on box-simplex games.

Recall that the (fractional) MCM problem asks to find a flow x ∈ RE≥0 with maximal `1 norm,

such that no vertex has more than 1 unit of flow adjacent to it (the “matching constraints”). In

linear-algebraic terms, letting B ∈ {0, 1}E×V be the (unsigned) incidence matrix for the graph,

the problem asks to maximize ‖x‖1 subject to the matching constraints, B>x ≤ 1 entrywise. The

penalizing overflow approach relaxes this problem to an appropriate unconstrained optimization

problem, by appropriately penalizing matching constraint violations (rather than treating them as

hard constraints), and using combinatorial structure to argue solving the unconstrained problem

suffices. We now describe how to instantiate this reduction for the MCM problem.

We begin by obtaining M , a 2-approximation to the MCM value M∗, in a single pass using a

greedy algorithm (Lemma 71), which is used to parameterize our `1-regression problem. The next

step in our reduction is a rounding procedure adapted from [25], which gives an algorithm showing

that any flow x̂ ∈ RE≥0 (not necessarily a feasible matching) can be converted into a feasible (frac-

tional) matching x̃ on the same support, with size loss proportional to the total amount of constraint

violations Overflowd(x̂) :=
∥∥(B>x̂− d)+

∥∥
1
, where subscripting + denotes the nonnegative part and

B>x̂−d encodes constraint violations (cf. Lemma 73). Using this observation, we demonstrate that

to find a large fractional matching it suffices to solve the following `1-regression problem

min
x∈∆Ẽ

−〈1E , 2Mx〉+ 2M
∥∥(B>x̂− d)+

∥∥
1

to εM additive accuracy, where the graph G̃ := (Ṽ , Ẽ) modifies our original G = (V,E) by adding

one dummy edge, and the restriction of 2Mx to the original edges E plays the role of our desired

matching; these complications are to fix the `1 norm of our x variable, to put it in a form suitable

for canonical optimization techniques. Further, to explicitly return an approximate MCM, we show

that we can take an implicit representation of our approximate optimizer x, and use dynamic data

structures in O(n) space to return x′ ∈ ∆Ẽ on a sparse support satisfying B>x = B>x′. We can

then explicitly compute an approximately optimal MCM on this sparse support.

We now discuss the technical tools which go into developing both of these pieces: our semi-

streaming `1-regression solver, and obtaining an approximately optimal matching on a sparse sup-

port.

Iterative methods in low space. Our semi-streaming algorithm for approximately solving (5.1),

(5.2) follows recent improved algorithms solving these box-simplex problems in the standard (non-

streaming) setting. Classical first-order methods for solving these problems, such as smoothing [419]

or decoupled extragradient methods [415, 420] have iteration counts incurring either a quadratic

dependence on the error ratio ‖A‖∞ ε−1 or growing polynomially with the dimension (each iteration

running in time linear in the sparsity of the matrix A). A line of work, beginning with a breakthrough

by [483] (which solved a more general problem), has designed improved first-order methods bypassing

CHAPTER 5. SEMI-STREAMING COMBINATORIAL OPTIMIZATION 211

both of these bottlenecks, with an iteration count of Õ(‖A‖∞ ε−1). The [483] algorithm is analyzed

in the box-simplex setting we study using a different regularizer in Appendix D.1; we recall that

Section 2.5 demonstrates that the classical methods of [415, 420] could also be analyzed using the

regularizer of Appendix D.1, and obtain a matching rate.

Our contribution to this line of work is the crucial observation that the [293] algorithm can

deterministically be implemented implicitly in O(n) space under the semi-streaming matrix model

of Definition 18. This observation is perhaps surprising, since the simplex variable throughout the

algorithm is typically fully-dense, and we do not subsample to preserve sparsity. We instead utilize

the recursive structure of the box-simplex algorithms to give a low-space representation of simplex

iterates, such that the actual iterate can be accessed in O(1) passes.

We begin by giving a high-level overview of the algorithm of Appendix D.1; we remark that we

will use this algorithm (as opposed to [483]) because its analysis is convenient for obtaining tighter

dependencies on problem parameters for our applications. The algorithm of Appendix D.1 runs in

Õ(‖A‖∞ ε−1) iterations, each computing a box-simplex pair (xt, yt) ∈ ∆m × [−1, 1]n. Each box-

simplex pair is an approximate solution to a regularized linear objective of the form (hereinafter we

let | · | applied to matrix or vector arguments act entrywise)

min
x∈∆m,y∈[−1,1]n

〈gx, x〉+ 〈gy, y〉+ r(x, y), where r(x, y) := x>|A|(y2) + 10 ‖A‖∞
∑
i∈[m]

xi log xi. (5.3)

Typically, closed-form solutions to the above displayed problem are difficult to compute, because the

regularizer r couples the two blocks. However, Appendix D.1 provides an alternating minimization

subroutine which rapidly converges to an approximate solution, which suffices for our purposes.

Our first observation is that in every iteration, the simplex variable xt, is always proportional

to a vector exp(Avt + |A|ut + λtc) for n-dimensional vectors vt, ut and a scalar λt. This is be-

cause throughout the alternating subroutine for solving (5.3), every simplex iterate is the minimizer

to a entropy-regularized linear objective, where the linear term is with respect to a linear com-

bination of two pieces. The first is a gradient operator of the box-simplex problem, of the form(
Ay + c, b−A>x

)
for iterate x, y, and the second is the gradient of our regularizer (which on the

x side is either a linear combination of A and |A| applied to n-dimensional vectors or an entropic

gradient; the latter yields a logarithm of previous iterates, which have an implicit representation

inductively). Combining shows all linear terms have the form Av+|A|u+λc, enabling our recursion.

Our second observation is that for any (vt, λt) pair, computing the vectors A> exp(Avt+ |A|ut+
λtc) and |A|> exp(Avt+ |A|ut+λtc) (required in the gradient operator) can be performed in a single

semi-streaming pass, and O(n) space, because the resulting matrix-vector product decouples by edge.

Combining these pieces implies a deterministic semi-streaming iterative method for approximating

the value of box-simplex games, as stated in the following (cf. Section 5.2 for definitions).

Theorem 30. There is a deterministic algorithm obtaining an ε-additive approximation to the value

CHAPTER 5. SEMI-STREAMING COMBINATORIAL OPTIMIZATION 212

of (5.1), (5.2) in O(
‖A‖∞
ε · log(m) log(max (‖A‖∞ , ‖b‖1) · ε−1)) passes and O(n) space. Moreover,

the algorithm outputs a stream of nonnegative 1-sparse vectors in Rm of length O(m · ‖A‖∞ logm

ε)

whose sum is x̄, an ε-approximate optimizer to (5.2).

Theorem 30 gives an O(n) space, Õ
(
‖A‖∞ ε−1

)
-pass algorithm for obtaining ε-additive approx-

imations to the value of box-simplex games. The remainder of our work is in applying this method

to matching problems and providing semi-streaming implementations for rounding the solution.

Detecting a sparse support via cycle cancelling. So far, we have given a way of running a solver

for the problems (5.1), (5.2) entirely in O(n) space. However, it remains to discuss how to extract an

MCM from these iterates; although we have a low-space implicit representation, the iterates them-

selves remain fully dense, and to write them down explicitly for postprocessing is too expensive. To

get around this obstacle, we give a data structure which is compatible with our implicit representa-

tion, and can take a flow x given as a sequence of edge additions and obtain an O(n)-sparse x′ such

that ‖x‖1 = ‖x′‖1 and B>x = B>x′ (i.e. the “quality of the matching” is unaffected), but we can

afford to explicitly write down x′. Our data structure is based on cycle cancelling via link/cut trees,

a standard technique in the literature following e.g. [488, 243].

Ultimately, we show our framework of implicitly solving a box-simplex game and feeding the

implicit representation of its solution into a link/cut tree data structure to detect a sparse support

containing a good-quality approximate matching is quite flexible. We leverage this framework to also

solve semi-streaming variants of optimal transport, weighted matching, and transshipment problems.

5.1.4 Previous work

Maximum matching. MCM and its many variants are arguably the most extensively studied problems

in the graph streaming literature; see, e.g. [221, 387, 240, 327, 213, 308, 12, 310, 41, 439, 40, 305,

326, 506, 13, 37, 228, 218, 72, 312, 309] and references therein.

The first multi-pass MCM algorithm was given in [221]—alongside the introduction of the semi-

streaming model itself—achieving a (2
3 − ε)-approximation in O(ε−1 log ε−1) passes. The first (1 −

ε)-approximation was then achieved by [387], for both bipartite and non-bipartite graphs, using

(ε−1)O(ε−1) passes. The pass-complexity of this result for bipartite graphs was improved in [213, 12,

308, 13, 42], leading to the aforementioned state-of-the-art results of [13, 42]. More recently, [368]

designed a semi-streaming algorithm for this problem with Õ(
√
m · log (ε−1)) passes, which achieves

better pass-dependence on ε, at a cost of a polynomial dependence on n,m in the number of passes.

Finally, [224] very recently gave the first poly(ε−1)-pass algorithm for this problem for non-bipartite

graphs.

The aforementioned works focus on insertion-only streams. When allowing deletions to the

stream, i.e. in the turnstile streaming model, the problem becomes significantly harder. In particular,

the best approximation ratio possible to MCM in a single-pass is provably only Ω(n1/3) [41, 158]

CHAPTER 5. SEMI-STREAMING COMBINATORIAL OPTIMIZATION 213

which is achieved by the algorithms of [41, 138] (see also [325]). Nevertheless, many multi-pass

streaming algorithms for MCM can be extended to turnstile streams at the cost of an additional

O(log n) multiplicative factor in their number of passes [14]. It is worth noting that the algorithm

of [13] directly works in the turnstile streaming model.

Alongside MCM, maximum weight matching (MWM) has also been studied extensively. Some

key results include (1
2 − ε)-approximation in a single pass [439], and (1 − ε)-approximation in

(ε−1)O(ε−2) [228], O(ε−2 log ε−1) [12], and O(ε−1 log n) [13] passes. The exact algorithm of [368]

in Õ(
√
m) also works for the more general MWM problem.

We also note that several other streaming variants of MCM and MWM have also been studied,

including random-order streams [327, 218, 326, 310, 37, 72, 38], n1+Ω(1)-space algorithms [37, 13, 69],

or size estimation in o(n)-space [310, 216, 40, 389]. Reviewing this vast literature is beyond the scope

of this paper and we refer the interested reader to these references.

As in many computational models, MCM and MWM have been a testbed for development and

adaptation of various algorithmic tools for streaming including local-ratio algorithms [439, 228],

augmenting paths [221, 387, 213], water-filling or auction algorithms [308, 42], iterative methods e.g.

multiplicative weights [12, 13] and interior-point methods [368].

Optimal transport. The design of efficient algorithms for discrete optimal transportation has received

widespread attention in recent years [151, 25, 24, 365], due in large part to its many applications in

modern statistical modeling and machine learning. To our knowledge, ours is the first result which

applies to this problem in the semi-streaming setting (though as we remark earlier, it may be possible

to combine prior-work to achieve non-trivial results). Our approach for optimal transport follows

straightforwardly from our algorithms for solving the fractional maximum matching problem, via

known reductions in the literature.

Transshipment and shortest path. The transshipment problem in the semi-streaming was previously

studied in [67] which designed an Õ(ε−2) pass semi-streaming algorithm for this problem using gradi-

ent descent. This algorithm in turn allowed [67] to obtain ε-approximate semi-streaming algorithms

for the (single-source) shortest path problem in Õ(ε−2) passes, improving upon the no(1)-pass algo-

rithm of [269] that required n1+o(1)-space (more than the restriction of semi-streaming algorithms).

More recently, [117] gave a semi-streaming algorithm for finding exact single-source shortest paths

in Õ(
√
n) passes. On the lower bound front, [261] showed that ε-approximate semi-streaming algo-

rithms for the s-t shortest path problem require Ω(ε−1) passes (see also [43, 125] for more advances

on this front).

5.2 Preliminaries

General notation. We use [n] to denote {1, ..., n} and 0n and 1n to denote the all-zeros and all-ones

vectors in Rn. An event holds with high probability if it holds with probability ≥ 1− n−c for c > 0

CHAPTER 5. SEMI-STREAMING COMBINATORIAL OPTIMIZATION 214

(in our results, c can be chosen to be arbitrarily large affecting guarantees by constant factors). We

use nnz(A) to denote the number of nonzero entries in a matrix A, and its row i and column j are

denoted Ai: and A:j . We say scalar α > 0 is an ε-multiplicative approximation to scalar β > 0 if

|αβ − 1| ≤ ε; similarly, we say it is an ε-additive approximation if |α− β| ≤ ε. For a vector v, we use

v+ or (v)+ to denote the vector which entrywise has [v+]i = max (vi, 0), and use vS ∈ Rn to denote

the vector which zeroes out entries of v in [n] \ S for S ⊆ [n].

Norms. We let ‖v‖p denote the `p norm of vector v, and ‖M‖p denote the `p operator norm of a

matrix. In particular, ‖M‖∞ is the maximum `1 norm over rows of M, and ‖M‖1 is the maximum `1

norm over columns. We let ∆m ⊂ Rm≥0 denote the nonnegative simplex, so x ∈ ∆m ⇐⇒ ‖x‖1 = 1

and entrywise x ≥ 0. Finally, we let ‖v‖0 be the number of nonzero entries of a vector v.

Graphs. We denote a graph by G = (V,E), and define n = |V | and m = |E| when context is

clear. We refer to the independent vertex subsets of a bipartite graph by L and R. We denote the

(unsigned edge-vertex) incidence matrix of a graph by B ∈ RE×V≥0 , where Bev = 1, if and only if

v ∈ V is an endpoint of e and is zero otherwise. We refer to any assignment of values to edges

f ∈ RE as a flow. When the graph is weighted (with associated edge weights w ∈ RE≥0), we refer to

the graph by G = (V,E,w).

Computation model. Throughout, we operate in the standard word RAM model of computation,

where basic arithmetic operations on O(log n)-bit words can be performed in constant time. For

weighted graphs, we assume all weights can be stored in O(1) words, and all results concerning

additional memory overhead count the number of additional words necessary for algorithms. We

also assume always that ε−1 = O(poly(n)). We measure space overhead complexity by the number of

words used. In other related computational models, this may increase our space or work complexities

by a logarithmic factor.

5.3 Box-simplex games in low space

In this section, we provide semi-streaming algorithms (cf. Definition 18) for approximately solving

box-simplex bilinear games of the form (5.1), which will yield approximate minimizers for the `1

regression problem. The complexity of our algorithms depend on the quantity ‖A‖∞. We prove in

this section that we can implement recent improved algorithms for problems of the form (5.1) based

on area-convex regularization in the semi-streaming model in low memory, and give the guarantees

as Theorem 30.

Our algorithm for Theorem 30 is a low-space implementation of a primal-dual algorithm inspired

by [483], specialized to box-simplex games (as analyzed in Appendix D.1). Our main algorithm,

Algorithm 13, follows the framework of Appendix D.1, which analyzes the convergence of a dual

extrapolation scheme for solving (5.1). Lines 8 and 11 of the algorithm are implemented with AltMin

CHAPTER 5. SEMI-STREAMING COMBINATORIAL OPTIMIZATION 215

(Algorithm 14), an alternating minimization subroutine also provided in Appendix D.1. Finally, we

note that we peform pre-processing and post-processing of the problem in Lines 1 and 2, so that

our final guarantees only depend on properties of A (and not b or c). The result of these steps only

affect the problem by a constant scalar shift, and can be implemented in one semi-streaming pass

(more detail is given as Lemma 256 in Appendix D.1.7).

Algorithm 13: ACDualEx(A, b, c, ε, T)

1 Input: A ∈ Rm×n≥0 , c ∈ Rm, b ∈ Rn, 0 ≤ ε ≤ ‖A‖∞, T ∈ N Remove all coordinates i ∈ [m]
where ci > mini∗∈[m] ci∗ + 2 ‖A‖∞ from c and corresponding rows of A from the problem
(ignoring the entries from the stream), then set c← c− (mini∗∈[m] ci∗)1 entrywise ;

2 b← min (max (b,−‖A‖∞) , ‖A‖∞);

3 r(x, y) := x>|A|(y2) + 10 ‖A‖∞
∑
i∈[m] xi log xi, g(x, y) := (Ay + c,−A>x+ b);

4 z0 ← (1
m1m,0n), s0 ← (0m,0n);

5 for 0 ≤ t < T do
6 γx ← sxt + 1

3 (Ayt + c);

7 γy ← syt + 1
3

(
b−A>xt

)
;

8 wt := (x′t, y
′
t)← AltMin(γx, γy,A,K, xt, yt) with K = O(log

max(‖A‖∞,‖b‖1)

ε) giving
ε
2 -approx. minimizer to

〈
1
3g(zt)−∇r(zt), w

〉
+ r(w) in ∆m × [−1, 1]n ;

9 γx ← sxt + 1
6 (Ay′t + c);

10 γy ← syt + 1
6

(
b−A>x′t

)
;

11 zt+1 := (xt+1, yt+1)← AltMin(sxt + γx, syt + γy,A,K, xt, yt) with

K = O(log
max(‖A‖∞,‖b‖1)

ε) giving ε
2 -approx. minimizer to

〈
1
3g(wt)−∇r(zt), z

〉
+ r(z)

in ∆m × [−1, 1]n;
12 st+1 ← (γx, γy) ;

Algorithm 14: AltMin(γx, γy,A, δ,K, xinit, yinit)

1 Input: A ∈ Rm×n≥0 , γx ∈ Rm, γy ∈ Rn, K ∈ N;

2 Output: Approx. minimizer to 〈(γx, γy), z〉+ r(z) for r(z) in Line 2, Algorithm 13 ;

3 x(0) ← xinit, y
(0) ← yinit;

4 for 0 ≤ k < K do
5 x(k+1) ← argminx∈∆m

{
〈γx, x〉+ r(x, y(k))

}
;

6 y(k+1) ← argminy∈[−1,1]n
{
〈γy, y〉+ r(x(k+1), y)

}
;

7 Return: (x(K), y(K));

The guarantees of Algorithms 13 and 14 are demonstrated by Appendix D.1, and summarized

in Proposition 14. The main technical modification in it is a tighter characterization of the alter-

nating minimization subroutine, based on bounding the initial error independently of the number of

iterations (whereas Appendix D.1 assumed a worst-case bound on initial error).

Proposition 14. By taking T = O(
‖A‖∞ logm

ε) for a sufficiently large constant, Algorithm 13 results

in iterates {(x′t, y′t)}0≤t<T so that x̄ := 1
T

∑
0≤t<T x

′
t is an ε-approximate minimizer to (5.2).

CHAPTER 5. SEMI-STREAMING COMBINATORIAL OPTIMIZATION 216

We defer a proof of Proposition 14 to Appendix D.1.7, as it largely stems from ideas used in

Appendix D.1. We next turn to our main technical contribution, the development of semi-streaming

algorithms for implementing Algorithms 13 and 14 (Lemma 70), the primary innovation of this

section. Concretely, our implementation has the following key property: in every iteration all box

variables are maintained explicitly, and all simplex variables are maintained implicitly as points

proportional to exp(Av + |A|u+ λc), for some vectors v, u ∈ Rn and scalar λ computed and stored

in O(n) space. We first make a crucial technical observation regarding computing gradients with a

single pass.

Lemma 69. There is a one pass semi-streaming algorithm that computes ‖exp(Av + |A|u+ λc)‖1,

A> exp(Av + |A|u + λc), and |A|> exp(Av + |A|u + λc) for input v, u ∈ Rn and λ ∈ R with O(n)

space and nnz(A) work.

Proof. First, to compute ‖exp(Av + |A|u+ λc)‖1, for each i ∈ [m] the algorithm sequentially com-

putes each exp(〈Ai:, v〉+ 〈|Ai:|, u〉+ λci) through the pass and sums these values. Second, note

A> exp(Av + |A|u+ λc) =
∑
i∈[m]

Ai: exp(〈Ai:, v〉+ 〈|Ai:|, u〉+ λci),

|A|> exp(Av + |A|u+ λc) =
∑
i∈[m]

|Ai:| exp(〈Ai:, v〉+ 〈|Ai:|, u〉+ λci).

Throughout the pass, the algorithm adds exp(〈Ai:, v〉 + 〈|Ai:|, u〉 + λci) to the coordinates of the

resulting vector in A and |A| it contributes to (specified by the row given in the stream).

Using ideas from Lemma 69, we demonstrate that the entirety of Algorithm 13 and its subroutine

Algorithm 14 can be implemented in low space.

Lemma 70. Consider an instance of Algorithm 13 using Algorithm 14 to implement Lines 5 and

6. Throughout, the following invariants on the iterates hold:

xt ∝ exp(Avt + |A|ut + λtc), x
′
t ∝ exp(Av′t + |A|u′t + λ′tc) for some vt, v

′
t, ut, u

′
t ∈ Rn, λt, λ′t ∈ R.

Moreover, we also have

sxt = Av′′t + λ′′t c for some v′′t ∈ Rn, λ′′t ∈ R.

Given their values in the previous iteration, in every iteration of Lines 6-12 of Algorithm 13 we can

compute such (vt, v
′
t, v
′′
t , ut, u

′
t, λt, λ

′
t, λ
′′
t , yt, y

′
t, s

y
t) in O(n) space. Each iteration takes O(K) passes

and O(nnz(A) ·K) total work, where K is the input parameter to Algorithm 14.

Proof. We proceed by induction on t; in the first iteration, we have v0 = u0 = v′′0 = 0n, λ0 = λ′′0 = 0.

Preserving the st invariant. Recall that st+1 = st + (Av+ 1
6c,

1
6 (b−A>x′t)) where v := 1

6y
′
t. By

induction on wt, we can explicitly compute v in O(n) space, and Lemma 69 lets us explicitly compute

CHAPTER 5. SEMI-STREAMING COMBINATORIAL OPTIMIZATION 217

1
6 (b−A>x′t) in O(n) space as well. Hence, we can inductively perform the following updates in O(n)

space, maintaining the invariant on st+1:

λ′′t+1 ← λ′′t +
1

6
, v′′t+1 ← v′′t + v, syt+1 ← syt +

1

6
(b−A>x′t).

Preserving the wt invariant. Suppose inductively that zt = (xt, yt) where xt ∝ exp(Avt+ |A|ut+
λtc) for explicitly stored values vt, ut, λt, yt; we will drop the index t for simplicity and refer to

these as v̄, ū, λ̄, ȳ. Also, we refer to v′′t , λ′′t , and syt as vs, λs, and sy for simplicity. Consider the

procedure Algorithm 14 initalized with these values, and note that

γx =
1

3
(Aȳ + c) + Avs + λsc,

γy =
1

3

(
b−A>

exp(Av̄ + |A|ū+ λ̄c)∥∥exp(Av̄ + |A|ū+ λ̄c)
∥∥

1

)
+ sy.

Since r(x, y) =
〈
|A|(y2), x

〉
+ 10 ‖A‖∞

∑
i∈[m] xi log xi, we can compute that for each 0 ≤ k < K,

x(k+1) = argminx∈∆m

〈|A|((y(k))2
)

+ γx, x
〉

+ 10 ‖A‖∞
∑
i∈[m]

xi log xi

∝ exp

(
− 1

10 ‖A‖∞

(
A

(
1

3
ȳ + vs

)
+ |A|(y(k))2 +

(
1

3
+ λs

)
c

))
,

y(k+1) = argminy∈[−1,1]n

{
〈γy, y〉+

〈
|A|>x(k+1), y2

〉}
=median

(
−1, 1,− γy

2|A|>x(k+1)

)
entrywise.

(5.4)

In the last line, the median operation truncates the vector − γy

2A>x(k+1) coordinatewise on the box

[−1, 1]n. Now, suppose at the start of iteration k of Algorithm 14, we have the invariant

x(k) ∝ exp
(
Av(k) + |A|u(k) + λ(k)c

)
, (5.5)

and we have explicitly stored the tuple (v(k), u(k), λ(k), y(k)); in the first iteration, we can clearly

choose (v(0), u(0), λ(0), y(0)) = (v̄, ū, λ̄, ȳ). By the derivation (5.4), we can update

v(k+1) ← − 1

10 ‖A‖∞

(
1

3
ȳ + vs

)
,

u(k+1) ← − 1

10 ‖A‖∞

(
(y(k))2

)
,

λ(k+1) ← − 1

10 ‖A‖∞

(
1

3
+ λs

)
,

preserving representation (5.5) in the next iteration. Moreover, note that γy can be explicitly stored

CHAPTER 5. SEMI-STREAMING COMBINATORIAL OPTIMIZATION 218

(it can be computed in one pass using Lemma 69), and by applying Lemma 69 and the form (5.5),

we can compute the vector |A|>x(k+1) explicitly in one pass over the data and O(m) work. This

allows us to explicitly store y(k+1) as well. The final point wt is one of the iterates (x(K), y(K)),

proving the desired invariant. Finally, we remark in order to perform these computations we only

need to store the tuple (v(k), u(k), λ(k), y(k)) from the prior iteration, in O(n) memory.

Preserving the zt+1 invariant. The argument for preserving the invariant on zt+1 is exactly

analogous to the above argument regarding wt; the only modification is that the input vector to

Algorithm 14 is

γx =
1

6
(Ay′t + c) + Avs + λsc,

γy =
1

6

(
b−A>x′t

)
+ sy.

However, the previous argument shows that the vector y′t can be explicitly computed, and the vector

x′t satisfies the invariant in the lemma statement. The same inductive argument shows that we can

represent every intermediate iterate in the computation of zt+1 in the desired form.

Numerical stability. We make a brief comment regarding numerical stability in the semi-streaming

model, which may occur due to exponentiating vectors with a large range ω(logm) (in defining sim-

plex variables). It was shown in Appendix D.1.5 that Algorithm 13 is stable to increasing the value

of any coordinate of a simplex variable which is m10 multiplicatively smaller than the largest to reach

this threshold, and renormalizing (i.e. this implicit “padding” operation only affects the resulting

minimizer by an inverse-polynomial amount, which we can assume ε is larger than since otherwise

the number of passes is super-polynomial). In computations of Lemma 69, we can first store the

largest coordinate of Av + |A|u + λc in one pass. Then, for every coordinate more than 10 logm

smaller than the largest coordinate, we will instead treat it as if its value was 10 logm smaller than

the maximum in all computations, requiring one extra pass over the data.

We explicitly state a complete low-space implementation of Algorithms 13 and 14 under our

semi-streaming implementation here for completeness as Algorithm 15.

Corollary 15. Algorithm 15 is an implementation of Algorithms 13 and 14 with parameters given

by Proposition 14 in O(n) space and O(T · log
max(‖A‖∞,‖b‖1)

ε) passes.

Proof. It is immediate from Lemma 70 that each loop of Lines 6-10 and Lines 14-18 in Algorithm 15

is an implementation of Algorithm 14 for computing each iterate wt and zt+1 in iteration t of

Algorithm 13, in O(n) space. The pass complexity follows since passes are only used O(1) times in

each run of Lines 6-11 and 15-20 of Algorithm 15.

Finally, we conclude with our proof of Theorem 30.

CHAPTER 5. SEMI-STREAMING COMBINATORIAL OPTIMIZATION 219

Algorithm 15: LowSpaceACDualEx(A, b, c, ε)

1 Input: A ∈ Rm×n≥0 , c ∈ Rm, b ∈ Rn, 0 ≤ ε ≤ ‖A‖∞;

2 Output: {v′t}0≤t<T ⊂ Rn, {u′t}0≤t<T ⊂ Rn, {λ′t}0≤t<T ⊂ R, {y′t}0≤t<T ⊂ Rn so that for

ȳ :=
1

T

∑
0≤t<T

y′t, x̄ :=
1

T

∑
0≤t<T

exp(Av′t + |A|u′t + λ′tc)

‖exp(Av′t + |A|u′t + λ′tc)‖1
,

the pair (x̄, ȳ) is an ε-approximate saddle point to (5.1);

3 T ← O(
‖A‖∞ logm

ε), K ← O(log
n‖A‖∞

ε);
4 t← 0, λ0 ← 0, v0 ← 0n, u0 ← 0n, y0 ← 0n, λ′′0 ← 0, v′′0 ← 0n, sy0 ← 0n ;
5 while t < T do
6 (v(0), u(0), λ(0), y(0))← (vt, ut, λt, yt);

7 γy ← 1
3 (b−A> exp(Avt+|A|ut+λtc)

‖exp(Avt+|A|ut+λtc)‖1
) + syt , computed using Lemma 69;

8 for 0 ≤ k < K do
9 v(k+1) ← − 1

10‖A‖∞
(1

3yt + v′′t);

10 u(k+1) ← − 1
10‖A‖∞

((y(k))2);

11 λ(k+1) ← − 1
10‖A‖∞

(1
3 + λ′′t);

12 d(k+1) ← 2|A|> exp(Av(k+1)+|A|u(k+1)+λ(k+1)c)

‖exp(Av(k+1)+|A|u(k+1)+λ(k+1)c)‖
1

, computed using Lemma 69;

13 y(k+1) ← med(−1, 1,− γy

d(k+1)) entrywise;

14 (v′t, u
′
t, λ
′
t, y
′
t)← (v(K), u(K), λ(K), y(K));

15 (v(0), u(0), λ(0), y(0))← (vt, ut, λt, yt);

16 γy ← 1
6 (b−A>

exp(Av′t+|A|u
′
t+λ

′
tc)

‖exp(Av′t+|A|u′t+λ′tc)‖1
) + syt , computed using Lemma 69;

17 for 0 ≤ k < K do
18 v(k+1) ← − 1

10‖A‖∞
(1

6y
′
t + v′′t);

19 u(k+1) ← − 1
10‖A‖∞

((y(k))2);

20 λ(k+1) ← − 1
10‖A‖∞

(1
6 + λ′′t);

21 d(k+1) ← 2|A|> exp(Av(k+1)+|A|u(k+1)+λ(k+1)c)

‖exp(Av(k+1)+|A|u(k+1)+λ(k+1)c)‖
1

, computed using Lemma 69;

22 y(k+1) ← med(−1, 1,− γy

d(k+1)) entrywise ;

23 (vt+1, ut+1, λt+1, yt+1)← (v(K), u(K), λ(K), y(K));

24 (v′′t+1, λ
′′
t+1, s

y
t+1)← (v′′t , λ

′′
t , s

y
t) + (1

6y
′
t,

1
6 ,0n);

25 t← t+ 1;

Proof of Theorem 30. We use the parameter settings in Proposition 14, which implies that it suffices

to compute the value of (5.2) with x̄ := 1
T

∑
0≤t<T x

′
t. By linearity, we have

c>x̄ =
1

T

∑
0≤t<T

〈c, x′t〉 =
1

T

∑
0≤t<T

∑
i∈[m]

ci exp (〈Ai:, v
′
t〉+ 〈|Ai:|, u′t〉+ λ′tci) .

Since the summands in the above display (for each 0 ≤ t < T) separate componentwise in the

CHAPTER 5. SEMI-STREAMING COMBINATORIAL OPTIMIZATION 220

stream, we can compute each
∑
i∈[m] ci exp(〈Ai:, v

′
t〉+〈|Ai:|, u′t〉+λ′tci) in one pass per iteration and

store their average. Moreover, we can similarly compute the vector A>x̄ using Lemma 69 in one

pass per iteration and store it explicitly in O(n) space, at which point we can compute
∥∥A>x̄− b∥∥

1
.

Combining these two parts, we have the desired approximation to the value.

Finally, to demonstrate the guarantee on streaming x̄, the approximate minimizer has the form

x̄ =
1

T

∑
0≤t<T

exp (Av′t + |A|u′t + λ′tc)

‖exp (Av′t + |A|u′t + λ′tc)‖1
.

We can thus take one additional pass per iteration to compute the value of[
1

T

exp (Av′t + |A|u′t + λ′tc)

‖exp (Av′t + |A|u′t + λ′tc)‖1

]
i

for all i ∈ [m],

and produce a stream of these values without affecting the overall pass complexity.

We note that max(‖A‖∞ , ‖b‖1) is never larger than n ‖A‖∞ by Line 2 of Algorithm 13. Finally,

on a query S ⊆ E with |S| = q, using O(n+q) space (and no more passes), for (x̄, ȳ) an ε-approximate

saddle point to (5.1) computed by our algorithm, we can output the set of values ({x̄i}i∈S , y). This

is accomplished by calling Lemma 69 and explicitly storing values of x′t on coordinates in S each

iteration, which is implementable in O(q) additional space. While we do not use this fact for

finding an approximate MCM solution or for our applications, this gives the memory requirement

for querying entries of an approximate solution in the most general setting for box-simplex games.

5.4 Approximate maximum cardinality matching

In this section, we give specific treatment to the problem of approximate MCM and prove our main

result Theorem 26. We prove Theorem 26 by assembling a variety of tools, centered around casting

MCM as an instance of (5.1) and using several helper procedures to complete the result.

1. In Section 5.4.1, we give the specific box-simplex problem formulation which serves as the

optimization workhorse of this section, and prove that an appropriate approximate solution to

this problem results in an approximate MCM.

2. In Section 5.4.2, we give pre- and post-processing tools for manipulating the box-simplex

problem and its output. Specifically, we give a vertex-size reduction enabling a tighter runtime

analysis, and a cycle cancelling procedure for sparsifying the support of the approximate MCM.

3. Finally, we put these pieces together to prove Theorem 26 in Section 5.4.3.

CHAPTER 5. SEMI-STREAMING COMBINATORIAL OPTIMIZATION 221

5.4.1 Reducing MCM to a box-simplex problem

Throughout this section, we consider the problem of finding a ε-approximate MCM of a bipartite

graph G = (V,E) with |V | = n, |E| = m, with unsigned incidence matrix B ∈ {0, 1}E×V , and

maximum matching size M∗. Any maximum (possibly fractional) matching solves the problem

max
M∗>0

M∗ such that ∃x ∈ ∆E with B> (M∗x) ≤ 1V entrywise.

Here, the variable M∗x takes on the role of the matching; observe that since x ∈ ∆E , the `1 norm of

M∗x is precisely M∗. Before giving the box-simplex objective which we will approximate with the

value algorithm of Section 5.3, we recall that we can obtain a 2-approximation to M∗ in one pass.

Lemma 71. The greedy algorithm can be implemented in one semi-streaming pass over a graph

using O(n) space and O(m) work to return a matching of size M with M ≤M∗ ≤ 2M .

The proof is standard and deferred to Appendix D.2. As the first step of our approximate MCM

algorithm, we obtain M so that M ≤ M∗ ≤ 2M using the above greedy algorithm. We then use

this estimate to construct a problem of the form (5.2), whose approximate solution also yields an

approximate MCM, which we describe now.

From the unweighted graph G = (V,E), we construct a modified graph G̃ = (Ṽ , Ẽ) with two

extra vertices and one extra zero-weight edge between them, and refer to its weighted adjacency

matrix as B̃, with an all-zero row for the extra edge. We define dMCM ∈ {0, 1}Ṽ to be the vector

which is 1 in every coordinate of V ∈ Ṽ , and 0 in the two extra vertices. Finally, we require one

additional piece of notation: for a graph (Ṽ , Ẽ), some demands d ∈ RṼ≥0, and some flow x̃ ∈ RẼ≥0,

we define the overflow by

Overflowd(x̃) :=
∑
j∈Ṽ

[(
B̃>x̃− d

)
+

]
j

.

Combinatorially, this can be interpreted as the total amount the flow x̃ violates d. We show that

to obtain an approximate matching in G, it suffices to find an εM -approximate minimizer to the

following problem (where dMCM as defined earlier is the demands for the MCM problem):

min
x∈∆Ẽ

−2M ‖xE‖1 + OverflowdMCM
(2Mx). (5.6)

In particular, note that we can represent any flow on the original edges E with `1 norm at most 2M

(in particular, the maximum cardinality matching) as the restriction of a flow in RẼ≥0 with `1 norm

exactly 2M . Hence, we can interpret (5.6) combinatorially as attempting to put as much flow on

the edges of the original graph E as possible, while penalizing the overflow.

We begin by demonstrating that to find approximate minimizers to (5.6), it suffices to find an

CHAPTER 5. SEMI-STREAMING COMBINATORIAL OPTIMIZATION 222

approximate minimizer to the following `1 regression problem:

min
x∈∆Ẽ

∥∥A>x− b∥∥
1
, where A := MB̃, b :=

1

2
dMCM. (5.7)

Lemma 72. Any ∆-additively approximate minimizer to problem (5.6) is a ∆-additively approxi-

mate minimizer to problem (5.7), for all ∆ > 0, and vice versa.

Proof. The property of being a ∆-approximate minimizer is preserved if the entire problem is shifted

by a constant scalar, so it suffices to show (5.6) and (5.7) differ by a constant scalar. Observe that

for any scalar v, max(v, 0) = 1
2 (v + |v|). Thus, we can write

OverflowdMCM (2Mx) =
∑
j∈V

max
(

2MB̃>x− 1, 0
)

=
1

2

∥∥∥2MB̃>x− dMCM

∥∥∥
1

+
1

2

∑
j∈V

(
2MB̃>x− 1

)
=
∥∥A>x− b∥∥

1
+ 〈MBdMCM, x〉 −

1

2
|V |.

Comparing with (5.6) yields the conclusion, since MBdMCM is 2M times the indicator on E.

Finally, to conclude this section, we give a simple procedure for rounding an almost-feasible flow

to a feasible matching. This procedure comes with a guarantee which converts an overflow bound

on the original flow to a bound on the difference in quality of the resulting rounded matching. We

remark that a similar algorithm was developed in [25], and reproduced in Appendix D.1; however,

we give a somewhat tighter analysis which is suitable for our purposes here.

Algorithm 16: RemoveOverflow(x,G, d)

1 Input: Bipartite graph G = (V,E) with incidence matrix B, x ∈ RE≥0, demands d ∈ RV≥0;

2 Output: x̃ ∈ RE≥0 with x̃ ≤ x entrywise, B>x̃ ≤ d, and ‖x̃‖1 ≥ ‖x‖1 −
∥∥∥(B>x− d)

+

∥∥∥
1
;

3 dx ← B>x;
4 f ← (dx − d)+;

5 x̃e ← xe

(
1−max

(
fa
dxa
, fbdxb

))
for all e = (a, b) ∈ E with xe > 0;

6 Return: x̃;

Lemma 73 (Overflow removal). RemoveOverflow is correct, i.e. on input x ∈ RE≥0, it outputs

x̃ ∈ RE≥0 with x̃ ≤ x, B>x̃ ≤ d, and ‖x̃‖1 ≥ ‖x‖1 −Overflowd(x).

Proof. First, xe > 0 for e = (a, b) implies dxa > 0 and dxb > 0 and therefore x̃ is well-defined. As

d, f ≥ 0 and e ≤ dx entrywise we also see that x̃ ≥ 0 and x̃ ≤ x, giving the first guarantee.

CHAPTER 5. SEMI-STREAMING COMBINATORIAL OPTIMIZATION 223

Next, note that for all a ∈ V if [B>x]a ≤ d then [B>x̃]a ≤ da as x̃ ≤ x. On the other hand, if

[B>x̃]a > da then fa = dxa − da and

[B>x̃]a =
∑

(a,b)∈E

x̃ ≤
∑

(a,b)∈E

xe

(
1− fa

dxa

)
= dxa

(
1− dxa − da

da

)
= da.

Consequently, in either case [B>x̃]a ≤ da so B>x̃ ≤ d. The last claim of the lemma follows from

‖x̃‖1 =
∑
e∈E

xe −
∑

e=(a,b)∈E|xe 6=0

xe max

{
fa
dxa
,
fb
dxb

}
≥ ‖x‖1 −

∑
e=(a,b)∈E|xe 6=0

xe

(
fa
dxa

+
fb
dxb

)
= ‖x‖1 −

∑
a∈V

∑
e=(a,b)∈E|xe 6=0

xe
ea
dxa

= ‖x‖1 −
∑
a∈V

ea = ‖x‖1 −
∥∥∥(B>x− d)

+

∥∥∥
1
.

As a consequence of Lemma 73 with d = dMCM, we have an (algorithmic) proof that any x̃

satisfying

‖x̃‖1 −Overflowd(x̃) ≥ (1− ε)M∗ (5.8)

can be rounded to a feasible matching on the same support with `1 norm at least (1− ε)M∗.

5.4.2 Additional tools

Before proving Theorem 26, we give a few helper tools building upon prior works in the literature, to

prove Theorem 26, as Propositions 15 and 16. First, when n�M∗, we note that we can reduce the

number of vertices to O(M∗ log(ε−1)) while only slightly decreasing the MCM size; a similar result

is given in [12]. We state the reduction here, and defer its proof to Appendix D.2 for completeness.

Proposition 15 (Vertex size reduction). There is a procedure VertexReduction (Algorithm 73) which

takes as input unweighted bipartite G = (V,E) with MCM size M∗ and with O(log ε−1) passes,

O(M∗ log ε−1) space, and O(m log ε−1) work outputs a subset V ′ ⊆ V of size O(M∗ log ε−1) such

that the induced subgraph G[V ′] has a MCM of size at least (1− ε)M∗.

We also require a procedure for sparsifying supports based on cycle cancelling. Our cycle can-

celling procedure takes a (possibly infeasible) flow given as an insertion-only stream, and produces

a flow of at least the same value and with no additional overflow, with support of size at most n.

The procedure generalizes to weighted bipartite matching problems as well; we remark that similar

procedures have appeared in prior work (see e.g. [306]). We provide a detailed implementation of a

data structure to prove Proposition 16 in Appendix D.3.

Proposition 16 (Cycle cancelling). Consider a (possibly weighted) matching problem on a bipartite

graph G = (V,E,w) (for MCM, we let w = 1). There is an algorithm that has the following property:

CHAPTER 5. SEMI-STREAMING COMBINATORIAL OPTIMIZATION 224

given a stream of length L, consisting of edge-flow tuples (e, fe) where e ∈ E and fe ∈ R≥0, define

x ∈ RE≥0 to be the sum of all fe1e in the stream where 1e is the 1-sparse indicator of edge e. Then

the algorithm runs in O(n) space and O(L log n) time, and outputs a flow x̃ supported on O(n) edges

forming a forest, so that 〈w, x̃〉 ≥ 〈w, x〉, and B>x = B>x̃.

5.4.3 Approximate MCM in fewer passes and optimal space

We finally give a proof of Theorem 26 by applying the tools we have built.

Theorem 26 (Approximate MCM). There is a deterministic semi-streaming algorithm which given

any bipartite G = (V,E) with |V | = n, |E| = m, finds a ε-multiplicatively approximate MCM in

O
(
log n · log(ε−1) · ε−1

)
passes, O(n) space, and O(m log2 n · ε−1) total work.

Proof. We first define the steps of the algorithm, where we adjust the error parameter ε by an

appropriate constant in each of the following subroutines.

1. Use Lemma 71 to obtain an estimate M ≤M∗ ≤ 2M .

2. If M log 1
ε ≤ n, use Proposition 15 to reduce to O(M log 1

ε) vertices; overload V , E to be the

vertex and edge sets on the resulting induced subgraph.

3. Solve (5.7) to εM additive accuracy using Algorithm 13, with approximate minimizer x. Set

x̃ = 2MxE .

4. Apply Proposition 16 to x̃ in streaming fashion to obtain a flow x̂.

5. Greedily find an exact MCM on the support of x̂.

We next demonstrate correctness. Proposition 14 shows that Algorithm 13 is correct for imple-

menting Step 3. By Proposition 15, the result of Step 3 of the above algorithm satisfies (5.8) (by

appropriately adjusting constants), since εM∗ ≥ εM by Step 1, and the optimal value of (5.6) is at

most M∗ by choosing 2Mx to be the restriction of the MCM to E, with all overflow placed on the

extra edge. Proposition 16 then returns a sparse O(ε)-approximate MCM supported on a forest, also

satisfying (5.8). Lemma 73 then implies that this support contains an O(ε)-approximate MCM. It

is well-known that to compute a maximum cardinality matching on a tree, the greedy algorithm of

repeatedly taking a leaf edge and removing both endpoints from the graph suffices [239]. Applying

this to each tree in the forest yields correctness.

Finally, we discuss pass, space, and work complexities. Since Proposition 15 gives a vertex

size bound of at most M log 1
ε , using Algorithm 13 and 14 in Step 3 of the algorithm implies by

Corollary 15 that the pass complexity is log n · log(ε−1) · ε−1, since the additive accuracy level is

O(εM∗) and ‖A‖∞ = ‖b‖1 = O(M∗). Next, by applying Proposition 16 to the input stream x

which is the average of the iterates of Algorithm 13, we reduce the support of x to be on O(n) edges

CHAPTER 5. SEMI-STREAMING COMBINATORIAL OPTIMIZATION 225

supported on a forest, while maintaining that (5.8) is satisfied. We can give x in a stream of size

O(m log n · ε−1) which induces the average iterate, per Theorem 30. This takes O(m log2 n · ε−1)

work by Proposition 15, and does not dominate the pass complexity. Finally, we explicitly store the

support of the forest, so it is clear that Step 5 is implementable in O(n) space and work.

5.5 Further matching applications

Here we give a few applications using the semi-streaming matching algorithm proposed in the pa-

per. Section 5.5.1 shows how to apply the semi-streaming matching algorithm to give exact MCM.

Sections 5.5.2, 5.5.3 and 5.5.4 extend our semi-streaming framework and algorithms to the model

where the cost vector c is non-uniform. We first state a general result on solving box-simplex games

induced by weighted matching problems in Section 5.5.2. Then in Section 5.5.3 and 5.5.4, we show

how to adapt the model to specific applications. Specifically, we develop space-effcient solvers for

optimal transportation and MWM respectively, by reductions to our more general solver.

5.5.1 Exact maximum cardinality matching

Here we show how to leverage Theorem 26 to obtain the following result on computing MCMs.

Theorem 66 (Exact MCM). There is a randomized semi-streaming algorithm which given any

bipartite G = (V,E) with |V | = n, finds an exact MCM with high probability in O(n
3
4 +o(1)) passes.

We remark that the number of passes in Theorem 27 can be reduced to Õ((M∗)
3
4 +o(1)) for

any MCM problem with MCM size M∗ > 0, using the vertex size reduction of Proposition 15 in

Section 5.4.2. To prove Theorem 27, we use the following result from [290] regarding reachability in

directed graphs. This result was originally proved for parallel (PRAM) algorithms, but its extension

to semi-streaming algorithms is straightforward and has been observed previously, e.g. in [368].

Proposition 17 ([290]). There is a semi-streaming algorithm that given directed G = (V,E) with

|V | = n and vertices s, t, with high probability finds a path from s to t (assuming one exists) in

O(n
1
2 +o(1)) passes.

We remark that as stated, [290] only solves the decision problem of whether s can reach t,

while in Proposition 17 we require the path. However, here we provide a brief sketch of how it is

straightforward to modify [290] to compute a s-t path and thereby prove Proposition 17.

The algorithm of [290] computes a hopset H of Õ(n) edges, i.e. a graph H with Õ(n) edges

with the property that any vertex u can reach another vertex v in G ∪ H if and only u can reach

v in G also. Further, this hopset has the property that with high probability there exists a path

of length O(n
1
2 +o(1)) from s to t in G ∪ H. The hopset H is computed in O(log n) iterations as

H1 ∪H2 ∪ . . . HO(logn), where each Hi is computed from O(n
1
2 +o(1))-depth breath-first searches in

CHAPTER 5. SEMI-STREAMING COMBINATORIAL OPTIMIZATION 226

vertex-induced subgraphs of Gi = G∪H1 ∪H2 ∪ · · · ∪Hi−1. This computation requires Õ(m) work

and O(n
1
2 +o(1)) depth in the PRAM model (as was the motivation in [290]). Similarly, it can also

be implemented in O(n
1
2 +o(1)) passes in the semi-streaming model by performing the operations of

each level of parallel depth within O(1) passes. Furthermore, a directed edge (u, v) is added to Hi

if and only if u is the root of one of the BFS arborescences used to form Hi, and can reach v in the

same BFS computation.

To recover a path from s to t, we run the algorithm of [290] and store the arborescences used to

form H. We then perform one last O(n
1
2 +o(1))-depth breadth-first search from s in G∪H: if a path

P from s to t in G∪H is found, we mark the edges of P and store them in the memory. We can then

replace the edges of P that belong to H to the edges of G stored as parts of arborescences used to

form H. For i from O(log n) down to 1, we replace all edges in this s-t path belonging to Hi with the

corresponding arborescence paths belonging to Gi. In the end we obtain a (not necessarily simple)

path from s to t in G, which we may make simple by removing duplicates (notice that technically

for this step, we only need to run a BFS algorithm offline, i.e., with no more passes on the stream,

from s to t among the stored edges of G that form H ∪ P).

Proof of Theorem 27. We set ε := n−
3
4 and run our algorithm in Theorem 26 on G to obtain a

matching F with |F | ≥ (1− ε) ·M∗ ≥M∗ − n 1
4 (as M∗ ≤ n). This requires O(n

3
4 +o(1)) passes.

We then augment this approximate MCM F to an exact MCM by repeatedly finding augmenting

paths for it. We form the (directed) residual graph for F as follows: we take vertices {V, s, t} and

add the edges (s, v) for all v ∈ L, (v, t) for all v ∈ R, and for any e = (i, j) ∈ E(G) for i ∈ L, j ∈ R,

we add (i, j) if e /∈ F and (j, i) if e ∈ F . As long as F is suboptimal, we can increase its size by 1

by finding a path from s to t in this residual graph and augmenting the flow with this path’s edges:

such a path can be found in O(n
1
2 +o(1)) passes by applying Proposition 17. Since |F | ≥ M∗ − n 1

4

initially, it can be augmented at most n
1
4 times, and the result follows.

Remark 7. The exact MCM in Theorem 27 is a direct byproduct of the simultaneous space and

pass-efficiency of our approximate algorithm and cannot be achieved directly by the prior state-of-the-

art. While the space of algorithm of [42] is O(n) like ours, their algorithm requires O(ε−2) passes

which combined with the augmentation approach and O(n
1
2 +o(1))-pass algorithm of [290] for each

augmentation, leads to Õ(n) passes for exact MCM. On the other hand, while the pass complexity of

the algorithm of [13] is sufficient on the surface for this augmentation approach, its space-complexity

exceeds the Õ(n) requirement of semi-streaming algorithms when ε � (poly log (n))−1. More pre-

cisely, by setting ε small enough in the algorithm of [13] to obtain an o(n) pass algorithm using the

above approach, the space requirement would become Ω(n2), which matches the trivial bound obtained

by storing the input in just one pass and solving the problem optimally offline.)

CHAPTER 5. SEMI-STREAMING COMBINATORIAL OPTIMIZATION 227

5.5.2 Weighted bipartite matching under an `1 constraint

In this section G = (V,E) is a bipartite graph where V = L ∪ R with unweighted incidence matrix

B ∈ {0, 1}E×V . We consider a weighted matching problem parameterized by a (possibly non-

uniform) demand vector d ∈ [0, 1]V , and weights w ∈ RE≥0, formally defined as follows:

M∗ := max
x≥0

w>x subject to B>x ≤ d. (5.9)

We also assume we know the value S of the `1 norm of an optimal matching which is feasible for

the demands d, yielding the maximum matching weight M∗; in all our relevant applications, we will

have S ≥ 1. The assumption that we exactly know S may seem restrictive; in all our applications

(cf. Section 5.5.3 and 5.5.4), it will suffice to know an upper bound and pad the graph with a dummy

edge appropriately. We will refer to the optimal matching as Sx∗, for some x∗ ∈ ∆E .

Next, we state the `1 regression problem we solve to compute an approximate solution to (5.9).

Define the extended graph with vertex and edge sets Ṽ , Ẽ and incidence matrix B̃, as in the

reduction of Section 5.4.1 (as a reminder, it simply adds an extra isolated edge with no constraints

on endpoints). The overflow formulation we will solve to obtain an approximate minimizer to (5.9)

is:

min
x∈∆Ẽ

−〈wE , Sx〉+ ‖w‖∞Overflowd(Sx). (5.10)

By the arguments of Lemma 72, (5.10) is equivalent to the following `1 regression problem up to a

constant scalar shift:

min
x∈∆Ẽ

−c>x+
∥∥A>x− b∥∥

1
,

where A :=
1

2
S ‖w‖∞ B̃, b :=

1

2
‖w‖∞ d, and c := S (‖w‖∞ 1E − wE) .

(5.11)

We next show we can use Algorithm 16 to obtain a feasible approximate MWM on a weighted

graph.

Lemma 74 (Weighted overflow removal). Suppose that for a weighted graph (V,E,w) with MWM

value M∗, x̂ ∈ RẼ≥0 is a flow satisfying

〈wE , x̂〉 − ‖w‖∞Overflowd(x̂) ≥M∗ − ε.

Applying RemoveOverflow to x̂ outputs x̃ ∈ RE≥0 with x̃ ≤ x, B>x̃ ≤ d, and 〈wE , x̃〉 ≥M∗ − ε.

Proof. By the `1-`∞ Hölder’s inequality and the guarantees of Algorithm 16,

‖wE‖ x̃ ≥ ‖wE‖ x̂− ‖w‖∞ ‖x̂− x̃‖1 ≥ ‖wE‖ x̂− ‖w‖∞Overflowd(x̂) ≥M∗ − ε.

CHAPTER 5. SEMI-STREAMING COMBINATORIAL OPTIMIZATION 228

Finally, by combining Proposition 14 applied to (5.11), the cycle cancelling procedure of Propo-

sition 16, and the rounding procedure in Algorithm 16, we obtain the following guarantee for solving

(5.9), summarized in Corollary 16.

Corollary 16. There is an algorithm that computes an n-sparse ε-additively approximate solution x̂

to the problem (5.9) satisfying w>x̂−w>(Sx∗) ≥ ε, B>x̂ ≤ d using O
(
γ log n log(γ + ‖w‖∞‖d‖1ε−1)

)
passes, O (n) memory, and O

(
mγ log n log(nγ + n‖w‖∞‖d‖1ε−1)

)
work, where γ = S‖w‖∞

ε .

Proof. The proof is analogous to that of Theorem 26. We first define the steps of the algorithm, where

we adjust the error parameter ε by an appropriate constant in each of the following subroutines.

1. Solve (5.11) to ε additive approximation, and let the approximate solution be x. Set x̃ = SxE .

2. Apply Proposition 16 to x̃ in streaming fashion to obtain a flow x̂.

3. Greedily find an exact MWM on the support of x̂.

The correctness and runtime follow in the same way as in Theorem 26, where we use Lemma 74 in

place of Lemma 73, which implies the support of x̂ contains a ε-additively approximate MWM.

We briefly remark on the utility of Corollary 16. The generality of being able to handle arbitrary

costs has the downside of an additive error guarantee rather than multiplicative. We will show how

to apply this general result in different settings where either the optimal solution is supported on

simplex (e.g. S = 1 for optimal transport), or we can modify the graph appropriately to have a

saturated optimal matching (e.g. S = n for maximum weight matching).

5.5.3 Optimal transportation

In this section, we give a semi-streaming implementation for solving the discrete optimal transporta-

tion problem. This problem is parameterized by costs4 c ∈ RE≥0, and two sets of demands ` ∈ ∆L,

r ∈ ∆R where L ∪ R = V is the bipartition of the vertices, we wish to find a transportation plan

x ∈ ∆E between the demands with (approximately) minimal cost, as specified by c; we defer a

further discussion of this formulation to [25]. Appendix D.1 showed that to obtain a transport plan

approximating the optimum to ε-additive accuracy, it suffices to solve the following problem to ε

duality gap, where d is the vertical concatenation of ` and r, Cmax := ‖c‖∞, and B is the adjacency

matrix of the unweighted complete bipartite graph:

min
x∈∆E

−c>x+ 2CmaxOverflowd(x). (5.12)

The formulation above is an instance of the weighted formulation (5.10) with S = 1, w = c. Note

here we also use the standard adjacency matrix B instead of the extended one B̃ in denoting overflows

4Costs are without loss of generality nonnegative, as adding a uniform multiple of ‖c‖∞ 1 affects the cost of all
transportation plans by a fixed amount and the quantity Cmax by at most a constant factor.

CHAPTER 5. SEMI-STREAMING COMBINATORIAL OPTIMIZATION 229

Overflow(·) for simplicity as opposed to the rest of the paper. We thus apply Corollary 16 to solve

the problem and conclude by giving a complete result for semi-streaming optimal transportation.

Theorem 28 (Optimal transport). There is a deterministic semi-streaming algorithm which given

any optimal transport instance on a complete bipartite graph on V = L∪R, costs c ∈ RE≥0, and two

sets of demands ` ∈ ∆L, r ∈ ∆R, finds an ε ‖c‖∞-additive approximate optimal transport plan using

O
(
ε−1 log n log ε−1

)
passes, O (n) space, and O

(
n2ε−1 log n log ε−1

)
work.

Proof. The proof follows by first applying Corollary 16 to (5.12), with error parameter ε ‖c‖∞, to

obtain an O(n) sparse solution x in the desired work and space budget. For demands d ∈ RV set

to be the vertical concatenation of the given ` and r, this is a transportation plan that satisfies

B>x ≤ d, achieves an additive ε approximation in the optimal cost, and can be stored in O(n)

space. To make B>x = d, it suffices to add a rank-one correction term as in Algorithm 2 of [25],

whose coordinates can be computed in a stream in one pass and O(n) space (by storing the rank-one

components). This can only help the objective, and the resulting exact transport plan can be made

sparse via Proposition 16 within the specified work budget.

5.5.4 Maximum weight matching

We give a result for computing an approximate maximum weight matching for a bipartite graph in

the semi-streaming model. Using the construction in Section 5.5.2 with a demand vector d = 1V

(i.e. the vector which is all-ones on V and zeroes on Ṽ \ V), it is clear the `1 norm of a maximum

weight matching is n, simply by putting all additional flow on the extra edge. Applying Corollary 16

then directly gives a complete result for semi-streaming maximum weight matching.

Theorem 31. There is a deterministic semi-streaming algorithm which given any weighted bipartite

graph G = (V,E,w) with |V | = n, |E| = m, and defining γ :=
n‖w‖∞

ε , finds an ε-additive maximum

weight matching using O (γ log n log(nγ)) passes, O (n) space, and O(mγ log n log(nγ)) total work.

Finally, in the case when we have side information upper bounding the `1 norm of any MWM

by S < n, note that it suffices to solve (5.10) with this scale S. This implies analogous wins in

Theorem 31, so that the parameter γ scales linearly in S rather than n.

5.6 Transshipment

To demonstrate the versatility of our approach, we also adapt our method to solve the transshipment

problem on graphs in the semi-streaming model. In this problem we are given access to an undirected

graph with non-negative edge weights G = (V,E,w) and a vector d ∈ RV . Here d is a demand vector,

i.e. it specifies the desired flow imbalance on every vertex, and we specifies the cost per routing each

unit of flow (in magnitude) on edge e.

CHAPTER 5. SEMI-STREAMING COMBINATORIAL OPTIMIZATION 230

The goal of the transshipment problem is to compute a flow which routes the demands d of

minimum cost, given as the sum of weighted flow magnitudes. Formally, for a flow f ∈ RE the

imbalance of the flow at every vertex is given by B>f where B in this section refers to the signed

incidence matrix of G.5 Consequently, the transshipment problem is minf∈RE :B>f=d

∑
e∈E we|fe|.

Rescaling f ← W−1f for W := diag (w) shows that equivalently we can define the problem as

follows.

Definition 19 (Transsshipment problem). For a graph G = (V,E,w) with nonnegative edge weights,

let B ∈ {−1, 0, 1}m×n be its oriented (signed) unweighted incidence matrix. For any demand vector

d ∈ Rn, we write the transshipment problem, for a diagonal positive6 matrix W ∈ Rm×w as

min
f :B>W−1f=d

‖f‖1 . (5.13)

Additionally, let opt(d) refer to an arbitrary minimizer of problem (5.13) for a given demand d.

Applying our algorithmic framework, namely using the semi-streaming box-simplex game solver

in Section 5.3 and our tools for rounding and maintaining sparsity, along with known techniques

previously developed in recent work [358], we prove Theorem 29:

Theorem 29 (Approximate transshipment and shortest path). There is a randomized semi-streaming

algorithm which given weighted undirected G = (V,E,w) and demand vector d ∈ Rn, finds an ε-

multiplicatively approximate minimizer to the minimum transshipment cost in O(logO(1) n · ε−1)

passes, O(n logO(1) n) space, and O(m logO(1) n · ε−1) total work with high probability in n. This, in

particular, yields a semi-streaming algorithm that ε-multiplicative approximates the s-t shortest path

problem with the same pass, space, and work complexities.

We prove this result in several parts. We begin by giving a semi-streaming construction of an

`1-stretch approximator matrix R ∈ RK×n, defined in the following (a similar definition is given in

[358]). Our semi-streaming implementation is largely based on known tools developed in [358].

Definition 20 (Stretch approximator). R ∈ RK×n is an (α, β)-stretch approximator if it satisfies

the following.

• For any d ∈ Rn, ‖opt(d)‖1 ≤ ‖Rd‖1 ≤ α ‖opt(d)‖1.

•
∑
v∈V deg(v)nnz(R:v) ≤ mβ, where deg(v) is the degree of v in G and nnz(R:v) is the number

of nonzero entries in the vth column of R.

• R has at most Kβ nonzero entries.

5We overload the notation B for just this section, the only application other than Appendix D.5 where it is signed.
The signed unweighted incidence matrix is defined in the same way as the unsigned one, except we choose an arbitrary
orientation for every edge e = (u, v) so the corresponding row in B has a 1 in column u and a −1 in column v.

6For simplicity, we assume no zero-weight edges. Otherwise, we can form a spanning forest in one pass to remove
zero-weight edges (since these shortcut the transshipment problem), and decompose into connected components.

CHAPTER 5. SEMI-STREAMING COMBINATORIAL OPTIMIZATION 231

In Section 5.6.1, we provide an algorithm which construct an (α, β)-stretch approximator R ∈
RK×n with K = O(n log n) and α, β = logO(1) n; we remark we did not try to control for the

logarithmic factors, as many are inherited from prior work. In Section 5.6.2, we then use our stretch

approximator to reduce a decision variant of transshipment to an appropriate box-simplex game.

In Section 5.6.3, we demonstrate how to use our cycle-cancelling toolkit to round an approximate

transshipment plan f to be sparse. In Section 5.6.4 we we put these pieces together to prove

Theorem 29.

5.6.1 Constructing stretch approximators

In this section, we give a semi-streaming construction of a stretch approximator. Our construction

is a straightforward adaptation of a previous parallel construction by [358], proceeding in two steps.

First we compute H, an O(log n)-spanner of G using O(log n) semi-streaming passes. We apply the

construction of [358] to H offline, which no longer requires additional access to the edges of G. We

then prove the approximation and sparsity bounds of the obtained matrix.

Definition 21 (Spanner). We say subgraph H ⊆ G is an σ-spanner of graph G = (V,E) if for all

u, v ∈ V , where dG(u, v) denotes the shortest path distance through G,

dG(u, v) ≤ dH(u, v) ≤ σdG(u, v).

It is well-known that Definition 21 implies that the optimal value of the objective (5.13) is

preserved up to a multiplicative σ factor when restricting to H. This follows as every path in a

decomposition of the solution to (5.13) has its cost preserved up to a σ factor upon routing through

H.

Lemma 75 (Corollary 5.2 of [67]). Let G = (V,E,w) be a weighted graph given in an insertion-only

stream. An O(log n)-spanner of G with O(n log n) edges can be computed using O(log n) passes,

O(n log n) space, and O(m log n) total work.

Lemma 76 (Theorem 4.2 of [358]). Given a graph G = (V,E,w), we can compute a matrix R ∈
RO(n logn)×n satisfying the following properties with high probability in n:

• ‖opt(d)‖1 ≤ ‖Rd‖1 ≤ O(log4.5 n) ‖opt(d)‖1 for all d ∈ Rn.

• For any v ∈ V , the vth column of R has O(log5 n(log log n)O(1)) nonzero entries in expectation

over the construction of R.

The algorithm runs in O(n log10 n(log log n)O(1)) work and space.

Proof. The first and third condition on R follow directly from Theorem 4.2 of [358]. The second

condition follows from Lemma 4.15 and the proof of Lemma 4.16 of [358].

CHAPTER 5. SEMI-STREAMING COMBINATORIAL OPTIMIZATION 232

Lemma 77. Let G = (V,E,w) be a weighted undirected graph given in the semi-streaming graph

model. Algorithm 17 computes R ∈ RK×n, an (α, β)-stretch approximator with K = O(n log n),

α = O(log5.5 n), and β = O(log5 n(log log n)O(1)), in O(log n) passes, O(n log10 n(log log n)O(1))

space, and O(m log10 n(log log n)O(1)) work with high probability in n.

Proof. We first show correctness of the algorithm. First, we note that the cost of transshipment over

H is at most O(log n) times greater than the cost overG since dG(u, v) ≤ dH(u, v) ≤ O(log n)dG(u, v)

for all u, v ∈ V . We thus have ‖opt(d)‖1 ≤ ‖Rd‖1 ≤ O(log5.5 n) ‖opt(d)‖1 by the first condition of

Lemma 76 applied to the matrix R we return; this guarantee is with high probability, by a union

bound over all the routing constructions. Next, the second condition of Lemma 76 implies that

each column of R computed on line 6 of Algorithm 17 has γ nonzero entries in expectation. Thus

E
[∑

v∈V nnz(R:v)
]
≤ nγ and

E

 ∑
(u,v)∈E

nnz(R:u) + nnz(R:v)

 = 2E

[∑
v∈V

deg(v)nnz(R:v)

]
≤ 2mγ.

By Markov’s inequality and a union bound, we thus have S ≤ 6mγ and nnz(R) ≤ 3nγ with

probability at least 1
3 over the randomness of Lemma 76. Consequently, with high probability in n

after O(log n) repetitions the algorithm returns a matrix R with all the desired properties.

We now bound the pass, space, and work complexity. By Lemma 75, the graph H can be

computed using O(log n) passes over G using O(n log n) space and O(m log n) total work. Next, the

matrix R on Line 6 of Algorithm 17 can be computed offline in O(m log10 n(log log n)O(1)) work and

O(n log10 n(log log n)O(1)) space. The condition on Line 7 can be checked in a single pass over G

with O(mγ) extra work (as we can terminate if the check fails).

Algorithm 17: StretchApprox(G)

1 Input: Graph G = (V,E,w) ;
2 Output: `1-stretch approximator R;

3 γ = O(log5 n(log log n)O(1));
4 H = O(log n)-spanner of G computed by Corollary 5.2 of [67];
5 for t ∈ [O(log n)] do
6 R = matrix computed by Theorem 4.2 of [358] applied to H;
7 Compute S =

∑
v∈V deg(v)nnz(Rev) in a stream over G;

8 if S ≤ 6mγ and nnz(R) ≤ 3nγ then
9 Return: R;

CHAPTER 5. SEMI-STREAMING COMBINATORIAL OPTIMIZATION 233

5.6.2 Reduction to box-simplex game

In this section, we describe our reduction of transshipment to a box-simplex game. We begin by

defining a flow-constrained variant of the transshipment problem.

Definition 22. Let G = (V,E,w) be a graph, and let d ∈ Rn. Let R be any matrix satisfying

‖opt(d)‖1 ≤ ‖Rd‖1. For any t ≥ 0, we define the flow-constrained transshipment problem as

min
f :‖f‖1≤t

∥∥RB>W−1f −Rd
∥∥

1
. (5.14)

We next relate solutions to the flow-constrained transshipment problem to the original prob-

lem (5.13).

Lemma 78. Let G be a graph, d ∈ Rn, and R satisfy ‖opt(d)‖1 ≤ ‖Rd‖1.

• If t ≥ ‖opt(d)‖1, the optimal value of (5.14) is 0.

• If t < ‖opt(d)‖1, the optimal value of (5.14) is at least ‖opt(d)‖1 − t.

Proof. For notational convenience, let f∗ = opt(d). By definition we have B>W−1f∗ = d. If

t ≥ ‖f∗‖1, we note f∗ is feasible for (5.14) and therefore achieves an objective value of 0. If instead

t < ‖f∗‖1, consider any f with ‖f‖1 ≤ t and define f ′ = opt(d−B>W−1f). We have

∥∥RB>W−1f −Rd
∥∥

1
=
∥∥R(d−B>W−1f)

∥∥
1
≥ ‖f ′‖1 ,

where for the last inequality we use the definition of R and the optimality of f ′. On the other hand

we have B>W−1f ′ = d−B>W−1f and so B>W−1(f + f ′) = d. By optimality of f∗ for (5.13),

‖f∗‖1 ≤ ‖f + f ′‖1 ≤ ‖f‖1 + ‖f ′‖1 .

Combining these inequalities, we have the desired

∥∥RB>W−1f −Rd
∥∥

1
≥ ‖f∗‖1 − ‖f‖1 ≥ ‖f

∗‖1 − t.

We remark that any (α, β)-stretch approximator R satisfies the assumption of Lemma 78. Finally,

we demonstrate how to express problems of the form (5.14) as box-simplex games.

Lemma 79. Let G be a graph, d ∈ Rn, and t ≥ 0. Let R ∈ RK×n be an (α, β)-stretch approximator.

Then (5.14) is equivalent to

min
f ′∈∆2E

∥∥tA>f ′ − b∥∥
1

= min
f ′∈∆2E

max
y∈[−1,1]K

ty>A>f ′ − b>y

CHAPTER 5. SEMI-STREAMING COMBINATORIAL OPTIMIZATION 234

for b = Rd and

A =

 W−1BR>

−W−1BR>

 .

Additionally, ‖A‖∞ ≤ α and nnz(A) = O(mβ). If R is stored explicitly, we may simulate access to

a stream of the rows of A and |A| using O(mβ) total work and a single pass over G.

Proof. By duality of the `1 norm and the `∞ norm, (5.14) is equivalent to

min
f :‖f‖1≤t

∥∥RB>W−1f −Rd
∥∥

1
≡ min
f :‖f‖1≤t

max
y:‖y‖∞≤1

y>
(
RB>W−1f −Rd

)
.

Next, we can write any f ∈ RE as f = f+ − f−, where f+ = max{f, 0} and f− = −min{f, 0}
are entrywise nonnegative. Further, if ‖f‖1 ≤ t there exists nonnegative f+ and f− satisfying this

condition with 1>f+ + 1>f− = t: one can simply select an arbitrary edge in G and increase the

corresponding entries in f+ and f− by the same amount, which increases ‖f‖1 without affecting

f+ − f−. Thus, for any f with ‖f‖1 ≤ t there exists f̂ = 1
t [f+; f−] ∈ ∆2E such that

f = t

 I

−I

> f̂ .
Applying this variable substitution, our problem is equivalent to

min
f̂∈∆2E

max
‖y‖∞≤1

ty>A>f̂ − y>b

as desired. The bound on ‖A‖∞ follows from the observation

∥∥RB>W−1u
∥∥

1
≤ α

∥∥opt
(
B>W−1u

)∥∥
1
≤ α ‖u‖1

for any u ∈ RE , by the first condition of Definition 20 and definitions of B,W. This yields

‖A‖∞ =
∥∥A>∥∥

1
= max
‖v‖1=1

∥∥A>v∥∥
1
≤ max
‖v1‖1+‖v2‖1=1

∥∥RB>W−1v1

∥∥
1

+
∥∥RB>W−1v2

∥∥
1
≤ α

as claimed. We conclude by bounding nnz(A) and showing that we can simulate streaming access

to the columns of A and |A| in O(mβ) total work. Let δv denote the number of nonzero entries in

the vth column of R. The column of RB>W−1 corresponding to e = (u, v) ∈ E is of the form

w−1
e (R:u −R:v) ,

and thus has O(δu + δv) nonzero entries. By the second assumed condition on R, summing over

CHAPTER 5. SEMI-STREAMING COMBINATORIAL OPTIMIZATION 235

all columns gives O(mβ) nonzero entries together, thus the bound on nnz(A) follows. Finally, we

may simulate access to columns of A> and |A>| via a stream over G and forming the corresponding

columns of A> and |A>| directly using O(mβ) work, from the above characterization of RB>W−1.

5.6.3 Recovering a sparse flow

We next give a simple procedure for taking a flow f and rounding it to a sparse flow f ′, such that the

weighted cost is no larger and the marginal imbalances are preserved. At a high level, our algorithm

(Algorithm 18) performs the following steps.

1. We form the “double cover graph” of G = (V,E,w), a bipartite graph consisting of vertices

Vin ∪ Vout, which are two copies of V . For every (u, v) ∈ E, the double cover graph contains

edges (uin, vout), denoting positive flow, and (uout, vin), denoting negative flow.

2. We sparsify both the positive flow f+ and the negative flow f− using Proposition 16.

3. We identify the sparsified flows into the original graph by using the signs appropriately, pre-

serving marginal demands and not hurting the weighted cost.

We make the transformation f ←Wf in the following algorithm for consistency with Proposi-

tion 16, so the marginal imbalances in accordance with transshipment are B>f and the `1 weight is

‖Wf‖1.

Algorithm 18: RoundStream(f+, f−)

1 Input: Incremental stream of f+, f− ∈ RE≥0 on disjoint supports, graph G = (V,E,w);

2 Output: Flow f ′ ∈ RE with

‖f ′‖0 = O(n), B>f ′ = B>(f+ − f−), ‖Wf ′‖1 ≤ ‖Wf+‖1 + ‖Wf−‖1 .

;
3 Form G′+ = (V ′ = Vin ∪ Vout, E

′
+ = ∅) and G′− = (V ′ = Vin ∪ Vout, E

′
− = ∅) ;

4 for x(u,v)1(u,v) in stream over f+ do
5 Add edge (uin, vout) with weight x(u,v) to G′+;
6 Apply Proposition 16 to G′+;

7 for x(u,v)1(u,v) in stream over f− do
8 Add edge (uout, vin) with weight x(u,v) to G′−;
9 Apply Proposition 16 to G′−;

10 Let f ′+ be the output of Proposition 16 on G′+ and f ′− the output of Proposition 16 on G′−;
11 Return: f ′+ − f ′−;

Lemma 80. Algorithm 18 satisfies its output statement using a single pass over the streams f+ and

f−, O(n) space, and O(nnz(f+ + f−) log n) work.

CHAPTER 5. SEMI-STREAMING COMBINATORIAL OPTIMIZATION 236

Proof. The pass, space, and work complexities follow from Proposition 16. The sparsity of f ′ and

the guarantee on weighted `1 norm follows from the two applications of Proposition 16, since f+ and

f− have disjoint supports. Finally, by construction of G′+ and G′−, the signed marginals of f+ are

preserved by f ′+, and the signed marginals of f− are preserved by f ′−. The conclusion follows since

f+ − f− then places the same amount of net flow on any vertex as f ′+ − f ′−.

5.6.4 Semi-streaming transshipment

We finally give our full algorithm to solve the transshipment problem, and a proof of Theorem 29.

Algorithm 19: ApproxTransshipment(G, d, ε)

1 Input: Graph G = (V,E,w), demand vector d ∈ Rn, error tolerance ε ∈ (0, 1);

2 Output: Flow f with ‖f‖0 = O(n),B>W−1f = d, and ‖f‖1 ≤ (1 + ε) ‖opt(d)‖1.;
3 H = O(log n)-spanner of G computed by Corollary 5.2 of [67];
4 R = StretchApprox(G);
5 tmax ← 2-approximation to minB>HW−1

H f=d ‖f‖1, scaled to be an overestimate to opt(d);

. We let BH and WH be the appropriate restrictions of B and W to the subgraph H.

6 tmin ← tmax

O(logn) ;

7 while tmax ≥ (1 + ε
logn)tmin do

8 t← 1
2 (tmin + tmax);

9 A← t
(
RB>W−1 −RB>W−1

)>
, b← Rd;

10 Z, fstream ← approximate value and streamed solution of (5.2) with A, b as defined
above, and c = 0, to accuracy εt

O(logn) ;

11 if Z ≤ εt
O(logn) then

12 tmax ← t;
13 else
14 tmin ← t;

15 f ′ ← RoundStream([Wfstream]+, [Wfstream]−) where [Wfstream]+, [Wfstream]− are the
restrictions of fstream to the top and bottom rows of A respectively after cancelling any
nonnegative flow on corresponding edges in both parts;

16 d′ ← d−B>f ′;
17 fres ← 2-approximate solution to minB>HW−1

H f=d′ ‖f‖1;

18 Return: W−1 (RoundStream([f ′ + Wfres]+, [f
′ + Wfres]−));

Proof of Theorem 29. We begin by proving correctness of Algorithm 19, and then discuss implemen-

tation costs to show they fit within the specified budgets.

First, tmax is an overestimate of opt(d) by the definition of a spanner in Definition 21, and

similarly tmin is an underestimate. Next, by solving the problem in Line 8 to the stated accuracy,

Lemma 79 shows we have an εt
O(logn) -additive approximation to the value of the problem (5.14).

Hence, Lemma 78 shows that when the binary search terminates, t is an O(ε
logn)-multiplicative

CHAPTER 5. SEMI-STREAMING COMBINATORIAL OPTIMIZATION 237

approximation to ‖opt(d)‖1. The additive error incurred due to the approximate routing of demands

d′ on Line 15 can only affect the solution by O(ε) multiplicatively because of the quality of the

spanner. Moreover, the applications of RoundStream do not affect meeting the demands and can

only improve the `1 value, by Lemma 80. Hence, the output of the algorithm meets the demands

and attains an ε-multiplicative approximation to the value of the transshipment problem (5.13).

We next discuss pass, space, and work complexities. The costs of Lines 1 and 2 are given by

Lemma 75 and Lemma 77 respectively. Lines 3 and 15 can be performed without streaming access

to G once H has been stored, e.g. using [358], and do not dominate any of the costs.

There are at most log logn
ε iterations of the binary search, given the multiplicative range on t.

The cost of each run in Line 8 is given by Theorem 30, where ‖A‖∞ = tα for the α in Lemma 77,

and where the additive accuracy is given in Line 8. Finally, the costs of calls to RoundStream are

given by Lemma 80 and do not dominate, completing the proof.

To conclude, we describe our algorithm for (1 + ε)-approximate shortest paths. We choose the

demands d = 1u − 1v for transshipment, and consider the flow f computed by Algorithm 19. We

simply return the shortest s-t path contained in the support of f : as f satisfied B>f = d, it

corresponds to a linear combination of s-t paths. Returning the shortest path found in its support

must therefore have length at most that of f , which is itself ≤ (1 + ε)opt(d).

Chapter 6

Dynamic Decremental Bipartite

Matching

This chapter is based on [284], with Arun Jambulapati, Yujia Jin, and Aaron Sidford.

6.1 Introduction

Efficient approximate solvers for graph-structured convex programming problems have led to a va-

riety of recent advances in combinatorial optimization. Motivated by problems related to maximum

flow and optimal transportation, a recent line of work [482, 318, 483], as well as Chapters 4, 2,

and 5 developed near-linear time, accelerated solvers for a particular family of convex programming

objectives we refer to in this paper as box-simplex games:

min
x∈∆m

max
y∈[−1,1]n

y>Ax+ c>x− b>y where ∆m := {x ∈ Rm≥0| ‖x‖1 = 1} . (6.1)

Box-simplex games, (6.1), are bilinear problems where a maximization player is constrained to the

box (the `∞ ball) and a minimization player is constrained to the simplex (the nonnegative `1 shell).

The problem provides a convenient encapsulation of linear programming problems with `1 or `∞

structure; (6.1) can be used to solve box-constrained `∞ regression problems (see e.g. [483, 486])

and maximizing over the box-constrained player yields the following `1 regression problem

min
x∈∆m

c>x+ ‖Ax− b‖1 . (6.2)

Furthermore, solvers for (6.1) and (6.2) are used in state-of-the-art algorithms for approximate

maximum flow [483], optimal transport (OT) [293], (width-dependent) positive linear programming

[91], and semi-streaming bipartite matching [39].

238

CHAPTER 6. DYNAMIC DECREMENTAL BIPARTITE MATCHING 239

One of the main goals of our work is to develop efficient algorithms for solving regularized variants

of the problems (6.1) and (6.2). An example of particular interest is the following

min
x∈∆m|B>x=d

c>x+ µH(x), where µ ≥ 0 and H(x) :=
∑
i∈[m]

xi log xi. (6.3)

The particular case of (6.3) when B ∈ Rm×n is the (unsigned) edge-vertex incidence matrix of a

complete bipartite graph, and d is a pair of discrete distributions supported on the sides of the

bipartition, is known as the Sinkhorn distance objective. This objective is used in the machine

learning literature [151] as an efficiently-computable approximation to optimal transport distances:

c corresponds to pairwise movement costs, and d encodes the prescribed marginals. This objective

has favorable properties, e.g. differentiability [523], and there has been extensive work by both

theorists and practitioners to solve (6.3) and analyze its properties (see e.g. [151, 25] and references

therein). Choosing A and b to be sufficiently large multiples of B> and d, it can be shown that

solutions to the following regularized variant of (6.2) yield approximate solutions to (6.3),

min
x∈∆m

c>x+ ‖Ax− b‖1 + µH(x) . (6.4)

Beyond connections to Sinkhorn distances, there are additional reasons why it may be desirable

to solve regularized box-simplex games. For example, regularization could speed up algorithms and

allow high-precision solutions to be computed more efficiently. Further, obtaining a high-precision

solution to a regularized version of the problem yields a more canonical and predictable approximate

solution than an arbitrary low-precision approximation to the unregularized problem. Moreover,

regularization potentially makes optimal solutions more stable to input changes. For box-simplex

games stemming from bipartite matching we quantify this stability and show all of these properties

allow regularized solvers to yield faster algorithms for a particular dynamic matching problem.

Altogether, the main contributions of this paper are the following.

1. We give improved running times for the problem of dynamic decremental bipartite matching

(DDBM) with an adaptive adversary, a fundamental problem in dynamic graph algorithms.

Our algorithm follows from a general black-box reduction we develop from DDBM to solving

(variants of) regularized box-simplex games to high precision.

2. We give efficient solvers for (variants of) the regularized box-simplex problems (6.3), (6.4).

3. As a byproduct, we also show how to apply our new solvers (and additional tools from the

literature) to obtain state-of-the-art methods for computing Sinkhorn distances.

Formally, the DDBM problem we consider in this paper is the following: given a bipartite graph

undergoing edge deletions maintain, at all times, an ε-approximate (maximum) matching,1 that is

1This is sometimes also referred to as a (1 + ε)-multiplicatively approximate matching in the literature.

CHAPTER 6. DYNAMIC DECREMENTAL BIPARTITE MATCHING 240

a matching which has size at least a (1 − ε)-fraction of the maximum (for a pre-specified) value of

ε. Unless specified otherwise, we consider the adaptive adversary model where edge deletions can

be specified adaptively to the matching returned. Further, unless specified otherwise, we allow the

matching output by the algorithm to be fractional, rather than integral.

We show how to reduce solving the DDBM problem to solving a sequence of regularized box-

simplex games. This reduction yields a new approach to dynamic matching; this approach is inspired

by prior work, e.g. [73], but conceptually distinct in that it decouples the solving of optimization

subproblems from characterizing their solutions. For our specific DDBM problem, the only prior

algorithm achieving an amortized polylogarithmic update time (for constant ε) is in the recent

work of [73], which derives their dynamic algorithm as an application of two techniques: congestion

balancing and local flows. Our reduction eschews these combinatorial tools and directly argues, via

techniques from convex analysis, that solutions to appropriate regularized matching problems can be

used dynamically as approximate matchings while requiring few recomputations. We emphasize our

use of fast high-accuracy solvers2 in the context of our reduction to obtain our improved runtimes,

as our approach leverages structural characteristics of the exact solutions which we only show are

inherited by approximate solutions when solved to sufficient accuracy.

Our work both serves as a proof-of-concept of the utility of regularized linear programming solvers

as a subroutine in dynamic graph algorithms, and provides the tools necessary to solve said problems

in various structured cases. This approach to dynamic algorithm design effectively separates a

“stability analysis” of the solution to a suitable optimization problem from the computational burden

of solving that problem to high accuracy: any improved solver would then have implications for faster

dynamic algorithms as well. As a demonstration of this flexibility, we give three uses of our reduction

framework (which proceed via different solvers) in obtaining our improved DDBM update time. We

hope our work opens the door to exploring the use of the powerful continuous optimization toolkit,

especially techniques originally designed for non-dynamic problems, for their dynamic counterparts.

Chapter organization. We give a detailed overview of our contributions in Section 6.1.1, and

overview related prior work in Section 6.1.2. We state preliminaries in Section 6.2. In Section 6.3.1,

we describe our framework for reducing DDBM to a sequence of regularized optimization prob-

lems satisfying certain properties, and in Section 6.3.2 we give three different instantiations of the

DDBM framework for obtaining a variety of DDBM solvers. Finally in Section 6.4 we provide our

main algorithm for regularized box-simplex games. We defer proofs for Section 6.3 and Section 6.4

to Appendix E.1 and Appendix E.2 respectively, and provide additional results for approximating

Sinkhorn distances efficiently in Appendix E.3.

2Throughout, we typically use the term “high-accuracy” to refer to an algorithm whose runtime scales polyloga-
rithmically in the inverse accuracy (as opposed to e.g. polynomially).

CHAPTER 6. DYNAMIC DECREMENTAL BIPARTITE MATCHING 241

6.1.1 Our results

A framework for faster DDBM. We develop a new framework for solving the DDBM problem of

computing an ε-approximate maximum matching in a dynamic graph undergoing edge deletions

from an adaptive adversary. Our framework provides a reduction from this DDBM problem to

solving various regularized formulations of box-simplex games.

To illustrate the reduction, suppose we have a bipartite graph G = (V,E), and suppose, for

simplicity, that we know M∗, the size of the (maximum cardinality) matching. As demonstrated in

Chapter 5, solving the `1 regression problem minx∈M∗∆m −c>x+ ‖Ax− b‖1, to εM∗ additive accu-

racy for appropriate choices of A, b, and c yields an ε-approximate maximum cardinality matching.

Intuitively, A and b penalize violations of the matching constraints, and c is a multiple of the all-ones

vector capturing the objective of maximizing the matching size. However, `1 regression objectives do

not necessarily have unique minimizers: as such the output of directly minimizing these objectives is

difficult to characterize beyond (approximate) optimality. This induces difficulty in using solutions

to such problems directly in dynamic graph algorithms.

Our first key observation (building upon intuition from congestion balancing [73]) is that, beyond

enabling faster runtime guarantees, regularization provides more robust solutions which are resilient

to edge deletions in dynamic applications. We show that if

x∗ε := min
x∈M∗·∆m

−c>x+ ‖Ax− b‖1 + εH(x) (6.5)

is the solution to the regularized box-simplex formulation of bipartite matching, then x∗ε enjoys

favorable stability properties allowing us to argue about its size under deletions.

The stability of solutions to (6.5) is fairly intuitive: the entropy regularizer H(x) encourages the

objective to spread the matching uniformly among edges, when all else is held equal. For example,

when G is a complete bipartite graph on 2n vertices, standard linear programming relaxations of

matching do not favor either of (i) an integral perfect matching, and (ii) a fractional matching

spreading mass evenly across many edges, over the other. However, using (i) as our approximate

matching on a dynamic graph undergoing deletions is substantially more unstable; an adaptive

adversary can remove edges corresponding to our matching, forcing Ω(n) recomputations. On the

other hand, no edge deletions can cause this type of instability for strategy (ii): as each edge receives

weight 1
n in the fractional matching, the only way to reduce the fractional matching size by εn is

to remove O(εn2) edges: thus O(ε−1) recomputations are (intuitively) sufficient for maintaining an

ε-approximate maximum matching. This distinction underlies the use of high-accuracy solvers in

our reduction; indeed, while they obtain large matching values in an original graph, approximate

solutions may not carry the same types of dynamic matching value stability. We note similar intuition

motivated the approach in [73].

To make this argument more rigorous, consider using x∗ε as our approximate matching for a

CHAPTER 6. DYNAMIC DECREMENTAL BIPARTITE MATCHING 242

number of iterations corresponding to edge deletions, until its size restricted to the smaller graph

has decreased by a factor of 1 − O(ε). By using strong convexity of (6.5) in the `1 norm, we

argue that whenever the objective value of x∗ε has worsened, the maximum matching size itself must

have gone down by a (potentially much smaller) amount. A tighter characterization of this strong

convexity argument shows that we only need to recompute a solution to slight variants of (6.5)

roughly Õ(ε−2) times throughout the life of the algorithm. Combined with accelerated Õ(mε)-time

solvers for regularized box-simplex games (which are slight modifications of (6.5)), this strategy

yields an overall runtime of Õ(mε3), improving upon the recent state-of-the-art decremental result of

[73].

We formalize these ideas in Section 6.3, where we demonstrate that a range of regularization

strategies (see Definition 23) such as (6.5) are amenable to this reduction. Roughly, as long as

our regularized objective is “at least as strongly convex” as the entropic regularizer, and closely

approximates the matching value in the static setting, then it can be used in our DDBM algorithm.

Combining this framework with solvers for regularized matching problems, we give three different

results. The first two obtain amortized update times of roughly Õ(ε−3), in Theorems 38 and 39 via

box-simplex games and matrix scaling, respectively (though the latter holds only for dense graphs).

We give an informal statement of the former here.

Theorem 32 (informal, see Theorem 38). Let G = (V,E) be bipartite, |V | = n, |E| = m, and

ε ≥ poly(m−1). There is a deterministic algorithm maintaining an ε-approximate matching in a

dynamic bipartite graph with adversarial edge deletions running in time O(m log5m · ε−3).

We note that our algorithm (deterministically) returns a fractional matching. There is a black-box

reduction from dynamic fractional matching maintenance to dynamic integral matching maintenance

contained in [527], but to our knowledge this reduction is bottlenecked at an amortized Õ(ε−4)

runtime (see e.g. Appendix A.2, [73]). Improving this reduction is a key open problem.

High-accuracy solvers for regularized box-simplex games. To use our DDBM framework, we give

a new algorithm for solving regularized box-simplex games of the form:

min
x∈∆m

max
y∈[0,1]n

fµ,ε(x, y) := y>A>x+ c>x− b>y + µH(x)− ε

2

(
y2
)> |A|>x, (6.6)

where ε and µ = Ω(ε) are regularization parameters and y2, |A| denote entrywise operations. The

regularization terms H(x) and (y2)>|A|>x in (6.6) are parts of a primal-dual regularizer proposed in

[293] (and a variation of a similar regularizer of [483]) used in state-of-the-art algorithms for approx-

imately solving (unregularized) box-simplex games. This choice of regularization enjoys favorable

regularization properties over the joint box-simplex domain, and thereby sidesteps the infamous

`∞-strong convexity barrier that has limited previous attempts at accelerated algorithms for this

problem. Under relatively mild restrictions on problem parameters (see discussion at the start of

Section 6.4), we develop a high accuracy solver for (6.6), stated informally here.

CHAPTER 6. DYNAMIC DECREMENTAL BIPARTITE MATCHING 243

Theorem 33 (informal, see Theorem 41). Given an instance of (6.6), with µ = Ω(ε), ‖A‖∞ ≤ 1,

and σ ≥ poly(m−1) Algorithm 23 returns x with maxy∈[0,1]n fµ,ε(x, y) − fµ,ε(x?, y?) ≤ σ in time

Õ(nnz(A) · 1√
µε) where (x?, y?) is the optimizer of (6.6).

Our solver follows recent developments in solving unregularized box-simplex games. We analyze

an approximate extragradient algorithm based on the mirror prox method of [415], and prove that

iterates of the regularized problem (6.6) enjoy multiplicative stability properties previously shown

for the iterates of mirror prox on the unregularized problem [147]. Leveraging these tools, we also

show the regularizer-operator pair satisfies technical conditions known as relative Lipschitzness and

strong monotonicity, thus enabling a similar convergence analysis as in [147]. This yields an efficient

algorithm for solving (6.6).

Roughly, when the scale of the problem (defined in terms of the matrix operator norm ‖A‖∞ and

appropriate norms of b and c) is bounded,3 our algorithm for computing a high-precision optimizer

to (6.6) runs in Õ(1√
µε) iterations, each bottlenecked by a matrix-vector product through A. When

µ ≈ ε, the optimizer of the regularized variant is an O(ε)-approximate solution to the unregularized

problem (6.1), and hence Theorem 41 recovers state-of-the-art runtimes (scaling as Õ(ε−1)) for box-

simplex games up to logarithmic factors. We achieve our improved dependence on µ in Theorem 41

by trading off the scales of the primal and dual domains. This type of argument is well-known

for separable regularizers [111], but a key technical novelty of our paper is demonstrating a similar

analysis holds for non-separable regularizers compatible with box-simplex games e.g. the one from

[293], which has not previously been done. To our knowledge, Theorem 41 is the first result for

solving general regularized box-simplex games to high accuracy in nearly-linear time. We develop

our box-simplex algorithm and prove Theorem 41 in Section 6.4.

Improved rates for the Sinkhorn distance objective. We apply our accelerated solver for (6.6)

in computing approximations to the Sinkhorn distance objective (6.3), a fundamental algorithmic

problem in the practice of machine learning, at a faster rate. It is well-known that solving the

regularized Sinkhorn problem (6.3) with µ scaling much larger than the target accuracy ε enjoys

favorable properties in practice [151] (compared to its unregularized counterpart, the standard OT

distance). In [24], the authors show that Sinkhorn iteration studied in prior work solves (6.3) to

additive accuracy ε at an unaccelerated rate of Õ(1
µε). For completeness we provide a proof of this

result (up to logarithmic factors) in Appendix E.3.3.

As a straightforward application of the solver we develop for (6.6), we demonstrate that we can

attain an accelerated rate of Õ(1√
µε) for approximating (6.3) to additive accuracy ε via a first-order

method. More specifically, the following result is based on reducing the “explicitly constrained”

Sinkhorn objective (6.3) to a “soft constrained” regression variant of the form (6.4), where our box-

simplex game solver is applicable. We now state our first result on improved rates for approximating

Sinkhorn distance objectives.

3Our runtimes straightforwardly extend to depend appropriately on these norms in a scale-invariant way.

CHAPTER 6. DYNAMIC DECREMENTAL BIPARTITE MATCHING 244

Theorem 34 (informal, see Theorem 85). Let µ ∈ [Ω(ε), O(
‖c‖∞
logm)] in (6.3) corresponding to a

complete bipartite graph with m edges. There is an algorithm based on the regularized box-simplex

game solver of Theorem 41 which obtains an ε-approximate minimizer to (6.3) in time Õ(m · ‖c‖∞√µε).

By leveraging the particular structure of the Sinkhorn distance and its connection to a primitive

in scientific computing and theoretical computer science known as matrix scaling [367, 145, 552],

we give a further-improved solver for (6.3) in Theorem 86. This solver has a nearly-linear runtime

scaling as Õ(1
µ), which is a high-precision solver for the original Sinkhorn objective. Our high-

precision Sinkhorn solver applies powerful second-order optimization tools from [145] based on the

box-constrained Newton’s method for matrix scaling, yielding our second result on improved Sinkhorn

distance approximation rates.

Theorem 35 (informal, see Theorem 86). Let µ, ε = O(‖c‖∞) in (6.3) corresponding to a complete

bipartite graph with m edges. There is an algorithm based on the matrix scaling solver of [145] which

obtains an ε-approximate minimizer to (6.3) in time Õ(m · ‖c‖∞µ).

We present both Theorems 85 and 86 because they follow from somewhat incomparable solver

frameworks. While the runtime of Theorem 85 is dominated by that of Theorem 86, it is a direct

application of a more general solver (Theorem 41), which also applies to regularized regression or

box-simplex objectives where the optimum does not have a characterization as a matrix scaling.

Moreover, the algorithm of Theorem 86 is a second-order method which leverages recent advances

in solving Laplacian systems, and hence may be less practical than its counterpart in Theorem 85.

Finally, we note that due to subtle parameterization differences for our DDBM applications, the

DDBM runtime attained by using our box-simplex solver within our reduction framework is more

favorable on sparse graphs (m� n2), compared to that obtained by the matrix scaling solver.

Since our results on optimizing Sinkhorn distances follow from machinery developed in this

paper and [145], we defer them to Appendix E.3. For consistency with the optimal transport

literature and ease of presentation, we state our results in Appendix E.3 for instances of (6.3)

corresponding to complete bipartite graphs. However, our algorithms based on Theorem 41 extend

naturally to sparse graphs, as do the matrix scaling algorithms of [145] as discussed in that work.

We provide applications of these subroutines to the DDBM problem on sparse graphs in Section 6.3

and Appendix E.1.

A recent advancement. Subsequent to the original submission of this paper, a breakthrough

result of [124] provided an algorithm which computes high-accuracy solutions to a variety of graph-

based optimization objectives in almost-linear time. One of the many applications of [124] is faster

algorithms for computing Sinkhorn distances. Using the algorithm designed in [124], in place of [145],

yields a speedup of Theorem 86, removing the polynomial dependence on µ−1 at the cost of an

overhead of mo(1).

Theorem 36 (informal, see Lemma 271). For ε = Ω(m−3) in (6.3) corresponding to a bipartite

CHAPTER 6. DYNAMIC DECREMENTAL BIPARTITE MATCHING 245

graph with m edges, there is an algorithm that obtains an ε-approximate minimizer to (6.3) in time

m1+o(1).

Further, we show how to use [124] to obtain improved running times for DDBM. By plugging

in this Sinkhorn distance computation algorithm into our DDBM framework (and showing it is

compatible with the form of our subproblems), we obtain an improved (randomized) DDBM solver

in terms of the ε−1 dependence at the cost of a mo(1) overhead.

Theorem 37 (informal, see Theorem 40). Let G = (V,E) be bipartite, |V | = n, |E| = m, and

ε ∈ [Ω(m−3, 1). There is a randomized algorithm with success probability 1−n−Ω(1) maintaining an

ε-approximate maximum matching in an (adaptive) decremental stream running in time m1+o(1)ε−2.

We believe this result highlights the versatility and utility of our framework for solving DDBM.

Given the varied technical machinery involved (and differing runtimes and use of randomness) our

Sinkhorn algorithms, i.e. our new regularized box-simplex solver (see Section 6.4), [145], and [124], we

provide statements of each solver instantiated by these different machinery in Section 6.4.3. However,

due to the subsequent nature of [124] with respect to our work, and because DDBM running times

using [145] are no better than those achieved in our paper using our regularized box-simplex solver,

the proofs of our DDBM solver based on [124] are deferred to Appendix E.1.4.

6.1.2 Prior work

Dynamic matching. Dynamic graph algorithms are an active area of research in the theoretical

computer science, see e.g. [264, 204, 73, 320, 230, 247, 5, 262, 245, 248, 408, 246] and references

therein. These algorithms have been developed under various dynamic graph models, including the

oblivious adversary model where the updates to the graph are fixed in advance (i.e. do not depend on

randomness used by the algorithm), and the adaptive adversary model in which updates are allowed

to respond to the algorithm, potentially adversarially. We focus on surveying deterministic dynamic

matching algorithms, which perform equally well under oblivious and adaptive updates; for a more

in-depth discussion and corresponding developments in other settings, see [527].

Many variants of the particular dynamic problem of maintaining matchings in bipartite graphs

have been studied, such as the fully dynamic [259], incremental [258, 250], and decremental [73] cases.

However, known conditional hardness results [270, 328] suggest that attaining a polylogarithmic

update time for maintaining a ε-approximate fully dynamic matching may be unattainable even

for constant ε, prompting the study of restricted variants. The works most relevant to our paper

are those of [258], which provides a Õ(ε−4) amortized update time algorithm for computing an

ε-approximate matching in incremental bipartite case, and [73], which achieves a similar Õ(ε−4)

update time for decremental bipartite matching. Our main DDBM results, stated in Theorems 38

and 39, improve upon [73] by roughly a factor of ε−1 in the decremental setting.

CHAPTER 6. DYNAMIC DECREMENTAL BIPARTITE MATCHING 246

Box-simplex games. Box-simplex games, as well as `1 and `∞ regression, are equivalent to linear

programs in full generality [349], have widespread utility, and hence have been studied extensively

by the continuous optimization community. Here we focus on discussing near-linear time approx-

imation algorithms, i.e. algorithms which run in time near-linear in the sparsity of the constraint

matrix, potentially depending inverse polynomially on the desired accuracy. Interior point methods

solve these problems with polylogarithmic dependence on accuracy, but are second-order and often

encounter polynomial runtime overhead in the dimension (though there are exceptions, e.g. [516]

and references therein).

A sequence of early works e.g. [415, 419, 420] on primal-dual optimization developed first-order

methods for solving games of the form (6.1). These works either directly operated on the objective

(6.1) as a minimax problem, or optimized a smooth approximation to the objective recast as a

convex optimization problem. While these techniques obtained iteration complexities near-linear in

the sparsity of the constraint matrix A, they either incurred an (unaccelerated) ε−2 dependence on

the accuracy ε, or achieved an ε−1 rate of convergence at the cost of additional dimension-dependent

factors. This was due to the notorious “`∞ strong convexity barrier” (see Appendix A, [486]), which

bottlenecked classical acceleration analyses over an `∞-constrained domain. [483] overcame this

barrier by utilizing the primal-dual structure of (6.1) through a technique called “area convexity”,

obtaining a Õ(ε−1)-iteration algorithm. Since then, [147] demonstrated that fine-grained analyses

of the classical algorithms of [415, 420] also obtain comparable rates for solving (6.1). Finally,

we mention that area convexity has found applications in optimal transport and positive linear

programming [293, 91].

Sinkhorn distances. Since [151] proposed Sinkhorn distances for machine learning applications,

a flurry of work has aimed at developing algorithms with faster runtimes for (6.3). A line of work

by [25, 208, 365] has analyzed the theoretical guarantees of the classical Sinkhorn matrix scaling

algorithm for this problem, due to the characterization of its solution as a diagonal rescaling of a fixed

matrix. These algorithms obtain rates scaling roughly as Õ(‖c‖2∞ ε−2) for solving (6.3) to additive

accuracy ε. Perhaps surprisingly, to our knowledge no guarantees for solving (6.3) which improve as

the regularization parameter µ grows are currently stated in the literature, a shortcoming addressed

by this work. Finally, we remark that Sinkhorn iteration has also received extensive treatment from

the theoretical computer science community, e.g. [367], due to connections with algebraic complexity;

see [233] for a recent overview of these connections.

6.2 Preliminaries

General notation. We denote [n] := {1, 2, . . . , n} and let 0 and 1 denote the all-0 and all-1 vectors.

Given v ∈ Rd, vi or [v]i denotes the ith entry of v, and for any subset E ⊆ [d] we use vE or [v]E

to denote the vector in Rd zeroing out v on entries outside of E. We use ([v]i)+ = max([v]i, 0) to

CHAPTER 6. DYNAMIC DECREMENTAL BIPARTITE MATCHING 247

denote the operation truncating negative entries. We use v ◦w to denote elementwise multiplication

between any v, w ∈ Rd. Given matrix A ∈ Rm×n, we use Aij to denote its (i, j)th entry, and denote

its ith row and jth column by Ai: and A:j respectively; its nonzero entry count is nnz(A). We use

diag (v) to denote the diagonal matrix where [diag (v)]ii = vi, for each i. Given two quantities

M and M ′, for any c > 1 we say M is a c-approximation to M ′ if it satisfies 1
cM
′ ≤ M ≤ cM ′.

For ε � 1, we say M is an ε(-multiplicative)-approximation of M ′ if (1 − ε)M ′ ≤ M ≤ (1 + ε)M ′.

Throughout the paper, we use |A| to denote taking the elementwise absolute value of a matrix A,

and v2 to denote the elementwise squaring of a vector v when clear from context.

Norms. ‖·‖p denotes the `p norm of a vector or corresponding operator norm of a matrix. In

particular, ‖A‖∞ = maxi ‖Ai:‖1. We use ‖·‖ interchangeably with ‖·‖2. We use ∆m to denote an

m-dimensional simplex, i.e. x ∈ ∆m ⇐⇒ x ∈ Rd≥0, ‖x‖1 = 1.

Graphs. A graph G = (V,E) has vertices V and edges E; we abbreviate n := |V | and m := |E|
whenever the graph is clear from context. For bipartite graphs, V = L ∪R denotes the bipartition.

We let B ∈ {0, 1}E×V be the (unsigned edge-vertex) incidence matrix with Bev = 1 if v is an

endpoint of e and Bev = 0 otherwise.

Bregman divergence. Given any convex distance generating function (DGF) q(x), we use V qx′(x) =

q(x)− q(x′)−〈∇q(x′), x− x′〉 ≥ 0 as its induced Bregman divergence. When the DGF is clear from

context, we abbreviate V := V q. By definition, V satisfies

〈−∇Vx′(x), x− u〉 = Vx′(u)− Vx(u)− Vx′(x) for any x, x′, u. (6.7)

Computational model. We use the standard word RAM model, where one can perform each basic

arithmetic operations on O(log n)-bit words in constant time.

6.3 Dynamic decremental bipartite matching

Here we provide a reduction from maintaining an approximately maximum matching in a decre-

mental bipartite graph to solving regularized matching problems to sufficiently high precision. In

Section 6.3.1 we give this framework and then, in Section 6.3.2, we provide various instantiations of

our framework based on different solvers, to demonstrate its versatility.

6.3.1 DDBM framework

Here we provide our general framework for solving DDBM, which assumes that for bipartite G =

(V,E) and approximate matching value M there is a canonical regularized matching problem with

properties given in Definition 23; we later provide multiple such examples. Throughout this section,

MCM(E) denotes the size of the maximum cardinality matching on edge set E; the vertex set V is

fixed throughout, so we omit it in definitions.

CHAPTER 6. DYNAMIC DECREMENTAL BIPARTITE MATCHING 248

Definition 23 (Canonical regularized objective). Let G = (V,E0) be a bipartite graph and M ≥ 0

be an 8-approximation of MCM(E0). For all E ⊆ E0 with MCM(E) ≥ M
8 , let fM,E : RE≥0 → R,

νE := min
x∈RE≥0

fM,E(x) , and xE := argminx∈RE≥0
fM,E(x). (6.8)

We call the set of {fM,E}MCM(E)≥M8
a family of (ε, β)-canonical regularized objectives (CROs) for

G(E0) and M if the following four properties hold.

1. For all E ⊆ E0 with MCM(E) ≥ M
8 , −νE is an ε

8 -approximation of MCM(E).

2. For all E ⊆ E0 with MCM(E) ≥ M
8 , fM,E is equivalent to fM,E0

with the extra constraint that

xE0\E is fixed to 0 entrywise.

3. For any E′ ⊆ E ⊆ E0 with MCM(E) ≥ M
8 and MCM(E′) ≥ M

8 ,

fM,E′(x
E′)− fM,E(xE) ≥ βV HxE (xE

′
) where H(x) :=

∑
e

xe log xe (6.9)

4. For any x ∈ RE≥0 such that 8Mx is a feasible matching on (V,E),

8M ‖xE‖1 −
ε

128
M ≤ −fM,E(x) ≤ 8M ‖xE‖1 +

ε

128
M. (6.10)

We further define the following notion of a canonical solver for a given CRO, which solves the

CRO to sufficiently high accuracy, and rounds the approximate solution to feasibility.

Definition 24 (Canonical solver). For (ε, β)-CROs {fM,E}MCM(E)≥M8
, we call A an (ε, T)-canonical

solver if it has subroutines Solve and Round running in O(T) time, satisfying:

1. Solve finds an approximate solution x̂E of fM,E satisfying(
1 +

ε

8

)
νE ≤ fM,E(x̂E) ≤

(
1− ε

8

)
νE . (6.11a)∥∥x̂E − xE∥∥

1
≤ ε

1100
. (6.11b)

2. Round takes x̂E and returns x̃E where 8Mx̃E is a feasible matching for G(E), and:(
1 +

ε

8

)
νE ≤ fM,E(x̃E) ≤

(
1− ε

8

)
νE . (6.12a)

x̃E ≤ x̂E monotonically. (6.12b)

Our DDBM framework, Algorithm 20, uses CRO solvers satisfying the approximation guaran-

tees of Definition 24 to dynamically maintain an approximately maximum matching. We state its

correctness and runtime in Proposition 18, and defer a proof to Appendix E.1.1.

CHAPTER 6. DYNAMIC DECREMENTAL BIPARTITE MATCHING 249

Algorithm 20: DecMatching(ε,G = (V,E))

1 Input: ε ∈ (0, 1
8), graph G = (V,E) ;

2 Parameters: Family of CROs {fM,E}E is MP, an (ε, T)-canonical solver (Solve,Round);

3 Compute M with 1
2MCM(E) ≤M ≤ MCM(E), via the greedy algorithm;

4 x̂E ← Solve(fM,E);

5 x̃E ← Round(x̂E);
6 Mest ←M ;

7 while Mest >
1
4M do

8 Edel ← ∅;
9 while edge e is deleted and ‖x̃EEdel

‖1 ≤ ε
8

∥∥x̃E∥∥
1

do
; . recompute whenever the deleted approximate matching size reaches a factor Θ(ε)

10 Edel ← Edel ∪ {e};
11 E ← E \ Edel, Edel ← ∅ ;

12 x̂E ← Solve(fM,E); . find high-accuracy minimizer of FM,E satisfying (6.11a)
and (6.11b)

13 x̃E ← Round(x̂E); . round to feasible matching satisfying (6.12a) and (6.12b)

14 Compute Mest with 1
2MCM(E) ≤Mest ≤ MCM(E), via the greedy algorithm

In the following, we let E0 be the original graph’s edge set, and E1, E2, . . . , EK be the sequence

of edge sets recomputed in Line 11, before termination for EK+1 on Line 7.

Proposition 18. Let ε ∈ (0, 1) and M ≥ 0. Given a family of (ε, β)-CROs {fM,E} for G = (V,E0),

and an (ε, T)-canonical solver for the family, Algorithm 20 satisfies the following.

1. When Mest >
1
4M on Line 7, where Mest estimates MCM(Ek): at any point in the loop of

Lines 9 to 10, 8Mx̃EkEk\Edel
is an ε-approximate matching of G(V,Ek \ Edel).

2. When Mest ≤ 1
4M on Line 7, where Mest estimates MCM(E): MCM(E) ≤ 1

2MCM(E0).

The runtime of the algorithm is O(m+ (T +m) · Mβε).

Proof sketch. We summarize proofs of the two properties, and our overall runtime bound.

Matching approximation properties. By the greedy matching guarantee in Line 7, it holds that

for any Ek (the edge set recomputed in the kth iteration of Line 11 before termination), its true

matching size MCM(Ek) must be no smaller than M
4 . Consequently, we can use the CRO family to

approximate the true matching size up to O(ε) multiplicative factors, and by the guarantee (6.12a),

this implies 8Mx̃EkEk\Edel
is an O(ε) approximation of the true matching size. Also, our algorithm’s

termination condition and the guarantee on Mest immediately imply MCM(EK+1) ≤ 1
2MCM(E0).

Iteration bound. We use a potential argument. Given Ek+1 ⊂ Ek, corresponding to consecutive

CHAPTER 6. DYNAMIC DECREMENTAL BIPARTITE MATCHING 250

edge sets requiring recomputation, we use the following inequalities:

fM,Ek+1

(
xEk+1

)
− fM,Ek

(
xEk

) (i)

≥ βV HxEk
(
xEk+1

)
(ii)

≥ β
∑
i∈Edel

(
[xEk+1]i log[xEk+1]i − [xEk]i log[xEk]i −

(
1 + log[xEk]i

)
·
(
[xEk+1]i − [xEk]i

))
(iii)
= β

∑
i∈Edel

[xEk]i
(iv)

≥ β
(∥∥∥x̂EkEdel

∥∥∥
1
−
∥∥x̂Ek − xEk∥∥

1

) (v)

≥ β
(∥∥∥x̃EkEdel

∥∥∥
1
−
∥∥x̂Ek − xEk∥∥

1

)
,

(6.13)

where (i) uses the third property in (6.9), (ii) uses convexity of the scalar function c log c, (iii)

uses that x
Ek+1

Edel
is 0 entrywise, (iv) uses the triangle inequality, and (v) uses the monotonicity

property (6.12b). Moreover, between recomputations we have that the `1-norm of deleted edges

satisfies
∥∥∥x̃EkEdel

∥∥∥
1

= Ω(ε), and our solver guarantees
∥∥x̂Ek − xEk∥∥

1
= O(ε). Since the overall function

decrease before termination is O(M) given the stopping criterion in Line 7, the algorithm terminates

after O(Mβε) recomputations.

Using this generic DDBM framework, we obtain improved decremental matching algorithms by

defining families of CROs fM,E(G) with associated (ε, T)-canonical solvers satisfying Definition 24.

In Appendix E.1.2, we give a regularized primal-dual construction of fM,E , and adapt the solver

of Section 6.4 to develop a canonical solver for the family (specifically, as the subroutine Solve).

Similarly, in Appendix E.1.3, we show how to construct an appropriate family of fM,E using Sinkhorn

distances, and apply the matrix scaling method presented in Appendix E.3.2 (based on work of [145])

to appropriately instantiate Solve.

While both algorithms, as stated, only maintain an approximate fractional matchings, this frac-

tional matching can be rounded at any point to an explicit integral matching via e.g. the cycle-

canceling procedure of Proposition 3 in [39] in time O(m logm), or dynamically (albeit at amor-

itized cost Õ(ε−4) using [527]). Moreover, our algorithm based on the regularized box-simplex

solver (Theorem 38) is deterministic, and both work against an adaptive adversary. Repeatedly

applying Proposition 18, we obtain the following overall claim.

Corollary 17. Let G = (V,E(G)) be bipartite, and suppose for any subgraph (V,E0 ⊆ E(G)),

we are given a family of (ε, β)-CROs and an (ε, T)-canonical solver for the family. There is a

deterministic algorithm maintaining a fractional ε-approximate matching in a dynamic bipartite

graph with adversarial edge deletions, running in time O
(
m log3 n+ (T +m) · Mβε · log n

)
.

Proof. It suffices to repeatedly apply Proposition 18 until we can safely conclude MCM(E) = 0,

which by the second property can only happen O(log n) times.

CHAPTER 6. DYNAMIC DECREMENTAL BIPARTITE MATCHING 251

6.3.2 DDBM solvers

In this section, we demonstrate the versatility of the DDBM framework in Section 6.3.1 by instantiat-

ing it with different classes of CRO families, and applying different canonical solvers on these families.

By using regularized box-simplex game solvers developed in this paper (see Section 6.4), we give

an Õ(mε−3) time algorithm for maintaining a ε-multiplicatively approximate fractional maximum

matching in a m-edge bipartite graph undergoing a sequence of edge deletions, improving upon the

previous best running time of Õ(mε−4) [73]. We also use our framework to obtain different decremen-

tal matching algorithms with runtime Õ(n2ε−3) and O(m1+o(1)ε−2), building on recent algorithmic

developments in the literature on matrix scaling. The former method uses box-constrained Newton’s

method solvers for matrix scaling problems in [145] (these ideas are also used in Appendix E.3.2),

and the latter uses a recent almost-linear time high-accuracy Sinkhorn-objective solver in [124], a

byproduct of their breakthrough maximum flow solver. We defer readers to corresponding sections

in Appendix E.1 for omitted proofs.

Given a bipartite graph initialized at G = (V,E0) with unsigned incidence matrix B ∈ {0, 1}E×V ;

we denote n := |V | and m := |E0|. The first family of CROs one can consider is the regularized

box-simplex game objective in form:

min
(x,ξ)∈∆E+1

max
y∈[0,1]V

fM,E(x, ξ, y) := −1>E(8Mx)− y>
(
8MB>x− 1

)
+ γxH(x, ξ) + γy

(
y2
)>

B>x,

where γx = Θ̃ (εM) , γy = Θ (εM) , and

fM,E(x) := min
ξ|(x,ξ)∈∆E+1

max
y∈[0,1]V

fM,E(x, ξ, y)

(6.14)

We prove this is a family of (ε, γx)-CROs (Lemma 267). The canonical solver for this family uses

RemoveOverflow (Algorithm 4, [39]) as Round and uses the regularized box-simplex games developed

later in this paper (see Section 6.4) as Solve, which finds an ε-approximate solution of (6.14) in time

Õ(mε). Combining all these components with the DDBM framework in Corollary 17 leads to the

following DDBM solver based on regularized box-simplex games.

Theorem 38. Let G = (V,E) be bipartite and let ε ∈ [Ω(m−3), 1). There is a deterministic

algorithm for the DDBM problem which maintains an ε-approximate matching, based on solving

regularized box-simplex games, running in time O
(
mε−3 log5 n

)
.

Our second CRO family is the following regularized Sinkhorn distance objective:

min
(x
xdum)∈RẼ≥0

| 2|R|B̃>(x
xdum)=d

f sinkM,E(xtot) := 2|R|1>Ex+ γH
(
x, xdum

)
where γ = Θ̃ (εM) ,

f sinkM,E(x) := min
xdum∈RE\E0

≥0

f sinkM,E(x, xdum),
(6.15)

where we extend graph G = (V,E) to a balanced bipartite graph G̃ = (Ṽ , Ẽ) by introducing dummy

CHAPTER 6. DYNAMIC DECREMENTAL BIPARTITE MATCHING 252

vertices and edges. The extended graph allows us to write the inequality constraint B>x = 1V

equivalently as the linear constraint 2|R|B̃> (x
xdum) = d for some defined d ∈ RṼ as some properly-

extended vector of 1V . This allows us to apply known matrix scaling solver to such approximating

Sinkhorn distance objective in literature.

We prove this is a family of (ε, γ)-CROs (Lemma 269). The canonical solver for this family uses

truncation to E as Round and uses the matrix scaling solver from [145] based on box-constrained

Newton’s method as Solve, which finds an ε-approximate solution of (6.15) in time Õ(n2/ε). Com-

bining all these components with the DDBM framework in Corollary 17 leads to the following DDBM

solver based on approximating Sinkhorn distances.

Theorem 39. Let G = (V,E) be bipartite and ε ∈ [Ω(m−3), 1). There is a randomized algorithm for

the DDBM problem which maintains an ε-approximate matching with probability 1 − n−Ω(1), based

on matrix scaling solver of [145], running in time Õ
(
n2ε−3

)
.

Alternatively, for the same (ε, γ)-CRO family as in (6.15), one can use the same Round procedure

and the recent high-accuracy almost-linear time graph flow problems solver of [124] for Solve as

a canonical solver. Since this new solver can find high-accuracy solutions of entropic-regularized

problems of the form (6.15) within a runtime of (|E0|+ O(|V |))1+o(1) = m1+o(1), this gives a third

DDBM solver, which yields and improved an dependence on ε−1.

Theorem 40. Let G = (V,E) be bipartite and ε ∈ [Ω(m−3), 1). There is a randomized algorithm for

the DDBM problem which maintains an ε-approximate matching with probability 1 − n−Ω(1), based

on the Sinkhorn objective solver of [124], running in time m1+o(1)ε−2.

6.4 Regularized box-simplex games

In this section, we develop a high-accuracy solver for regularized box-simplex games:

min
x∈∆m

max
y∈[0,1]n

fµ,ε(x, y) := y>A>x+ c>x− b>y + µH(x)− ε

2

(
y2
)> |A|>x,

where H(x) :=
∑
i∈[m]

xi log xi is the standard entropic regularizer,
(6.16)

where we recall absolute values and squaring act entrywise.

For ease of presentation, we make the following assumptions for some δ > 0.

1. Upper bounds on entries: ‖A‖∞ ≤ 1, ‖b‖∞ ≤ Bmax, ‖c‖∞ ≤ Cmax. For simplicity, we assume

Bmax ≥ Cmax ≥ 1; else, Cmax ← max(1, Cmax) and Bmax ← max(Cmax, Bmax).

2. Lower bounds on matrix column entries: maxi |Aij | ≥ δ for every j ∈ [n].

CHAPTER 6. DYNAMIC DECREMENTAL BIPARTITE MATCHING 253

We defer the detailed arguments of why these assumptions are without loss of generality to Ap-

pendix E.2. Our algorithm acts on the induced (monotone) gradient operator of the regularized

box-simplex objective (6.16), namely (∇xfµ,ε(x, y),−∇yfµ,ε(x, y)), defined as

gµ,ε(x, y) :=
(
Ay + c+ µ(1 + log(x))− ε

2
|A| (y2),−A>x+ b+ ε · diag (y) |A|> x

)
. (6.17)

Further, it uses the following joint (non-separable) regularizer of

rµ,ε(x, y) := ρ
∑
i∈[m]

xi log xi +
1

ρ
x> |A|

(
y2
)

where ρ =

√
2µ

ε
, (6.18)

variants of which have been used in [483, 293, 39, 147]. When clear from context, we drop subscripts

and refer to these as operator g and regularizer r. Our method is the first high-accuracy near-linear

time solver for the regularized problem (6.16), yielding an O(ε)-approximate solution with a runtime

scaling polylogarithmically in problem parameters and ε. We utilize a variant of the mirror prox

(extragradient) [415] method for strongly monotone objectives, which appeared in [111, 147] for

regularized saddle point problems with separable regularizers.

In Section 6.4.1, we present high-level ideas of our algorithm, which uses a mirror prox outer

loop (Algorithm 21) and an alternating minimization inner loop (Algorithm 22) to implement outer

loop steps; we also provide convergence guarantees. In Section 6.4.2, we state useful properties of

the regularizer (6.18), and discuss a technical detail ensuring iterate stability in our method. In

Section 6.4.3, we provide our full algorithm for regularized box-simplex games, Algorithm 23 and

give guarantees in Theorem 41. Omitted proofs are in Appendix E.2.

6.4.1 Algorithmic framework

In this section, we give the algorithmic framework we use to develop our high-precision solver, which

combines an outer loop inspired by mirror prox [415] with a custom inner loop for implementing

each iteration. We first define an approximate solution for a proximal oracle.

Definition 25 (Approximate proximal oracle solution). Given a convex function f over domain

Z and ε ≥ 0, we say z′ ∈ Z is a ε-approximate solution for a proximal oracle if z′ satisfies

〈∇f(z′), z′ − z〉 ≤ ε. We denote this approximation property by z′ ←ε argminz∈Zf .

We employ such approximate solutions as the proximal oracle within our “outer loop“ method.

Our outer loop is a variant of mirror prox (Algorithm 21) which builds upon both the mirror prox

type method in [483] for solving unregularized box-simplex games and the high-accuracy mirror prox

solver developed in [111, 147] for bilinear saddle-point problems on geometries admitting separable

regularizers. We first give a high-level overview of the analysis, which requires bounds on two

CHAPTER 6. DYNAMIC DECREMENTAL BIPARTITE MATCHING 254

properties. First, suppose g is ν-strongly monotone with respect to regularizer r, i.e.

for any w, z ∈ Z, 〈g(w)− g(z), w − z〉 ≥ ν 〈∇r(w)−∇r(z), w − z〉 . (6.19)

Further, suppose it is α-relatively Lipschitz with respect to r and Algorithm 23 (see Definition 1 of

[147]), i.e. for any consecutive iterates zk−1, zk−1/2, zk of our algorithm,4

〈
g(zk−1/2)− g(zk−1)), zk−1/2 − zk

〉
≤ α

(
Vzk−1/2

(zk) + Vzk−1
(zk−1/2)

)
. (6.20)

With these assumptions, we show that the strongly monotone mirror prox step makes progress

by decreasing the divergence to optimal solution Vzk(z?) by a factor of α
α+ν : this implies Õ(αν)

iterations suffice for finding a high-accuracy solution. We provide the formal convergence guarantee

of MirrorProx in Proposition 19, which also accommodates the error of each approximate proximal

step used in the algorithm. This convergence guarantee is generic and does not rely on the concrete

structure of g, r in our box-simplex problem.

Algorithm 21: MirrorProx()

1 Input: ε
2 -approximate proximal oracle, operator and regularizer pair (g, r) such that g is

ν-strongly monotone and α-relatively Lipschitz with respect to r;
2 Parameters: Number of iterations K;

3 Output: Point zK with VzK (z?) ≤ (α
ν+α)KΘ + ε

ν ;

4 z0 ← argminz∈Zr(z) ;
5 for k = 1, . . . ,K do
6 zk−1/2 ←ε/2 argminz∈Z

{
〈g (zk−1) , z〉+ αVzk−1

(z)
}

;

7 zk ←ε/2 argminz∈Z
{〈
g
(
zk−1/2

)
, z
〉

+ αVzk−1
(z) + νVzk−1/2

(z)
}

;

8 return zK

Proposition 19 (Convergence of Algorithm 21). Given regularizer r with range at most Θ, suppose

g is ν-strongly-monotone with respect to r (see (6.19)), and is α-relatively-Lipschitz with respect to

r (see (6.20)). Let zK be the output of Algorithm 21. Then, V rzK (z?) ≤
(

α
ν+α

)K
Θ + ε

ν .

Given the somewhat complicated nature of our joint regularizer, we cannot solve the proximal

problems required by Algorithm 21 in closed form. Instead, we implement each proximal step to the

desired accuracy by using an alternating minimization scheme, similarly to the implementation of

approximate proximal steps in [483, 293].

To analyze our algorithm, we use a generic progress guarantee for alternating minimization

from [293] to solve each subproblem, stated below.

4This property (i.e. relative Lipschitzness restricted to iterates of the algorithm) was referred to as “local relative
Lipschitzness” in [147], but we drop the term “local” for simplicity.

CHAPTER 6. DYNAMIC DECREMENTAL BIPARTITE MATCHING 255

Algorithm 22: AltMin(γx, γy,A, θ, T, xinit, yinit)

1 Input: A ∈ Rm×n≥0 , γx ∈ Rm, γy ∈ Rn, T ∈ N, θ > 0, xinit ∈ ∆m, yinit ∈ [0, 1]n;

2 Output: Approximate minimizer to 〈(γx, γy), z〉+ θr(z) for r(z) in (6.18);

3 x(0) ← xinit, y
(0) ← yinit;

4 for 0 ≤ t ≤ T do
5 x(t+1) ← argminx∈∆m

{
〈γx, x〉+ θr(x, y(t))

}
;

6 y(t+1) ← argminy∈[0,1]n
{
〈γy, y〉+ θr(x(t+1), y)

}
;

7 Return: (x(T+1), y(T));

Lemma 81 (Alternating minimization progress, Lemma 5 and Lemma 7, [293]). Let r : X ×Y → R
be jointly convex, θ > 0, and γx and γy be linear operators on X ,Y. Define

xOPT, yOPT = argminx∈X argminy∈Yf(x, y) := 〈γx, x〉+ 〈γy, y〉+ θr(x, y). (6.21)

Suppose f(x, y) is twice-differentiable and satisfies: for all x′ ≥ 1
2x entrywise, x′, x ∈ X and y′, y ∈

Y, ∇2f(x′, y′) � 1
κf(x, y). Then the iterates of Algorithm 22 satisfy

f(x(t+2), y(t+1))− f(xOPT, yOPT) ≤
(

1− 1

2κ

)(
f(x(t+1), y(t))− f(xOPT, yOPT)

)
.

Combining this lemma with the structure of our regularizer (6.18), we obtain the following

guarantees, showing Algorithm 22 finds a ε
2 -approximate solution to the proximal oracle.

Corollary 18 (Convergence of Algorithm 22). Let δ, ε ∈ (0, 1), ρ ≥ 1. Suppose we are given

γ ∈ Z∗ = X∗ × Y∗ with max(‖γx‖∞ , ‖γy‖1) ≤ B, and define the proximal subproblem solution

xOPT, yOPT = argminx∈∆margminy∈[0,1]nf(x, y) := 〈γx, x〉+ 〈γy, y〉+ θr(x, y) for some θ > 0.

If the Hessian condition in Lemma 81 holds with a constant κ > 0, and all simplex iterates x of

Algorithm 22 satisfy x ≥ δ elementwise, then the algorithm finds a ε
2 -approximate solution to the

proximal oracle within T = O
(

log
(
ρ(B+mnθ)2

δεθ

))
iterations.

6.4.2 Helper lemmas

Before providing our full method and analysis, here we list a few helper lemmas, which we rely on

heavily in our later development. The first characterizes a useful property of rµ,ε, showing that its

Hessian is locally well-approximated by a diagonal matrix, which induces appropriate local norms

for the blocks x ∈ X , y ∈ Y. We use this to prove the “strong monotonicity” (Lemma 85) and

“relative Lipschitzness” (Lemma 86) bounds required in Section 6.4.3.

CHAPTER 6. DYNAMIC DECREMENTAL BIPARTITE MATCHING 256

Lemma 82 (Bounds on regularizer). Suppose A ∈ Rm×n has ‖A‖∞ ≤ 1. For any z = (x, y) ∈
∆m × [0, 1]n, r = rµ,ε defined as in (6.18), and x̄ ∈ Rm>0, 〈x,Ay〉 ≤ ‖x‖diag(1

x̄) ‖y‖diag(|A|>x̄) .

Further, if ρ ≥ 3, the matrix

D(x) :=

ρ
2diag

(
1
x

)
0

0 1
ρdiag

(
|A|> x

)
 (6.22)

satisfies the following relationship with the Hessian matrix of r(z):

D(x) � ∇2r(z) =

 ρ · diag
(

1
x

)
2
ρAdiag (y)

2
ρdiag (y) A> 2

ρdiag
(
|A|> x

)
 � 4D(x). (6.23)

We also introduce the following notion of a padding oracle (cf. Definition 2 of [112]), which helps

us control the multiplicative stability of iterates when running our algorithm.

Definition 26. Given δ > 0, and any z̄ = (x̄, y) ∈ ∆m × [0, 1]n, a padding oracle Oδ returns

z = (x, y) by setting x̂i = max(x̄i, δ) coordinate-wise and letting x = x̂
‖x̂‖1

.

This padding oracle has two merits which we exploit. First, the error incurred due to padding is

small proportional to the padding size δ, which finds usage in proving the correctness of our main

algorithm, Algorithm 23 (see Proposition 20).

Lemma 83 (Error of padding, cf. Lemma 6, [112]). For δ > 0 and z̄ = (x̄, y) ∈ ∆m × [0, 1]n

let z = (x, y) ∈ ∆m × [0, 1]n where x = Oδ(x̄) (Definition 26), then for r in (6.18), and any

w ∈ Z = ∆m × [0, 1]n, V rz (w)− V rz̄ (w) ≤
(
ρ+ 8

ρ

)
mδ.

Second, padding ensures that the iterates of our algorithm satisfy x = Ω(δ) entrywise, i.e. no

entries of our simplex iterates x are too small. This helps ensure the stability of iterates throughout

one call of Algorithm 22, formally through the next lemma.

Lemma 84 (Iterate stability in Algorithm 22). Suppose ε ≤ 1, ρ ≥ 6, and α ≥ 36
ρ (µ log 4

δ + 3Cmax).

Let (xk, yk) denote blocks of zk, the kth iterate of Algorithm 21. In any iteration k of Algo-

rithm 21, calling Algorithm 22 to implement Line 6, if xk−1 ≥ δ
2 entrywise, x(t+1) ∈ xk−1 ·[

exp
(
− 1

9

)
, exp

(
1
9

)]
, for all t ∈ [T]. Calling Algorithm 22 to implement Line 7, if xk−1/2 ≥ δ

4

entrywise, x(t+1) ∈ x
α
α+ν

k−1 ◦ x
ν

α+ν

k−1/2 ·
[
exp

(
− 1

9

)
, exp

(
1
9

)]
for all t ∈ [T].

6.4.3 Regularized box-simplex solver and its guarantees

We give our full high-accuracy regularized box-simplex game solver as Algorithm 23, which com-

bines Algorithm 21, Algorithm 22, and a padding step to ensure stability.

In order to analyze the convergence of Algorithm 23, we begin by observing that the operator in

(6.17) satisfies strong monotonicity with respect to our regularizer (6.18).

CHAPTER 6. DYNAMIC DECREMENTAL BIPARTITE MATCHING 257

Algorithm 23: RegularizedBS(A, b, c, ε, µ, ε)

1 Input: A ∈ Rm×n, c ∈ Rm, b ∈ Rn, accuracy ε ∈ (m−10, 1), 72ε ≤ µ ≤ 1;
2 Output: Approximate solution pair (x, y) to (6.16);

3 Global: δ ← εε2

m2 , ρ←
√

2µ
ε , ν ← 1

2

√
µε
2 , α← 18Cmax + 32

√
µε
2 log 4

δ ;

4 Global: T ← O
(

log mnBmaxαρ
δε

)
, K ← O

(
α
ν log

(
ν logm
ε

))
for appropriate constants;

5 (x0, y0)← (1
m · 1m,0n);

6 for k = 1 to K do
7 (γx, γy)← GradBS(xk−1, yk−1, xk−1, yk−1, 0);
8 (xk− 1

2
, yk− 1

2
)← AltminBS(γx, γy, α, xk−1, yk−1);

9 (γx, γy)← GradBS(xk− 1
2
, yk− 1

2
, xk−1, yk−1, ν);

10 (x(T+1), y(T))← AltminBS(γx, γy, α+ ν, xk− 1
2
, yk− 1

2
);

11 xk ← 1

‖max(x(T+1),δ)‖
1

·max
(
x(T+1), δ

)
, yk ← y(T); . Implement padding Oδ(x(T+1))

12 function GradBS(x, y, x0, y0,Θ)
13 gx ← Ay + c+ µ(1 + log(x))− ε

2 |A| (y
2);

14 gy ← −A>x+ b+ εdiag (y) |A|>x ;

15 gxr ← −αρ(1 + log x0)− α
ρ |A|y

2
0 −Θρ(1 + log x)− Θ

ρ |A|y
2 ;

16 gyr ← − 2α
ρ diag (y0) |A|>x0 − 2Θ

ρ diag (y) |A|>x) ;

17 return (gx + gxr, g
y + gyr)

18 function AltminBS(γx, γy, θ, x(0), y(0)) . Implement approximate proximal oracle via AltMin
19 for 0 ≤ t ≤ T do

20 x(t+1) ← 1∥∥∥exp
(
− 1
θργ

x− 1
ρ2
|A|(y(t))

2
)∥∥∥

1

· exp
(
− 1
θργ

x − 1
ρ2 |A|

(
y(t)
)2)

;

21 y(t+1) ← med
(

0, 1,− ρ
2θ ·

γy

|A|>x(t+1)

)
;

22 Return: (x(T+1), y(T));

Lemma 85 (Strong monotonicity). Let µ ≥ ε
2 and ρ :=

√
2µ
ε . The gradient operator gµ,ε (6.17) is

ν := 1
2

√
µε
2 -strongly monotone (see (6.19)) with respect to rµ,ε defined in (6.18).

Next, we show iterate stability through each loop of alternating minimization (i.e. from Line 7

to Line 8, and Line 9 to Line 10 respectively), via Lemma 84.

Corollary 19 (Iterate stability in Algorithm 23). Assume the same parameter bounds as Lemma 84,

and that δ ∈ (0,m−1). In the kth outer loop of Algorithm 23, xk−1 ≥ δ
2 entrywise. Further,

for all iterates x(t+1) computed in Line 7 to Line 8 and xOPT as defined in (6.21) with θ = α,
1
2xk−1 ≤ x(t+1), xOPT ≤ 2xk−1, and x(t+1), xOPT ≥ δ

4 , entrywise. Similarly, for all iterates x(t+1)

computed in Line 9 to Line 10 and xOPT as defined in (6.21) with θ = α+ν, 1
2xk−1/2 ≤ x(t+1), xOPT ≤

2xk−1/2 and x(t+1), xOPT ≥ δ
4 , entrywise.

Under iterate stability, our next step is to prove that our operator gµ,ε is relatively Lipschitz

with respect to our regularizer rµ,ε (as defined in (6.20)).

CHAPTER 6. DYNAMIC DECREMENTAL BIPARTITE MATCHING 258

Lemma 86 (Relative Lipschitzness). Assume the same parameter bounds as in Lemma 84. In

the kth outer loop of Algorithm 23, let z̄k ← (x(T+1), y(T)) from Line 10 be zk before the padding

operation. Then, xk−1/2, x̄k ∈ [1
2xk−1, 2xk−1] elementwise and

〈
g(zk−1/2)− g(zk−1), zk−1/2 − z̄k

〉
≤ α

(
Vzk−1

(zk−1/2) + Vzk−1/2
(z̄k)

)
for α = 4 + 32

√
µε

2
.

Next, we give a convergence guarantee on the inner loops (from Line 7 to Line 8, and Line 9

to Line 10) in Algorithm 23, as an immediate consequence of Corollary 18.

Corollary 20 (Inner loop convergence in Algorithm 23). Assume the same parameter bounds as in

Lemma 84. For γ defined in Line 7, suppose for an appropriate constant T = Ω
(

log mnBmaxαρ
δε

)
.

Then, for all k iterate zk−1/2 = (xk−1/2, yk−1/2) of Line 8 satisfies

〈
∇g(zk−1) + α∇Vzk−1

(zk−1/2), zk−1/2 − w
〉
≤ νε

4
, for all w ∈ Z.

Similarly, for γ defined in Line 9, iterate z̄k = (x(T+1), y(T)) of Line 10 satisfies

〈
∇g(zk−1) + α∇Vzk−1

(z̄k) + ν∇Vzk−1/2
(z̄k), z̄k − w

〉
≤ νε

4
, for all w ∈ Z.

We now analyze the progress made by each outer loop of Algorithm 23. The proof is very similar

to that of Proposition 19; the only difference is controlling the extra error incurred in the padding

step of Line 11, which we bound via Lemma 83.

Proposition 20 (Convergence of Algorithm 23). Assume the same parameter bounds as in Lemma 84,

and that δ ≤ ε
4ραm . Algorithm 23 returns zK satisfying V rzK (z?) ≤ 3ε

ν , letting (for an appropriate

constant) K = Ω(αν log(ν logm
ε)).

We are now ready to prove the main theorem of this section, which gives a complete convergence

guarantee of Algorithm 23 by combining our previous claims.

Theorem 41 (Regularized box-simplex solver). Given regularized box-simplex game (6.16) with

72ε ≤ µ ≤ 1 and optimizer (x?, y?), and letting ε ∈ (m−10, 1), RegularizedBS (Algorithm 23) returns

xK satisfying
∥∥xK − x?∥∥

1
≤ ε

Cmax log2 m
and maxy∈[0,1]n fµ,ε(x

K , y) − fµ,ε(x
?, y?) ≤ ε. The total

runtime of the algorithm is O(nnz(A) · (Cmax√
µε + log(mσε)) · log(Cmax logm

ε) log(mnBmax

ε)).

As a corollary, we obtain an approximate solver for regularized box-simplex games in the following

form (which in particular does not include a quadratic regularizer):

min
x∈∆m

max
y∈[0,1]n

fµ(x, y) = y>A>x+ c>x− b>y + µH(x), where H(x) :=
∑
i∈[m]

xi log xi. (6.24)

CHAPTER 6. DYNAMIC DECREMENTAL BIPARTITE MATCHING 259

Corollary 21 (Half-regularized approximate solver). Given regularized box-simplex game (6.24)

with regularization parameters 72ε ≤ µ ≤ 1 and optimizer (x?, y?), and letting ε ∈ (m−10, 1),

Algorithm 23 with ε ← ε
2 returns xK satisfying maxy∈[0,1]n fµ(xK , y) − fµ(x?, y?) ≤ ε. The total

runtime of the algorithm is O
(

nnz(A) · (Cmax√
µε + log

(
m
ε

)
) · log

(
Cmax logm

ε

)
log
(
mnBmax

ε

))
.

Part II

Semidefinite Programming and

High-Dimensional Statistics

260

Chapter 7

Matrix Multiplicative Weights and

Friends

This chapter is based in part on [108, 289, 180, 287], with Yair Carmon, Ilias Diakonikolas, John C.

Duchi, Arun Jambulapati, Daniel M. Kane, Daniel Kongsgaard, Jerry Li, Christopher Musco, and

Aaron Sidford.

7.1 Introduction

In this chapter, we present several related results on variants of the matrix multiplicative weights

method [534, 34], a meta-algorithm for regret minimization over subsets of the positive semidefinite

cone. Using these tools, we develop faster solvers for various approximate formulations of semidefinite

programming, as well as new algorithms for applications in high-dimensional statistics in Chapters 8

and 9. Further exposition on the various relationships between the tools developed in this chapter,

as well as their implications, can be found in Chapter 1.

7.1.1 Sketching matrix multiplicative weights

Consider the problem of online learning over the spectrahedron ∆n, the set of n × n symmetric

positive semidefinite matrices with unit trace. At every time step t, a player chooses action Xt ∈ ∆n,

an adversary supplies symmetric gain matrix Gt, and the player earns reward 〈Gt,Xt〉 := tr(GtXt).

We seek to minimize the regret with respect to the best single action (in hindsight),

sup
X∈∆n

T∑
t=1

〈
Gt,X

〉
−

T∑
t=1

〈
Gt,Xt

〉
= λmax

(
T∑
t=1

Gt

)
−

T∑
t=1

〈
Gt,Xt

〉
. (7.1)

261

CHAPTER 7. MATRIX MULTIPLICATIVE WEIGHTS AND FRIENDS 262

[534, 535] solve this problem using the matrix exponentiated gradient algorithm [511], also known

as matrix multiplicative weights (MMW). It is given by

Xt = Pmw

(
η

t−1∑
i=1

Gi

)
, where Pmw(Y) :=

eY

tr eY
, (7.2)

and η > 0 is a step size parameter. If the operator norm ‖Gt‖∞ ≤ 1 for every t, using the MMW

strategy (7.2) with η =
√

2 log(n)/T guarantees that the regret (7.1) is bounded by
√

2 log(n)T ;

this guarantee is minimax optimal up to a constant [33].

Unlike standard (vector) multiplicative weights, MMW is computational expensive to implement

in the high-dimensional setting n� 1. This is due ot the high cost of computing matrix exponentials;

currently they require an eigen-decomposition which costs Θ(n3) with practical general-purpose

methods and Ω(nω) in theory [433]. This difficulty has led a number of researchers to consider a

rank-k sketch of Pmw of the form

PU(Y) :=
eY/2UUT eY/2

〈eY,UUT 〉
, where U ∈ Rn×k (7.3)

and the elements of U are i.i.d. standard Gaussian. For k � n, PU is much cheaper than Pmw to

compute, since its computation requires only k products of the form eAb which can be evaluated

efficiently via iterative methods (see Section 7.2.3). Since we play rank-deficient matrices, an adver-

sary with knowledge of Xt may choose the gain Gt to be in its nullspace, incurring regret linear in

T . To rule such an adversary out, we assume that Gt and Xt must be chosen simultaneously. We

formalize this as

Assumption 5. Conditionally on X1,G1, . . . ,Xt−1,Gt−1, the gain Gt is independent of Xt.

This assumption is standard in the literature on adversarial bandit problems [99] where it is similarly

unavoidable. While it comes at significant loss of generality, Assumption 5 holds in two important

applications, as described below.

The challenge of bias Assumption 5 allows us to write

E

[〈
Gt,PUt

(
η

t−1∑
i=1

Gi

)〉
|{Gi}ti=1

]
=

〈
Gt,EUPU

(
η

t−1∑
i=1

Gi

)〉
.

However, even though U satisfies EUUUT = I, we have EUPU (Y) 6= Pmw(Y) for general Y.

Therefore, the guarantees of MMW do not immediately apply to actions chosen according to the

sketch (7.3), even in expectation. A common solution in the literature [34, 442, 19] is to pick

k = Õ
(
1/ε2

)
such that, by the Johnson-Lindenstrauss lemma, PU (Y) approximates Pmw(Y) to

within multiplicative error ε. This makes the MMW guarantees applicable again, but requires

CHAPTER 7. MATRIX MULTIPLICATIVE WEIGHTS AND FRIENDS 263

considerable computation per step, that will match the cost of full matrix exponentiation for suffi-

ciently small ε. [304, 20] prove regret guarantees for sketches of fixed rank k ≤ 3 with forms different

from (7.3); we discuss their approaches in detail later in this section.

Our approach. In this work we use the sketch (7.3) with k = 1, playing the rank-1 matrix

Xt = Put(η
∑t−1
i=1 Gi) where Pu(Y) = vvT /(vT v) for v = eY/2u and ut ∈ Rn standard Gaussian.

Instead of viewing Pu as a biased estimator of Pmw, we define the deterministic function

P̄(Y) := EuPu(Y),

and view Pu as an unbiased estimator for P̄. Our primary contribution is in showing that

P̄ is nearly as good a mirror projection as Pmw.

More precisely, we show that replacing Pmw with P̄ leaves the regret bounds almost unchanged;

if ‖Gt‖∞ ≤ 1 for every t, the actions X̄t = P̄(η
∑t−1
i=1 Gi) guarantee (with properly tuned η)

regret of at most
√

6 log(4n)T , worse than MMW by only a factor of roughly
√

3. To prove this,

we establish that P̄ possesses the geometric properties necessary for mirror descent analysis: it is

Lipschitz continuous and its associated Bregman divergence is appropriately bounded. Since Pu

is—by definition—an unbiased estimator of P̄, we immediately obtain (thanks to Assumption 5)

that Xt = Put(η
∑t−1
i=1 Gi) satisfies the same regret bound in expectation. High-probability bounds

follow immediately via martingale concentration.

Application to online PCA. As our sketched actions are of the form Xt = xtx
T
t , the regret they

incur is λmax

(∑T
t=1 Gt

)
−
∑T
t=1 x

T
t Gtxt. Therefore, the vectors xt can be viewed as streaming

approximations of the principal component1 of the cumulative matrix
∑t−1
i=1 Gi. This online coun-

terpart of the classical principal component analysis problem is the topic of a number of prior works

[534, 232, 20]. Our sketch offers regret bounds that are optimal up to constants, with computational

cost per step as low as any known alternative, and overall computational cost better than any in the

literature by a factor of at least log5 n. Our regret bounds hold for gains Gt of any rank or sparsity,

and our computational scheme (Section 7.2.3) naturally leverages low rank and/or sparsity in the

gains.

Application to semidefinite programming (SDP). Any feasibility-form SDP is reducible to the

matrix saddle-point game maxX∈∆n miny∈σm 〈
∑m
i=1 yiAi,X〉, where σm is the simplex in Rm and

A1, . . . ,Am ∈ Rn×n are symmetric matrices. A simple procedure for approximating a saddle-

point (Nash equilibrium) for this game is to have each player perform online learning, where the

max-player observes gains Gt =
∑m
i=1[yt]iAi and the min-player observes costs [ct]i = 〈Ai,Xt〉.

Using standard/matrix multiplicative weights for the min/max players, respectively, we may produce

approximate solutions with additive error ε in O(log(nm)/ε2) iterations, with each iteration costing

1For this reason we consider gain-maximization rather than loss-minimization, which is generally more conventional.

CHAPTER 7. MATRIX MULTIPLICATIVE WEIGHTS AND FRIENDS 264

O(n3) time, due to the MMW computation. In Section 7.2.4 we show that by replacing MMW with

our sketch we guarantee ε error in a similar number of iterations, but with each iteration costing

Õ (N/
√
ε), where N is the problem description size, which is often significantly smaller than n2.

This guarantee matches the state-of-the-art in a number of settings.

Related work

MMW appears in a large body of work spanning optimization, theoretical computer science, and

machine learning [415, 534, 33]. Here, we focus on works that, like us, attempt to relieve the compu-

tational burden of computing the matrix exponential, while preserving the MMW regret guarantees.

To our knowledge, the first proposal along these lines is due to [34], who apply MMW with a

Johnson-Lindenstrauss sketch to semidefinite relaxations of combinatorial problems. Subsequent

works on positive semidefinite programming adopted this technique [442, 19]. To achieve ε-accurate

solutions, these works require roughly ε−2 matrix exponential vector products per mirror projection.

[50] apply the accelerated mirror-prox scheme of [415] to matrix saddle-point problems and

approximate Pmw using the rank-k sketch (7.3). Instead of appealing to the JL lemma, they absorb

the bias and variance of this approximation directly into the algorithm’s error estimates. This

enables a more parsimonious choice of k; to attain additive error ε, they require k = Õ
(
ε−1
)
.

See Section 7.2.4 for additional discussion of the performance of this method.

A different line of work, called Follow the Perturbed Leader (FTPL) [304], eschews matrix

exponentiation, and instead produces rank-1 actions Xt = xtx
T
t , where xt is an approximate top

eigenvector of a random perturbation of
∑t−1
i=1 Gi. While a single eigenvector computation has

roughly the same cost as a single matrix-exponential vector product, the regret bounds for FTPL—

and hence also the total work—scale polynomially in the problem dimension n: [232] bound the

regret by Õ
(√

nT
)

and [211] improve the bound to Õ
(√

n1/2T
)

for gains of rank 1. In contrast,

the regret of MMW and its sketches depends on n only logarithmically.

[20] give the first fixed-rank sketch with MMW-like regret, proposing a scheme called Follow the

Compressed Leader (FTCL). Their approach is based on replacing the MMW mirror projection (7.2)

with the projection corresponding to `1−1/q regularization, given by Pq-reg(Y) := (c(Y)I − Y)−q

where c(Y) is the unique c ∈ R such that cI −Y � 0 and tr[(cI −Y)−q] = 1. They use a sketch

of Pq-reg similar in spirit to (7.3) and prove that k = 3 suffices to obtain regret bounds within a

polylogarithmic factor of MMW, with q chosen to be roughly log n.

The basis of the FTCL proof strategy is a potential argument used to derive regret bounds for

the exact Pq-reg. Their analysis consists of carefully tracing this argument, and accounting for the

errors caused by sketching in each step of the way. In comparison, we believe our analysis is more

transparent; rather than control multiple series expansion error terms, we establish three simple

geometric properties of our projection P̄. We also provide tighter bounds; to guarantee ε average

regret, FTCL requires a factor of Ω(log5(n/ε)) more online learning steps than our method. The

CHAPTER 7. MATRIX MULTIPLICATIVE WEIGHTS AND FRIENDS 265

per-step computational cost of our method is similar to that of FTCL, with better polylogarithmic

dependence on n. On a practical note, the computational scheme we describe in Section 7.2.3 is

significantly simpler to implement than the one proposed for FTCL.

7.1.2 Ky Fan matrix multiplicative weights

We give a Ky Fan k-norm (sum of k largest eigenvalues) generalization of MMW, which typically

gives operator norm guarantees. We analyze our algorithm and show that it is tolerant to the error

guarantees of approximate k-PCA procedures such as simultaneous power iteration [404]. Crucial

to our tightest runtime bounds are strengthenings of the analysis of a similar procedure found in

[136] in several places, which save multiple k factors in our guarantees and may be of independent

interest; we now highlight a few here.2

The main idea of our Ky Fan MMW regret guarantee is to bound the cost of actions {Yt}t≥0

against a sequence of positive semidefinite “gain matrices” {Gt}t≥0 as measured by inner products.

The actions {Yt}t≥0 are given by the algorithm (depending on the gain matrices), and live in

Y := {Y ∈ Rd×d | 0 � Y � I,Tr(Y) = k}.

The reason for this choice of action set, the “k-Fantope,” is because it satisfies

sup
U∈Y
〈U,G〉 = ‖G‖k ,

where ‖·‖k is the Ky Fan k-norm, so the best action in hindsight captures this norm. Ultimately,

our filtering scheme requires matrix-vector query access to each Yt, which are defined by Bregman

projections onto the set Y. It was shown in [136] that the natural choice of projection, induced by

a regularizer r(Y) chosen to be matrix entropy, is a truncated exponential, where truncation occurs

on the top-k eigenspace. The bottleneck cost of iterations is computing this space.

To this end, we show new guarantees on the performance of approximate k-PCA, which allow

for their use in this process. One example is that we show roughly 1
ε iterations of simultaneous

power iteration on a positive semidefinite matrix S ∈ Rd×d, resulting in approximate eigenvectors

V ∈ Rd×k, are enough to guarantee (cf. Proposition 24)

(1− ε)S � PSP + (I−P) S (I−P) � (1 + ε)S, where P := VV>.

This improves a similar analysis in [136], which showed an approximation factor of 1± kε.
The main other technical piece required by our MMW algorithm is a refined divergence bound

2We believe that similar wins following from our tighter analysis apply to the algorithm of [136].

CHAPTER 7. MATRIX MULTIPLICATIVE WEIGHTS AND FRIENDS 266

of the form (cf. Lemma 88 for a formal statement)

V r
∗

S (S + ηG) ≤ ‖ηG‖op 〈ηG,Y〉 , where Y := ∇r∗(S) ∈ Y,

a strengthening of V r
∗

S (S + ηG) ≤ k ‖ηG‖2op .

Here, V r
∗

is the Bregman divergence in the convex conjugate of r. The latter bound follows easily

from strong convexity of r (and hence smoothness of its dual); we require the former strengthening

so that we can use the action matrices {Yt}t≥0 to define scores, to decrease inner products.3 In

particular, the weaker bound above has no dependence on Y, so without the stronger bound it is

unclear how to use the MMW update structure to downweight.

We prove our refined divergence bound by adapting arguments from previous literature [108, 285]

on using Hessian formulae of spectral functions to prove divergence bounds, whenever the conjugate

r∗ is twice-differentiable, and applying the Alexandrov theorem. Finally, up to (non-dominant)

approximation error terms, our Ky Fan MMW procedure’s main guarantee can be stated as: given

a sequence of positive semidefinite matrices {Gt}t≥0, let step size η > 0 satisfy ηGt � I for all t.

The procedure plays a sequence {Yt}t≥0 ∈ Y, so that for any T ∈ N,∥∥∥∥∥ 1

T

T−1∑
t=0

Gt

∥∥∥∥∥
k

≤ 2

T

T−1∑
t=0

〈Gt,Yt〉+
k log d

ηT
. (7.4)

7.1.3 Matrix dictionary recovery SDPs

Positive semidefinite programs are a wide family of structured SDPs with numerous applications

[241, 36, 281, 353, 133, 131, 135, 136], which contain “pure packing” SDPs and “pure covering”

SDPs as special cases. We use the term positive semidefinite programming in this paper to refer to

the fully general mixed packing-covering SDP problem, which is parameterized by “packing” and

“covering” matrices {Pi}i∈[n],P, {Ci}i∈[n],C ∈ Sd≥0, and asks to find the smallest µ > 0 such that

there exists w ∈ Rn≥0 with ∑
i∈[n]

wiPi � µP,
∑
i∈[n]

wiCi � C. (7.5)

By redefining Pi ← 1
µP−

1
2 PiP

− 1
2 and Ci ← C−

1
2 CiC

− 1
2 for all i ∈ [n] and a given µ > 0, the

optimization problem in (7.5) is equivalent to testing whether there exists w ∈ Rn≥0 such that

∑
i∈[n]

wiPi �
∑
i∈[n]

wiCi. (7.6)

The above formulation (7.6) was studied by [283, 285], and an important open problem in the

field of structured convex programming is designing a “width-independent” solver for testing the

3It is a strengthening since ∇r∗(S) ∈ Y, so we can apply a matrix Hölder’s inequality and use Tr(Y) = k, ∀Y ∈ Y.

CHAPTER 7. MATRIX MULTIPLICATIVE WEIGHTS AND FRIENDS 267

feasibility of (7.6) up to a 1 + ε factor (namely, testing whether (7.6) is approximately feasible with

an iteration count polynomial in ε−1 and polylogarithmic in other problem parameters), or solving

for the optimal µ in (7.5) to this approximation factor. Up to this point, such width-independent

solvers have remained elusive beyond the case of pure packing SDPs [19, 442, 289].

This work develops an efficient algorithm for solving specializations of (7.5), (7.6) where the

packing and covering matrices {Pi}i∈[n], {Ci}i∈[n], as well as the constraints P, C, are multiples of

each other. In particular, we give efficient algorithms for the following special case of (7.5), (7.6).

Given a set of matrices (a “matrix dictionary”) {Mi}i∈[n] ∈ Sd≥0, a constraint matrix B, and a

tolerance ε ∈ (0, 1), such that there exists a feasible set of weights w? ∈ Rn≥0 with

B �
∑
i∈[n]

w?iMi � κB, (7.7)

for some unknown κ ≥ 1, we wish to return a set of weights w ∈ Rn≥0 such that

B �
∑
i∈[n]

wiMi � (1 + ε)κB. (7.8)

While this “matrix dictionary recovery” problem is a restricted case of (7.5), as we demonstrate, it

is already expressive enough to capture many interesting applications.

Our results concerning the problem (7.7), (7.8) will assume the family {Mi}i∈[n] is “simple” in

the following two senses: First, we assume we have an explicit factorization of each Mi as

Mi = ViV
>
i , Vi ∈ Rd×m. (7.9)

In our applications m = 1, but our solver also handles the general case. Second, recalling the

shorthandM(w) :=
∑
i∈[n] wiMi, we assume that we can approximately solve systems inM(w)+λI

for any w ∈ Rn≥0, λ ≥ 0. Concretely, we assume for any ε > 0, there is a linear operator M̃w,λ,ε

which we can compute and apply in T sol
M · log 1

ε time4, and∥∥∥M̃w,λ,εv − (M(w) + λI)
−1
v
∥∥∥

2
≤ ε

∥∥∥(M(w) + λI)
−1
v
∥∥∥

2
for all v ∈ Rd. (7.10)

Under these assumptions, we prove the following main claims in Section 7.4. We remark that we did

not try to heavily optimize logarithmic factors and the dependence on ε−1, as many of these factors

are inherited from subroutines from prior work.

Theorem 42. Given matrices {Mi}i∈[n] with explicit factorizations (7.9), such that (7.7) is feasible

for B = I and some κ ≥ 1, we can return weights w ∈ Rn≥0 satisfying (7.8) with probability ≥ 1− δ

4We use this notation because, if T sol
M is the complexity of solving the system to constant error c < 1, then we can

use an iterative refinement procedure to solve the system to accuracy ε in time T sol
M · log 1

ε
for any ε > 0.

CHAPTER 7. MATRIX MULTIPLICATIVE WEIGHTS AND FRIENDS 268

in time

O

(
Tmv({Vi}i∈[n]) · κ1.5 ·

log6(mndκδε)

ε8

)
.

Here Tmv({Vi}i∈[n]) denotes the computational complexity of multiplying an aribtrary vector by

all matrices in the set {Vi}i∈[n].

Theorem 43. Given matrices {Mi}i∈[n] with explicit factorizations (7.9), such that (7.7) is feasible

for some κ ≥ 1 and we can solve linear systems in linear combinations of {Mi}i∈[n] to ε relative

accuracy in the sense of (7.10) in T sol
M · log 1

ε time, and B satisfying

B �M(1) � αB, I � B � βI, (7.11)

we can return weights w ∈ Rn≥0 satisfying (7.8) with probability ≥ 1− δ in time

O

((
Tmv

(
{Vi}i∈[n] ∪ {B}

)
+ T sol
M
)
· κ2 ·

log11(mndκβδε)

ε8
· log

α

ε

)
.

The first condition in (10.32) is no more general than assuming we have a “warm start” reweight-

ing w0 ∈ Rn≥0 (not necessarily 1) satisfying B �
∑
i∈[n][w0]iMi � αB, by exploiting scale invariance

of the problem and setting Mi ← [w0]iMi. The second bound in (10.32) is equivalent to κ(B) ≤ β

up to constant factors, since given a bound β, we can use the power method (cf. Fact 40) to shift

the scale of B so it is spectrally larger than I spectrally. The operation requires just a logarithmic

number of matrix vector multiplications with B, which does not impact the runtime in Theorem 43.

Our algorithm for Theorem 42 is based on matrix multiplicative weights (MMW) [534, 34, 33],

a popular first-order meta-algorithm for approximately solving SDPs, with carefully chosen gain

matrices formed by using packing SDP solvers as a black box. In this sense, it is an efficient reduction

from structured mixed positive instances of the form (7.7), (7.8) to pure packing instances. We note

similar ideas were previously used in [353] (repurposed in [133]) for solving graph-structured matrix

dictionary recovery problems. Our Theorems 42 and 43 improve upon these results both in generality

(prior works only handled κ = 1 + ε where ε is sufficiently small) and efficiency (our reduction calls

a packing solver ≈ log d times for constant ε, κ, while [353] used ≈ log2 d calls). Moreover, our

method is a natural application of MMW, and is arguably simpler than prior work. This simplicity

is useful in diagonal scaling applications, as it allows us to obtain a tighter characterization of our

dependence on κ, the primary quantity of interest.

Our algorithm for proving Theorem 43 is new, and based on combining Theorem 42 with a

multi-level iterative preconditioning scheme we refer to as a “homotopy method.” In particular,

our algorithm for Theorem 42 recursively calls Theorem 42 and preconditioned linear system solvers

as black boxes, to provide near-optimal reweightings M(w) which approximate B + λI for various

values of λ. We then combine our access to linear system solvers in M(w) with efficient rational

CHAPTER 7. MATRIX MULTIPLICATIVE WEIGHTS AND FRIENDS 269

approximations to various matrix functions, yielding our overall algorithm. This homotopy method

framework is reminiscent of techniques used by other recent works in the literature on numerical

linear algebra and structured continuous optimization, such as [362, 311, 100, 8].

7.1.4 Schatten packing SDPs

We consider a natural generalization of packing semidefinite programs (SDPs) which we call Schatten

packing. Given symmetric positive semidefinite A1, . . . ,An and parameter p ≥ 1, a Schatten packing

SDP asks to solve the optimization problem

min

∥∥∥∥∥∥
∑
i∈[n]

wiAi

∥∥∥∥∥∥
p

subject to w ∈ ∆n. (7.12)

Here, ‖M‖p is the Schatten-p norm of matrix M and ∆n is the probability simplex. When p =∞,

(7.12) is the well-studied (standard) packing SDP objective [282, 19, 442], which asks to find the most

spectrally bounded convex combination of packing matrices. For smaller p, the objective encourages

combinations more (spectrally) uniformly distributed over directions.

The specialization of (7.12) to diagonal matrices is a smooth generalization of packing linear

programs, previously studied in the context of fair resource allocation [385, 191]. For the `∞ case

of (7.12), packing SDPs have the desirable property of admitting “width-independent” approxima-

tion algorithms via exploiting positivity structure. Specifically, width-independent solvers obtain

multiplicative approximations with runtimes independent or logarithmically dependent on size pa-

rameters of the problem. This is a strengthening of additive notions of approximation typically used

for approximate semidefinite programming. Our work gives the first width-independent solver for

Schatten packing. We state an informal guarantee here.

Theorem 44. Let {Ai}i∈[n] ∈ Sd≥0, and ε > 0. There is an algorithm taking O(
p log(ndε)

ε) iterations,

returning a 1 + ε multiplicative approximation to the problem (7.12). For odd p, each iteration can

be implemented in time nearly-linear in the number of nonzeros amongst all {Ai}i∈[n].

We remark that by setting p appropriately, Theorem 44 also results in the state-of-the-art ap-

proximate (`∞) packing SDP solver. It will be used in our development of Theorems 42 and 43.

Previous work

Semidefinite programming (SDP) and its linear programming specialization are fundamental com-

putational tasks, with myriad applications in learning, operations research, and computer science.

Though general-purpose polynomial time algorithms exist for SDPs ([424]), in practical settings in

high dimensions, approximations depending linearly on input size and polynomially on error ε are

sometimes desirable. To this end, approximation algorithms based on entropic mirror descent have

CHAPTER 7. MATRIX MULTIPLICATIVE WEIGHTS AND FRIENDS 270

been intensely studied [534, 34, 232, 20, 108], obtaining ε additive approximations to the objective

with runtimes depending polynomially on ρ/ε, where ρ is the “width”, the largest spectral norm of

a constraint.

For structured SDPs, stronger guarantees can be obtained in terms of width. Specifically, several

algorithms developed for packing SDPs ((7.12) with p = ∞) yield (1 + ε)-multiplicative approx-

imations to the objective, with logarithmic dependence on width [282, 442, 19, 285]. As ρ upper

bounds objective value in this setting, in the worst case runtimes of width-dependent solvers yielding

ερ-additive approximations have similar dependences as width-independent counterparts. Width-

independent solvers simultaneously yield stronger multiplicative bounds at all scales of objective

value, making them desirable in suitable applications. In particular, `∞ packing SDPs have found

great utility in robust statistics algorithm design [133, 131, 132, 171].

Beyond `∞ packing, width-independent guarantees in the SDP literature are few and far between;

to our knowledge, other than the covering and mixed solvers of [285], ours is the first such guarantee

for a broader family of objectives5. Our method complements analogous `p extensions in the width-

dependent setting, e.g. [21], as well as width-independent solvers for `p packing linear programs

[385, 191]. We highlight the fair packing solvers of [385, 191], motivated by problems in equitable

resource allocation, which further solved `p packing variants for p 6∈ [1,∞). We find analogous

problems in semidefinite settings interesting, and defer to future work.

7.2 A rank-1 sketch for matrix multiplicative weights

We present our main contribution in Section 7.2.1: regret bounds for our rank-1 randomized projec-

tions Pu and their proof via the geometry of P̄. In Section 7.2.3 we describe how to compute Xt in

Õ (
√
ηt) matrix-vector products using the Lanczos method. In Section 7.2.4 we present in detail the

application of our sketching scheme to semidefinite programming, as described above. We conclude

the section in Section 7.2.5 by discussing a number of possible extensions of our results along with

the challenges they present.

7.2.1 Main result

In this section, we state and prove our main result: regret bounds for a rank-1 sketch of the matrix

multiplicative weights method. Let us recall our sketch. At time step t, having observed gain

matrices G1, . . . ,Gt−1 ∈ Sn, we independently draw6 ut ∼ Uni(Sn−1) and play the rank-1 matrix

Xt := Put

(
η

t−1∑
i=1

Gi

)
, where Pu(Y) :=

eY/2uuT eY/2

uT eYu
=
vvT

vT v
for v = eY/2u. (7.13)

5In concurrent and independent work, [136] develops width-independent solvers for Ky-Fan packing objectives, a
different notion of generalization than the Schatten packing objectives we consider.

6Since Pu is invariant to scaling of u, it has the same distribution for u standard Gaussian or uniform on a sphere.

CHAPTER 7. MATRIX MULTIPLICATIVE WEIGHTS AND FRIENDS 271

We call Pu : Sn → ∆n the randomized mirror projection. The key computational consideration is

that we can evaluate Pu(Y) efficiently, while on the analytic side, we show that the update (7.13)

defines on average an efficient mirror descent procedure. The regret bounds for Xt then follow.

Expected regret bounds

The focus of our analysis is the average mirror projection

P̄(Y) := EuPu(Y) and action sequence X̄t := P̄

(
η

t−1∑
i=1

Gi

)
, (7.14)

where Eu denotes expectation w.r.t. to u ∼ Uni(Sn−1). As we show in Section 7.2.2 to come, P̄ is

the gradient of the function

p̄(Y) := Eu log
(〈
eY, uuT

〉)
= Eu log

(
uT eYu

)
,

which we also show7 is a convex spectral function [356]. As a consequence, we can write the average

action X̄t in the familiar dual averaging [422] or Follow the Regularized Leader [268] form

X̄t = argmaxX∈∆n

{
η

t−1∑
i=1

〈Gi,X〉 − r̄(X)

}

where r̄(X) = supY∈Sn {〈Y,X〉 − p̄(Y)} is the convex conjugate of p̄. In this standard approach, the

regularizer r̄ defines the scheme, and regret analysis proceeds by showing that r̄ is strongly convex

and has bounded range. The former property is equivalent to the smoothness of p̄.

In contrast, our starting point is the definition (7.14) of the projection P̄, and we find it more

convenient to argue about P̄ and p̄ directly. Toward that end, for any Y,Y′ ∈ Sn we let

V̄Y(Y′) := p̄(Y′)− p̄(Y)−
〈
Y′ −Y, P̄(Y)

〉
(7.15)

denote the Bregman divergence induced by p̄. We show that V̄Y(·) has the properties—analogous

to those arising from duality in analyses of dual averaging [422]—necessary to establish our regret

bounds.

Proposition 21. The projection P̄ and divergence V̄ satisfy

1. Smoothness: for every Y,D ∈ Sn, V̄Y(Y + D) ≤ 3
2 ‖D‖

2
∞.

2. Refined smoothness for positive shifts: for every Y,D ∈ Sn such that D � 0 and ‖D‖∞ ≤
1
6 ,

V̄Y(Y + D) ≤ 3 ‖D‖∞
〈
D, P̄(Y)

〉
.

7For fixed u ∈ Rn, however, Pu 6= ∇ log
(
uT eYu

)
and we do not know if it is the gradient of any other function.

Moreover, Y 7→ log
(
uT eYu

)
is not convex.

CHAPTER 7. MATRIX MULTIPLICATIVE WEIGHTS AND FRIENDS 272

3. Diameter bound: for every Y,Y′ ∈ Sn, V̄Y(0)− V̄Y(Y′) ≤ log(4n).

4. Surjectivity: for every X ∈ relint∆n there exists Y ∈ Sn such that P̄(Y) = X.

We return to Proposition 21 and prove it in Section 7.2.2. The proposition gives the following

regret bounds for the averaged actions X̄t.

Theorem 45. Let G1, . . . ,GT be any sequence of gain matrices in Sn and let X̄t = P̄(η
∑t−1
i=1 Gi)

as in Eq. (7.14). Then, for every T ∈ N,

λmax

(
T∑
t=1

Gt

)
−

T∑
t=1

〈
Gt, X̄t

〉
≤ log(4n)

η
+

3η

2
·
T∑
t=1

‖Gt‖2∞ . (7.16)

If additionally 0 � Gt � I for every t and η ≤ 1
6 ,

λmax

(
T∑
t=1

Gt

)
−

T∑
t=1

〈
Gt, X̄t

〉
≤ log (4n)

η
+ 3η · λmax

(
T∑
t=1

Gt

)
. (7.17)

We prove Theorem 45 in Appendix F.1.1. The proof is essentially the standard dual averaging

telescoping argument [422], which we perform using only the properties in Proposition 21. Indeed,

matrix multiplicative weights satisfies a version of Proposition 21 with slightly smaller constant

factors, and its regret bounds follow similarly.

The projection P̄ is no easier to compute than the matrix multiplicative weights projection.

However, Pu is easily computed and is unbiased for P̄. Consequently—under Assumption 5—the

sketch Pu inherits the regret guarantees in Theorem 45. To argue this formally, we define the σ-fields

Ft := σ(G1,X1, . . . ,GtX1,Gt+1),

so that Gt ∈ Ft−1 and X̄t ∈ Ft−1, while, under Assumption 5, E[X1 | Ft−1] = X̄t because

ut ∼ Uni(Sn−1), independent of Ft−1. Consequently, we have the following

Corollary 22. Let G1, . . . ,GT be symmetric gain matrices satisfying Assumption 5 and let Xt be

generated according to Eq. (7.13). Then

E
[
λmax

(T∑
t=1

Gt

)
−

T∑
t=1

〈Gt,Xt〉
]
≤ log(4n)

η
+

3η

2
·
T∑
t=1

E
[
‖Gt‖2∞

]
.

If additionally 0 � Gt � I for every t and η ≤ 1
6 ,

E
[
λmax

(T∑
t=1

Gt

)
−

T∑
t=1

〈Gt,Xt〉
]
≤ log (4n)

η
+ 3η · E

[
λmax

(T∑
t=1

Gt

)]
.

CHAPTER 7. MATRIX MULTIPLICATIVE WEIGHTS AND FRIENDS 273

Proof. Using Gt ∈ Ft−1 and E[Xt | Ft−1] = X̄t, we have E 〈Gt,Xt〉 = E [E[〈Gt,Xt〉 | Ft−1]] =

E
〈
Gt, X̄t

〉
, and so the result is immediate from taking expectation in Theorem 45.

It is instructive to compare these guarantees to those for the full (non-approximate) matrix

multiplicative weights algorithm. Let

R[T] := E
[
λmax

(
1

T

T∑
t=1

Gt

)
− 1

T

T∑
t=1

〈Gt,Xt〉
]

denote the expected average regret at time T . If ‖Gt‖∞ ≤ 1 for every t, the bound (7.16) along

with Corollary 22 imply, for η = (2 log(4n)/(3T))1/2,

R[T] ≤
√

6 log(4n)

T
, i.e. R[T] ≤ ε for T ≥ 6 log(4n)

ε2
.

In contrast, the matrix multiplicative weights procedure (7.2) guarantees average regret below ε in

2 log(n)/ε2 steps, so our guarantee is worse by a factor of roughly 3.

The bound (7.17) guarantees smaller relative average regret when we additionally assume 0 �
Gt � I for every t and an a-priori upper bound of the form λ? := λmax(1

T

∑T
t=1 Gt) ≥ λ0. Here, a

judicious choice of η guarantees R[T]/λ? ≤ ε for T ≥ 12 log(4n)/(λ0ε
2). Again, this is slower than

the corresponding guarantee for matrix multiplicative weights by a factor of roughly 3. Relative

regret bounds of the form (7.17) are useful in several application of multiplicative weights and its

matrix variant [33], e.g. width-independent solvers for linear and positive semidefinite programs [442].

High-probability regret bounds

Using standard martingale convergence arguments [114, 416], we can provide high-probability con-

vergence guarantees for our algorithm. Indeed, we have already observed in Corollary 22 that

E [〈Gt,Xt〉 | Ft−1] =
〈
Gt, X̄t

〉
and therefore

〈
Gt,Xt − X̄t

〉
is a martingale difference sequence

adapted to the filtration Ft. As |〈Gt,Xt〉| ≤ ‖Gt‖∞ ‖Xt‖1 = ‖Gt‖∞, the martingale
∑t
i=1

〈
Gi,Xti− X̄i

〉
has bounded differences whenever ‖Gt‖∞ is bounded, so that the next theorem is an immediate con-

sequence of the Azuma-Hoeffding inequality and its multiplicative variant [20]

Corollary 23. Let G1, . . . ,GT be symmetric gain matrices satisfying Assumption 5 and let Xt be

generated according to Eq. (7.13). If ‖Gt‖∞ ≤ 1 for every t, then for every T ∈ N and δ ∈ (0, 1),

with probability at least 1− δ,

λmax

(
T∑
i=1

Gt

)
−

T∑
t=1

〈Gt,Xt〉 ≤
log(4n)

η
+

3η

2
T +

√
2T log 1

δ . (7.18)

CHAPTER 7. MATRIX MULTIPLICATIVE WEIGHTS AND FRIENDS 274

If additionally 0 � Gt � I for every t and η ≤ 1
6 , then with probability at least 1− δ,

λmax

(
T∑
i=1

Gt

)
−

T∑
t=1

〈Gt,Xt〉 ≤
log (4n/δ)

η
+ 4η λmax

(
T∑
i=1

Gt

)
. (7.19)

We give the proof of Corollary 23 in Appendix F.1.2.

Our development uses Assumption 5 only through its consequence E[Xtt | Ft−1] = X̄t. Therefore,

our results apply to any adversary that produces gains with such martingale structure, a weaker

requirement than Assumption 5.

7.2.2 Analyzing the average mirror projection

In this section we outline the proof of Proposition 21, which constitutes the core technical contribu-

tion of our work. Our general strategy is to relate the average mirror projection to the multiplicative

weights projection, which satisfies a version of Proposition 21. Our principal mathematical tool is

the theory of convex, twice-differentiable spectral functions [356, 357].

We begin with the vector log-sum-exp, or softmax, function

lse(v) := log

(n∑
j=1

evj
)

and its gradient ∇lse(v) =
ev

1T ev
,

where we write ev for exp(·) applied elementwise to v and 1 for the all-ones vector. Note that

∇lse : Rn → σn is the mirror projection associated with (vector) multiplicative weights. Let Y ∈ Sn
have eigen-decomposition Y = Q diag(λ)QT . The matrix softmax function is

pmw(Y) := log tr eY = lse(λ) and Pmw(Y) = ∇pmw(Y) =
eY

tr eY
= Qdiag(∇lse(λ))QT

is the matrix multiplicative weights mirror projection.

We now connect the function p̄(Y) = Eu[log tr(eYuuT)] and the projection P̄(Y) = Eu e
Y/2uuT eY/2

uT eYu

to their counterparts pmw,Pmw and lse.

Lemma 87. Let Y ∈ Sn have eigen-decomposition Y = Q diag(λ)QT . Let w ∈ σn be drawn from

a Dirichlet(1
2 , . . . ,

1
2) distribution. Then

p̄(Y) = Ew [lse(λ+ logw)] = Ewpmw(Y + Q diag(logw)QT) (7.20)

where log is applied elementwise. The function p̄ is convex and its gradient is

P̄(Y) = ∇p̄(Y) = Q diag (Ew[∇lse(λ+ logw)]) QT = EwPmw(Y + Q diag(logw)QT). (7.21)

Proof. Let u be uniformly distributed over the unit sphere in Rn and note that u and QTu are

CHAPTER 7. MATRIX MULTIPLICATIVE WEIGHTS AND FRIENDS 275

identically distributed. Therefore, for Λ = diag(λ),

p̄(Y) = Eu log
(
uT eYu

)
= Eu log

(
(QTu)T eΛ(QTu)

)
= Eu log

(
uT eΛu

)
= p̄(Λ).

Further, a vector w with coordinates8 wi = u2
i has a Dirichlet(1

2 , . . . ,
1
2) distribution. Hence,

p̄(Λ) = Eu log

(
n∑
i=1

u2
i e
λi

)
= Ew log

(
n∑
i=1

eλi+logwi

)
= Ewlse(λ+ logw),

establishing the identity (7.20).

Evidently, p̄(Y) is a spectral function—a permutation-invariant function of the eigenvalues of Y.

Moreover, since lse is convex, λ 7→ Ewlse(λ + logw) is also convex, and Corollary 2.4, [356] shows

that p̄ is convex. Moreover, Corollary 3.2, [356] gives

∇p̄(Y) = Q diag(∇Ew[lse(λ+ logw)])QT = EwPmw(Y + Q log(w)QT).

It remains to show that P̄(Y) = ∇p̄(Y). Here we again use the rotational symmetry of u to write

P̄(Y) = Eu
eY/2uuT eY/2

uT eYu
= Q

(
Eu

eΛ/2(QTu)(QTu)T eΛ/2

(QTu)T eΛ(QTu)

)
QT = Q P̄(Λ)QT .

Moreover,

P̄(Λ)ij = Eu
uiuje

(λi+λj)/2∑n
k=1 u

2
ke
λk

(?)
= Eu

u2
i e
λiI{i=j}∑n

k=1 u
2
ke
λk

= Ew∇ilse(λ+ logw)I{i=j}

where the equality (?) above follows because ui has a symmetric distribution, even conditional on

uj , j 6= i, so E
[
uiuj | u2

1, . . . , u
2
n, uj

]
= 0 for i 6= j.

Lemma 87 is all we need in order to prove parts 3 and 4 of Proposition 21.

Proof. (Proposition 21, parts 3 and 4) We first observe the following simple lower bound on p̄,

immediate from identity (7.20) in Lemma 87,

p̄(Y) = Ew log
(n∑
i=1

eλi(Y)+logwi
)
≥ λmax(Y) + Ew1

logw1 ≥ λmax(Y)− log(4n), (7.22)

where Ew1
logw1 ≥ − log(4n) comes from noting that w1 ∼ Beta(1

2 ,
n−1

2) (see Lemma 286 in Ap-

pendix F.1.5). For matrices Y ∈ Sn and Xt ∈ ∆n,

〈Y,Xt〉 = 〈Y − λmin(Y)I,Xt〉+λmin(Y) tr Xt ≤ ‖Y − λmin(Y)I‖∞ ‖Xt‖1+λmin(Y) tr Xt = λmax(Y),

8The letter w naturally denotes a vector of ‘weights’ in the simplex. Here, it is also double-u.

CHAPTER 7. MATRIX MULTIPLICATIVE WEIGHTS AND FRIENDS 276

where the final equality is due to ‖Y − λmin(Y)I‖∞ = λmax(Y) − λmin(Y) for every Y ∈ Sn and

‖Xt‖1 = tr Xt = 1 for every Xt ∈ ∆n.

〈Y,Xt〉 − p̄(Y) ≤ log(4n) (7.23)

for every Y ∈ Sn and Xt ∈ ∆n. Part 3 follows since

V̄Y(0)− V̄Y(Y′) = p̄(0) +
〈
Y′, P̄(Y)

〉
− p̄(Y′) ≤ p̄(0) + log(4n) = log(4n),

where we used the bound (7.23) with Xt = P̄(Y) and the fact that p̄(0) = Ew log(1Tw) = 0.

To show Part 4, let r̄(Xt) := supY∈Sn{〈Y,Xt〉− p̄(Y)} be the convex conjugate of p̄. Eq. (7.23)

implies that r̄(Xt) < ∞ for all Xt ∈ ∆n, and therefore relint∆n ⊆ relint dom r̄. Every convex

function has nonempty subdifferential on the relative interior of its domain as shown in Theorem

X.1.4.2 of [271], and thus for X ∈ relint∆n there exists Y ∈ ∂ r̄(Xt). By definition of r̄, any such Y

satisfies Xt = ∇p̄(Y) = P̄(Y), as required.

Proving parts 1 and 2 requires second order information on p̄. For twice differentiable function

f , we denote ∇2f(A)[B,B] = ∂2

∂t2 f(A + tB)|t=0. It is easy to verify that, for every λ, δ ∈ Rn,

δT∇2lse(λ)δ = ∇2lse(λ)[δ, δ] ≤ (δ2)T∇lse(λ),

where [δ2]i = δ2
i ; this concisely captures the pertinent second order structure of the multiplicative

weights mirror projection. [421] shows that this property extends to the matrix case.

For any Y,D ∈ Sn, ∇2pmw(Y)[D,D] ≤
〈
D2,Pmw(Y)

〉
. In Appendix F.1.3 we explain how to

find this result in [421], as it is not explicit there. In view of Lemma 87, it is natural to hope that

∇2p̄ and ∇2pmw are also related via simple expectation. Unfortunately, this fails; we can, however,

derive a bound.

For any Y,D ∈ Sn, orthogonal eigenbasis Q for Y , and w ∼ Dirichlet(1
2 , . . . ,

1
2),

∇2p̄(Y)[D,D] ≤ 3 · Ew∇2pmw(Y + Q diag(logw)QT)[D,D] (7.24)

≤ 3
〈
D2, P̄(Y)

〉
. (7.25)

Our proof of Lemma 7.2.2 is technical; we sketch it here briefly and give it in full Appendix F.1.4.

The key ingredient in the proof is a formula for the Hessian of spectral functions [357]. Using the

spectral characterization (7.20), the formula gives that

∇2p̄(Y)[D,D] = diag(D̃)T
[
Ew∇2lse(λ+ logw)

]
diag(D̃) +

〈
EwAw(λ), D̃ ◦ D̃

〉
.

where D̃ = QTDQ, diag(D̃) ∈ Rn is the vector containing the diagonal entries of D̃, A ◦B denotes

CHAPTER 7. MATRIX MULTIPLICATIVE WEIGHTS AND FRIENDS 277

elementwise multiplication of A and B, and Aw
ij(λ) :=

∇ilse(λ+log(w))−∇j lse(λ+log(w))
λi−λj I{i 6=j}. With the

shorthand Y{w} := Y+Q diag(logw)QT , we use the formula of [357] again to express ∇2pmw(Y{w})

as

∇2pmw(Y{w})[D,D] = diag(D̃)T
[
∇2lse(λ+ logw)

]
diag(D̃) +

〈
A1(λ+ logw), D̃ ◦ D̃

〉
,

where A1 = Aw̃ evaluated at w̃ = 1. The bulk of the proof is dedicated to establishing the entry-wise

bounds

EwAw
ij(λ) ≤ Ew

1 +
tanh

(λi−λj
2

)∣∣ log wi
wj

∣∣
λi − λj

A1
ij(λ+ logw)

 ≤ 3 · EwA1
ij(λ+ logw).

The first inequality follows from pointwise analysis of a symmetrized version of Aw
ij . The second

inequality follows from piecewise monotonicity of Aw
ij as a function of log wi

wj
∼ logit Beta(1

2 ,
1
2),

combined with tight exponential tail bounds for the latter. Substituting the bound on EwAw
ij(λ)

into the expression for ∇2p̄(Y) and comparing with Ew∇2pmw(Y{w}) yields the desired result (7.24).

Applying Lemma 7.2.2 and recalling the identity (7.21) yields

Ew∇2pmw(Y + Q diag(logw)QT)[D,D] ≤
〈
D2,EwPmw(Y + Q diag(logw)QT)

〉
=
〈
D2, P̄(Y)

〉
,

establishing the final bound (7.25).

The bound (7.25) gives the remaining parts of Proposition 21.

Proof. (Proposition 21, parts 1 and 2) Fix Y,D ∈ Sn and let p(t) := p̄(Y + tD). The Bregman

divergence (7.15) admits the integral form

V̄Y(Y + D) = p(1)− p(0)− p′(0) =

∫ 1

0

(p′(t)− p′(0))dt =

∫ 1

0

∫ t

0

p′′(τ)dτdt

=

∫ 1

0

∫ t

0

∇2p̄(Y + τD)[D,D]dτdt. (7.26)

Note that since P̄(Y) ∈ ∆n for every Y ∈ Sn,
〈
D2, P̄(Y)

〉
≤ ‖D2‖∞‖P̄(Y)‖1 = ‖D‖2∞. Therefore,

the bound (7.25) gives

∇2p̄(Y + τD)[D,D] ≤ 3 ‖D‖2∞ .

Substituting back into (7.26) and using
∫ 1

0

∫ t
0
dτdt = 1

2 gives Proposition 21.1.

When D � 0, we have

〈
D2, P̄(Y)

〉
=
〈
D,D1/2P̄(Y)D1/2

〉
≤ ‖D‖∞‖D1/2P̄(Y)D1/2‖1 = ‖D‖∞ 〈D,∇p̄(Y)〉 .

CHAPTER 7. MATRIX MULTIPLICATIVE WEIGHTS AND FRIENDS 278

Plugging the bound above into the bound (7.25) and substituting back into (7.26) gives

V̄Y(Y + D) ≤ 3 ‖D‖∞
∫ 1

0

∫ t

0

〈D,∇p̄(Y + τD)〉dτdt. (7.27)

Moreover,∫ t

0

〈D,∇p̄(Y + τD)〉dτ =

∫ t

0

p′(τ)dτ = p(t)− p(0) = V̄Y(Y + tD) +
〈
tD, P̄(Y)

〉
, (7.28)

where the final equality uses the definition (7.15) of the Bregman divergence. Note also that v(t) :=

V̄Y(Y + tD) is increasing for t ≥ 0 due to convexity of p̄; tv′(t) = 〈tD,∇p̄(Y + tD)−∇p̄(Y)〉 ≥ 0.

Therefore, the equality (7.28) implies
∫ t

0
〈D,∇p̄(Y + τD)〉dτ ≤ V̄Y(Y +D)+ t ·

〈
D, P̄(Y)

〉
for every

0 ≤ t ≤ 1. Substituting this back into (7.27) and rearranging gives(
1− 3 ‖D‖∞

)
V̄Y(Y + D) ≤ 3

2
‖D‖∞

〈
D, P̄(Y)

〉
.

establishing part 2 of the proposition, as 1− 3 ‖D‖∞ ≥
1
2 by assumption.

7.2.3 Efficient computation of matrix exponential-vector products

The main burden in computing the randomized mirror projections (7.13) lies in computing eAb

for A ∈ Sn and b ∈ Rn. Matrix exponential-vector products have widespread use in solutions of

differential equations [465, 272], and also appear as core components in a number of theoretical

algorithms [34, 429, 291]. Following a large body of literature [399], we approximate eAb via the

classic Lanczos method [339], an iterative process for computing f(A)b for general real functions f

applied to matrix A. The Lanczos approximation enjoys strong convergence guarantees upon which

we base our analysis [466]. It is also eminently practical: the only tunable parameter is the number

of iterations, and each iteration accesses A via a single matrix-vector product.

Let ẽxpk(A, b) be the result of k iterations of the Lanczos method for approximating eAb. We

provide a precise description of the method in Appendix F.1.6. Let

X̃t;k = P̃ut;k

(
η

t−1∑
i=1

Gi

)
, where P̃u;k(Y) =

vvT

vT v
for v = ẽxpk(Y/2, u) (7.29)

denote the approximate randomized mirror projection. Using the Lanczos method to compute

full eigen-decompositions has well-documented numerical stability issues [392]. In contrast, the

approximation (7.29) appears to be numerically stable. To provide a theoretical basis for this

observation, we exhibit error bounds under finite floating point precision, leveraging the results

of [405], which in turn build on [199, 200]. To account for computational cost, we denote by mv(Y)

the cost of multiplying matrix Y by any vector.

CHAPTER 7. MATRIX MULTIPLICATIVE WEIGHTS AND FRIENDS 279

Proposition 22. Let ε, δ ∈ (0, 1) and Y ∈ Sn, and set M := max{‖A‖op , log(nεδ), 1}. Let u be

uniformly distributed on the unit sphere in Rn and independent of Y. If the number of Lanczos

iterations k satisfies k ≥ Θ(1)
√
M log(nMεδ) then the approximation (7.29) satisfies

‖Pu(Y)− P̃u;k(Y)‖1 ≤ ε with probability ≥ 1− δ over u ∼ Uni(Sn−1)

when implemented using floating point operations with B = Θ(1) log nM
εδ bits of precision. The time

to compute P̃u;k(Y) is O(mv(Y)k + k2B).

We prove Proposition 22 in Appendix F.1.6 and describe here the main ingredients in the proof.

First, we show by calculation that

‖Pu(Y)− P̃u;k(Y)‖1 ≤
√

8

∥∥eY/2u− ẽxpk(Y/2, u)
∥∥

2∥∥eY/2u∥∥
2

.

Therefore, a multiplicative error guarantee for ẽxpk would imply our result. Unfortunately, for such

a guarantee to hold for all vectors u we must have k = Ω(‖Y‖∞) [429]. We circumvent that by

using the randomness of u to argue that w.h.p. ‖eY/2u‖2 & 1√
n
eλmax(Y/2) ‖u‖2. This allows us to

use existing additive error guarantees for ẽxpk to obtain our result.

We connect the approximation to regret in the following corollary.

Corollary 24. Let G1, . . . ,GT be symmetric gain matrices satisfying ‖Gt‖∞ ≤ 1 for every t. There

exists a numerical constant k0 <∞, such that for every T ∈ N and δ ∈ (0, 1), X̃t;kt defined in (7.29)

with kt =
⌈
k0(
√

1 + ηt) log(nTδ)
⌉
, and Xt defined in (7.13) satisfy

T∑
t=1

〈
Gt, X̃t;kt

〉
≥ −1 +

T∑
t=1

〈Gt,Xt〉 w.p. ≥ 1− δ/2. (7.30)

Let ε ∈ (0, 1], T = 16 log(4en/δ)
ε2 and η =

√
2 log(4en)

3T . If Assumption 5 holds with respect to the actions

X̃t;kt , then with probability at least 1− δ, 1
T λmax

(∑T
i=1 Gt

)
− 1

T

∑T
t=1

〈
Gt, X̃t;kt

〉
≤ ε. Computing

the actions X̃1;k1
, . . . , X̃T ;kT requires O(ε−2.5 log2.5(nεδ)) matrix-vector products.

Finally, as we discuss in detail in Appendix F.1.6, computing matrix exponential-vector products

(and hence Pu) reduces to solving Õ (1) linear systems. Since [20] propose to compute their sketch

using a similar reduction, the running time guarantees they establish for their sketch are also valid

for ours.

CHAPTER 7. MATRIX MULTIPLICATIVE WEIGHTS AND FRIENDS 280

7.2.4 Application to semidefinite programming

Here we describe how to use our rank-1 sketch to solve semidefinite programs (SDPs). The standard

SDP formulation is, given C̃, Ã1, . . . , Ãm̃ ∈ Sñ and b̃ ∈ Rm̃,

minimize
Z�0

〈
C̃,Z

〉
subject to

〈
Ãi,Z

〉
= b̃i ∀i ∈ [m̃].

A binary search over the optimum value reduces this problem to a sequence of feasibility problems.

When the constraints imply tr Z ≤ r for some r < ∞, every intermediate feasibility problem is

equivalent to deciding whether there exists X in the spectrahedron ∆n s.t. 〈Ai,X〉 ≤ 0 for all

i ∈ [m], with n,m and Ai ∈ Sn constructed from ñ, m̃, Ãi, b̃, C̃ and r. This decision problem is in

turn equivalent [231] to determining the sign of

s = min
y∈σm

max
X∈∆n

〈A?y,X〉 , where A?y :=
∑
i∈[m]

[y]iAi. (7.31)

and σm is the simplex in Rm. For every y ∈ σm and X ∈ ∆n, we have that

min
y′∈σm

〈
A?y′,X

〉
≤ s ≤ max

X′∈∆n

〈
A?y,X′

〉
.

Therefore, to determine s to additive error ε, it suffices to find y,X with Gap(X, y) ≤ ε, where

Gap(X, y) := max
X′∈∆n

〈
A?y,X′

〉
− min
y′∈σm

〈
A?y′,X

〉
= λmax (A?y)− min

i∈[m]
〈Ai,X〉 . (7.32)

A basic approach to solving convex-concave games such as (7.31) is to apply online learning for X

and y simultaneously, where at each round the gains/costs to the max/min player are determined

by the actions of the opposite player in the previous round. Importantly, such dynamics satisfy

Assumption 5, and we use our rank-1 sketch as the online learning strategy of the (matrix) max

player, and standard multiplicative weights for the (vector) min player. Algorithm 24 describes

the resulting scheme. The algorithm entertains a convergence guarantee that depends on the width

parameter

ω := max
i∈[m]

‖Xi‖∞

and has the following form.

Theorem 46. Let {Xt, yt}Tt=1 be the actions produced by Algorithm 1 and, define Xavg
T = 1

T

∑T
t=1 Xt,

yavg
T = 1

T

∑T
t=1 yt. Then

E [Gap (Xavg
T , yavg

T)] ≤ log(4mn)

ηT
+ 2ηω2.

Proof. Recalling the definition (7.32) of the duality gap, and that Gt = A?yt and [ct]i = 〈Ai,Xt〉,

CHAPTER 7. MATRIX MULTIPLICATIVE WEIGHTS AND FRIENDS 281

Algorithm 24: Primal-dual SDP feasibility

1 Let G0 := 0 and c0 := 0
2 for t = 1, . . . , T do

3 Sample vector ut uniformly at random from the unit sphere

4 Play matrix Xt := Put
(∑t−1

i=1 ηGi

)
5 Play vector yt := ∇lse

(
− η

∑t−1
i=1 ci

)
= yt−1◦e−ηct−1

1T (yt−1◦e−ηct−1)
.

6 Form gain matrix Gt = A?yt =
∑
i∈[m][yt]iAi

7 Form cost vector [ct]i := 〈Xt,Ai〉, i ∈ [m]

we have

Gap(Xavg
T , yavg

T) =
1

T
λmax

(T∑
t=1

Gt

)
− 1

T
min
i∈[m]

{ T∑
t=1

[ct]i

}
.

Note that yt = ∇lse(−η
∑t−1
i=1 ci) is a function of X1, . . . ,Xt−1. Therefore, Gt = A?yt satisfies

Assumption 5 and we may use Corollary 22 to write

E
[
λmax

(T∑
t=1

Gt

)
−

T∑
t=1

〈Gt,Xt〉
]
≤ log(4n)

η
+

3η

2
·
T∑
t=1

E
[
‖Gt‖2∞

]
≤ log(4n)

η
+

3ηω2T

2
,

where in the second inequality we used ω = maxi∈[m] ‖Ai‖∞ and y ∈ σm to bound ‖Gt‖∞ =

‖A?yt‖∞ ≤ ω · 1T yt = ω. Similarly, we use the standard multiplicative weights regret bound [474]

to write
T∑
t=1

cTt yt − min
i∈[m]

{ T∑
t=1

[ct]i

}
≤ log(m)

η
+
η

2
·
T∑
t=1

‖ct‖2∞ ≤
log(m)

η
+
ηω2T

2
,

where the second inequality again follows from |[ct]i| = |〈Ai, Xt〉| ≤ ‖Ai‖∞ ≤ ω since Xt ∈ ∆n.

Finally,

cTt yt =

m∑
i=1

[yt]i 〈Ai,Xt〉 = 〈A?yt,Xt〉 = 〈Gt,Xt〉 .

Hence, summing the two regret bounds and dividing by T gives the result.

For η = log(4mn)/
√

2ω2T and T = 8 log(4mn)ω2/ε2, Theorem 46 guarantees

E [Gap(Xavg
T , yavg

T)] ≤ ε. A high-probability version of this guarantee follows readily via Corol-

lary 23.

Let us now discuss the computational cost of Algorithm 24. Let mv(M) denote the time re-

quired to multiply the matrix M by any vector, and let mv(A) :=
∑
i∈[m] mv(Ai). Except for the

computation of Xt, every step in the for loop in Algorithm 24 takes O(mv(A)) work to execute (we

may assume mv(A) ≥ max{n,m} without loss of generality). Let Yt = η
∑t−1
i=1 Gi = A?(

∑t−1
i=1 ηyi),

and note that, with the values of η and T above, ‖Yt‖∞ ≤ ηTω = Õ (ω/ε) for every t ≤ T .

CHAPTER 7. MATRIX MULTIPLICATIVE WEIGHTS AND FRIENDS 282

Per Section 7.2.3, the computation of Xt costs Õ
(
‖Yt‖0.5∞ mv(Yt)

)
= Õ

(
(ω/ε)0.5 mv(Yt)

)
. Writing

mv(A?) := maxα∈Rm{mv(A?α)} ≤ min{mv(A), n2}, the total computational cost of our algorithm

is

Õ
([

(ω/ε)0.5 mv(A?) + mv(A)
]
T
)

= Õ
(
(ω/ε)2.5 mv(A?) + (ω/ε)2 mv(A)

)
.

In many settings of interest—namely when the Ais have mostly non-overlapping sparsity patterns

and yet the Yts are sparse—we have mv(A?) ≈ mv(A), so that the computational cost is dominated

by the first term.

Comparison with other algorithms

Let nnz(M) denote the number of nonzero entries of matrix M , and let nnz(A) :=
∑
i∈[m] nnz(Ai) ≥

mv(A). If in Algorithm 24 we replace the randomized projection Pu with the matrix multiplicative

weights projection Pmw, the regret bound of Theorem 46 still holds, but the overall computational

cost becomes Õ
(
(ω/ε)2 (n3 + nnz(A))

)
due to full matrix exponentiation. [415] accelerates this

scheme using extra-gradient steps, guaranteeing duality gap below ε in Õ (ω/ε) iterations, with each

iteration involving two full matrix exponential computations. The overall computational cost of such

scheme is consequently Õ
(
(ω/ε) (n3 + nnz(A))

)
. [421] attains the same rate by using accelerated

gradient descent on a smoothed version of the dual problem. Our scheme improves on this rate for

sufficiently sparse problems, with n3/nnz(A)� (ω/ε)−1.5.

[163] applies a subgradient method to the dual problem, approximating the subgradients using

the Lanczos method to compute a leading eigenvector ofA?y. The method solves the dual problem to

accuracy ε with total work Õ
(
(ω/ε)2.5 mv(A?) + (ω/ε)2 mv(A)

)
, essentially the same as us. However,

it is not clear how to efficiently recover a primal solution from this method. Moreover, the surrogate

duality gap [163] proposes will not always be 0 at the global optimum, whereas with our approach

the true duality gap is readily computable.

[50] replace the full matrix exponentiation in the accelerated scheme of [415] with a rank-k

sketch of the form (7.3), where k = Õ (ω/ε). Similarly to [415], they require Õ (ω/ε) iterations to

attain duality gap below ε. [50] approximate matrix exponential vector products by truncating a

Taylor series, costing Õ (k(ω/ε) mv(A?)) = Õ
(
(ω/ε)2 mv(A?)

)
work per iteration. With the Lanczos

method, the cost improves to Õ
(
(ω/ε)1.5 mv(A?)

)
work per iteration. Every step of their method

also computes 〈Ai,X〉 for all i ∈ [m] and a rank-k matrix X =
∑k
j=1 vjv

T
j ; this costs either k ·mv(A)

work (computing 〈Ai, vj〉 for every i, j) or nnz(A) + n2k (when forming X explicitly). The former

option yields total complexity identical to our method. The latter option is preferable only when

nnz(A)� n2 ≥ mv(A?), and can result in an improvement over the running time of our method if

mv(A?)� nnz(A) (ω/ε)−1.5 +n2 (ω/ε)−0.5. [50] report that k = 1 often gave the best result in their

experiment, which is not predicted by their theory. A hypothetical explanation for this finding is

that, with k = 1, they are essentially running Algorithm 24.

Finally, [163] and [231] propose sub-sampling based algorithms for approximate SDP feasibility

CHAPTER 7. MATRIX MULTIPLICATIVE WEIGHTS AND FRIENDS 283

with runtimes potentially sublinear in mv(A?). However, because of their significantly worse depen-

dence on ω/ε, as well as dependence on Frobenius norms, we match or improve upon their runtime

guarantees in a variety of settings; see [231] for a detailed comparison.

7.2.5 Discussion

We conclude with a discussion of a number of additional settings where our sketch—or some variation

thereof—might be beneficial. In the first two settings we discuss, the naturally arising online learning

problem involves adversaries that violate Assumption 5, demonstrating a limitation of our analysis.

Online convex optimization. In the online convex optimization problem, at every time step t the

adversary provides a convex loss `t, the players pays a cost `t(Xt) and wishes to minimize the regret∑T
t=1 `t(Xt)−minX

∑T
t=1 `t(X). The standard reduction to the online learning problem is to con-

struct an adversary with gains Gt = −∇`t(Xt). However, even if the losses `t follow Assumption 5,

the constructed gains Gt clearly violate it. Therefore, extensions of our results to online convex

optimization will require additional work and probably depend on finer problem structure.

Positive semidefinite programming. [442] and [19] propose algorithms for solving positive (pack-

ing/covering) semidefinite programs with width independent running time, meaning that the com-

putational cost of solving the problems to ε multiplicative error depends only logarithmically on the

width parameter (ω in Section 7.2.4). Both algorithms rely on matrix exponentiation, which they

approximate with a rank Õ
(
ε−2
)

sketch using the Johnson-Lindenstrauss lemma. The algorithm

of [442] uses matrix multiplicative weights in essentially a black-box fashion, so one could hope to

replace their high-rank sketch with our rank-1 technique. Unfortunately, the gain matrices that they

construct violate Assumption 5 and so our results do not immediately apply. A rank-1 sketch for

this setting remains an intriguing open problem.

Improved computational efficiency against an oblivious adversary. An oblivious adversary pro-

duces gain matrices G1, . . . ,GT independent of the actions X1, . . . ,XT ; this is a stronger version of

Assumption 5. For such an adversary, if we draw u ∼ Uni(Sn−1) and set u1 = u2 = · · · = uT = u,

the average regret guarantee of Corollary 22 still applies, as [20] explain. In this setting, it may be

possible to make the computation of Xt more efficient by reusing Xt−1. Such savings exist in the

stochastic setting (when Gt are i.i.d.) via Oja’s algorithm [20], and would be interesting to extend

to the oblivious setting.

Online k eigenvectors.[427] show that a variant of matrix multiplicative weights is also capable

of learning online the top k-dimensional eigenspace, with similar regret guarantees. As our rank-1

sketch solves the k = 1 leading eigenvector problem, it is interesting to study whether a rank-k

sketch solves the k leading eigenvectors problem.

CHAPTER 7. MATRIX MULTIPLICATIVE WEIGHTS AND FRIENDS 284

7.3 Ky Fan matrix multiplicative weights

We give a regret guarantee for a Ky Fan matrix multiplicative weights procedure, as well as its

efficient implementation. We first state a general-purpose regret bound in Section 7.3.1, using a key

divergence bound shown in Section 7.3.2. We then show how to use a more fine-grained analysis

of simultaneous power iteration developed in Section 7.3.3 to prove correctness and a complexity

bound on our overall method (tolerant to approximation error), given in Section 7.3.4.

Throughout this entire section, all variables (unless otherwise specified) will be either d-dimensional

vectors or d× d matrices, and we let k ∈ [d] be some smaller dimensionality.

7.3.1 Regret bound

Throughout this section, we define a “dual set” and regularizer inducing dual variables as follows:

Y := {Y | 0 � Y � I, Tr(Y) = k} , r(Y) := 〈Y, log Y〉 − Tr(Y). (7.33)

Finally, we define the projection operator for any symmetric matrix S,

∇r∗(S) := argminY∈Y {〈−S,Y〉+ r(Y)} , where r∗(S) := max
Y∈Y

{〈S,Y〉 − r(Y)} . (7.34)

Here, we remark that it is a direct application of convex duality and the following fact (which is

standard, and follows from e.g. the arguments of [542]) that ∇r∗ is unique, and is the gradient of

r∗, the Fenchel dual of r over the set Y.

Fact 9. Function r defined in (7.33) is 1
k -strongly convex over Y in ‖·‖tr, and has range k log d

k .

We prove a helper lemma about the structure of ∇r∗, using its closed form derived in [136].

Fact 10 ([136], Lemma 7.3). Given symmetric matrix S with eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λd and

corresponding eigenvectors {vj}j∈[d], we can compute ∇r∗(S) as follows. Define

τ(S) := max

{
τ

∣∣∣∣ τ > 0,
exp(τ)∑

j∈[d] exp(min(τ, λj))
≤ 1

k

}
. (7.35)

Then,

∇r∗(S) =
∑
j∈[d]

k exp(min(τ(S), λj))∑
j′∈[d] exp(min(τ(S), λj′))

vjv
>
j .

In other words, ∇r∗ exponentiates its argument and normalizes the trace to be k, with the

exception of “large” coordinates which are truncated so that the resulting matrix is operator norm

bounded (as in the definition of Y). We now give a “refined regret bound” for Algorithm 25 when

all gain matrices {Gt}t≥0 are positive and bounded. The bound is refined in the sense that it

CHAPTER 7. MATRIX MULTIPLICATIVE WEIGHTS AND FRIENDS 285

Algorithm 25: KFMMW(k, {Gt}t≥0, η)

1 Input: Gain matrices {Gt}t≥0, step size η > 0;

2 Y0 ← k
d I, S0 ← ∇r(Y0) = log(kd)I;

3 for t ≥ 0 do
4 St+1 ← St + ηGt;
5 Yt+1 ← ∇r∗(St+1);

depends directly on the inner products 〈Gt,Yt〉 rather than a looser, more standard bound such as

k ‖Gt‖op (cf. discussion in [21]). In proving Proposition 23, we will rely on a new bound on Bregman

divergences with respect to r∗, which is stated here, and proven in the following Section 7.3.2.

Lemma 88. For symmetric matrix S, positive semidefinite G, and scalar η > 0 let S′ = S + ηG.

Suppose that ‖ηG‖op ≤
1
2 . Then,

V r
∗

S (S′) ≤ 〈ηG,∇r∗(S)〉 .

Proposition 23. Suppose the input gain matrices to Algorithm 25 satisfy the bound, for all t ≥ 0,

0 � ηGt �
1

2
I.

Then, we have the guarantee for all T ≥ 1, and all U ∈ Y,

1

T

T−1∑
t=0

〈Gt,U〉 ≤
2

T

T−1∑
t=0

〈Gt,Yt〉+
k log d

ηT
.

Proof. Fix some U ∈ Y throughout this proof, and note that by Fact 9, V rY0
(U) ≤ k log d as

Y0 minimizes r. Moreover, fix Ψ := ∇r(U); it is a straightforward computation that the inverse

mapping ∇r∗(Ψ) = U holds, via Fact 10. For each iteration t,

〈ηGt,U−Yt〉 = 〈St+1 − St,∇r∗(Ψ)−∇r∗(St)〉

= V r
∗

Ψ (St)− V r
∗

Ψ (St+1) + V r
∗

St (St+1) ≤ V r
∗

Ψ (St)− V r
∗

Ψ (St+1) + 〈ηGt,Yt〉 .
(7.36)

The second equality is the well-known three-point equality of Bregman divergence and follows from

expanding definitions, and in the last inequality we used Lemma 88. Telescoping (7.36) across all

iterations and dividing by ηT , we arrive at the bound

1

T

T−1∑
t=0

〈Gt,U−Yt〉 ≤
1

T

T−1∑
t=0

〈Gt,Yt〉+
V r
∗

Ψ (S0)

ηT
.

CHAPTER 7. MATRIX MULTIPLICATIVE WEIGHTS AND FRIENDS 286

The conclusion follows by rearrangement and using that (from Fact 9 and ∇r(Y0) = S0)

V r
∗

Ψ (S0) = r∗(S0)− r∗(Ψ)− 〈U,S0 −Ψ〉

= (〈Y0,S0〉 − r(Y0))− (〈U,Ψ〉 − r(U))− 〈U,S0 −Ψ〉

= r(U)− r(Y0)− 〈∇r(Y0),U−Y0〉 = V rY0
(U) ≤ k log d.

In Section 7.3.4, where we will only have approximate access to the {Yt}t≥0, we give a simple

bound showing that the guarantee in Proposition 23 does not significantly deteriorate as Corollary 26.

7.3.2 Refined divergence bound

In this section, we prove Lemma 88. The proof is patterned from calculations in [108, 285] tailored

towards the specific properties of the functions r, r∗ in (7.33), (7.34). We define the vector variants

of these functions, denoted rvec : Yvec → R and r∗vec : Rd → R, by

rvec(y) := 〈y, log y〉 − ‖y‖1 , r
∗
vec(s) := min

y∈Yvec

{〈−s, y〉+ r(y)} ,

where Yvec is the set of nonnegative vectors with `1 norm k and maximum entry bounded by 1.

Here, we use log y to denote the entrywise logarithm of a vector.

Lemma 89. For s ∈ Rd, overload τ(s) to mean (7.35) applied to a matrix whose eigenvalues are

given by s. Then, r∗vec is twice-differentiable at s if and only if no coordinate of s is equal to τ(s).

Proof. Suppose without loss throughout this proof that s is sorted so s1 ≥ . . . ≥ sd; we may do this

since r∗vec is symmetric in its arguments. Also, define (overloading (7.35) appropriately for vectors)

N(s) :=
∑
j∈[d]

exp(min(τ(s), sj)) =⇒ [∇r∗vec(s)]j =
k exp(min(τ(s), sj))

N(s)
. (7.37)

This implication is via a direct modification of the calculations leading to Fact 10 (alternatively, this

follows from Corollary 3.3 of [356] since r∗ is a spectral function).

Twice-differentiable case. We first prove that r∗vec(s) is twice-differentiable when no coordinate

of s is τ(s); suppose that for some 0 ≤ ` ≤ k− 1, exactly ` coordinates of s are (strictly) larger than

τ(s).9 If ` = 0, it is clear that r∗vec is twice-differentiable, so we focus on the case ` 6= 0; in this case,

by the definition of τ(s) (summing over indices larger and smaller than τ separately),

N(s) = k exp(τ(s)) = ` exp(τ(s)) +
∑
j 6∈[`]

exp(sj) =⇒ exp(τ(s)) =

∑
j 6∈[`] exp(sj)

k − `
.

9From the definition of τ , we cannot have ` ≥ k since otherwise the sum of the k largest elements is too large.

CHAPTER 7. MATRIX MULTIPLICATIVE WEIGHTS AND FRIENDS 287

We thus compute

∂

∂sj
exp(τ(s)) =

0 j ∈ [`]

exp(sj)
k−` j 6∈ [`]

,
∂

∂sj
N(s) =

0 j ∈ [`]

k exp(sj)
k−` j 6∈ [`]

. (7.38)

It is then a straightforward calculation that ∇2
ijr
∗
vec(s) exists in all cases, upon differentiating coor-

dinates of ∇r∗vec as computed in (7.37). In particular,

∇2
ijr
∗
vec(s) =

k exp(si)
N(s) − k exp(si)

2

N(s)2 i = j 6∈ [`]

−k exp(si) exp(sj)
N(s)2 i, j 6∈ [`], i 6= j

0 otherwise

. (7.39)

This also shows that all ∇2
ijr
∗
vec are continuous in a small neighborhood of s, so we conclude r∗vec is

twice-differentiable at s.

Non-twice-differentiable case. Next, suppose we are in the case where some coordinate s` = τ(s).

We claim that ∂
∂s`

∂
∂s`

r∗vec(s) does not exist. In particular, perturbing s` in a positive direction does

not affect τ(s), and thus does not affect N(s) either, so the derivative from above of ∂
∂s`

r∗vec(s) with

respect to s` vanishes. To compute the derivative from below, suppose without loss of generality

that s` ≥ τ(s) but s`+1 < τ(s). We handle the case where ` ≥ 2 here, and discuss ` = 1 at the end.

We first compute the effect on negatively perturbing s` on τ(s); for vanishing δ > 0, let s′ = s− δe`.
Since τ is weakly monotone in its argument, clearly sj ≥ τ(s) > s′` for j ∈ [`− 1], so since

k exp(s′`) ≤ ` exp(s′`) + (k − `) exp(τ(s)) = ` exp(s′`) +
∑
j 6∈[`]

exp(sj) =
∑
j∈[d]

exp
(
min(s′`, s

′
j)
)
,

we have by the definition (7.35) that τ(s′) ≥ s′`. Next, by

k exp(τ(s′)) = (`− 1) exp(τ(s′)) + exp (s′`) +
∑
j 6∈[`]

exp(sj)

=⇒ exp(τ(s′)) =
exp (s′`) +

∑
j 6∈[`] exp(sj)

k − (`− 1)
=

exp (s′`) + (k − `) exp(τ(s))

k − (`− 1)
,

we see that τ(s′) < τ(s) since s′` decreased. It is straightforward to see from this that since[
∂

∂s`

]
−

exp(τ(s)) =
exp(s`)

k − (`− 1)
=⇒

[
∂

∂s`

]
−

∑
j∈[d]

exp (min(τ(s), sj)) =
k exp(s`)

k − (`− 1)
,

CHAPTER 7. MATRIX MULTIPLICATIVE WEIGHTS AND FRIENDS 288

where [∂
∂s`

]− is the derivative from below, we have

[
∂

∂s`

]
−

k exp(s`)∑
j∈[d] exp (min(τ(s), sj))

=
k(∑

j∈[d] exp (min(τ(s), sj))
)2

exp(s`)
∑
j∈[d]

exp (min(τ(s), sj))−
k exp(s`)

2

k − (`− 1)

 6= 0.

The last inequality is by

∑
j∈[d]

exp (min(τ(s), sj)) = k exp(τ(s)) 6= k

k − (`− 1)
exp(τ(s)) =

k

k − (`− 1)
exp(s`).

Thus, the derivatives from above and below do not agree as desired. Finally, consider when ` = 1;

the above calculations imply that τ(s′) =∞ (since then no element needs to be truncated). Hence,

[
∂

∂s`

]
−

k exp(s`)∑
j∈[d] exp (min(τ(s), sj))

=
k(∑

j∈[d] exp (sj)
)2

exp(s`)
∑
j∈[d]

exp (sj)− exp(s`)
2

 6= 0.

We next prove a bound on quadratic forms with respect to the (matrix) Hessian of r∗, at symmet-

ric matrices S where the function is twice-differentiable. We crucially use formulas for the derivatives

of spectral functions (permutation-invariant scalar-valued functions on symmetric matrices which

depend only on the eigenvalues), from [356, 357].

Lemma 90. Let S = U>diag (s) U be a symmetric matrix with eigenvalues s sorted so that s1 ≥
. . . ≥ sd, and U is an orthonormal basis. Then, r∗ is twice-differentiable at S if and only if no

coordinate of s equals τ(S). Further, when r∗ is twice-differentiable at S, for any positive semidefinite

G,

∇2r∗(S)[G,G] ≤
〈
∇r∗(S),G2

〉
.

Proof. The first claim is a direct consequence of Lemma 89 and the first part of Theorem 3.3 of

[357], which states that when r∗ is a spectral function of S, it is twice-differentiable at S if and only

if r∗vec is twice-differentiable at s. Moreover, Theorem 3.3 of [357] gives the formula

∇2r∗(S)[G,G] = ∇2r∗vec(s)
[
diagvec(G̃),diagvec(G̃)

]
+
〈
A, G̃ ◦ G̃

〉
,

where G̃ = UGU>, Aij =

0 i = j

∇ir∗vec(s)−∇jr∗vec(s)
si−sj i 6= j

,
(7.40)

◦ is the Hadamard (entrywise) product, and diagvec : Rd×d → Rd returns the vector whose entries

CHAPTER 7. MATRIX MULTIPLICATIVE WEIGHTS AND FRIENDS 289

are the diagonal of the input matrix. Here, we assume that no two entries of s are identical since it is

clear that the scalar-valued Hessian is continuous at s by the formula (7.39), so Theorem 4.2 of [357]

shows that ∇2r∗ is also continuous at S (thus we can perturb S infinitesimally so the eigenvalues

are unique). Now, let s̃ = min(τ(s), s) entrywise. We first have

∇2r∗vec(s)
[
diagvec(G̃),diagvec(G̃)

]
≤ diag

({
k exp(si)

N(s)

}
si≤τ(s)

)[
diagvec(G̃),diagvec(G̃)

]
≤ k

N(s)

∑
i∈[d]

exp(s̃i)
(
G̃ii

)2

.

(7.41)

Here, we used that ∇2r∗vec(s) is a diagonal matrix minus a rank-one term, restricted to eigenvalues

which are at most τ(s) as calculated in (7.39). Next, we claim that for any tuple i 6= j ∈ [d],

exp(s̃i)− exp(s̃j)

si − sj
≤ exp(s̃i) + exp(s̃j)

2
.

Without loss of generality assume si > sj . This claim is obvious for any tuple where si > sj ≥ τ(s).

For all other cases, we recall the identity exp(a)−exp(b)
a−b ≤ exp(a)+exp(b)

2 for all a 6= b (cf. Lemma B.3,

[285]). Then, if sj ≤ si < τ(s), a direct application of this identity yields the claim; for the final

case where sj < τ(s) ≤ si, this follows from also using si − sj ≥ s̃i − s̃j . Continuing,

〈
A, G̃ ◦ G̃

〉
=

k

N(S)

∑
i6=j∈[d]

exp(s̃i)− exp(s̃j)

si − sj

(
G̃ij

)2

≤ k

N(S)

∑
i6=j∈[d]

exp(s̃i) + exp(s̃j)

2

(
G̃ij

)2

.

(7.42)

Combining (7.41) and (7.42) in the formula (7.40),

∇2r∗(S)[G,G] ≤ k

N(S)

∑
i,j∈[d]

exp(s̃i) + exp(s̃j)

2

(
G̃ij

)2

=
k

N(S)

∑
i,j∈[d]

exp(s̃i)
(
G̃ij

)2

=
k

N(S)

∑
i∈[d]

exp(s̃i)

∑
j∈[d]

(
G̃ij

)2

=
∑
i∈[d]

k exp(s̃i)

N(S)

[
G̃2
]
ii

=
〈
diag (∇r∗vec(s)) , G̃2

〉
.

Finally, note that G̃2 = UG2U>, so the last expression is equal to
〈
U>diag (∇r∗vec(s)) U,G2

〉
by

the cyclic property of trace. We conclude by the fact that ∇r∗(S) = U>diag (∇r∗vec(s)) U, since r∗

is a spectral function, due to Corollary 3.3 of [356].

We conclude with the desired proof of Lemma 88.

CHAPTER 7. MATRIX MULTIPLICATIVE WEIGHTS AND FRIENDS 290

Lemma 88. For symmetric matrix S, positive semidefinite G, and scalar η > 0 let S′ = S + ηG.

Suppose that ‖ηG‖op ≤
1
2 . Then,

V r
∗

S (S′) ≤ 〈ηG,∇r∗(S)〉 .

Proof. We first claim that without loss of generality, everywhere on the straight-line path from S

to S′ except for a measure-zero set (in R1), r∗ is twice-differentiable. To see this, the Alexandrov

theorem says that since r∗ is convex, it is twice-differentiable everywhere except a measure-zero

set in the space of its argument. However, by perturbing S and S′ by a random matrix with

eigenvalues distributed uniformly at random ∈ [−δ, δ], for vanishing δ > 0, with probability one the

line between perturbed matrices only intersects the non-twice-differentiable set on a measure-zero

set (this follows from the disintegration theorem). Thus, by continuity of V r
∗

in both arguments

(since ∇r∗ is Lipschitz by Lemma 15.3 of [473], as r∗ is the dual of a strongly convex function), we

assume S, S′ have this property, so we may write

V r
∗

S (S′) =

∫ 1

0

∫ s

0

∇2r∗(St)[G,G]dtds

≤
∫ 1

0

∫ s

0

〈
∇r∗(St), η2G2

〉
dtds ≤ 1

2

∫ 1

0

∫ s

0

〈∇r∗(St), ηG〉 dtds.
(7.43)

Here, for t ∈ [0, 1] we define St = S+tηG, and used Lemma 90 in the second line (almost everywhere)

as well as the assumed bound on ‖ηG‖op so that η2G2 � 1
2ηG. Define p(t) := r∗(St) and v(t) :=

V r
∗

S (St); then,∫ s

0

〈∇r∗(St), ηG〉 dt = p(s)− p(0) = v(s) + 〈∇r∗(S), sηG〉 ≤ v(1) + 〈∇r∗(S), sηG〉 .

In the last inequality, we used that v is increasing, which can be seen via

tv′(t) = 〈tηG,∇r∗(St)−∇r∗(S)〉 ≥ 0.

Substituting back into (7.43),

V r
∗

S (S′) ≤ 1

2

∫ 1

0

(v(1) + 〈∇r∗(S), sηG〉) ds ≤ 1

2
v(1) +

1

2
〈∇r∗(S), ηG〉 .

Rearranging and using that V r
∗

S (S′) = v(1) yields the desired bound.

7.3.3 Refined k-PCA guarantees

We show a refined bound on the guarantees of simultaneous power iteration for approximately

learning the top k eigenvectors of a positive semidefinite matrix (i.e. k-PCA). In particular, the

CHAPTER 7. MATRIX MULTIPLICATIVE WEIGHTS AND FRIENDS 291

main result of this section (Proposition 24) strengthens Theorem 6.1 in [136] by a factor of k.

Algorithm 26: Power(A, λmax, λmin, k, ε, δ)

1 Input: Positive semidefinite A ∈ Rd×d with λminI � A � λmaxI, accuracy ε ∈ (0, 1),
k ∈ [d], δ ∈ (0, 1);

2 N ← Θ
(

1
ε log

(
d
δε ·

λmax

λmin

))
for a sufficiently large universal constant;

3 G ∈ Rd×k entrywise ∼ N (0, 1);

4 Return: V ∈ Rd×k, an orthonormal basis for the column span of ANG;

For the remainder of this section, we will fix a particular positive semidefinite matrix A =

U>diag (λ) U, where U ∈ Rd×d is orthonormal and λ1 ≥ λ2 ≥ . . . ≥ λd are the ordered eigenvalues

of A. We will also define three sets which partition [d]:

L := {j ∈ [d] | λj > (1 + ε
4)λk+1},

M := {j ∈ [d] | (1 + ε
4)λk+1 ≥ λj ≥ (1− ε

4)λk+1},

S := {j ∈ [d] | λj < (1− ε
4)λk+1}.

(7.44)

In particular, L, M , and S are the “large”, “medium”, and “small” eigenvalues of A. We first give

two key structural results, which say that with high probability, the span of V contains essentially

all the `2 mass of any vector in L, and essentially none of the `2 mass of any vector in S.

Lemma 91. Let P := VV> where V is the output of Algorithm 26. With probability at least

1− δ
3 − exp(−Ck) for a universal constant C, for all j ∈ S, ‖Puj‖2 ≤

λ2
d

λ2
1
· ε2

64d2 , where uj is row j

of U, and we follow notation in (7.44).

Proof. By rotational invariance of Gaussian matrices, it suffices to consider the case where A is

diagonal and U is the identity; henceforth in this lemma, uj is the jth standard basis vector. Recall

that P is the projection onto the column span of ANG. We explicitly compute

P = ANG
(
G>A2NG

)−1
G>AN =⇒ ‖Puj‖22 = u>j ANG

(
G>A2NG

)−1
G>ANuj . (7.45)

Here, we used that P2 = P. Now, notice that (where Gj: is row j of G)

G>A2NG =
∑
j∈[d]

λ2N
j Gj:G

>
j: � λ2N

k

∑
j∈[k]

Gj:G
>
j:.

However, Theorem 1.1 of [463] shows that with probability δ
6 + exp(−Ck) for some constant C,

the smallest eigenvalue of a k × k Gram matrix for independent Gaussian entries is at least δ
6
√
k

.

CHAPTER 7. MATRIX MULTIPLICATIVE WEIGHTS AND FRIENDS 292

Assuming that this happens, we then continue to bound

λ2N
k

∑
j∈[k]

Gj:G
>
j: �

λ2N
k δ

6
√
k

I =⇒ ‖Puj‖22 ≤
6
√
k

δλ2N
k

u>j ANGG>ANuj

=
6
√
k

δ

(
λj
λk

)2N [
GG>

]
jj

≤ 6
√
k

δ
exp

(
−εN

2

)∑
i∈[k]

G2
ji.

In the first implication, we combined the lower bound we just derived with (7.45). Using standard

chi-squared concentration bounds (cf. Lemma 1, [340]), the probability that
∑
i∈[k] G

2
ji ≥ 2k+3 log 6

δ

is no more than δ
6 . Performing a union bound, with failure probability at most δ

3 + exp(−Ck), we

have that for sufficiently large N = Θ
(

1
ε log

(
d
δε ·

λmax

λmin

))
, since k ≤ d,

‖Puj‖22 ≤
12k1.5 + 18

√
k log 6

δ

δ
exp

(
−εN

2

)
≤ λ2

min

λ2
max

· ε2

64d2
≤ λ2

d

λ2
1

· ε2

64d2
.

Finally, adjusting the failure probability of the chi-squared tail bound by a factor of d, the conclusion

follows by union bounding over all j ∈ S.

Lemma 92. Let P := VV> where V is the output of Algorithm 26. With probability at least

1 − δ
3 − d exp(−Ck) for a universal constant C, for all j ∈ L, ‖Puj‖22 ≥ 1 − λ2

d

λ2
1
· ε2

64d2 , where uj is

row j of U, and we follow notation in (7.44).

Proof. By definition of L, it is clear that j ∈ [k]. Again we consider the case where A is diagonal

and U is the identity without loss of generality. Let G[k]: be the first k rows of G, and let

G̃ := G
(
G[k]:

)−1
.

Observe that the first k rows of G̃ are exactly I. Also, with probability at least 1− δ
6 − exp(−Ck),

the largest singular value of
(
G[k]:

)−1
is bounded above by 6

√
k
δ , again by Theorem 1.1 of [463].

Condition on this event for the remainder of the proof. Since in this case G[k]: is invertible, where

Span denotes column span,

Span
(
G̃
)

= Span (G) =⇒ Span
(
ANG̃

)
= Span

(
ANG

)
.

Fix some j ∈ L. To show the conclusion, it suffices to show that there exists a unit vector v∗ in

the span of ANG̃ with (〈uj , v∗〉)2 ≥ 1− λ2
d

λ2
1
· ε2

64d2 . To see this, let {vi}i∈[k] be any orthonormal basis

CHAPTER 7. MATRIX MULTIPLICATIVE WEIGHTS AND FRIENDS 293

for Span
(
ANG̃

)
with v1 = v∗; then

‖Puj‖22 = u>j Puj =
∑
i∈[k]

(〈uj , vi〉)2 ≥ (〈uj , v∗〉)2 ≥ 1− λ2
d

λ2
1

· ε2

64d2
.

We will choose v∗ to be the normalization of ANG̃:j which has unit `2 norm, where G̃:j is column j

of G̃. By standard chi-squared concentration bounds, with probability at least 1− δ
6 , all rows i 6∈ [k]

of the matrix G have squared `2 norm at most

2k + 3 log
6d

δ
.

Here, we adjusted the failure probability of Lemma 1 in [340] by a factor of d and union bounded

over all i 6∈ [k]. Now, this implies that for all i 6∈ [k],∥∥∥∥((G[k]:

)−1
)>

G>i:

∥∥∥∥2

2

≤
72k2 + 108k log 6d

δ

δ2
=⇒ G̃2

ij ≤
72k2 + 108k log 6d

δ

δ2
for all j ∈ [k].

We conclude that the column vector G̃:j has the property that

G̃2
ij

= 1 i = j

= 0 i 6= j, i ∈ [k]

≤ 72k2+108k log 6d
δ

δ2 i 6∈ [k].

Here, the first two cases are by design, and the last is by our earlier derivation. Thus, by choosing

N = Θ
(

1
ε log

(
d
δε ·

λmax

λmin

))
to be sufficiently large (as in the ending of the proof of Lemma 91), we

see that ANG̃:j places all but a negligible amount of `22 mass on coordinate j, where we use that

λNj ≥ (1 + ε
4)NλNi for all i 6∈ [k].

We also give a simple helper calculation for demonstrating Loewner orderings.

Lemma 93. Let A,B ∈ Rd×d be positive semidefinite and suppose for any fixed unit test vector

v ∈ Rd and some ε ∈ (0, 1), ∣∣v> (A−B) v
∣∣ ≤ εv>Bv.

Then, (1− ε)B � A � (1 + ε)A.

Proof. The upper bound follows from

v>Av ≤ v>Bv +
∣∣v> (A−B) v

∣∣ ≤ (1 + ε)v>Bv.

The lower bound follows similarly.

CHAPTER 7. MATRIX MULTIPLICATIVE WEIGHTS AND FRIENDS 294

Our main bound follows from an application of the above three results.

Proposition 24. Let P := VV> where V is the output of Algorithm 26. With probability at least

1− 2δ
3 − 2 exp(−Ck) for a universal constant C,

(1− ε) (PAP + (I−P) A (I−P)) � A � (1 + ε) (PAP + (I−P) A (I−P)) . (7.46)

Proof. Condition on the conclusions of Lemmas 91 and 92 holding for the rest of this proof. We

note

A− (PAP + (I−P) A (I−P)) = PA (I−P) + (I−P) AP.

Hence, applying Lemma 93, for any fixed unit test vector v ∈ Rd, this proposition asks to show

2
∣∣y>Ax

∣∣ ≤ ε (x>Ax+ y>Ay
)
, where x := Pv and y := (I−P) v.

Recall that A =
∑
j∈[d] λjuju

>
j . Letting x̃ := Ux and ỹ := Uy, it suffices to show

∣∣∣∣∣∣
∑
j∈[d]

λj x̃j ỹj

∣∣∣∣∣∣ ≤ ε

2

∑
j∈[d]

λj
(
x̃2
j + ỹ2

j

)
. (7.47)

Since 〈x̃, ỹ〉 = 〈x, y〉 = 0 by the definition of x, y,∣∣∣∣∣∣
∑
j∈[d]

λj x̃j ỹj

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
j∈[d]

(λj − λk+1)x̃j ỹj

∣∣∣∣∣∣ ≤ ε

4

∑
j∈M

λk+1|x̃j ỹj |+

∣∣∣∣∣∣
∑
j 6∈M

(λj − λk+1)x̃j ỹj

∣∣∣∣∣∣ .
Here we used the definition of j ∈M , so that |λj − λk+1| ≤ ε

4λk+1. We first bound

ε

4

∑
j∈M

λk+1|x̃j ||ỹj | ≤
ε

4(1− ε
4)

∑
j∈M

λj |x̃j ||ỹj | ≤
ε

4

∑
j∈M

λj
(
x̃2
j + ỹ2

j

)
≤ ε

4

∑
j∈[d]

λj
(
x̃2
j + ỹ2

j

)
. (7.48)

Moreover, by Lemma 91, for each j ∈ S, we have

|x̃j | =
∣∣u>j Pv

∣∣ ≤ ‖Puj‖2 ‖v‖2 ≤ λd
λ1
· ε

8d
,

and similarly for each j ∈ L, ỹj ≤ λd
λ1
· ε8d by Lemma 92. Thus, since all |x̃j | and |ỹj | are at most 1,∣∣∣∣∣∣

∑
j∈S

(λj − λk+1)x̃j ỹj

∣∣∣∣∣∣ ≤ λ1

∑
j∈S
|x̃j | ≤

ε

8
λd ≤

ε

8

∑
j∈[d]

λj
(
x̃2
j + ỹ2

j

)
,

∣∣∣∣∣∣
∑
j∈L

(λj − λk+1)x̃j ỹj

∣∣∣∣∣∣ ≤ λ1

∑
j∈L
|ỹj | ≤

ε

8
λd ≤

ε

8

∑
j∈[d]

λj
(
x̃2
j + ỹ2

j

)
.

(7.49)

CHAPTER 7. MATRIX MULTIPLICATIVE WEIGHTS AND FRIENDS 295

Finally, combining (7.48) and (7.49), we have the desired bound (7.47).

An unfortunate consequence of Proposition 24 is that its failure probability is exponentially

related to k, rather than d. However, for sufficiently small k = O(log 1
δ), we can use an alternative

analysis of the power method due to [136] to conclude that the desired bound (7.46) holds.

Corollary 25. There is an algorithm (either Algorithm 26 of this paper, or Algorithm 5 of [136])

which takes as input positive semidefinite A ∈ Rd×d with λminI � A � λmaxI, k ∈ [d], and accuracy

parameter ε ∈ (0, 1), and returns with probability at least 1−δ a set of orthonormal vectors V ∈ Rd×k

such that for P := VV>, (7.46) holds. The number of matrix-vector products to A required is

O

(
k

ε
log2

(
d

δε

λmax

λmin

))
.

Proof. In the case where k ≥ log 6/δ
C for C the universal constant in Proposition 24, the conclusion

is immediate from Proposition 24. In the other case, we have that k = O(log 1
δ). Hence, we can

run Algorithm 5 of [136] with an accuracy parameter which is O(k) times smaller, and use their

Theorem 6.1 to obtain the desired conclusion. The iteration complexity of Algorithm 5 of [136]

depends linearly on the inverse accuracy, so the bound loses an additional logarithmic factor.

7.3.4 Implementation

In this section, we give an algorithm (Algorithm 27) which takes as input a matrix S and produces

a matrix Ŷ such that for some choice of input ∆ ≥ 0, we have∥∥∥Ŷ −∇r∗(S)
∥∥∥

tr
≤ k∆. (7.50)

We will use this at the end of the section to give a complete (computationally efficient) implemen-

tation of an approximate variant of Algorithm 25, and give its guarantees as Corollary 26.

Proposition 25. With probability at least 1− δ, the output Ŷ of Algorithm 27 satisfies (7.50). The

complexity of Lines 3-8 of the algorithm is

O

(
ndk · λmax

∆2
log2

(
d

∆δ

λmax

λmin

))
.

Moreover, for any ε ∈ (0, 1), the complexity of providing (1 ± ε)-approximate access to quadratic

forms through Ŷ for any n fixed vectors {vi}i∈[n] ⊂ Rd with probability at least 1− δ is

O

(
nd · λmax

ε2
log

(
1

ε

)
log

(
nd

δ

))
.

Proof. We will show correctness and complexity of Algorithm 27 separately.

CHAPTER 7. MATRIX MULTIPLICATIVE WEIGHTS AND FRIENDS 296

Algorithm 27: ApproxProject(S, λmax, λmin, k,∆, δ)

1 Input: Positive semidefinite S = M>M ∈ Rd×d for some explicitly given M ∈ Rn×d with
λminI � S � λmaxI, k ≤ d ≤ n, accuracy ∆ ∈ (0, 1), k ∈ [d], δ ∈ (0, 1);

2 Output: Ŷ satisfying
∥∥∥Ŷ −∇r∗(S)

∥∥∥
tr
≤ k∆ with probability ≥ 1− δ;

3 V← Power(S, λmax, λmin, k,
∆

8λmax
, δ2) (or when k ≤ log 12/δ

C , use Algorithm 5 of [136]);

4 {uj}j∈[k] ← eigenvectors of V>M>MV ∈ Rk×k, left-multiplied by V;

5 For j ∈ [k], λ̃j ← u>j PSPuj where P := VV>;

6 Ŝ←
∑
j∈[k] λ̃juju

>
j + (1− ∆

4λmax
)(I−P)S(I−P);

7 T̂ ← (1± ∆
8)-approximation to Tr exp

(
(1− ∆

4λmax
)(I−P)S(I−P)

)
with probability 1− δ

2 ;

8 τ̂ ← fixed point of k exp(τ̂) =
∑
j∈[k] exp(min(τ̂ , λ̃j)) + T̂ ;

9 Ŷ ←
k∑

j∈[k] exp(min(τ̂ ,λ̃j))+T̂

(∑
j∈[k] exp(min(τ̂ , λ̃j))uju

>
j + exp

(
(1− ∆

4λmax
)(I−P)S(I−P)

))
;

10 Return: Ŷ;

Correctness guarantee. We begin with proving correctness, which we complete in two parts. In

particular, we show that the following two bounds hold:∥∥∥∇r∗(S)−∇r∗(Ŝ)
∥∥∥

tr
≤ k∆

2
,
∥∥∥Ŷ −∇r∗(Ŝ)

∥∥∥
tr
≤ k∆

2
. (7.51)

By combining the two parts of (7.51) and applying the triangle inequality, we have the desired

conclusion. To show the former bound, because the convex conjugate of any 1
k -strongly convex

function in ‖·‖tr is k-smooth in ‖·‖op (cf. Lemma 15.3, [473]), and Fact 9 states that r is strongly

convex, it suffices to show that∥∥∥Ŝ− S
∥∥∥

op
≤ ∆

2
=⇒

∥∥∥∇r∗(Ŝ)−∇r∗(S)
∥∥∥

tr
≤ k

∥∥∥Ŝ− S
∥∥∥

op
≤ k∆

2
. (7.52)

Assume first that Power was used in computing Line 3. By Proposition 24, we have that

‖S− (PSP + (I−P) S (I−P))‖op ≤
∆

8λmax
‖S‖op ≤

∆

8
. (7.53)

Next, we claim that {uj}j∈[k] are the eigenvectors of PSP, so that

∑
j∈[k]

λ̃juju
>
j = PSP.

To see this, let wj ∈ Rk be an eigenvector of V>M>MV with eigenvalue λ̃j , and let uj = Vwj , as

CHAPTER 7. MATRIX MULTIPLICATIVE WEIGHTS AND FRIENDS 297

in Line 4 of Algorithm 27. Then indeed we have (since V>V is the identity)

PSPuj = VV>SVV>Vwj = V
(
V>M>MVwj

)
= λ̃jVwj = λ̃juj .

We then compute, using the definition of Ŝ in Line 6,∥∥∥(PSP + (I−P) S (I−P))− Ŝ
∥∥∥

op
=

∆

4λmax
‖(I−P)S(I−P)‖op ≤

3∆

8λmax
‖S‖op ≤

3∆

8
. (7.54)

Here, we used Proposition 24 once more to (loosely) upper bound (I−P)S(I−P) by 1.5S. Combining

(7.52), (7.53), and (7.54) gives the first conclusion in (7.51).

We next claim the top eigenvalue of (I−P)S(I−P) is at most (1 + ∆
4λmax

)λ̃k; this follows from

the second and third parts of Theorem 1 of [404]. Thus, by scaling down (I−P)S(I−P) by a factor

1− ∆
4λmax

, we have that its largest eigenvalue is smaller than the smallest of PSP. Let {λ̃j}j∈[d]\[k],

{uj}j∈[d]\[k] complete an eigendecomposition of Ŝ. We conclude that none of the eigenvalues of

Ŝ−PSP will be truncated in the projection since they are not in the top k, so Fact 10 yields that

∇r∗(Ŝ) =
k∑

j∈[k] min(σ, αj) + T

∑
j∈[k]

min(σ, αj)uju
>
j +

∑
j 6∈[k]

αjuju
>
j

 ,

where T := Tr exp

((
1− ∆

4λmax

)
(I−P)S(I−P)

)
,

and σ := exp(τ(λ̃)), αj := exp(λ̃j) for all j ∈ [d].

Specifically, this form is clear for the first k eigenvectors, and for the remainder the ∇r∗ operation

applies an exponentiation and scaling (since they will not be truncated), which does not affect

the relevant basis. Finally, by applying the following Lemma 94 with γ = ∆
6 , and using that the

eigenvectors of our returned Ŷ align exactly with those of Ŝ, we have the desired second bound in

(7.51). We remark that the only place we used the fact that Power was used in Line 3 thus far in this

proof was in citing Theorem 1 of [404]; however, if Algorithm 5 of [136] is used, a similar statement

on the top eigenvalue of Ŝ−PSP follows by their Remark 6.9.

Complexity guarantee. When S is given in the form M>M, the cost of a matrix-vector product

in S is O(nd). So, from Corollary 26 the cost of Line 3 is bounded by

O

(
ndk · λmax

∆
log2

(
d

∆δ

λmax

λmin

))
.

In Line 4, the cost of forming the matrix MV isO(ndk), and forming its Gram matrix and performing

an eigendecomposition takes time O(k2d+ k3); left-multiplying all resulting vectors by V also takes

time O(k2d). The cost of Line 5 for each j ∈ [k] is O(nd + kd), so the overall cost is also O(ndk).

Line 8 is a scalar optimization problem and will not dominate the complexity (tolerance to error in

CHAPTER 7. MATRIX MULTIPLICATIVE WEIGHTS AND FRIENDS 298

a binary search is guaranteed via Lemma 94). The only remaining cost is in Line 6.

To estimate Tr exp(A) to 1±γ accuracy for a positive semidefinite matrix 0 � A � λmaxI (here,

we note Proposition 24 guarantees A = (1 − ∆
4λmax

)(I − P)S(I − P) � S � λmaxI), we will use

two facts well-known in the approximate semidefinite programming literature. First, Theorem 4.1

of [466] shows that a degree-O(λmax log 1
γ) polynomial p has the property that

(
1− γ

3

)
exp(A) � p(A) �

(
1 +

γ

3

)
exp(A).

Moreover, the Johnson-Lindenstrauss lemma (e.g. the implementation given in [6]) shows that to

estimate Tr exp(A) it suffices to sample a random ± 1√
r

matrix G ∈ Rd×r for some r = O(log(dδ)γ−2)

and then compute

∑
j∈[r]

∥∥∥∥p(1

2
A

)
G:j

∥∥∥∥2

2

≈1± γ3

∑
j∈[r]

∥∥∥∥exp

(
1

2
A

)
G:j

∥∥∥∥2

2

= Tr

(
exp

(
1

2
A

)
GG> exp

(
1

2
A

))
.

This last quantity is a 1 ± γ
3 approximation of Tr exp(A) with probability 1 − δ

2 . The cost of this

whole procedure is dominated by O(rλmax log 1
γ) matrix-vector multiplies to A; for our choice of A,

each multiplication costs O(nd) time, leading to an overall complexity of (as γ = Θ(∆))

O

(
nd · λmax

∆2
log

(
1

∆

)
log

(
d

δ

))
.

For any v ∈ Rd, essentially the same strategy of sampling a random G ∈ Rd×r and computing

v>p

(
1

2
A

)
GG>p

(
1

2
A

)
v =

∑
j∈[r]

(〈
G:j , p

(
1

2
A

)
v

〉)2

.

suffices for estimating the quadratic form in exp(A) to 1±ε accuracy, where now r and the polynomial

degree depend on ε rather than γ. We can first apply the polynomial to each column of G and then

compute inner products with v. To compute approximate quadratic forms in Ŷ, every part of Ŷ is

explicitly given except for the component exp(A) for A = (1− ∆
4λmax

)(I−P)S(I−P), which we can

approximate with the above strategy in the desired time.

Finally, for a batch of n vectors {vi}i∈[n], note that we can first compute all the vectors p(1
2A)G:j

in the desired time, at which point the cost of computing each quadratic form is reduced to O(dr).

Thus, the overall complexity is O(ndr), where we adjust the logarithm in the definition of r by a

factor of n to union bound the failure probability.

We now provide the helper Lemma 94, which we remark crucially improves the error analysis in

Section 7.3 of [136] by a factor of k, allowing us to avoid an additional poly(k) dependence.

CHAPTER 7. MATRIX MULTIPLICATIVE WEIGHTS AND FRIENDS 299

Lemma 94. Let γ ∈ (0, 1), k ∈ [d]. Given nonnegative {αj}j∈[d] sorted with α1 ≥ . . . ≥ αd, let

T :=
∑
j 6∈[k] αj, and let T̂ ∈ [(1− γ)T, (1 + γ)T]. Define σ and σ̂ to be fixed points of

kσ =
∑
j∈[k]

min (σ, αj) + T, kσ̂ =
∑
j∈[k]

min (σ̂, αj) + T̂ .

Then, we have

∑
j∈[d]

∣∣∣∣∣ kmin(σ, αj)∑
i∈[k] min (σ, αi) + T

− kmin(σ̂, αj)∑
i∈[k] min (σ̂, αi) + T̂

∣∣∣∣∣ ≤ 3kγ.

Proof. We first comment briefly on the existence of σ, σ̂. Note that in the setting of the lemma,

f(σ̂) :=
σ̂∑

i∈[k] min(σ̂, αi) + T̂

is an increasing, continuous function of σ̂ in the range [0,∞) which satisfies f(0) = 0 and f(∞) =∞,

so there must be a unique σ̂ satisfying f(σ̂) = 1
k . Existence of σ is proven similarly. Next, we claim

σ̂ ∈ [(1− γ)σ, (1 + γ)σ]. (7.55)

By our earlier argument, it suffices to show that f((1 + γ)σ) ≥ 1
k and f((1 − γ)σ) ≤ 1

k , so that an

appeal to continuity and monotonicity of f yields (7.55). To see the former bound, note that

f((1 + γ)σ) =
(1 + γ)σ∑

i∈[k] min((1 + γ)σ, αi) + T̂

≥ (1 + γ)σ

(1 + γ)
∑
i∈[k] min(σ, αi) + (1 + γ)T

=
σ∑

i∈[k] min(σ, αi) + T
=

1

k
.

The last equality used the definition of σ; the only inequality used T̂ ≤ (1 + γ)T by assumption,

and min((1 + γ)σ, αi) ≤ min((1 + γ)σ, (1 + γ)αi) = (1 + γ) min(σ, αi). Similarly,

f((1− γ)σ) =
(1− γ)σ∑

i∈[k] min((1− γ)σ, αi) + T̂

≤ (1− γ)σ

(1− γ)
∑
i∈[k] min(σ, αi) + (1− γ)T

=
1

k
.

CHAPTER 7. MATRIX MULTIPLICATIVE WEIGHTS AND FRIENDS 300

Here we used (1−γ) min(σ, αi) ≤ min((1−γ)σ, αi). Now, we claim (7.55) implies that for all j ∈ [d],∣∣∣∣∣ min(σ, αj)∑
i∈[k] min (σ, αi) + T

− min(σ̂, αj)∑
i∈[k] min (σ̂, αi) + T̂

∣∣∣∣∣ ≤ 3γmin(σ, αj)∑
i∈[k] min (σ, αi) + T

. (7.56)

To see this, we may upper and lower bound for each j ∈ [d],

(1− γ) min(σ, αj) ≤ min(σ̂, αj) ≤ (1 + γ) min(σ, αj)

=⇒ (1− γ)

∑
i∈[k]

min(σ, αi) + T

 ≤∑
i∈[k]

min(σ̂, αi) + T̂ ≤ (1 + γ)

∑
i∈[k]

min(σ, αi) + T

=⇒ (1− 3γ) min(σ, αj)∑

i∈[k] min (σ, αi) + T
≤ min(σ̂, αj)∑

i∈[k] min (σ̂, αi) + T̂
≤ (1 + 3γ) min(σ, αj)∑

i∈[k] min (σ, αi) + T
.

(7.57)

This yields (7.56), which upon summing and using that min(σ, αj) = αj for all j 6∈ [k], and the

definition of T , yields the final conclusion after multiplying by k.

We additionally state one helper guarantee on the properties of Ŷ.

Lemma 95. With probability at least 1− δ, the output Ŷ of Algorithm 27 satisfies

∥∥∥Ŷ∥∥∥
tr
≤
(

1 +
∆

2

)
k,
∥∥∥Ŷ∥∥∥

op
≤ 1 +

∆

2
.

Proof. By the definition of ∇r∗, we have that ∇r∗(Ŝ) ∈ Y so has operator norm at most 1 and trace

norm at most k. For the first conclusion, (7.51) implies

∥∥∥Ŷ∥∥∥
tr
≤
∥∥∥∇r∗(Ŝ)

∥∥∥
tr

+
k∆

2
.

For the second conclusion, (7.57) and the operator norm bound on Y imply

λmax

(
Ŷ
)
≤ (1 + 3γ)λmax

(
∇r∗(Ŝ)

)
≤ 1 +

∆

2
.

Finally, we state our complete algorithm, an approximate version of the KFMMW method.

Corollary 26. Suppose the input gain matrices to Algorithm 28 satisfy the bound, for all t ≥ 0,

0 � ηGt �
1

2
I.

CHAPTER 7. MATRIX MULTIPLICATIVE WEIGHTS AND FRIENDS 301

Algorithm 28: ApproxKFMMW(k, {Gt}0≤t≤T , η,∆, δ)
1 Input: Gain matrices {Gt}0≤t≤T , step size η > 0, accuracy ∆ ∈ (0, 1), δ ∈ (0, 1);

2 Y0 ← k
d I, S0 ← ∇r(Y0) = log(kd)I;

3 for 0 ≤ t < T do
4 St+1 ← St + ηGt;

5 Ŷt+1 ← ApproxProject(St+1 + (1 + log(dk))I, t+ 2, 1, k,∆, δT);

Further, suppose that the {Gt}t≥0 are weakly decreasing in Loewner order. With probability 1− δ,

‖GT ‖k ≤
2

T

T−1∑
t=0

〈
Gt, Ŷt

〉
+
k log d

ηT
+
k∆

η
.

The complexity of Algorithm 28 is

O

(
ndk · T

2

∆2
log2

(
dT

∆δ

))
,

and the cost of providing (1 ± ε)-approximate access to quadratic forms for any fixed n vectors

{vi}i∈[n] ⊂ Rd through any Ŷt for any ε ∈ (0, 1), with failure probability at most δ, is

O

(
nd · T

ε
log

(
1

ε

)
log

(
nd

δ

))
.

Proof. We claim first that it suffices to show that the conclusion of Proposition 25 holds in each

iteration t. To see why this is enough, matrix Hölder on the conclusion of Proposition 23 yields

〈Gt,Yt〉 ≤
〈
Gt, Ŷt

〉
+ ‖Gt‖op

∥∥∥Ŷt −Yt

∥∥∥
tr
≤
〈
Gt, Ŷt

〉
+ k∆ ‖Gt‖op ≤

〈
Gt, Ŷt

〉
+
k∆

2η

=⇒ 1

T

T−1∑
t=0

〈Gt,U〉 ≤
2

T

T−1∑
t=0

〈
Gt, Ŷt

〉
+
k log d

ηT
+
k∆

η
.

In the last inequality in the first line, we used the assumption that ηG � 1
2I. Supremizing over

U, and using monotonicity of the gain matrices, yields the conclusion. Next, we prove that calling

ApproxProject is valid. Note ∇r∗ is invariant under shifts by the identity, so it suffices to first shift

S0 to be I and hence λmin = 1 is a valid bound. Since for all t ≥ 0, the change in St (i.e. ηGt)

is positive semidefinite and bounded by I, we can set λmax = t + 2 in the call. Finally, the failure

probability comes from a union bound over all iterations, and the overall complexity is T times the

cost of a single ApproxProject operation, given by Proposition 25.

CHAPTER 7. MATRIX MULTIPLICATIVE WEIGHTS AND FRIENDS 302

7.4 Matrix dictionary recovery SDP solvers

In this section, we develop general solvers for the types of structured “mixed packing-covering”

problems defined in Section 7.1.3, which we collectively call matrix dictionary recovery SDPs.

In Section 7.4.1, we solve a basic version of this problem where B = I, i.e. the constraints are

multiples of the identity. In Section 7.4.2, we give a more general solver able to handle arbitrary

constraints, whose runtime depends polylogarithmically on the conditioning of said constraints. Our

main results Theorems 42 and 43 are stated in Section 7.1.3, and we provide full proofs here.

7.4.1 Identity constraints

In this section, we consider the special case of the problem (7.7), (7.8) in which B = I. To solve this

problem, we first develop a framework for solving the decision variant of the problem (7.7), (7.8).

Given a set of matrices {Mi}i∈[n] ∈ Sd≥0 and a parameter κ ≥ 1, we wish to determine

does there exist w ∈ Rn≥0 such that λmax

∑
i∈[n]

wiMi

 ≤ κλmin

∑
i∈[n]

wiMi

? (7.58)

We note that the problem (7.58) is a special case of the more general mixed packing-covering

semidefinite programming problem defined in [285], with packing matrices {Mi}i∈[n] and covering

matrices {κMi}i∈[n]. We define an ε-tolerant tester for the decision problem (7.58) to be an algorithm

which returns “yes” whenever (7.58) is feasible for the value (1 − ε)κ (along with weights w ∈
Rn≥0 certifying this feasibility), and “no” whenever it is infeasible for the value (1 + ε)κ (and can

return either answer in the middle range). After developing such a tester, we apply it to solve the

(approximate) optimization variant (7.7), (7.8) by incrementally searching for the optimal κ.

To develop a tolerant tester for (7.58), we require access to an algorithm for solving the opti-

mization variant of a pure packing SDP,

OPT(v) := max
w∈Rn≥0

:
∑
i∈[n] wiMi�I

v>w. (7.59)

The algorithm is based on combining a solver for the testing variant of (7.59), developed in Sec-

tion 7.1.4 with a binary search. We state its guarantees as Proposition 26, and defer a proof to

Appendix F.2.

Proposition 26. Let OPT+ and OPT− be known upper and lower bounds on OPT(v) as in (7.59).

There is an algorithm, Apack, which succeeds with probability ≥ 1− δ, whose runtime is

O

(
Tmv

(
{Mi}i∈[n]

)
· log2(ndT (δε)−1) log2 d

ε5

)
· T for T = O

(
log log

OPT+

OPT−
+ log

1

ε

)
,

CHAPTER 7. MATRIX MULTIPLICATIVE WEIGHTS AND FRIENDS 303

and returns an ε-multiplicative approximation to OPT(v), and w attaining this approximation.

We require one additional tool, a regret analysis of matrix multiplicative weights from [21].

Proposition 27 (Theorem 3.1, [21]). Consider a sequence of gain matrices {Gt}0≤t<T ⊂ Sd≥0,

which all satisfy for step size η > 0, ‖ηGt‖2 ≤ 1. Then iteratively defining (from S0 := 0)

Yt :=
exp(St)

Tr exp(St)
, St+1 := St − ηGt,

we have the bound for any U ∈ Sd≥0 with Tr(U) = 1,

1

T

∑
0≤t<T

〈Gt,Yt −U〉 ≤ log d

ηT
+

1

T

∑
t∈[T]

η ‖Gt‖2 〈Gt,Yt〉 .

Finally, we are ready to state our ε-tolerant tester for the decision problem (7.58) as Algorithm 29.

Lemma 96. Algorithm 29 meets its output guarantees (as specified on Line 2).

Proof. Throughout, assume all calls to Apack and the computation of approximations as given by

Lines 6 and 13 succeed. By union bounding over T iterations, this gives the failure probability.

We first show that if the algorithm terminates on Line 15, it is always correct. By the definition

of Apack, all Gt � κI, so throughout the algorithm, −St+1 � ηκT I � 11κ log d
ε . If the check on Line

14 passes, we must have −St+1 � 11 log d
ε I, and hence the matrix − 1

t+1St+1 has condition number

at most κ. The conclusion follows since the reweighting x̄ induces St+1.

We next prove correctness in the “no” case. Suppose the problem (7.60) is feasible; we show

that the check in Line 9 will never pass (so the algorithm never returns “no”). Let v?t be the

vector which is entrywise exactly {〈Mi,Yt〉}i∈[n], and let v′t be a ε
10 -multiplicative approximation

to v?t such that vt is an entrywise ε
10n -additive approximation to v′t. By definition, it is clear

OPT(κv′t) ≥ (1 − ε
10)OPT(κv?t). Moreover, by the assumption that all λmax(Mi) ≥ 1, all wi ≤ 1

in the feasible region of the problem (7.59). Hence, the combined additive error incurred by the

approximation 〈κvt, w〉 to 〈κv′t, w〉 for any feasible w is ε
10 . All told, by the guarantee of Apack,

κ 〈vt, xt〉 ≥
(

1− ε

10

)2

OPT(κv?t)− ε

10
, where OPT(κv?t) = max∑

i∈[n] wiMi�I

w∈Rn≥0

κ

〈
Yt,

∑
i∈[n]

wiMi

〉
.

(7.62)

However, by feasibility of (7.60) and scale invariance, there exists a w ∈ Rn≥0 with
∑
i∈[n] wiMi � I

and (1− ε)κ
∑
i∈[n] wiMi � I. Since Yt has trace 1, this certifies OPT(κv?t) ≥ 1

1−ε , and thus

κ 〈vt, xt〉 ≥
(

1− ε

10

)2

· 1

1− ε
− ε

10
> 1− ε

5
.

CHAPTER 7. MATRIX MULTIPLICATIVE WEIGHTS AND FRIENDS 304

Algorithm 29: DecideStructuredMPC({Mi}i∈[n], κ,Apack, δ, ε)

1 Input: {Mi}i∈[n] ∈ Sd×d≥0 such that 1 ≤ λmax(Mi) ≤ 2 for all i ∈ [n], κ > 1, Apack which on
input v ∈ Rn≥0 returns w ∈ Rn≥0 satisfying (recalling definition (7.59))

∑
i∈[n]

wiMi � I, v>w ≥
(

1− ε

10

)
OPT(v), with probability ≥ 1− δ

2T
for some T = O

(
κ log d

ε2

)
,

failure probability δ ∈ (0, 1), tolerance ε ∈ (0, 1);
2 Output: With probability ≥ 1− δ: “yes” or “no” is returned. The algorithm must return

“yes” if there exists w ∈ Rn≥0 with

λmax

∑
i∈[n]

wiMi

 ≤ (1− ε)κλmin

∑
i∈[n]

wiMi

 , (7.60)

and if “yes” is returned, a vector w is given with

λmax

∑
i∈[n]

wiMi

 ≤ (1 + ε)κλmin

∑
i∈[n]

wiMi

 . (7.61)

;

3 η ← ε
10κ , T ←

⌈
10 log d
ηε

⌉
, Y0 ← 1

dI, S0 ← 0;

4 for 0 ≤ t < T do

5 Yt ← exp(St)
Tr exp(St)

;

6 vt ← entrywise nonnegative (ε
10 ,

ε
10κn)-approximations to {〈Mi,Yt〉}i∈[n], with

probability ≥ 1− δ
4T ;

7 xt ← Apack(κvt);
8 Gt ← κ

∑
i∈[n][xt]iMi;

9 if κ 〈xt, vt〉 < 1− ε
5 then

10 Return: “no”;

11 St+1 ← St − ηGt;

12 τ ← log d
ε -additive approximation to λmin(−St+1), with probability ≥ 1− δ

4T ;

13 if τ ≥ 12 log d
ε then

14 Return: (“yes”, x̄) for x̄ := 1
t+1

∑
0≤s≤t xs;

15 Return: (“yes”, x̄) for x̄ := 1
T

∑
0≤t<T xt;

CHAPTER 7. MATRIX MULTIPLICATIVE WEIGHTS AND FRIENDS 305

Hence, whenever the algorithm returns “no” it is correct. Assume for the remainder of the proof

that “yes” is returned on Line 18. Next, we observe that whenever A succeeds on iteration t,∑
i∈[n][xt]iMi � I, and hence in every iteration we have ‖Gt‖2 ≤ κ. Proposition 27 then gives

1

T

∑
0≤t<T

〈Gt,Yt −U〉 ≤ log d

ηT
+

1

T

∑
t∈[T]

η ‖Gt‖2 〈Gt,Yt〉 , for all U ∈ Sd≥0 with Tr(U) = 1.

Rearranging the above display, using η ‖Gt‖2 ≤
ε

10 , and minimizing over U yields

λmin

 1

T

∑
0≤t<T

Gt

 ≥ 1− ε
10

T

∑
0≤t<T

〈Gt,Yt〉 −
log d

ηT
≥

1− ε
10

T

∑
0≤t<T

〈Gt,Yt〉 −
ε

10
.

The last inequality used the definition of T . However, by definition of vt, we have for all 0 ≤ t < T ,

〈Yt,Gt〉 = κ
∑
i∈[n]

[xt]i 〈Mi,Yt〉 ≥
(

1− ε

10

)
κ 〈xt, vt〉 ≥

(
1− ε

10

)(
1− ε

5

)
≥ 1− 3ε

10
. (7.63)

The second-to-last inequality used that Line 9 did not pass. Combining the previous two displays,

κλmin

∑
i∈[n]

x̄iMi

 = λmin

 1

T

∑
0≤t<T

Gt

 ≥ (1− ε

10

)(
1− 3ε

10

)
− ε

10
≥ 1− ε

2
.

On the other hand, since all 0 ≤ t < T have
∑
i∈[n][xt]iMi � I, by convexity

∑
i∈[n] x̄iMi � I.

Combining these two guarantees and (1 + ε)(1− ε
2) ≥ 1 shows x̄ is correct for the “yes” case.

We bound the runtime complexities of Lines 6, 7, and 13 of Algorithm 29 in the following sections.

Approximating inner products

In this section, we bound the complexity of Line 6 of Algorithm 29. We will use the following two

standard helper results on random projections and approximation theory.

Fact 11 (Johnson-Lindenstrauss [160]). For 0 ≤ ε ≤ 1, let k = Θ
(

1
ε2 log d

δ

)
for an appropriate

constant. For Q ∈ Rk×d with independent uniformly random unit vector rows in Rd scaled down by
1√
k

, with probability ≥ 1− δ for any fixed v ∈ Rd,

(1− ε) ‖Qv‖22 ≤ ‖v‖
2
2 ≤ (1 + ε) ‖Qv‖22 .

Fact 12 (Polynomial approximation of exp [466], Theorem 4.1). Let M ∈ Sd≥0 have M � RI. Then

for any δ > 0, there is an explicit polynomial p of degree O(
√
R log 1

δ + log2 1
δ) with

exp(−M)− δI � p(M) � exp(−M) + δI.

CHAPTER 7. MATRIX MULTIPLICATIVE WEIGHTS AND FRIENDS 306

We also state a simple corollary of Fact 12.

Corollary 27. Given R > 1, M ∈ Sd≥0, and κ with M � κI, we can compute a degree-O(
√
κR+R)

polynomial p such that for P = p(M),

exp (−M)− exp (−R) I � P � exp (−M) + exp (−R) I.

Using these tools, we next demonstrate that we can efficiently approximate the trace of a negative

exponential of a bounded matrix, and quadratic forms through it.

Lemma 97. Given M ∈ Sd≥0, R, κ, ε > 0 such that λmin(M) ≤ R and λmax(M) ≤ κR, δ ∈ (0, 1),

we can compute an ε-multiplicative approximation to Tr exp(−M) with probability ≥ 1− δ in time

O

(
Tmv(M) ·

√
κR ·

log d
δ

ε2

)
.

Proof. First, with probability at least 1− δ, choosing k = O(1
ε2 log d

δ) in Fact 11 and taking a union

bound guarantees that for all rows j ∈ [d], we have∥∥∥∥∥Q
[
exp

(
−1

2
M

)]
j:

∥∥∥∥∥
2

2

is a
ε

3
-multiplicative approximation of

∥∥∥∥∥
[
exp

(
−1

2
M

)]
j:

∥∥∥∥∥
2

2

.

Condition on this event in the remainder of the proof. The definition

Tr exp(−M) =
∑
j∈[d]

∥∥∥∥∥
[
exp

(
−1

2
M

)]
j:

∥∥∥∥∥
2

2

,

and the sequence of equalities

∑
j∈[d]

∥∥∥∥∥Q
[
exp

(
−1

2
M

)]
j:

∥∥∥∥∥
2

2

= Tr

(
exp

(
−1

2
M

)
Q>Q exp

(
−1

2
M

))

= Tr
(
Q exp (−M) Q>

)
=
∑
`∈[k]

∥∥∥∥exp

(
−1

2
M

)
Q`:

∥∥∥∥2

2

,

implies that it suffices to obtain a ε
3 -multiplicative approximation to the last sum in the above display.

Since Tr exp(−M) ≥ exp(−R) by the assumption on λmin(M), it then suffices to approximate each

term
∥∥exp(− 1

2M)Q`:

∥∥2

2
to an additive ε

3k exp(−R). For simplicity, fix some ` ∈ [k] and denote

q := Q`:; recall ‖q‖22 = 1
k from the definition of Q in Fact 11.

By rescaling, it suffices to demonstrate that on any unit vector q ∈ Rd, we can approximate∥∥exp(− 1
2M)q

∥∥2

2
to an additive ε

3 exp(−R). To this end, we note that (after shifting the definition of

CHAPTER 7. MATRIX MULTIPLICATIVE WEIGHTS AND FRIENDS 307

R by a constant) Corollary 27 provides a matrix P with Tmv(P) = O(Tmv(M) ·
√
κR) and

exp (−M)− ε

3
exp (−R) I � P � exp (−M) +

ε

3
exp (−R) I,

which exactly meets our requirements by taking quadratic forms. The runtime follows from the cost

of applying P to each of the k = O(1
ε2 log d

δ) rows of Q.

Lemma 98. Given M ∈ Sd≥0 and κ with M � κI, 1 > c > 0, δ ∈ (0, 1), ε > 0, and a set of

matrices {Mi}i∈[n] with decompositions of the form (7.9) and 1 ≤ λmax(Mi) ≤ 2 for all i ∈ [n], we

can compute (ε, c)-approximations to all

{〈Mi, exp(−M)〉}i∈[n] ,

with probability ≥ 1− δ in time

O

(
Tmv

(
M, {Vi}i∈[n]

)
·
√
κ log

c

m
·

log mn
δ

ε2

)
.

Proof. First, observe that for all i ∈ [n], letting {v(i)
j }j∈[m] be columns of Vi ∈ Rd×m, we have

〈Mi, exp(−M)〉 =
∑
j∈[m]

(
v

(i)
j

)>
exp(−M)

(
v

(i)
j

)
.

Hence, to provide an (ε, c) approximation to 〈Mi, exp(−M)〉 it suffices to provide, for all i ∈ [n],

j ∈ [m], an (ε, cm)-approximation to
(
v

(i)
j

)>
exp(−M)

(
v

(i)
j

)
. As in the proof of Lemma 97, by

taking a union bound it suffices to sample a Q ∈ Rk×d for k = O(1
ε2 log mn

δ) and instead compute all

‖Q exp(− 1
2M)v

(i)
j ‖22 to additive error c

m . We will instead show how to approximate, for arbitrary

vectors q, v with norm at most 1,〈
q, exp

(
−1

2
M

)
v

〉2

to additive error
c

2m
.

By letting q range over rows of Q renormalized by
√
k, and scaling all v

(i)
j by a factor of

√
2, this yields

the desired result. To this end, consider using 〈q,Pv〉2 for some P with − c
6mI � P− exp(− 1

2M) �
c

6mI. Letting the difference matrix be D := P− exp(− 1
2M), we compute

(
q> exp

(
−1

2
M

)
v

)2

−
(
q>Pv

)2
= 2

(
q> exp

(
−1

2
M

)
v

)(
q>Dv

)
+
(
q>Dv

)2
≤ 2 ‖D‖2 + ‖D‖22 ≤

c

2m
.

We used q and v have `2 norm at most 1, exp(− 1
2M) � I, and ‖D‖2 ≤

c
6m ≤ 1. Hence, 〈q,Pv〉2 is a

CHAPTER 7. MATRIX MULTIPLICATIVE WEIGHTS AND FRIENDS 308

valid approximation. The requisite P is given by Corollary 27 with Tmv(P) = O(Tmv(M) ·
√
κ log c

m).

Finally, the runtime follows from first applying P to rows of Q to explicitly form Q̃ with k rows,

and then computing all ‖Q̃v(i)
j ‖22 for all i ∈ [n], j ∈ [m].

Combining Lemmas 97 and 98, we bound the cost of Line 6 in Algorithm 29.

Lemma 99. We can implement Line 6 of Algorithm 29 in time

O

(
Tmv

(
{Vi}i∈[n]

)
·
√
κ ·

log3(mndκδε)

ε3

)
.

Proof. Since−St is an explicit linear combination of {Mi}i∈[n], we have Tmv(St) = O(Tmv({Vi}i∈[n])).

We first obtain a ε
30 approximation to the denominator in Line 6 within the required time by apply-

ing Lemma 97 with κ← O(κ), R← O(log d
ε), ε← ε

30 , and adjusting the failure probability by O(T).

The bound on λmin(−St) comes from the check on Line 13 and the algorithm yields the bound

on λmax(−St). Next, we obtain a (ε
30 ,

ε
30κn) approximation to each numerator in Line 6 within

the required time by using Lemma 98 with κ ← O(κ log d
ε) and adjusting constants appropriately.

Combining these approximations to the numerators and denominator yields the result.

Implementing a packing oracle

In this section, we bound the complexity of Line 7 of Algorithm 29 by using Proposition 26.

Lemma 100. We can implement Line 7 of Algorithm 29 in time

O

(
Tmv

(
{Vi}i∈[n]

)
·

log5(ndκδε)

ε5

)
.

Proof. First, we observe that the proof of the “no” case in Lemma 96 demonstrates that in all calls

to A, we can set our lower bound OPT− = 1 − O(ε), since the binary search of Proposition 26

will never need to check smaller values to determine whether the test on Line 9 passes. On the

other hand, the definition of OPT(κv?t) in (7.62), as well as OPT(κvt) ≤ (1 + ε
10)OPT(κv?t) by the

multiplicative approximation guarantee, shows that it suffices to set OPT+ ≤ (1 +O(ε))κ.

We will use the algorithm of Proposition 26 as Apack in Algorithm 29. In our setting, we argued
OPT+

OPT−
= O(κ), giving the desired runtime bound via Proposition 26.

Approximating the smallest eigenvalue

In this section, we bound the complexity of Line 13 of Algorithm 29, which asks to approximate

the smallest eigenvalue of a matrix M to additive error. At a high level, our strategy is to use the

power method on the negative exponential exp(−M), which we approximate to additive error via

Corollary 27. We first state a guarantee on the power method from [404].

CHAPTER 7. MATRIX MULTIPLICATIVE WEIGHTS AND FRIENDS 309

Fact 13 (Theorem 1, [404]). For any δ ∈ (0, 1) and M ∈ Sd≥0, there is an algorithm, Power(M, δ),

which returns with probability at least 1− δ a value V such that λmax(M) ≥ V ≥ 0.9λmax(M). The

algorithm runs in time O(Tmv(M) log d
δ), and is performed as follows:

1. Let u ∈ Rd be a random unit vector.

2. For some ∆ = O(log d
δ), let v ← M∆u

‖M∆u‖2
.

3. Return ‖Mv‖2.

Lemma 101. We can implement Line 13 of Algorithm 29 in time

O

(
Tmv

(
{Vi}i∈[n]

)
·
√
κ ·

log2(dκδε)

ε

)
.

Proof. Throughout, denote M := −St+1, L := λmin(M) and R := log d
ε , and note that (assuming all

previous calls succeeded), we must have L ≤ 14R since the previous iteration had L ≤ 13R and St

is changing by an O(ε)-spectrally bounded matrix each iteration. It suffices to obtain V with

0.9(exp(−L)− exp(−20R)) ≤ V ≤ exp(−L), (7.64)

and then return − log(V), to obtain an R-additive approximation to L. To see this, it is immediate

that − log(V) ≥ L from the above display. Moreover, for the given ranges of L and R, it is clear

exp (−20R+ L) ≤ exp(−6R) ≤ 1− 3

2R

=⇒ exp(−L)− exp(−20R) ≥ exp(−L) · 3

2R

=⇒ exp(−L)− exp(−20R) ≥ exp

(
−L− 2R

3

)
=⇒ log

(
1

exp(−L)− exp(−20R)

)
≤ L+

2R

3
.

Combining with

− log(V) ≤ log

(
1

exp(−L)− exp(−20R)

)
+ log

10

9
≤ log

(
1

exp(−L)− exp(−20R)

)
+
R

3

yields the claim. It hence suffices to provide V satisfying (7.64) in the requisite time. To do so, we

first use Corollary 27 with κ← O(κ log d
ε) to produce P with Tmv(P) = O(Tmv(M) ·

√
κ · log d

ε) and

exp(−M)− 1

2
exp(−20R)I � P � exp(−M) +

1

2
exp(−20R)I.

The conclusion follows by applying Fact 40 to P− 1
2 exp(−20R)I and adjusting δ.

CHAPTER 7. MATRIX MULTIPLICATIVE WEIGHTS AND FRIENDS 310

Runtime of the optimization variant

Finally, we put these pieces together to solve the optimization variant of (7.7), (7.8). We begin by

stating the runtime of Algorithm 29, which follows from combining Lemmas 99, 100, and 101.

Corollary 28. Algorithm 29 can be implemented in time

O

(
Tmv({Vi}) · κ1.5 ·

log6(mndκδε)

ε7

)
.

Theorem 42. Given matrices {Mi}i∈[n] with explicit factorizations (7.9), such that (7.7) is feasible

for B = I and some κ ≥ 1, we can return weights w ∈ Rn≥0 satisfying (7.8) with probability ≥ 1− δ
in time

O

(
Tmv({Vi}i∈[n]) · κ1.5 ·

log6(mndκδε)

ε8

)
.

Proof. First, to guarantee all Mi satisfy 1 ≤ λmax(Mi) ≤ 2, we exploit the scale-invariance of the

problem (7.7), (7.8) and rescale each matrix by a 2-approximation to its largest eigenvalue. This

can be done with Fact 40 and does not bottleneck the runtime.

Next, we perform an incremental search on κ initialized at 1, and increasing in multiples of

1 + ε
3 , returning the first guess of κ such that Algorithm 29 returns “yes.” This will yield an ε-

approximation to the optimal κ, and the runtime follows from combining Corollary 28 with the

overhead of this incremental search, which runs O(log κ
ε) times; we do not lose an extra logarithmic

factor from the search due to the geometric sequence κ1.5 +κ1.5(1−O(ε))+. . . summing to O(κε).

7.4.2 General constraints

In this section, we consider a more general setting in which there is a constraint matrix B in the

problem (7.7), (7.8) which we have matrix-vector product access to, but we cannot efficiently invert

B. We show that we can obtain a runtime similar to that in Theorem 42 (up to logarithmic factors

and one factor of
√
κ), with an overhead depending polylogarithmically on α and β defined in (10.32)

and restated here for convenience:

B �M(1) � αB, I � B � βI.

Homotopy method preliminaries

Our algorithm will be a “homotopy method” which iteratively finds reweightings of the {Mi}i∈[n]

which (1+ ε)κ-approximate B+λM(1), for a sequence of λ values. More specifically, we first bound

the required range of λ via two simple observations.

CHAPTER 7. MATRIX MULTIPLICATIVE WEIGHTS AND FRIENDS 311

Lemma 102. Let λ ≥ 1
ε . Then,

B + λM(1) �
∑
i∈[n]

(1 + λ)Mi � (1 + ε) (B + λM(1)) .

Proof. The first inequality is immediate from (10.32). The second follows from B � 0.

Lemma 103. Let λ ≤ εκ
2α , and let w ∈ Rn≥0 satisfy

B + λM(1) �
∑
i∈[n]

wiMi � (1 + ε)κ (B + λM(1)) .

Then, the same w satisfies

B �
∑
i∈[n]

wiMi � (1 + 2ε)κB.

Proof. The first inequality is immediate. The second is equivalent to

εκB � (1 + ε)λM(1)

which follows from εκ ≥ (1 + ε)λα and (10.32).

Our homotopy method is driven by the observation that if (7.7) is feasible for a value of κ, then

it is also feasible for the same κ when B is replaced with B + λM(1) for any λ ≥ 0.

Lemma 104. For any λ ≥ 0, if (7.7) is feasible for κ ≥ 1, there also exists w?λ ∈ Rn≥0 with

B + λM(1) �
∑
i∈[n]

[w?λ]iMi � κ (B + λM(1)) .

Proof. It suffices to choose w?λ = w? + λ1 where w? is feasible for (7.7).

To this end, our algorithm will proceed in K phases, where K = dlog2
2α
ε2κe, setting

λ(0) =
1

ε
, λ(k) =

λ(0)

2k
for all 0 ≤ k ≤ K.

In each phase k for 0 ≤ k ≤ K, we will solve the problem (7.7), (7.8) for B ← B + λ(k)M(1).

To do so, we will use the fact that from the previous phase we have access to a matrix which is a

3κ-spectral approximation to B which we can efficiently invert.

Lemma 105. Suppose for some λ ≥ 0, κ ≥ 1, and 0 < ε ≤ 1
2 , we have w ∈ Rn≥0 such that

B + λM(1) �
∑
i∈[n]

wiMi � (1 + ε)κ(B + λM(1)).

CHAPTER 7. MATRIX MULTIPLICATIVE WEIGHTS AND FRIENDS 312

Then defining D :=M(w), we have

B +
λ

2
M(1) � D � 3κ

(
B +

λ

2
M(1)

)
.

Proof. This is immediate from the assumption and

B + λM(1) � 2

(
B +

λ

2
M(1)

)
.

Now, Lemma 102 shows we can access weights satisfying (7.8) for B ← B + λ(0)M(1), and

Lemma 103 shows if we can iteratively compute weights satisfying (7.8) for each B + λ(k)M(1),

0 ≤ k ≤ K, then we solve the original problem up to a constant factor in ε. Moreover, Lemma 104

implies that the problem (7.7) is feasible for all phases assuming it is feasible with some value of κ for

the original problem. Finally, Lemma 105 shows that we start each phase with a matrixM(w) which

we can efficiently invert using the linear operator in (7.10), which is a 3κ-spectral approximation

to the constraint matrix. We solve this self-contained subproblem in the following section using

rational approximations to the square root, and an appropriate call to Theorem 42.

Inverse square root approximations with a preconditioner

In this section, we show how to efficiently approximate the inverse square root of some B ∈ Sd�0

given access to a matrix M(w) ∈ Sd�0 satisfying

B �M(w) � κB

and supporting efficient inverse access in the form of (7.10). For brevity in this section we will use

M̃λ,ε to denote the linear operator guaranteeing (7.10) for M(w) + λI. Given this access, we will

develop a subroutine for efficiently applying a linear operator R ∈ Sd�0 such that∥∥∥(R−B−
1
2)v
∥∥∥

2
≤ ε

∥∥∥B− 1
2 v
∥∥∥

2
for all v ∈ Rd. (7.65)

We will also use Tmv to denote Tmv(B) + Tmv(M(w)) + T sol
M for brevity in this section, where T sol

M

is the cost of solving a system in M(w) to constant accuracy (see (7.10)). Our starting point is the

following result in the literature on preconditioned accelerated gradient descent, which shows we can

efficiently solve linear systems in combinations of B and I.

Lemma 106. Given any λ ≥ 0 and ε > 0, we can compute a linear operator M̂λ,ε such that∥∥∥(M̂λ,ε − (B + λI)−1)v
∥∥∥

2
≤ ε

∥∥(B + λI)−1v
∥∥

2
for all v ∈ Rd,

CHAPTER 7. MATRIX MULTIPLICATIVE WEIGHTS AND FRIENDS 313

and

Tmv(M̂λ,ε) = O

(
Tmv ·

√
κ log κ log

1

ε

)
.

Proof. This follows from Theorem 4.4 in [292], the fact thatM(w)+λI is a κ-spectral approximation

to B + λI, and our assumed linear operator M̃λ,(10κ)−1 which solves linear systems in M(w) + λI

to relative error 1
10κ which can be applied in time O(Tmv · log κ) (the assumption (7.10)).

We hence can apply and (approximately) invert matrices of the form B + λI. We leverage this

fact to approximate inverse square roots using the following approximation result.

Proposition 28 (Lemma 13, [298]). For any matrix B and ε ∈ (0, 1), there is a rational function

r(B) of degree L = O(log 1
ε log κ(B)) such that for all vectors v ∈ Rd,∥∥∥(r(B)−B−

1
2)v
∥∥∥

2
≤ ε

∥∥∥B− 1
2 v
∥∥∥

2
.

The rational function r(B) has the form, for {λ`, ν`}`∈[L]∪{νL+1} ⊂ R≥0 computable in O(L) time,

r(B) =

∏
`∈[L]

(B + λ`I)

 ∏
`∈[L+1]

(B + ν`I)
−1

 . (7.66)

We note that Proposition 28 as it is stated in [298] is for the square root (not the inverse square

root), but these are equivalent since all terms in the rational approximation commute. We show

how to use Lemma 106 to efficiently approximate the inverse denominator in (7.66).

Lemma 107. For any vector v ∈ Rd, {ν`}`∈[L+1] ⊂ R≥0 and ε > 0, we can compute a linear

operator D̂ε such that for the denominator of (7.66), denoted

D :=
∏

`∈[L+1]

(B + ν`I) ,

we have ∥∥∥(D̂ε −D−1)v
∥∥∥

2
≤ ε

∥∥D−1v
∥∥

2
,

and

Tmv(D̂ε) = O

(
Tmv ·

√
κ · L2 log(κ) log

(
κL · κ(B)

ε

))
.

Proof. We give our linear operator D̂ε in the form of an algorithm, which applies a sequence of linear

operators to v in the alloted time. Denote B` := B + ν`I for all ` ∈ [L+ 1]. We also define

Π` :=
∏
i∈[`]

B−1
i for all ` ∈ [L+ 1], and Π0 := I.

CHAPTER 7. MATRIX MULTIPLICATIVE WEIGHTS AND FRIENDS 314

We define a sequence of vectors {v`}0≤`≤L+1 as follows: let v0 := v, and for all ` ∈ [L+ 1] define

v` ← M̂νL+2−`,∆v`−1 for ∆ :=
ε

3(L+ 1)κ(B)2(L+1)
.

Here we use notation from Lemma 106. In particular, for the given ∆, we have for all ` ∈ [L+ 1],

∥∥v` −B−1
L+2−`v`−1

∥∥
2
≤ ∆ ‖v`−1‖2 . (7.67)

Our algorithm will simply return vL+1, which is the application of a linear operator to v within the

claimed runtime via Lemma 106. We now prove correctness. We first prove a bound on the sizes of

this iterate sequence. By the triangle inequality and (7.67), for each ` ∈ [L+ 1] we have

‖v`‖2 ≤
∥∥v` −B−1

L+2−`v`−1

∥∥
2

+
∥∥B−1

L+2−`v`−1

∥∥
2
≤ (1 + ∆)

∥∥B−1
L+2−`

∥∥
2
‖v`−1‖2 .

Applying this bound inductively, we have that

‖v`‖2 ≤ (1 + ∆)`

∏
i∈[`]

∥∥B−1
L+2−`

∥∥
2

 ‖v0‖2 ≤ 3

∏
i∈[`]

∥∥B−1
L+2−`

∥∥
2

 ‖v0‖2 . (7.68)

Next, we expand by the triangle inequality that

‖vL+1 −ΠL+1v0‖2 ≤
∑

`∈[L+1]

‖ΠL+1−`v` −ΠL+2−`v`−1‖2

≤
∑

`∈[L+1]

‖ΠL+1−`‖2
∥∥v` −B−1

L+2−`v`−1

∥∥
2

≤
∑

`∈[L+1]

∆ ‖ΠL+2−`‖2 ‖v`−1‖2

≤
∑

`∈[L+1]

3∆ ‖ΠL+1‖2 ‖v0‖2 ≤ 3∆(L+ 1) ‖ΠL+1‖2 ‖v0‖2 .

The second inequality used commutativity of all {B`}`∈[L+1] and the definition of ΠL+2−`, the third

used the guarantee (7.67), the fourth used (7.68) and that all {B`}`∈[L+1] have similarly ordered

eigenvalues, and the last is straightforward. Finally, correctness of returning vL+1 follows from

D = ΠL+1 and the bound

κ(ΠL+1) ≤ κ(B)L+1 =⇒ 3∆(L+ 1) ‖ΠL+1‖2 ‖v0‖2 ≤ ε ‖ΠL+1v0‖2 .

To see the first claim, every B` clearly has κ(B`) ≤ κ(B), and we used the standard facts that for

commuting A,B ∈ Sd�0, κ(A) = κ(A−1) and κ(AB) ≤ κ(A)κ(B).

CHAPTER 7. MATRIX MULTIPLICATIVE WEIGHTS AND FRIENDS 315

At this point, obtaining the desired (7.65) follows from a direct application of Lemma 107 and

the fact that the numerator and denominator of (7.66) commute with each other and B.

Lemma 108. For any vector v ∈ Rd and ε > 0, we can compute a linear operator Rε such that∥∥∥(Rε −B−
1
2)v
∥∥∥

2
≤ ε

∥∥∥B− 1
2 v
∥∥∥

2
,

and

Tmv(Rε) = O

(
Tmv ·

√
κ · log6

(
κ · κ(B)

ε

))
.

Proof. Let ε′ ← ε
3 , and let D and N be the (commuting) numerator and denominator of (7.66) for

the rational function in Proposition 28 for the approximation factor ε′. Let u← Nv, which we can

compute explicitly within the alloted runtime. We then have from Proposition 28 that∥∥∥D−1u−B−
1
2 v
∥∥∥

2
≤ ε′

∥∥∥B− 1
2 v
∥∥∥

2
.

Moreover by Lemma 107 we can compute a vector w within the allotted runtime such that

∥∥D−1u− w
∥∥

2
≤ ε′

∥∥D−1u
∥∥

2
≤ ε′

(∥∥∥B− 1
2 v
∥∥∥

2
+
∥∥∥D−1u−B−

1
2 v
∥∥∥

2

)
≤ 2ε′

∥∥∥B− 1
2 v
∥∥∥

2
.

The vector w follows from applying an explicit linear operator to v as desired. Finally, by combining

the above two displays we have the desired approximation quality as well:∥∥∥B− 1
2 v − w

∥∥∥
2
≤ 3ε′

∥∥∥B− 1
2 v
∥∥∥

2
= ε

∥∥∥B− 1
2 v
∥∥∥

2
.

Implementing the homotopy method

In this section, we implement the homotopy method outlined in Section 7.4.2 by using the inverse

square root access given by Lemma 108. We require the following helper result.

Lemma 109. Suppose for some ε ∈ (0, 1), and M,N ∈ Sd�0 such that κ(N) ≤ β, that

−εN−1 �M−1 −N−1 � εN−1.

Then,

−9εβN2 �M2 −N2 � 9εβN2.

Proof. The statement is scale-invariant, so suppose for simplicity that I � N � βI. Also, by

rearranging the assumed bound, we have

−3εN �M−N � 3εN.

CHAPTER 7. MATRIX MULTIPLICATIVE WEIGHTS AND FRIENDS 316

Write D = M−N such that ‖D‖2 ≤ 3ε. We bound the quadratic form with an arbitrary unit vector

v ∈ Rd:

∣∣v>(M2 −N2)v
∣∣ =

∣∣v>(N2 − (N + D)2)v
∣∣

=
∣∣v>(ND + DN + D2)v

∣∣
≤ 3 ‖D‖2 ‖N‖2 ≤ 9εβ.

This completes the proof upon using N2 � I.

We now state our main claim regarding solving (7.7), (7.8) with general B.

Theorem 43. Given matrices {Mi}i∈[n] with explicit factorizations (7.9), such that (7.7) is feasible

for some κ ≥ 1 and we can solve linear systems in linear combinations of {Mi}i∈[n] to ε relative

accuracy in the sense of (7.10) in T sol
M · log 1

ε time, and B satisfying

B �M(1) � αB, I � B � βI, (7.11)

we can return weights w ∈ Rn≥0 satisfying (7.8) with probability ≥ 1− δ in time

O

((
Tmv

(
{Vi}i∈[n] ∪ {B}

)
+ T sol
M
)
· κ2 ·

log11(mndκβδε)

ε8
· log

α

ε

)
.

Proof. We follow Section 7.4.2, which shows that it suffices to solve the following problem O(log α
ε)

times. We have an instance of (7.7), (7.8) for the original value of κ, and some matrix B with

κ(B) ≤ β such that we know w ∈ Rn≥0 with B �M(w) � 3κB. We wish to compute w′ with

B �M(w′) � (1 + ε)κB. (7.69)

To do so, we use Lemma 108, which yields a matrix R such that

ε

45β
B−

1
2 � R−B−

1
2 � ε

45β
B−

1
2 and Tmv(R) = O

(
Tmv

(
{Vi}i∈[n] ∪ {B}

)
·
√
κ · log6

(
κβ

ε

))
.

By Lemma 109, this implies that

− ε
5
B � R−2 −B � ε

5
B. (7.70)

Now, if we solve (7.7), (7.8) with R−2 in place of B to accuracy 1 + ε
5 , since the optimal value of κ

has changed by at most a factor of 1 + ε
5 , it suffices to compute w′ such that

R−2 �M(w′) �
(

1 +
3ε

5

)
κR−2,

CHAPTER 7. MATRIX MULTIPLICATIVE WEIGHTS AND FRIENDS 317

since combined with (7.70) this implies (7.69) up to rescaling w′. Finally, to compute the above

reweighting it suffices to apply Theorem 42 with Mi ← RMiR for all i ∈ [n]. It is clear these

matrices satisfy (7.9) with the decompositions given by Vi ← RVi, and we can apply these matrices

in time Tmv(R) + Tmv(Vi). It is straightforward to check that throughout the proof of Theorem 42,

this replaces each cost of Tmv({Vi}i∈[n]) with Tmv({Vi}i∈[n]) + Tmv(R), giving the desired runtime.

7.5 Schatten packing

7.5.1 Mirror descent interpretation of [379]

We begin by reinterpreting the [379] solver, which achieves the state-of-the-art parallel runtime for

packing LPs10. An (`∞) packing LP algorithm solves the following decision problem.11.

Problem 2 (`∞ packing linear program). Given entrywise nonnegative A ∈ Rd×n≥0 , either find

primal solution x ∈ ∆n with ‖Ax‖∞ ≤ 1 + ε or dual solution y ∈ ∆d with A>y ≥ (1− ε)1.

Algorithm 30: PackingLP(A, ε)

1 Input: A ∈ Rd×n≥0 , ε ∈ [0, 1
2];

2 K ← 3 log(d)
ε , η ← K−1, T ← 4 log(d) log(nd/ε)

ε2 ;
3 [w0]i ← ε

n2d for all i ∈ [n], z ← 0, t← 0;
4 while Awt ≤ K1, ‖wt‖1 ≤ K do

5 vt ← exp(Awt)
‖exp(Awt)‖1

;

6 gt ← max(0,1−A>vt) entrywise;
7 wt+1 ← wt ◦ (1 + ηgt), z ← z + vt, t← t+ 1;
8 if t ≥ T then
9 Return: y ← 1

T z;

10 Return: x← wt
‖wt‖1

;

The following result is shown in [379].

Proposition 29. PackingLP (Algorithm 30) solves Problem 2 in O(nnz(A) · log(d) log(nd/ε)
ε2) time.

Oour interpretation of the analysis of [379], combines two ingredients: a potential argument and

mirror descent, which yields a dual feasible point if ‖wt‖1 did not grow sufficiently.

Potential argument. The potential used by [379] is log(
∑
j∈[d] exp([Awt]j))− ‖wt‖1, well-known

to be a O(log d)-additive approximation of ‖Awt‖∞ − ‖wt‖1. As soon as ‖Awt‖∞ or ‖wt‖1 reaches

10The [379] solver also generalizes to covering and mixed objectives; we focus on packing in this work.
11Packing linear programs are sometimes expressed as the optimization problem maxx≥0,Ax≤1 ‖x‖1, similarly to

(7.12); these problems are equivalent up to a standard binary search, see e.g. discussion in [285].

CHAPTER 7. MATRIX MULTIPLICATIVE WEIGHTS AND FRIENDS 318

the scale O(log d
ε), by nonnegativity this becomes a multiplicative guarantee, motivating the set-

ting of threshold K. To prove the potential is monotone, [379] uses step size K−1 and a Taylor

approximation; combining with the termination condition yields the desired claim.

Mirror descent. To certify that wt grows sufficiently (e.g. the method terminates in few iterations,

else dual feasibility holds), we interpret the step wt+1 ← wt◦(1+ηgt) as approximate entropic mirror

descent. Specifically, we track the quantity
∑

0≤t<T 〈ηgt, u〉, and show that if ‖wt‖1 has not grown

sufficiently, then it must be bounded for every u ∈ ∆n, certifying dual feasibility. Formally, for any

gt sequence and u ∈ ∆n, we show

O(log(nd/ε)) + log

(
‖wT ‖1
‖w0‖1

)
≥

∑
0≤t<T

〈ηgt, u〉 ≥ η
∑

0≤t<T

〈
1−A>vt, u

〉
.

The last inequality followed by gt being an upwards truncation. If ‖wT ‖1 is bounded (else, we have

primal feasibility), we show the entire above expression is bounded O(log nd
ε) for any u. Thus, by

setting T = O(log(nd/ε)
ηε) and choosing u to be each coordinate indicator, it follows that the average

of all vt is coordinatewise at least 1− ε, and solves Problem 2 as a dual solution.

Our gt is chosen as the (truncated) gradient of the function used in the potential analysis, so

its form allows us to interpret dual feasibility (e.g. vt has `1 norm 1 and is a valid dual point).

Our analysis patterns standard mirror descent, complemented by side information which says that

lack of a primal solution can transform a regret guarantee into a feasibility bound. We apply this

framework to analyze `p variants of Problem 2, via different potentials; nonetheless, our proofs are

quite straightforward upon adopting this perspective, and we believe it may yield new insights for

instances with positivity structure.

7.5.2 `p-norm packing linear programs

In this section, we give a complete self-contained example of the framework proposed in Section 7.5.1,

for approximately solving `p norm packing linear programs. Specifically, we now consider the gen-

eralization of Problem 2 to `p norms; throughout, q = p
p−1 is the dual norm.

Problem 3 (`p packing linear program). Given entrywise nonnegative A ∈ Rd×n≥0 , either find primal

solution x ∈ ∆n with ‖Ax‖p ≤ 1 + ε or dual solution y ∈ Rd≥0, ‖y‖q = 1 with A>y ≥ (1− ε)1.

For p = log d
ε , Problem 3 recovers Problem 2 up to constants as `p multiplicatively approximates

`∞ by 1 + ε. We now state our method for solving Problem 3 as Algorithm 31.

Other than changing parameters, the only difference from Algorithm 30 is that v is a point with

unit `q norm induced by the gradient of our potential Φt. We state our main potential fact, whose

proof is based straightforwardly on Taylor expanding ‖·‖p, and deferred to Appendix F.3 for brevity.

Lemma 110. In all iterations t of Algorithm 31, defining Φt := ‖Awt‖p − ‖wt‖1, Φt+1 ≤ Φt.

CHAPTER 7. MATRIX MULTIPLICATIVE WEIGHTS AND FRIENDS 319

Algorithm 31: PNormPacking(A, ε, p)

1 Input: A ∈ Rd×n≥0 , ε ∈ [0, 1
2], p ≥ 2;

2 η ← p−1, T ← 4p log(ndε)

ε ;
3 [w0]i ← ε

n2d for all i ∈ [n], z ← 0, t← 0;
4 while ‖wt‖1 ≤ ε−1 do

5 gt ← max(0,1−A>(vt)
p−1) entrywise, for vt ← Awt

‖Awt‖p
;

6 wt+1 ← wt ◦ (1 + ηgt), z ← z + (vt)
p−1, t← t+ 1;

7 if t ≥ T then
8 Return: y = z

‖z‖q
;

9 Return: x = wt
‖wt‖1

;

We now prove our main result, which leverages the potential bound following the framework of

Section 7.5.1. In the proof, we assume that entries of A are bounded by nε−1; this does not incur

more loss than a constant multiple of ε in the guarantees, and a proof can be found as Lemma 291.

Theorem 47. Algorithm 31 runs in time O(nnz(A) · p log(nd/ε)
ε). Further, its output solves Prob-

lem 3.

Proof. The runtime follows from Line 7 (each iteration cost is dominated by multiplication through

A), so we prove correctness. Define potential Φt as in Lemma 110, and note that as w0 = ε
n2d1,

Φ0 ≤ ‖Aw0‖p ≤
1

n
‖1‖p ≤ 1.

The second inequality followed from our assumption on A entry sizes (Lemma 291). If Algorithm 31

breaks out of the while loop of Line 4, we have by Lemma 110 that for x returned on Line 11,

‖Awt‖p − ‖wt‖1 ≤ 1 =⇒ ‖Ax‖p ≤
1 + ‖wt‖1
‖wt‖1

≤ 1 + ε.

Thus, primal feasibility is always correct. We now prove correctness of dual feasibility. First, let

Vx(u) =
∑
i∈[n] ui log(uixi) be the Kullback-Leibler divergence from x to u, for x, u ∈ ∆d. Define the

normalized points xt = wt
‖wt‖1

in each iteration. Expanding definitions,

Vxt+1
(u)− Vxt(u) =

∑
i∈[n]

ui log
[xt]i

[xt+1]i

=
∑
i∈[n]

ui

(
log

(
‖wt+1‖1
‖wt‖1

)
+ log

(
1

1 + η[gt]i

))

≤ −η(1− η) 〈gt, u〉+ log

(
‖wt+1‖1
‖wt‖1

)
.

(7.71)

CHAPTER 7. MATRIX MULTIPLICATIVE WEIGHTS AND FRIENDS 320

The only inequality used the bounds, for g, η ∈ [0, 1],

log

(
1

1 + ηg

)
≤ g log

(
1

1 + η

)
≤ −η(1− η)g.

Telescoping (7.71) over all T iterations, and using Vx0
(u) ≤ log n for all u ∈ ∆n since x0 is uniform,

we have that whenever Line 4 is not satisfied before the check on Line 7 (i.e. t ≥ T),

η(1− η)
∑

0≤t<T

〈gt, u〉 ≤ log

(
‖wT ‖1
‖w0‖1

)
+ Vx0(u) ≤ log

(
nd

ε2

)
+ log n ≤ 2 log

(
nd

ε

)
. (7.72)

The last inequality used ‖wT ‖1 ≤ ε−1 by assumption, and ‖w0‖1 = ε
nd . Next, since each gt ≥

1−A>(vt)
p−1 entrywise, defining z̄ = z

T ,

∑
0≤t<T

〈gt, u〉 ≥
∑

0≤t<T

〈
1−A>(vt)

p−1, u
〉

= T
〈
1−A>z̄, u

〉
, for all u ∈ ∆n. (7.73)

Combining (7.72) and (7.73), and rearranging, yields by definition of T ,

〈
1−A>z̄, u

〉
≤

2 log(ndε)

Tη(1− η)
≤

4p log(ndε)

T
≤ ε =⇒ A>z̄ ≥ 1− ε entrywise.

The last claim follows by setting u to be each coordinate-sparse simplex vector. Finally, since
z̄
‖z̄‖q

= z
‖z‖q

, to show that y is a correct dual solution to Problem 3 it suffices to show ‖z̄‖q ≤ 1.

This follows as z̄ is an average of the (vt)
p−1, convexity of `q norms, and that for all t,

∥∥(vt)
p−1
∥∥q
q

=
∑
j∈[d]

vpt =
∑
j∈[d]

[Awt]
p
j

‖Awt‖pp
= 1.

7.5.3 Schatten-norm packing semidefinite programs

We generalize Algorithm 31 to solve Schatten packing semidefinite programs, which we now define.

Problem 4. Given {Ai}i∈[n] ∈ Sd≥0, either find primal solution x ∈ ∆n with
∥∥∥∑i∈[n] xiAi

∥∥∥
p
≤ 1+ε

or dual solution Y ∈ Sd≥0, ‖Y‖q = 1 with 〈Ai,Y〉 ≥ 1− ε for all i ∈ [n].

We assume that p is an odd integer for simplicity (sufficient for our applications), and leave for

interesting future work the cases when p is even or noninteger. The potential used in the analysis

and an overall guarantee are stated here, and deferred to Appendix F.3. The proofs are simple

modifications of Lemma 110 and Theorem 47 using trace inequalities (similar to those in [285]) in

place of scalar inequalities, as well as efficient approximation of quantities in Line 5 via the standard

CHAPTER 7. MATRIX MULTIPLICATIVE WEIGHTS AND FRIENDS 321

Algorithm 32: SchattenPacking({Ai}i∈[n], ε, p)

1 Input: {Ai}i∈[n] ∈ Sd≥0, ε ∈ [0, 1
2], p ≥ 2;

2 η ← p−1, T ← 4p log(ndε)

ε ;
3 [w0]i ← ε

n2d for all i ∈ [n], z ← 0;
4 while ‖wt‖1 ≤ ε−1 do

5 gt ← max
(

0,1−
〈
Ai,V

p−1
t

〉)
entrywise, for Vt ←

∑
i∈[n][wt]iAi

‖∑i∈[n][wt]iAi‖
p

;

6 wt+1 ← wt ◦ (1 + ηgt), Z← Z + (Vt)
p−1, t← t+ 1;

7 if t ≥ T then
8 Return: Y = Z

‖Z‖q
;

9 Return: x = wt
‖wt‖1

;

technique of Johnson-Lindestrauss projections.

Lemma 111. In all iterations t of Algorithm 32, defining Φt :=
∥∥∥∑i∈[n][wt]iAi

∥∥∥
p
−‖wt‖1, Φt+1 ≤

Φt.

Theorem 48. Let p be odd. Algorithm 32 runs in O(p log(nd/ε)
ε) iterations, and its output solves

Problem 4. Each iteration is implementable in O(nnz · p log(nd/ε)
ε2), where nnz is the number of

nonzero entries amongst all {Ai}i∈[n], losing O(ε) in the quality of Problem 4 with probability 1 −
poly((nd/ε)−1).

7.5.4 Schatten packing with a `∞ constraint

We remark that the framework outlined in Section 7.5.1 is flexible enough to handle mixed-norm

packing problems. Specifically, we give the following guarantee which will used in an application.

Proposition 30. Following Theorem 48’s notation, let p be odd, {Ai}i∈[n] ∈ Sd≥0, 0 < ε = O(α),

and

min
x∈∆n

‖x‖∞≤
1+α
n

‖A(x)‖p = OPT. (7.74)

for A(x) :=
∑
i∈[n] xiAi. Given estimate of OPT exponentially bounded in nd

ε , there is a procedure

calling Algorithm 76 O(log nd
ε) times giving x ∈ ∆n with ‖x‖∞ ≤

(1+α)(1+ε)
n , ‖A(x)‖p ≤ (1+ε)OPT.

Algorithm 76 runs in O(log(nd/ε) logn
ε2) iterations, each implementable in time O(nnz · p log(nd/ε)

ε2).

Our method, found in Appendix F.3, approximately solves (7.74) by first applying a stan-

dard binary search to place A(x) on the right scale, for which it suffices to solve an approxi-

mate decision problem. Then, we apply a truncated mirror descent procedure on the potential

Φ(w) = log(exp(‖A(w)‖p) + exp(n
1+α ‖w‖∞))−‖w‖1, and prove correctness for solving the decision

problem following the framework we outlined in Section 7.5.1.

Chapter 8

High-Dimensional Robust

Statistics in Almost-Linear Time

This chapter is based on [289, 180, 288, 181] with Ilias Diakonikolas, Arun Jambulapati, Daniel M.

Kane, Daniel Kongsgaard, Jerry Li, and Tselil Schramm.

8.1 Organization

In this chapter, we present several related results on efficiently performing statistical estimation or

learning tasks in high dimensions, under the presence of strong contamination (an adversary who

is allowed to replace a bounded fraction of the dataset with arbitrary points from the support of

the distribution one wishes to learn about). Performing these tasks in high dimensions with an

explicit (polynomial-time) algorithm is a challenging endeavor, and it was not until recently that

the polynomial-time tractability of the tasks considered in this chapter was settled [175, 337, 176].

The main contributions of this chapter are to go even further, demonstrating that several basic

variants of these tasks are in fact tractable in almost-linear time. To attain these results, we will

build heavily upon SDP technology introduced in Chapter 7.

Because many of the results in this chapter directly build upon similar techniques (utilizing

variants of matrix multiplicative weights and other tools inspired by SDP solvers for certifying and

filtering corrupted datasets), we present them in one cohesive section. We now give an overview of

the organization of this chapter, as well as the problems it studies.

1. Clustering mixture models. We consider the list-decodable mean estimation problem [118],

and its application to robust clustering tasks, in Sections 8.2, 8.3, 8.4, and 8.5.

2. Parameter estimation in generalized linear models. We consider learning a latent

322

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 323

parameter in GLMs from corrupted observations in Sections 8.6, 8.7, 8.8, 8.9, and 8.10.

3. Principal component analysis. We consider the problem of robustly recovering an approx-

imate top eigenvector of a sub-Gaussian distribution in Section 8.11.

8.2 Clustering mixture models in almost-linear time

We develop novel algorithms achieving almost-optimal runtimes for two closely related fundamental

problems in high-dimensional statistical estimation: clustering well-separated mixture models and

mean estimation in the list-decodable learning (“majority-outlier”) regime. Before we formally state

our contributions, we provide the necessary background and motivation for this work.

Clustering well-separated mixture models. Mixture models are a well-studied class of generative

models used widely in practice. Given a family of distributions F , a mixture model M with k

components is specified by k distributions dist1, . . . ,distk ∈ F and nonnegative mixing weights

α1, . . . , αk summing to one, and its law is given by
∑
i∈[k] αi disti. That is, to draw a sample

from M, we first choose i ∈ [k] with probability αi, and then draw a sample from disti. When the

weights are all equal to 1
k , we call the mixture uniform. Mixture models, especially Gaussian mixture

models, have been widely studied in statistics since pioneering work of Pearson in 1894 [440], and

more recently, in theoretical computer science [159, 35, 520, 7, 307, 97, 45, 454].

A canonical learning task for mixture models is the clustering problem. Namely, given inde-

pendent samples drawn from M, the goal is to approximately recover which samples came from

which component. To ensure that this inference task is information-theoretically possible, a com-

mon assumption is that M is “well-separated” and “well-behaved”: for example, we may assume

each component disti is sufficiently concentrated (with sub-Gaussian tails or bounded moments),

and that component means have pairwise distance at least ∆, for sufficiently large ∆. The goal is

then to efficiently and accurately cluster samples from M with as small a separation as possible.

The prototypical example is the case of uniform mixtures of bounded-covariance Gaussians, i.e.

mixtures of the formM =
∑
i∈[k]

1
kN (µi,Σi), where each Σi is unknown and satisfies ‖Σi‖op ≤ σ2.

Prior to the current work, the fastest known algorithm for this learning problem was due to [7],

building on [520]. Notably, [7] gave a polynomial-time clustering algorithm when ∆ = Ω(σ
√
k).

Interestingly, the algorithmic approach of [520, 7] is surprisingly simple and elegant: first, run k-PCA

on the set of n samples in Rd to find a k-dimensional subspace (which can be shown to approximately

capture the span of the component means), and then perform a distance-based clustering algorithm

in this subspace. The runtime of this algorithm is dominated by Ω̃(ndk) – the cost of (approximate)

k-PCA.1 The idea of using k-PCA as a subroutine to solve the clustering problem is very natural

and has also been useful in practice. Indeed, using PCA as a preprocessing step before applying

1Throughout, when convenient, we hide polylogarithmic factors in the sample size and algorithm failure probabil-
ities with the Õ notation. We reserve the terminology “almost-linear” to mean linear up to subpolynomial factors,
and the terminology “nearly-linear” to mean linear up to polylogarithmic factors.

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 324

further learning algorithms (such as clustering) is so ubiquitous that it is commonly suggested by

introductory textbooks on machine learning, see e.g. [403].

However, in our setting, since the size of the description this problem is O(nd), the runtime of

k-PCA is off from linear time by a factor of roughly k. In many real-world settings, this factor of k is

quite significant. For instance, modern image datasets such as ImageNet [170] often have hundreds

or thousands of different classes and subclasses [470]. As a result, many clustering tasks on these

datasets often have k of the same order. The resulting overhead would cause many tasks to be

infeasible at scale on these datasets. Yet, despite considerable attention over the last two decades,2

no faster algorithm has been developed for the clustering task. In particular, the runtime of k-PCA

has remained a bottleneck in this setting.

The preceding discussion motivates the following natural question.

Question 1. Can we cluster mixtures of k “well-separated” structured distributions without the use

of k-PCA? More ambitiously, is there a clustering algorithm that runs in (almost)-linear time?

Prior to the current work, this question remained open even for uniform k-mixtures of identity

covariance Gaussians with pairwise mean separation as large as poly(k). In addition to its funda-

mental interest, a runtime improvement of this sort may have significant practical implications for

clustering at scale in real-world applications, see e.g. [438, 538], where spectral methods are com-

monly used. As our main contribution, we resolve Question 1 for the general class of mixtures of

bounded-covariance distributions under information-theoretically near-optimal separation.

List-decodable mean estimation. In many statistical settings, including machine learning secu-

rity [62, 81, 494, 176] and exploratory data analysis e.g. in biology [461, 361, 436], datasets contain

arbitrary — and even adversarially chosen — outliers. The central question of the field of robust

statistics is to design estimators tolerant to a small amount of unconstrained contamination. Classi-

cal work in this field [31, 512, 278, 513, 263, 279] developed robust estimators for many basic tasks,

although with computational costs scaling exponentially in the problem dimension. More recently, a

line of work in computer science, starting with [175, 337], developed the first computationally-efficient

learning algorithms (attaining near-optimal error) for various estimation problems. Subsequently,

there has been significant progress in algorithmic robust statistics in a variety of settings (see [182]

for a survey).

In many of these works, it is typically assumed that the fraction of corrupted points is less than
1
2 . Indeed, when more than half the points are corrupted, the problem is ill-posed: there is not

necessarily a uniquely-defined notion of “uncorrupted samples.” While outputting a single accurate

hypothesis in this regime is information-theoretically impossible, one may be able to compute a

small list of hypotheses with the guarantee that at least one of them is accurate. This relaxed notion

of estimation is known as list-decodable learning [56, 118].

2We note that a recent line of work has developed sophisticated polynomial-time clustering algorithms under
smaller separation assumptions, see e.g. [186, 275, 330]. These algorithms leverage higher moments of the distribution
and consequently require significantly higher sample and computational complexity.

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 325

Definition 27 (List-decodable learning). Given a parameter 0 < α < 1
2 and a distribution family

F on Rd, a list-decodable learning algorithm takes as input α and a multiset T of n points such

that an unknown α fraction of T are independent samples from an unknown distribution dist ∈ F ,

and no assumptions are made on the remaining samples. Given T and α, the goal is to output a

“small” list of hypotheses at least one of which is close to the target parameter of dist.

Arguably the most fundamental problem in the list-decodable learning setting is mean estimation,

wherein the goal is to output a small list of hypotheses, one of which is close to the true mean. A

natural problem in its own right, list-decodable mean estimation generalizes the problem of learning

well-separated mixture models (as explained below) and can model important applications such

as crowdsourcing [495, 390] or semi-random community detection in stochastic block models [118].

Moreover, it is particularly useful in the context of semi-verified learning [118, 390], where a learner

can audit a small amount of trusted data. An important remark is that the parameter α ∈ (0, 1
2) can

be quite small in some of these applications and should not necessarily be thought of as a constant.

In addition to applications in clustering mixture models, a concrete example is the crowdsourcing

setting with many unreliable responders studied in [390], where the parameter α is tiny, depending

inversely-polynomially on other problem parameters such as the dimension.

The parameter α in the list-decodable mean estimation setting plays a very similar role to

the parameter 1
k in learning (uniform) mixture models. This is no coincidence: list-decodable mean

estimation can be thought of as a natural robust generalization of clustering well-separated mixtures.

Indeed, if we run a list-decodable mean estimation algorithm on a dataset drawn from a uniform

mixture of k sufficiently nice and well-separated distributions with α set to 1
k , the output list must

contain a candidate mean which is close to the mean of each component. This is because from the

perspective of the list-learning algorithm, each component could be the “true” unknown distribution

dist, and thus the list must contain a hypothesis close to the mean of this “true” distribution. This

small list of hypotheses can then typically be used to cluster the original dataset. One conceptually

important implication of this observation is that list-decodable mean estimation algorithms also

naturally lead to algorithms for clustering well-separated mixture models (even in the presence of a

small fraction of corrupted samples) — a reduction we formalize in this work.

The first polynomial-time algorithm for list-decodable mean estimation, when F is the family of

bounded-covariance distributions, was by [118]. The [118] algorithm was based on black-box calls to

semidefinite program solvers and had a large polynomial runtime. Since then, a sequence of works

[179, 136] (as well as developments contained in this thesis) have obtained substantially improved

runtimes for this problem, while retaining the (near-optimal) statistical guarantees of [118]. In

particular, in Sections G.2, G.3, and G.4 we develop an algorithm which runs in time Õ(ndα) and

achieves near-optimal error (within a polylogarithmic factor).

Interestingly, as in the case of clustering mixture models, the Ω̃(ndα) runtime dependence of

the algorithm of Sections G.2, G.3, and G.4 is also due to running a k-PCA subroutine — for

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 326

k = Ω(1
α) — to reduce the problem to a k-dimensional subspace. In more detail, the algorithm of

Sections G.2, G.3, and G.4 can be viewed as a reduction from list-decodable mean estimation to

polylogarithmically many calls to k-PCA (for carefully chosen matrices). Thus, the cost of k-PCA

appears as a runtime barrier in state-of-the-art algorithms for list-decodable mean estimation as

well. In regimes where α is small, the Ω̃(ndα) runtime is significantly sub-optimal in the input size.

This leaves open whether the extraneous linear dependence on α−1 is improvable, and brings us to

our second main question.

Question 2. Can we perform list-decodable mean estimation with near-optimal statistical guarantees

in (almost)-linear time?

In this chapter, we similarly resolve Question 2 for the class of bounded-covariance distributions.

8.2.1 Our results

We answer both Question 1 and Question 2 in the affirmative, up to subpolynomial factors. Perhaps

surprisingly, to resolve the longstanding open problem of clustering mixture models in almost-linear

time, we develop an almost-linear time algorithm for the (much more general) problem of list-

decodable mean estimation. To then solve the clustering problem, we develop a fast post-processing

technique that efficiently reduces the clustering task to list-decodable mean estimation. In light of

this development, we begin by presenting our list-decodable estimation result.

Theorem 49 (informal, see Theorem 51). For any fixed constant ε0 > 0, there is an algorithm

FastMultifilter with the following guarantee. Let dist be a distribution over Rd with unknown mean

µ∗ and unknown covariance Σ with ‖Σ‖op ≤ σ2, and let α ∈ (0, 1). Given α and a multiset of

n = Ω(dα) points on Rd such that an α-fraction are i.i.d. draws from dist, FastMultifilter runs in

time O(n1+ε0d) and outputs a list L of O(α−1) hypotheses so that with high probability we have

min
µ̂∈L
‖µ̂− µ∗‖2 = O

(
σ logα−1

√
α

)
.

Notably, in the setting of Theorem 49, a sample complexity of Ω(dα), error of Ω(σα−
1
2), and list size

Ω(α−1) are all information-theoretically necessary [186]. Hence, up to a log(α−1) factor in the error,

Theorem 49 achieves optimal statistical guarantees for this problem in almost-linear time.

Leveraging Theorem 49, and combining it with a new almost-linear time post-processing proce-

dure of the resulting list, we achieve our almost-linear runtime for clustering well-separated mixtures

under only a second moment bound assumption — even in the presence of a small fraction of outliers.

In more detail, our algorithm can tolerate a fraction of outliers proportional to the relative size of

the smallest true cluster. For brevity, in this introduction, we will state the natural special case

of our clustering result for uniform bounded-covariance mixtures without outliers. We also achieve

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 327

similar (indeed, slightly stronger) guarantees when the mixture components are sub-Gaussian or

have bounded fourth moments.

Theorem 50 (informal, see Corollaries 33, 35, 36). For any fixed constant ε0 > 0, there is an

algorithm with the following guarantee. Given a multiset of n = Ω(dk) i.i.d. samples from a uniform

mixture model M =
∑
i∈[k]

1
k disti, where each component disti has unknown mean µi, unknown

covariance matrix Σi with ‖Σi‖op ≤ σ2, and mini,i′∈[k],i6=i′ ‖µi − µi′‖2 = Ω̃(
√
k)σ, the algorithm

runs in time O(n1+ε0 max(k, d)), and with high probability correctly clusters 99% of the points.

Some remarks are in order. First, we note that pairwise mean separation of Ω(
√
k σ) is information-

theoretically necessary for accurate clustering to be possible for bounded covariance components.

The algorithm establishing Theorem 50 nearly achieves the optimal separation. Secondly, and cru-

cially, our clustering algorithm runs in almost-linear time. Finally, as previously alluded to, our

clustering method is robust to outliers, and can handle mixtures with arbitrary weights, with guar-

antees depending on the smallest weight (see Corollary 36 for a precise statement).

It is worth commenting on the max(k, d) term appearing in the running time of Theorem 50.

Our algorithm runs in almost-linear time as long as k ≤ d. For the extreme regime where k � d,

our algorithm has running time O(n1+ε0k). In this parameter regime, it is plausible that Ω(nk) is a

runtime bottleneck for the following reason: even if we are given (exactly) the centers µi, i ∈ [k] for

free, Ω(nk) time seems to be required to simply assign each of the n points to its closest center.

Remark 8 (Prior work). The prior works [7, 45] obtained polynomial-time clustering algorithms

with similar statistical guarantees as Theorem 50, under the (much stronger) assumption that each

component distribution disti has sub-Gaussian tails. For bounded covariance distributions, these

algorithms require the stronger mean separation of Ω(kσ) [44]. On the other hand, the clustering

methods obtained in [118] (as an application of their list-decodable mean estimator) (i) require

sub-Gaussian components, and (ii) partition the dataset into C · k for some constant C > 2 — as

opposed to k — clusters. In summary, prior work has not explicitly obtained even a polynomial-time

clustering algorithm in the bounded covariance setting with separation o(k)σ.

8.2.2 Technical overview

Here, we describe the techniques developed for our problem at a high level, and how they circumvent

several conceptual runtime barriers encountered by prior approaches to list-decodable mean estima-

tion and clustering mixture models. Our full proofs are quite technically challenging, and involve

several additional steps which we omit here for clarity of exposition. Throughout this section, we

assume that the “scale” of the problem is σ = 1 for simplicity (e.g. distribution covariances are

bounded by I).

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 328

Prior approaches and their limitations

In this section, we briefly describe two recent fast algorithms for list-decodable mean estimation,

developed by [179] and Sections G.2, G.3, and G.4,3 focusing on tools used in their analyses and

bottlenecks in extending their techniques to obtain (almost)-linear runtimes. For brevity, we will cite

the algorithm of Sections G.2, G.3, and G.4 as [180] in this discussion, where it was first presented.

Multifiltering. Filtering is one of the most popular techniques for robust estimation [175, 177,

360, 492, 182]. In the minority-outlier setting, filtering is based on the idea of designing certificates

of corruption, which either ensure that a current estimate suffices, or can be used to identify a set of

points to filter on containing more outliers (corrupted points) than inliers (clean points). Iterating

this process terminates in polynomial time, because (roughly speaking) it eventually removes all

outliers.

In the context of list-decodable mean estimation, standard filtering guarantees are insufficient,

because we cannot afford to remove as many inliers as outliers. To overcome this difficulty, [186]

introduced the “multifilter” in the context of Gaussian mean estimation, which was extended to

bounded covariance distributions in [179]. At a high level, a multifilter iterates through a tree of

candidate subsets, and looks for ways to either “cluster” a subset or “split” it into multiple (over-

lapping) subsets.4 To ensure an efficient runtime, a multifilter maintains a potential guaranteeing

that the tree size does not blow up (i.e. there are never too many candidate subsets), and carefully

chooses to split or cluster based on subset sample statistics, thus ensuring that some tree node al-

ways retains a large fraction of inliers. Previous multifilters chose to split or cluster subsets based on

one-dimensional projections along top eigenvectors of sample covariances, which can be dominated

by a single outlier. In the worst case, this leads to an iteration count scaling polynomially with the

dimension.

Filtering via matrix multiplicative weights. The approach taken by the fastest algorithms for mean

estimation in both majority-inlier [194] and majority-outlier [180] settings is heavily motivated by

filtering. In the majority-inlier case, every iteration of the filter is nearly-linear time, so the only

bottleneck to an overall fast runtime is the number of iterations. However, simple hard instances show

that only projecting onto the worst directions of empirical covariances may lead to an Ω(d) runtime

overhead. The main idea of [194] was to choose scores capturing multiple bad directions at a time,

preventing this worst-case behavior. These scores were based on quadratic forms with certain trace-

one matrices derived from the matrix multiplicative weights (MMW) regret minimization framework

from semidefinite programming [534, 34]. By using MMW regret bounds, [194] designs a filter that

efficiently decreases the empirical covariance operator norm, which is used as a potential to yield

convergence in polylogarithmically many iterations.

In the majority-outlier setting, the story is somewhat murkier. To overcome complications of

3We focus on [180] instead of [136] in this technical exposition, as they both apply Ky Fan semidefinite programming
machinery to obtain fast runtimes, but the [180] approach is more relevant to us.

4In [179], these subsets were replaced by weight functions, but the intuition is very similar in both cases.

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 329

prior list-decodable mean estimation algorithms (e.g. the multifilter), which interleaved “filtering”

and “clustering” steps, [180] designed a “k-dimensional filter”, for k = Θ(1
α), that they called SIFT,

decoupling the two goals. Specifically, SIFT uses scores based on k-dimensional projections to hone

in on a subspace outside of which the empirical mean is accurate. It then efficiently clusters in just

this subspace; combined with appropriate Ky Fan norm generalizations of MMW, the number of

iterations is then improved to polylogarithmic. However, this approach of decoupling filtering and

clustering appears to inherently use k-dimensional PCA as a subroutine, for k = Θ(1
α), even just

to learn an “important” subspace a single time. Hence, this approach encounters a similar runtime

bottleneck as prior algorithms for clustering mixture models [520, 7].

Challenges in combining techniques. As mentioned, the approach of [180] seems to inherently

run into a runtime barrier at Ω(ndα) due to its reliance on k-PCA. This suggests that to overcome

this barrier, we need to develop a new algorithm which both (1) does not disentangle filtering and

clustering steps, and (2) relies on univariate projections. It is natural to then try to merge the

multifilter with a MMW-based potential to ensure rapid convergence.

Unfortunately, there are several obstacles towards combining these frameworks. A primary com-

plication is that the regret minimization approach of [194] requires multiple consecutive rounds

before it can ensure an appropriate potential decreases. This is because of its reliance on MMW, a

“mirror descent” algorithm which typically does not provide monotone guarantees on iterates (and

hence requires multiple iterations to bound regret) [161]. It is unclear how to make these arguments

work within the multifilter framework, which interleaves two types of steps (splitting and clustering)

that may have incompatible guarantees across iterations.

Finally, even if it were possible to combine the multifilter with a MMW-based potential analysis,

there are still various difficulties towards obtaining an almost-linear runtime coming from the size of

our hypothesis tree. For example, making the decision to split or cluster at a node typically requires

Ω(nd) time (e.g. to compute scores), which we cannot afford to perform more than subpolynomially

often. This is problematic because our multifilter tree certainly contains Ω(1
α) nodes: in the uniform

mixture model case, our tree must contain hypotheses corresponding to every true cluster.

Our techniques

One-shot potential framework. In order to deal with the first of the two obstacles discussed (the non-

monotonicity of MMW regret guarantees), our starting point is a framework for fast robust mean

estimation (cf. Section 8.3.3), essentially matching the guarantees of [194] with a more transparent

analysis. Crucially, our new framework comes with a “one-shot” potential function that shows

monotone progress at every iteration, making it more amenable to combination with a multifilter

(which needs to argue how potentials evolve between different types of steps).

In more detail, our new fast algorithm in the majority-inlier setting guarantees monotone progress

on the “Schatten-norm” potential Tr(Y2
t), where Yt := M

log(d)
t and Mt =

∑
i∈T [wt]i(Xi−µt)(Xi−

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 330

µt)
> is the weighted empirical covariance with respect to the current weight vector wt. We then use

Yt to sample carefully chosen Gaussian random vectors to locate outliers in multiple univariate di-

rections. By using the guarantees of Johnson-Lindenstrauss projections, we can use these univariate

filters to ensure the next (weighted) empirical covariance matrix satisfies

〈
Y2
t ,Mt+1

〉
≤ O(1)Tr(Y2

t) . (8.1)

Combining (8.1) with a fact from [289] shows that our potential decays geometrically, resulting in

rapid convergence. Fortunately, we can use the same potential in the multifilter context, as long

as we guarantee that (8.1) holds for every child of a node (whether a split or cluster step is used).

In particular, applying (8.1) repeatedly for any path in the multifilter tree implies that the depth

is polylog(d). It remains to bound the width of the tree (the computational cost per layer), while

maintaining the invariant that at least one node on every level preserves enough inliers.

Warmup: fast Gaussian multifilter via indicator weights. Recall that our other obstacle towards

an almost-linear runtime is that each of the Ω(α−1) nodes of our multifilter tree requires Ω(nd) time

to decide on a multifiltering step. Our strategy is to reduce the total number of nodes across each

layer of the tree, so that the total cost of multifiltering on all of them is roughly nd. We achieve this

goal by ensuring that our multifilter always maintains nodes which specify subsets of our original

data (i.e. 0-1 weights rather than soft weights ∈ [0, 1]). Hence, each layer of our new multifilter trades

off the number of subsets with the cost of multifiltering on each subset. Considering the two extreme

layers is illustrative of this tradeoff: at the root, our algorithm performs a single one-dimensional

projection on the entire dataset; at the leaves, it performs O(α−1) one-dimensional projections, each

on a subset consisting of roughly an α-fraction of the original dataset.

As a warmup, we first show how to achieve this in the case where the ground-truth, dist, is

a bounded-covariance Gaussian (see Section G.5), so we can exploit strong concentration bounds.

In particular, we know that in any linear projection almost all of the inliers will lie in an interval

of logarithmic length. If almost all of our sample points in a subset are clustered within such an

interval, we can explicitly remove all samples outside of it. On the other hand, if our samples are

spread out, we can split them into two (unweighted) subsets with sufficient overlap to ensure that

at least one of the children subsets will contain almost all the inliers, as long as the parent did. We

can in fact apply such a partitioning strategy iteratively along each univariate projection, until each

remaining subset is contained in a short interval; this suffices to imply (8.1).

From Gaussians to bounded-covariance distributions. Substantially more technical care is re-

quired in the bounded-covariance setting to achieve an almost-linear runtime without sacrificing the

error rate. Notably, we will no longer be able to guarantee that the subsets lie in short intervals,

due to weaker concentration properties. This also means that we cannot deterministically remove

points, making it more challenging to ensure the weight functions we keep are indicators.

We overcome these challenges in Section 8.4 through several new technical developments. We

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 331

first weaken the outcome guarantee of our recursive partitioning strategy, from ensuring each cluster

lies in a short interval, to requiring bounded variance, which we show suffices to advance on the

potential (8.1). Furthermore, we use a randomized dropout strategy in place of the “clustering”

step of the multifilter, and design fast quantile checks to ensure the “split” step can be conducted in

nearly-constant time. By carefully combining these subroutines, we can indeed ensure every child of

nodes in a layer satisfies (8.1), and that the total computational cost of splitting or clustering on the

entire layer is almost-linear. With our earlier depth bound, this yields our full runtime guarantee.

Reducing clustering to list-decodable learning. In Section 8.5, we demonstrate that several mix-

ture model clustering tasks enjoy benefits from the speedups afforded by our list-decodable learn-

ing methods. In the following, assume we have a list L of size O(α−1) and L ⊇ {µ̂i}i∈[k] with

‖µ̂i − µi‖2 = Õ(
√
α−1) for all i ∈ [k], where µi is the mean of the mixture component disti.

For sub-Gaussian components, we build on a clustering algorithm of [186] and improve it to run

in nearly-linear time via randomized distance comparisons. The main idea of the [186] algorithm

is to exploit concentration, which implies that with high probability, all points drawn from disti

have a closest hypothesis in L at distance Õ(
√
α−1) from µi. By rounding every sample to its

nearest hypothesis, and assuming separation Ω̃(
√
α−1) between component means, we can perform

an efficient equivalence class partitioning which clusters the data. We observe that this framework is

tolerant to a small amount of poorly-behaved points or outliers and generalizes to cluster components

with bounded fourth moments.

For our most general application of clustering mixtures under only bounded component covari-

ances, as stated in Theorem 50, the same framework does not apply as a constant fraction of all

points may be misbehaved due to weak concentration. To address this, we develop a new post-

processing technique, relying on the following observation: letting P be the projection onto the

O(α−1)-dimensional subspace spanned by L, any sample hit by P will lie within distance O(
√
α−1)

of its corresponding cluster mean in the low-dimensional subspace with constant probability. We

use this observation to drop hypotheses which are too far away from the true means, and then an

appropriate equivalence relation suffices for clustering. The runtime bottleneck of this strategy is

the computation and application of P to our dataset, which can be quite expensive. We show that

by instead measuring distances in a O(log d)-dimensional subspace formed by random projections

within P, and clustering based on these estimates, we obtain similar clustering performance by

exploiting guarantees of Johnson-Lindenstrauss transforms.

8.3 Preliminaries: clustering mixture models

In Section 8.3.1, we define the notation used throughout the sections relevant to clustering mixture

models. Next, we recall some technical tools (primarily from prior work) which we draw upon

in Section 8.3.2. We conclude with a sketch of our potential function approach to filtering in

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 332

Section 8.3.3 by demonstrating how it works for robust mean estimation in the minority-outlier

regime, giving an alternative approach to obtaining the runtimes of [194]. This new approach

bypasses an explicit matrix multiplicative weights argument in favor of a one-step potential. We

ultimately generalize this technique to the list-decodable setting by interlacing it with clustering

steps, inspired by the multifilter algorithm of [186, 179].

8.3.1 Notation

General notation. For mean µ ∈ Rd and positive semidefinite covariance matrix Σ ∈ Rd×d, we let

N (µ,Σ) be the standard multivariate Gaussian. For d ∈ N we let [d] := {j | j ∈ N, 1 ≤ j ≤ d}. We

refer to the `p norm of a vector argument by ‖·‖p, and overload this to mean the Schatten-p norm

of a symmetric matrix argument. The all-ones vector (when the dimension is clear from context) is

denoted 1. The (solid) probability simplex is denoted ∆n := {x ∈ Rn≥0, ‖x‖1 ≤ 1}. We refer to the

ith coordinate of a vector v by [v]i.

Matrices. Matrices will be in boldface throughout, and when the dimension is clear from context

we let 0 and I be the zero and identity matrices. The set of d× d symmetric matrices is Sd and the

d× d positive semidefinite cone is Sd≥0. We use the Loewner partial ordering � on Sd≥0. The largest

eigenvalue, smallest eigenvalue, and trace of a matrix are given by λmax(·), λmin(·),Tr(·) respectively.

We use ‖·‖op to mean the (`2-`2) operator norm, which is the largest eigenvalue for arguments in

Sd≥0. The inner product on A,B ∈ Sd is given by 〈A,B〉 := Tr(AB).

Distributions. We often associate a weight vector w ∈ ∆n with a set of points T ⊂ Rd with

|T | = n. Typically we denote this set by {Xi}i∈T , where we overload T to mean the indices as well

as the points. For any T ′ ⊆ T we let wT ′ ∈ ∆n be the vector which agrees with w on T ′ and is 0

elsewhere. The empirical mean and covariance matrix on any subset are denoted

µw(T ′) :=
∑
i∈T ′

wi
‖w′T ‖1

Xi, Covw(T ′) :=
∑
i∈T ′

wi
‖w′T ‖1

(Xi − µw(T ′)) (Xi − µw(T ′))
>
.

For convenience, we also define the unnormalized convariance matrix by

C̃ovw(T ′) :=
∑
i∈T ′

wi (Xi − µw(T ′)) (Xi − µw(T ′))
>
.

We say distribution dist with EX∼dist[X] = µ∗ has sub-Gaussian parameter σ in all directions if

EX∼dist[exp(s 〈X − µ∗, v〉)] ≤ exp(σ
2s2

2) for all unit vectors v. In Section 8.5 we use concentration

properties of sub-Gaussian random variables, which are well-known and can be found e.g. in the

reference [456].

List-decodable mean estimation. We state the model of list-decodable mean estimation we use

throughout; the setting we consider is standard from the literature. Fix a parameter 0 < α < 1
2 .

Then a set T := {Xi}i∈T ⊂ Rd of size |T | = n = Θ(dα−1) is given, containing a subset S ⊂ T such

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 333

that the following assumption holds.

Assumption 6. There is a subset S ⊆ T ⊂ Rd of size αn = Θ(d), and a vector µ∗ ∈ Rd, such that

1

|S|
∑
i∈S

(Xi − µ∗)(Xi − µ∗)> � I.

We remark that this assumption is motivated by the statistical model where there is an underlying

distribution dist supported on Rd with mean µ∗ and covariance bounded by I, and the dataset T

is formed by αn independent draws from dist combined with (1 − α)n arbitrary points. Up to

constants in the “good” fraction α and the covariance bound, Proposition B.1 of [118] guarantees

Assumption 6 holds with inverse-exponential failure probability. We also note that Proposition

5.4(ii) of [186] shows that the information-theoretic optimal guarantee for list-decodable estimation

in the setting of Assumption 13 is to return a list L of candidate means, where |L| = Θ(α−1), and

min
µ∈L
‖µ− µ∗‖2 = Θ

(
1√
α

)
(8.2)

This setup handles the more general case where the upper bound matrix in Assumption 6 is σ2I

for some positive parameter σ by rescaling the space appropriately, and the error guarantee (8.2)

becomes worse by a factor of σ. Because of this, we will set σ = 1 throughout for simplicity.

Finally, throughout Sections G.5 and 8.4 we will make the explicit assumption that d ≥ α−1;

for the regime where this is not the case, the algorithm in Section G.1 obtains optimal error rates

in time Õ(α−2) (and in fact, if we tolerate a list size of O(α−1 log 1
δ) where δ ∈ (0, 1) is the failure

probability of the algorithm, obtains optimal error in time Õ(α−1)).

8.3.2 Technical tools

We will use a number of technical tools throughout this work which we list here for convenience.

The first few are standard facts about covariance matrices which follow directly from computation.

Fact 14 (Convexity of covariance). For any w ∈ ∆n associated with T ⊂ Rd,

µw(T)µw(T)> �
∑
i∈T

wi
‖w‖1

XiX
>
i .

This implies that for any v ∈ Rd,

(µw(T)− v)(µw(T)− v)> �
∑
i∈T

wi
‖w‖1

(Xi − v)(Xi − v)>.

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 334

Fact 15 (Effect of mean shift). For any w ∈ ∆n associated with T ⊂ Rd, and any v ∈ Rd,

∑
i∈T

wi
‖w‖1

(Xi − v)(Xi − v)> = Covw(T) + (µw(T)− v)(µw(T)− v)> � Covw(T).

Fact 16 (Alternate covariance characterization). For any w ∈ ∆n associated with T ⊂ Rd,

1

2 ‖w‖21

∑
i,j∈T

wiwj(Xi −Xj)(Xi −Xj)
>

 = Covw(T).

Next, we need the notion of safe weight removal in the list-decodable setting, adapted from

Section G.2. The idea behind safe weight removal is that repeatedly performing a downweighting

operation with respect to scores satisfying a certain condition results in weights which preserve some

invariant, which we call saturation. We define our notions of safety and saturation, and state a key

technical lemma which lets us reason about when saturation is preserved. In the following discussion

assume we are in the list-decodable mean estimation setting we defined in Section 8.3.1.

Definition 28 (γ-saturated weights). We call weights w ∈ ∆n γ-saturated, for some γ > 1, if

w ≤ 1
n1 entrywise, and

‖wS‖1 ≥ α ‖w‖
1
γ

1 .

Definition 29 (γ-safe scores). We call scores {si}i∈T ∈ Rn≥0 γ-safe with respect to w if w ∈ ∆n

and ∑
i∈S

wi
‖wS‖1

si ≤
1

γ

∑
i∈T

wi
‖wT ‖1

si.

Roughly speaking, we require this alternative notion of safe scores in the majority-outlier regime

because there are less good points we can afford to throw away. The key property connecting these

two definitions is the following.

Lemma 112. Let w(0) ∈ ∆n be γ-saturated, and consider any algorithm of the form:

1. For 0 ≤ t < N :

(a) Let {s(t)
i }i∈T be γ-safe with respect to w(t).

(b) Update for all i ∈ T :

w
(t+1)
i ←

(
1− s

(t)
i

s
(t)
max

)
w

(t)
i , where s(t)

max := max
i∈T |w(t)

i 6=0

s
(t)
i .

Then, w(N) is also γ-saturated.

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 335

Proof. It suffices to prove this in the case N = 1 and then use induction. Define

δS :=
∑
i∈S

w
(0)
i − w

(1)
i∥∥∥w(0)

S

∥∥∥
1

, δT :=
∑
i∈T

w
(0)
i − w

(1)
i∥∥w(0)
∥∥

1

.

By using the assumption that s(0) is γ-safe, we conclude

δS =
1

s
(0)
max

∑
i∈S

w
(0)
i∥∥∥w(0)
S

∥∥∥
1

s
(0)
i ≤

1

γ
· 1

s
(0)
max

∑
i∈T

w
(0)
i∥∥w(0)
∥∥

1

s
(0)
i =

1

γ
δT .

Now, using γ-saturation of w(0) and 1− γ−1δ ≥ (1− δ)γ−1

for all δ ∈ [0, 1] and γ > 1,

∥∥∥w(1)
S

∥∥∥
1

= (1− δS)
∥∥∥w(0)

S

∥∥∥
1
≥ (1− δT)

γ−1
∥∥∥w(0)

S

∥∥∥
1
≥ α

(
(1− δT)

∥∥∥w(0)
∥∥∥

1

)γ−1

= α
∥∥∥w(1)

∥∥∥γ−1

1
.

Finally, we include a technical lemma proved in [136].

Lemma 113 (Restatement of Lemma 296). Let w ∈ ∆n have w ≤ 1
n1 entrywise, and ‖w‖1 ≥ α2.

Then,

‖µw(T)− µ∗‖2 ≤

√
2 ‖Covw(T)‖op

‖w‖1
‖wS‖1

+
2

α
.

In light of the lower bound of [186], Lemma 113 shows to learn the mean near-optimally in the

list-decodable setting, it suffices to ensure ‖wS‖1 = Ω(α) (i.e. we retain a constant fraction of the

“good” weight) and ‖Covw(T)‖op = Õ(1) (i.e. the weighted covariance of the dataset is bounded).

8.3.3 Potential function approach to fast filtering

In this section, we outline an example of a potential function approach to fast filtering, an alternative

to filtering based on matrix multiplicative weights (MMW) used in recent literature [194, 359].5 This

replacement is very useful in the list-decodable setting, as it greatly simplifies the requirements of

our fast multifilter which interlaces clustering and filtering steps.

The example problem we consider in this expository section is the minority-outlier regime for

robust mean estimation, when the “ground truth” distribution has covariance norm bounded by I.

We briefly describe the approach of [194] for this problem, and explain how it can be replaced with

our new potential function framework. Throughout this section, fix some 0 < ε < 1
2 and assume

that amongst the dataset T ⊂ Rd of n points, there is a majority subset S ⊂ T of size |S| = (1− ε)n
with bounded empirical covariance: Cov 1

n1(S) � I.

5MMW guarantees are also implicitly used in approaches based on packing SDPs, see e.g. [131, 132, 136]. However,
[194, 359] use MMW guarantees in a non-black-box way to design filters.

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 336

The main algorithmic step in [194] is an efficient subroutine for halving the operator norm of

the empirical covariance while filtering more weight from T \ S than from S. It is well-known in

the literature that whenever the operator norm is O(1), the empirical mean is within O(
√
ε) in `2

norm from the ground truth mean (for an example of this derivation, see Lemma 3.2 of [194]). Thus,

the key technical challenge is to provide a nearly-linear time implementation of this subroutine.

This was accomplished in [194] using MMW-based regret guarantees, with “gain matrices” given by

covariances and iterative filtering based on MMW responses. The result was a procedure which either

terminates with a good mean estimate, or halves the covariance operator norm after O(log d) rounds

of filtering. The latter is an artifact of many regret minimization techniques, which only guarantee

progress after multiple rounds. It is natural to ask instead whether an alternative one-shot potential

decrease guarantee exists; we now describe such a guarantee.

One-shot potential decrease. Our algorithm will proceed in a number of iterations, where we

modify a weight vector in ∆n associated with T . We initialize w(0) ← 1
n1. In iteration t, we will

downweight w(t) ∈ ∆n to obtain a new vector w(t+1) as follows. Define the matrices

Mt := C̃ovw(t) (T) =
∑
i∈T

w
(t)
i (Xi − µw(t)(T))(Xi − µw(t)(T))>, Yt := Mlog d

t .

The potential we will track is Φt := Tr(Y2
t). In order to analyze Φt, we require two helper facts.

Fact 17 (Lemma 7, [289]). Let A � B be matrices in Sd≥0, and let p ∈ N. Then

Tr(Ap−1B) ≥ Tr(Bp).

Fact 18. For any γ ≥ 0 and A ∈ Sd≥0,

γTr(A2 log d) ≤ Tr(A2 log d+1) + dγ2 log d+1.

Proof. This is immediate since each of the d eigenvalues of A2 log d is either at least γ2 log d or not,

and both of these cases are accounted for on the right hand side of the conclusion.

We now give the potential analysis. Our main goal will be ensuring that

〈
Y2
t ,Mt+1

〉
≤ 20Tr(Y2

t). (8.3)

The specific constant in the above equation is not particularly important, but is used for illustration.

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 337

We now show how (8.3) implies a rapid potential decrease. Observe that

Φt+1 = Tr
(
M2 log d

t+1

)
≤ 1

40
Tr
(
M2 log d+1

t+1

)
+ d(40)2 log d

≤ 1

40
Tr
(
M2 log d

t Mt+1

)
+ d(40)2 log d

≤ 1

2
Tr(Y2

t) + d(40)2 log d =
1

2
Φt + d(40)2 log d.

(8.4)

The first line used Fact 18 with γ = 40, the second used Fact 17 with A = Mt and B = Mt+1 (noting

that if w(t+1) ≤ w(t) entrywise, the unnormalized covariance matrices respect the Loewner order by

Fact 15), and the third line used the assumption (8.3). This implies that we decrease Φt by a constant

factor in every iteration, until it is roughly d(40)2 log d, at which point the definition Φt = Tr(M2 log d
t)

implies that ‖Mt‖op is bounded by a constant. By using a näıve filtering preprocessing step, we can

guarantee that Φ0 = dO(log d), and hence the process will terminate in O(log2 d) rounds.

Meeting the filter criterion (8.3). To complete the outline of this algorithm, we need to explain

how to satisfy (8.3) via downweighting, while ensuring that we remove more weight from T \S than

S. To do so, we define scores

s
(t)
i := (Xi − µw(t)(T))>M2 log d

t (Xi − µw(t)(T)) for all i ∈ T.

We remark that (randomized) constant-factor approximations can be computed to all s
(t)
i via

Johnson-Lindenstrauss projections in Õ(nd) time, but for this discussion we assume we exactly

know all scores. Then, by linearity of trace the condition (8.3) is implied by

∑
i∈T

w
(t+1)
i s

(t)
i ≤ 20Tr(Y2

t), (8.5)

since Fact 15 implies that
〈
Y2
t ,Mt+1

〉
≤
∑
i∈T w

(t+1)
i s

(t)
i . Finally, we note that whenever (8.5) does

not hold, it must be primarily due to the effect of the outliers T \ S, because the covariance of S is

bounded. Hence, we can simply set

w
(t+1)
i =

(
1− s

(t)
i

s
(t)
max

)K
w

(t)
i ,

where K is the smallest natural number which passes the criterion (8.5). For any smaller K, it can

be shown that downweighting “one more time” preserves the invariant that more outlier mass is

removed, precisely because (8.5) has not been met. Finally, binary searching to find the smallest

value of K meeting (8.3) yields a complete algorithm running in Õ(nd) time (for further details on

the implementation of this binary search on K, see Theorem 2.4 of [194]).

Generalizing to the majority-outlier regime. Our algorithms for the list-decodable setting marry

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 338

this potential function argument with a multifilter, which produces multiple candidate filtered weight

vectors on an input weight vector. We will instead show that for the tree of weight vectors, where

a node has children given by the candidates produced from the multifilter, at least one child both

halves the potential and performs only γ-safe weight removal, for some γ. After polylogarithmic

layers, we will return all empirical means of leaf nodes as our list of estimates. The child on the

“safe branch” will then have a bounded potential and a γ-saturated weight vector, which suffices to

guarantee an accurate mean estimate.

There are a number of additional complications which arise in this extension, which we briefly

mention here as a preface to the following Sections G.5 and 8.4. In order to process every layer of

the multifilter tree in almost-linear time, we need to ensure that the number of datapoints across

all the nodes, including repetitions, has not grown by more than a constant factor. The multifilter

of [179] gives a variant of this guarantee by tracking the sums of the squared `1 norms of weights

associated with different nodes as a nonincreasing potential, i.e.

∑
i∈S

∥∥∥w(i)
∥∥∥2

1
,

where S is the set of nodes and each w(i) is a current candidate weight function in S. This is not

sufficiently strong of a guarantee in our setting, since even points with very small weights need to be

factored into calculations and thus affect runtime. We modify this approach in two ways. First, we

replace the downweighting step with a randomly subsampled filter, which we show preserves various

safety conditions such as those in Lemma 112 with high probability. Next, we replace the squared

`1 potential with one involving 1 + β powers, for some β ∈ (0, 1), which we prove is compatible

with the multifilter. Overall, our filter tree contains polylogarithmically many layers, each of which

accounts for sets with total cardinality O(n1+O(β)), giving us our final runtime.

8.4 Fast bounded covariance multifilter

In this section, we give our algorithm for list-decodable mean estimation under only Assumption 13.

As before, we can assume without loss of generality that α ∈ [1/d, 1/ logC d], for some constant

C > 0. We begin by giving our main subroutine, Partition, in Section 8.4.1. The goal of Partition will

be to produce child subsets {c`}`∈[k] of a given input set p, which each satisfy the potential criterion

in (G.14), reproduced here: 〈
Y2
p,Mc`

〉
≤ R2Tr

(
Y2
p

)
. (8.6)

Recall that in Section G.5, the way we produced children satisfying condition (8.6) was by ensuring

that along logarithmically many random directions, each child c` lied entirely in short intervals. We

will satisfy this guarantee in this section by more directly working with the definition of (8.6), which

requires each child to have small variance along the random directions, a looser condition.

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 339

To bound the variance of the child subsets, in Section 8.4.2 we develop an algorithm, SplitOrCluster,

which is patterned off our earlier GaussianSplitOrCluster. It either certifies that the input set is al-

ready “close” to having bounded variance in an input direction, or identifies a split point which

produces two subsets which are closer to having this property, while maintaining at least one sub-

set retains most points in S. In the first case (the “cluster” case), we develop a postprocessing

procedure Fixing in Section 8.4.4 which randomly filters points according to safe outlier scores (see

Definition 29) to make the remaining cluster have truly bounded variance. In the second case (the

“split” case), we develop a fast threshold checking procedure SplitOrTailBound in Section 8.4.3 which

identifies a valid split in polylogarithmic time, whenever one exists; here, we note the key difficulty

is that we can no longer use a fixed radius for splits, because Gaussian concentration does not hold.

We discuss runtimes of all of these algorithms in Section 8.4.5, and in particular give a runtime

bound on Partition. Finally, we use Partition to develop our full algorithm, FastMultifilter, which we

analyze in Section 8.4.6 through a potential argument similar to our analysis of FastGaussianMultifilter.

A post-processing step used in FastMultifilter is analyzed in Section 8.4.7.

8.4.1 Reducing Partition to SplitOrCluster

The goal of this section is to develop Partition, the main subroutine of FastMultifilter. Partition has

very similar guarantees to the algorithm GaussianPartition developed in Section G.5.1. It takes as

input a “parent set” Tp ⊆ T and produces a number of “children subsets” {Tc`}`∈[k] such that every

child satisfies
〈
Y2
p,Mc`

〉
≤ R2Tr

(
Y2
p

)
, where we follow the definitions (G.13), reproduced here:

Mp := C̃ov 1
n1 (Tp) , Yp := Mlog d

p ,

Mc` := C̃ov 1
n1 (Tc`) , Yc` := Mlog d

c`
for all ` ∈ [k],

(8.7)

This will allow us to conduct a potential analysis to bound the depth of the multifilter tree in

Section 8.4.6. Moreover, we require two additional guarantees of Partition.

1. The first is the same as (G.12); namely, for some parameter β ∈ (0, 1], we have

∑
`∈[k]

|Tc` |
1+β ≤ |Tp|1+β

. (8.8)

This will help us bound the total work done in each layer of the multifilter tree.

2. The second is ensures at least one child preserves most points in S, assuming that the parent

Tp has this property. To this end, the tools of Section 8.3.2 will vastly simplify the language

of this section. In particular, we will ensure that for γ = O(log(1
α)), every filter step in this

entire section will be with respect to γ-safe weights in at least one branch. We then apply

Lemma 112 to conclude that some node at every level of the multifilter tree is γ-saturated.

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 340

For the remainder of Section 8.4, we will define

γ := 8 log

(
1

α

)
.

We demonstrate one important consequence of a set being γ-saturated.

Lemma 114. Suppose for a set T ′ ⊂ T , the weights w := 1
n1T ′ ∈ ∆n which place 1

n on coordinates

in T ′ and 0 otherwise are γ-saturated (cf. Definition 28). Then,

|T ′ ∩ S| ≥ αn

2
.

Proof. Recall that Definition 28 gives

‖w‖1 ≥ ‖wS‖1 ≥ α ‖w‖
1
γ

1 =⇒ ‖w‖1−
1
γ

1 ≥ α =⇒ ‖w‖1 ≥
3α

4
.

The first implication was by rearrangement, and the second used α
1

1+γ−1 ≥ α1+ 2
γ ≥ 3α

4 . Next,

‖wS‖1 ≥ α ‖w‖
1
γ

1 ≥ α
(

3α

4

) 1
γ

≥ α

2
.

The conclusion follows since ‖wS‖1 counts the elements of T ′ ∩ S, normalized by 1
n .

Lemmas 112 and 114 imply that as long as we can guarantee that at every filtering step, at least

one child was produced with respect to γ-safe scores, that child retains half the elements of S. We

are now ready to state the algorithm Partition, which heavily relies on a subroutine 1DPartition.

As in the Gaussian case, we develop an algorithm 1DPartition which in turn is based on a subrou-

tine SplitOrCluster, which we implement in Section 8.4.2. The algorithm 1DPartition takes an input

direction v and guarantees that along this direction, every child subset produced has small variance

(scaled by the length of v). 1DPartition is implemented by recursively calling SplitOrCluster, which

takes as input a set T ′′ and produces either one or two subsets, analogously to GaussianSplitOrCluster.

Lemma 115. The output of Partition satisfies the guarantees given in Line 2 of Algorithm 33,

assuming correctness of 1DPartition.

Proof. We will follow the proof of Lemma 307. First, to demonstrate that the subsets satisfy (8.8),

inducting on the guarantee (8.9) of 1DPartition suffices. Similarly, γ-saturation of some child follows

from inducting on the corresponding guarantee of 1DPartition.

Finally, using the guarantee (8.10) of 1DPartition, every Tc` ∈ SNdir
satisfies

〈
vjv
>
j , C̃ov 1

n1(Tc`)
〉
≤ 1

2
R2 ‖vj‖22 , for all j ∈ [Ndir].

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 341

Algorithm 33: Partition(Tp, α, δ, β,R)

1 Input: Tp ⊂ T , α ∈ (0, 1
2), δ ∈ (0, 1), β ∈ (0, 1], R ∈ R≥0 satisfying (for a sufficiently large

constant)

R = Ω

(
max

(
1

β
·

√
γ log

(
1

αβ

)
,

√
γ log

(
log d

δ

)))
.

;
2 Output: With failure probability ≤ δ: subsets {Tc`}`∈[k] of Tp, satisfying (8.8). Every child

satisfies (8.6) (using notation (8.7)). If w := 1
n1Tp is γ-saturated, then w′ := 1

n1Tc` is

γ-saturated for at least one child Tc` .;

3 Sample Ndir = Θ(log d
δ) vectors {uj}j∈[Ndir] ∈ Rd each with independent entries ±1.

Following notation (8.7), let vj ← Ypuj for all j ∈ [Ndir].;
4 S0 ← Tp;
5 for j ∈ [Ndir] do
6 Sj ← ∅;
7 for T ′ ∈ Sj−1 do
8 T ← 1DPartition(T ′, α, vj ,

δ
2Ndir

, β, R);

9 Sj ← Sj ∪ T ;

10 Return: SNdir
;

In other words, the variance is small along all directions {Ypuj = vj}j∈[Ndir]. We conclude

〈
Y2
p,Mcl

〉
≤ 1.4

2n |Tc` |Ndir

∑
i,i′∈Tcl

∑
j∈[Ndir]

〈Ypuj , Xi −Xi′〉2

=
1.4

Ndir

∑
j∈[Ndir]

〈
vjv
>
j , C̃ov 1

n1(Tc`)
〉

≤ 1.4

2Ndir

∑
j∈[Ndir]

R2 ‖vj‖22

=
1.4

2Ndir

∑
j∈[Ndir]

R2 ‖Ypuj‖22 ≤ R
2Tr

(
Y2
p

)
,

with probability at least 1 − δ; the first two lines and the last line follow the proof of Lemma 307,

and we used the variance guarantee of 1DPartition in the third line. We remark that we make sure

to take the number of directions Ndir to depend logarithmically on δ (as opposed to just d), so we

can apply the guarantees of [6] with probability 1− δ
2 on the first and last lines.

Next, we state a correctness guarantee for 1DPartition, assuming correctness of its main subrou-

tine, SplitOrCluster. The guarantees of SplitOrCluster are summarized in Line 2 of Algorithm 35.

The salient features are that it takes a set Tin and either produces one set satisfying (8.10) deter-

ministically, or two sets which each are strict subsets of Tin (and hence remove at least one point)

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 342

Algorithm 34: 1DPartition(T ′, α, v, δ, β,R)

1 Input: T ′ ⊂ T , α ∈ (0, 1
2), v ∈ Rd, δ ∈ (0, 1), β ∈ (0, 1], R ∈ R≥0 satisfying (for a

sufficiently large constant)

R = Ω

(
max

(
1

β
·

√
γ log

(
1

αβ

)
,

√
γ log

(
log d

δ

)))
.

;
2 Output: Subsets {T ′′` }`∈[k] of T ′, such that∑

`∈[k]

|T ′′` |
1+β ≤ |T ′|1+β . (8.9)

Every child T ′′` for ` ∈ [k] has〈
C̃ov 1

n1(T ′′`), vv>
〉
≤ 1

2
R2 ‖v‖22 . (8.10)

If w = 1
n1T ′ is γ-saturated, then w′ = 1

n1T ′′` is γ-saturated for at least one child T ′′` , with

failure probability ≤ δ.;
3 Sin ← T ′, Sout ← ∅;
4 while Sin 6= ∅ do
5 T ′′ ← the first element of Sin;
6 Sin ← Sin \ {T ′′};
7 if SplitOrCluster(T ′′, α, v, δ, β,R) returns one set T

(0)
out then

8 Sout ← Sout ∪
{
T

(0)
out

}
;

9 else

10 T
(1)
out, T

(2)
out ← SplitOrCluster(T ′′, α, v, δ, β,R);

11 Sin ← Sin ∪
{
T

(1)
out, T

(2)
out

}
;

12 Return: Sout;

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 343

deterministically, and (8.9) is always maintained. In the two set case, if 1
n1Tin is γ-saturated then so

is at least one output deterministically; in the one set case, the output is saturated with probability

at least 1− δ. We will use only these features to analyze 1DPartition in Lemma 116.

Lemma 116. The output of 1DPartition satisfies the guarantees given in Line 2 of Algorithm 34,

assuming correctness of SplitOrCluster.

Proof. Each run of Lines 4-13 results in either one set (which we call a “cluster step”) or two sets

(which we call a “split step”). We can view this process as a tree, where a leaf node corresponds

to the result of a cluster step, and every node on the leaf-to-node path corresponds to a split step.

Every time a split step occurs, it increases |Sin| + |Sout| by one, so there are at most (n′)1+β calls

to SplitOrCluster where |T ′| = n′, and thus the algorithm terminates in finite time.

Next, if T ′ is not saturated, then there is no failure probability, since the conditions (8.9) and

(8.10) deterministically succeed. Otherwise, from the root of this partition tree, consider the root-

to-leaf path which at each node corresponding to a split step takes any child which corresponds to

a saturated child (one always exists because split steps deterministically succeed). The only failure

probability comes from the success of the leaf-parent to leaf cluster step, which fails with probability

δ. We can ignore all other bad events, because we only need to ensure one child is saturated.

8.4.2 Reducing SplitOrCluster to SplitOrTailBound and Fixing

In this section, we state and analyze SplitOrCluster, the main subroutine of 1DPartition.

SplitOrCluster uses two subroutines, Fixing and SplitOrTailBound, which are respectively used to

handle the one child and two children cases. Roughly speaking, Fixing takes as input a set Tin which

“almost” has bounded variance in the direction v, and slightly filters extreme outliers in a way so that

the result has truly bounded variance. On the other hand, SplitOrTailBound is used at a candidate

threshold τ to either check that it induces sets T
(1)
out, T

(2)
out satisfying (8.12) or satisfies a certain tail

bound. By stitching together tail bounds at a small number of quantiles, SplitOrCluster guarantees

that at least one of these quantiles was a valid threshold, else we would attain a contradiction as

Line 6 of SplitOrCluster would have passed. We state guarantees of SplitOrTailBound and Fixing

as Lemmas 117 and 118, and prove them in Sections 8.4.3 and 8.4.4 respectively. We then use

Lemmas 117 and 118 to prove Lemma 119, which demonstrates correctness of SplitOrCluster.

Lemma 117. There is an algorithm, SplitOrTailBound (Algorithm 36), which takes as input Tin ⊆ T ,

v ∈ Rd, β ∈ (0, 1], R ∈ R≥0, and τ0 ∈ R, and returns in one of two cases we call the “split” case

and the “tail bound” case. In the split case, it returns (τ, r) such that the induced sets (8.11) satisfy

(8.12), and if 1
n1Tin is γ-saturated then one of the induced sets Tout has 1

n1Tout is γ-saturated.

Otherwise, for all t ∈ R define the upper and lower tail probabilities

ρ+(t) := Pr
i∼unifTin

[Yi ≥ t] , ρ−(t) := Pr
i∼unifTin

[Yi ≤ t] . (8.13)

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 344

Algorithm 35: SplitOrCluster(Tin, α, v, δ, β,R)

1 Input: Tin ⊆ T , α ∈ (0, 1
2), v ∈ Rd, δ ∈ (0, 1), β ∈ (0, 1], R ∈ R≥0 satisfying (for a

sufficiently large constant)

R = Ω

(
max

(
1

β
·

√
γ log

(
1

αβ

)
,

√
γ log

(
log d

δ

)))
.

;

2 Output: Either one subset T
(0)
out ⊂ Tin, or two subsets T

(1)
out, T

(2)
out ⊂ Tin. In the one subset

case, T
(0)
out has

〈
C̃ov 1

n1

(
T

(0)
out

)
, vv>

〉
≤ 1

2R
2 ‖v‖22. In the two subsets case, they take the

form, for some threshold value τ ∈ R and r ∈ R≥0

T
(1)
out := {Xi | 〈v,Xi〉 ≤ τ + r ‖v‖2}, T

(2)
out := {Xi | 〈v,Xi〉 ≥ τ − r ‖v‖2}, (8.11)

and satisfy ∣∣∣T (1)
out

∣∣∣1+β

+
∣∣∣T (2)

out

∣∣∣1+β

< |Tin|1+β
,

min

(
1− absT

(1)
out

absTin
, 1− absT

(2)
out

absTin

)
≥ 2γ

r2
.

(8.12)

In either case if 1
n1Tin is γ-saturated then 1

n1Tout is γ-saturated for at least one child Tout,
with failure probability ≤ δ only in the case one set is returned (deterministically
otherwise).;

3 Yi ← 〈v,Xi〉 for all i ∈ Tin;
4 τmed ← med ({Yi | i ∈ Tin}), where med returns the median;
5 I ← [τmed − c, τmed + c] is the smallest interval containing the 1− α

4 quantiles of
{Yi | i ∈ Tin} for c ∈ R≥0 and 2I ← [τmed − 2c, τmed + 2c];

6 if
〈

C̃ov 1
n1 (Tmid) , vv>

〉
≤ 1

8R
2 ‖v‖22 where Tmid := {Xi ∈ Tin | Yi ∈ 2I} then

7 Return: Fixing(Tin, α, v, δ, R);

8 else

9 Run both SplitOrTailBound
(
Tin, v, β, τmed ± 1

2k
·
√

2048‘
β2α ‖v‖2

)
for integers k with

0 ≤ k ≤ log2

(
2048

β2α

)
until one returns

(
T

(1)
out, T

(2)
out

)
satisfying (8.11), (8.12);

10 Return: T
(1)
out, T

(2)
out ;

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 345

Then, in the tail bound case SplitOrTailBound certifies

ρ+(τ0) ≤ 128γ

β2 |τ0 − τmed|2
‖v‖22 if τ0 ≥ τmed, and ρ−(τ0) ≤ 128γ

β2|τ0 − τmed|2
‖v‖22 if τ0 ≤ τmed.

(8.14)

Lemma 118. There is an algorithm, Fixing (Algorithm 38), which takes as input Tin ⊆ T , v ∈
Rd, and R ∈ R≥0 and produces Tout with the following guarantee with probability at least 1 − δ.

Define Tmid as in Line 5 of Algorithm 35. Then if 1
n1Tin is γ-saturated, so is 1

n1Tout , and if〈
C̃ov 1

n1(Tmid), vv>
〉
≤ 1

8R
2 ‖v‖22, then

〈
C̃ov 1

n1(Tout), vv
>
〉
≤ 1

2R
2 ‖v‖22.

Finally, we are ready to prove Lemma 119, the main export of this section.

Lemma 119. The output of SplitOrCluster satisfies the guarantees given in Line 2 of Algorithm 35.

Proof. If the check in Line 6 passes (the one subset case), correctness of SplitOrCluster follows

immediately from the guarantees of Fixing in Lemma 118. We now focus on the two subset case.

Assume throughout this proof that the {Yi}i∈Tmid
are ordered by distance to τmed, so |Y1−τmed| ≤

. . . ≤ |Ym− τmed|, where m := |Tmid|; we order the remaining elements i ∈ Tin \Tmid arbitrarily. We

also define τmed, Tmid, c, I, and 2I as in Lines 4-6 of SplitOrCluster. If Line 9 outputs a split for any

k, then by Lemma 117, (8.11), (8.12) are satisfied, and the saturation condition is met for one of the

children. It remains to show that some value of k will result in the split case of SplitOrTailBound.

We show this by contradiction; if all k resulted in SplitOrTailBound returning with a tail bound

guarantee, we prove Tmid would have passed Line 6. Assume for the remainder of the proof that

SplitOrTailBound failed to find a split for all k.

First, we bound the length of the interval 2I. Because SplitOrCluster failed to return a split for

k = 1, by combining the corresponding tail bounds (8.14),

Pr
i∼unifTin

[
|Yi − τmed| >

√
512

β2α
‖v‖2

]
≤ α

4
.

Thus, we conclude

2I ⊂ [τmed − C ‖v‖2 , τmed + C ‖v‖2] , for C :=

√
2048

β2α
.

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 346

We proceed to bound
〈

C̃ov 1
n1(Tmid), vv>

〉
to obtain our desired contradiction. Observe that

C̃ov 1
n1(Tmid) � Cov 1

n1(Tmid)

=
1

|Tmid|
∑
i∈Tmid

(
Xi − µ 1

n1 (Tmid)
)(

Xi − µ 1
n1 (Tmid)

)>
� 1

|Tmid|
∑
i∈Tmid

(
Xi − X̄

) (
Xi − X̄

)>
where

〈
v, X̄

〉
= τmed

=⇒
〈

C̃ov 1
n1(Tmid), vv>

〉
≤ 1

|Tmid|
∑
i∈Tmid

(Yi − τmed)
2
.

(8.15)

Here, we used the definitions of C̃ov, Cov in the first two lines, and Fact 15 in the third. The last

follows by definition of {Yi}i∈Tin
and τmed. Define the random variable Z to be the realization of

absYi − τmed for i a uniform draw from Tmid, let Zi := absYi − τmed, and let G(t) = Pr[Z ≥ t] be

the inverse cumulative density function of Z. Notice that directly expanding implies that (where we

let m := |Tmid|, Z0 := 0, and recall we argued Zm ≤ C ‖v‖2 earlier)

E[Z2] =
∑
i∈[m]

(Z2
i − Z2

i−1)G(Yi) =

∫ Zm

0

2tG(t)dt ≤
∫ C‖v‖2

0

2tG(t)dt.

Define now K(t) for each ‖v‖2 ≤ t ≤ C ‖v‖2 to be the smallest k such that t(k) := C
2k
‖v‖2 ≤ t, so

K(C ‖v‖2) = 0, K(t) = 1 for t ∈
[
C
2 ‖v‖2 , C ‖v‖2

)
, and so on. By construction, for all relevant t,

t(K(t)) ≤ t < 2t(K(t)).

Since G is decreasing in its argument, we can write

∫ C‖v‖2

0

2tG(t)dt ≤
∫ ‖v‖2

0

2tdt+

∫ C‖v‖2

‖v‖2
2tG

(
t(K(t))

)
dt ≤ ‖v‖22 +

∫ C‖v‖2

‖v‖2
2tG

(
t(K(t))

)
dt.

Now, for all 0 ≤ k ≤ log2(80
β2α), we recall that we assumed both calls to SplitOrTailBound with

thresholds τmed ± C
2k
‖v‖2 failed to produce a split, and hence certify a tail bound (8.14). Thus,

G
(
t(k)
)
≤ 512γ

β2
(
t(k)
)2 ‖v‖22 ≤ 2048γ

β2t2
‖v‖22 , for any t with K(t) = k.

Here, the first inequality used both tail bounds in (8.14) and accounted for the fact that the quan-

tizations ρ+, ρ− are defined over Tin, and G is defined over Tmid with |Tmid| ≥ 1
2 |Tin|; the second

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 347

inequality used that for any such t, t < 2t(k). Putting all these pieces together,

E[Z2] ≤ ‖v‖22 +

∫ C‖v‖2

‖v‖2

4096γ

β2t
‖v‖22 dt ≤ ‖v‖

2
2 +

4096γ

β2
log(C) ‖v‖22 = O

(
γ

β2
· log

(
1

αβ

))
‖v‖22 .

Finally, recall (8.15) shows that
〈

C̃ov 1
n1(Tmid), vv>

〉
≤ E[Z2]. Thus, the set Tmid should have passed

the check in Line 6 under the assumed lower bound on R, yielding the desired contradiction.

8.4.3 Implementation of SplitOrTailBound

In this section, we prove Lemma 117 by providing SplitOrTailBound and giving its analysis.

Lemma 117. There is an algorithm, SplitOrTailBound (Algorithm 36), which takes as input Tin ⊆ T ,

v ∈ Rd, β ∈ (0, 1], R ∈ R≥0, and τ0 ∈ R, and returns in one of two cases we call the “split” case

and the “tail bound” case. In the split case, it returns (τ, r) such that the induced sets (8.11) satisfy

(8.12), and if 1
n1Tin is γ-saturated then one of the induced sets Tout has 1

n1Tout is γ-saturated.

Otherwise, for all t ∈ R define the upper and lower tail probabilities

ρ+(t) := Pr
i∼unifTin

[Yi ≥ t] , ρ−(t) := Pr
i∼unifTin

[Yi ≤ t] . (8.13)

Then, in the tail bound case SplitOrTailBound certifies

ρ+(τ0) ≤ 128γ

β2 |τ0 − τmed|2
‖v‖22 if τ0 ≥ τmed, and ρ−(τ0) ≤ 128γ

β2|τ0 − τmed|2
‖v‖22 if τ0 ≤ τmed.

(8.14)

Proof. This proof proceeds in two parts which we show separately. First, we demonstrate that if

τ0 ≥ τmed and none of the runs of Lines 9-17 in Algorithm 36 return with a valid split, then indeed

we can certify the tail bound (8.14) holds (and a similar guarantee holds for τ0 < τmed). Second, we

show whenever a split is returned and Tin is γ-saturated, then one of the output sets will be as well.

Correctness of tail bound. We consider the case τ0 ≥ τmed here, as the other case follows

symmetrically. Let K+ 1 be the first index such that τK+1 < τmed, so the algorithm checks all pairs

(τj − rj ‖v‖2 , rj) for 0 ≤ j ≤ K. Suppose that all such induced splits fail to satisfy (8.12). For all

0 ≤ j ≤ K, let T
(1)
j , T

(2)
j be the induced sets by the pair (τj − rj ‖v‖2 , rj). Then by construction

absT
(1)
j

absTin
= 1− gj ,

absT
(2)
j

absTin
= gj+1.

For all 0 ≤ j ≤ K−1, recall (τj−rj ‖v‖2 , rj) did not pass the check (8.12), but the second expression

reads gj ≥ 2γ
r2
j

(since gj ≤ 1
2 ≤ 1− gj+1), which is true by construction. Thus the first check did not

pass and we conclude

g1+β
j+1 + (1− gj)1+β

> 1 =⇒ g1+β
j+1 > gj . (8.16)

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 348

Algorithm 36: SplitOrTailBound(Tin, v, β, τ0)

1 Input: Tin ⊆ T , v ∈ Rd, β ∈ (0, 1], τ0 ∈ R;
2 Output: Either outputs (τ, r) such that

T
(1)
out := {Xi | 〈v,Xi〉 ≤ τ + r ‖v‖2}, T

(2)
out := {Xi | 〈v,Xi〉 ≥ τ − r ‖v‖2} satisfy

∣∣∣T (1)
out

∣∣∣1+β

+
∣∣∣T (2)

out

∣∣∣1+β

< |Tin|1+β
, min

(
1− absT

(1)
out

absTin
, 1− absT

(2)
out

absTin

)
≥ 2γ

r2
,

or returns “Tail bound” guaranteeing that for τmed := med ({〈v,Xi〉 | i ∈ Tin}) (following
(8.14))

ρ+(t) ≤ 128γ

β2 |τ0 − τmed|2
‖v‖22 if τ0 ≥ τmed, and ρ−(t) ≤ 128γ

β2|τ0 − τmed|2
‖v‖22 if τ0 ≤ τmed.

;
3 Yi ← 〈v,Xi〉 for all i ∈ Tin, τmed ← med({Yi | i ∈ Tin});
4 j ← 0;
5 if τ0 > maxi∈Tin

Yi or τ0 < mini∈Tin
Yi then

6 “Tail bound”;

7 if τ0 ≥ τmed then
8 while τj ≥ τmed do

9 gj ← ρ+(τj) and rj ←
√

2γ
gj

;

10 if T
(1)
out, T

(2)
out induced by (τj − rj ‖v‖2 , rj) satisfy (8.12) then

11 Return: (τj − rj ‖v‖2 , rj);
12 else
13 τj+1 ← τj − 2rj ;

14 j ← j + 1;

15 else
16 while τj ≤ τmed do

17 `j ← ρ−(τj) and rj ←
√

2γ
`j

;

18 if T
(1)
out, T

(2)
out induced by (τj + rj ‖v‖2 , rj) satisfy (8.12) then

19 Return: (τj + rj ‖v‖2 , rj);
20 else
21 τj+1 ← τj + 2rj ;

22 j ← j + 1;

23 Return: “Tail bound”;

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 349

By applying this inequality inductively with j = K − 1, and recalling gK ≤ 1
2 , we have

(
1

2

)(1+β)K

≥ g(1+β)K

K > g0 =⇒ 2(1+β)K <
1

g0
=⇒ K = O

(
1

β
log log

(
1

g0

))
. (8.17)

Next, since τK+1 = τ0 − 2
∑

0≤j≤K rj ‖v‖2 < τmed, we have

τ0 − τmed < 2

K∑
j=0

rj ‖v‖2 =
√

8γ ‖v‖2
K∑
j=0

√
1

gj
<
√

8γ ‖v‖2
K∑
j=0

A
1

(1+β)j , for A :=

√
1

g0
.

where we used our earlier guarantee (8.16) inductively. By Lemma 120, we have the desired tail

bound:

τ0 − τmed <
√

8γ ‖v‖2 ·
4A

β
≤
√

128

β

√
γ

g0
=⇒ ρ+(τ0) = g0 <

128γ

β2 abs τ0 − τmed
2 ‖v‖

2
2 .

Correctness of split. Suppose that we find (τ, r) such that for

T
(1)
out := {Xi | 〈v,Xi〉 ≤ τ + r ‖v‖2}, T

(2)
out := {Xi | 〈v,Xi〉 ≥ τ − r ‖v‖2},

we have

min

1−

∣∣∣T (1)
out

∣∣∣
|Tin|

, 1−

∣∣∣T (2)
out

∣∣∣
|Tin|

 ≥ 2γ

r2
. (8.18)

We show that the downweighting 1
n1Tin

→ 1
n1

T
(i)
out

is a weight removal with respect to γ-safe scores

for one of i = 1, 2. Let τ∗ := 〈v, µ∗〉 where µ∗ is the “true mean vector” in Assumption 13.

Clearly, either τ∗ ≥ τ or τ∗ ≤ τ ; suppose without loss of generality τ∗ ≥ τ as the other case

follows symmetrically. Define the scores {si}i∈Tin
to be 1 if i ∈ Tin \ T (2)

out and 0 otherwise; then the

downweighting 1
n1Tin

→ 1
n1

T
(2)
out

is of the form in Lemma 112, with respect to these scores. Note that

1

γ

∑
i∈Tin

1

|Tin|
si =

1

γ

(
1− absT

(2)
out

absTin

)
≥ 2

r2

by the assumption (8.18). To apply Lemma 112, it remains to show that

∑
i∈S∩Tin

1

absS ∩ Tin
si ≤

2

r2
. (8.19)

However, we can extend the definition of the scores {si}i∈S to include points in S \Tin, so that si is

the indicator function of 〈v,Xi〉 < τ − r ‖v‖2 for all i ∈ S, which is consistent with our definitions

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 350

{si}i∈Tin . Then by Chebyshev’s inequality and Assumption 13, using 〈v, µ∗〉 ≥ τ ,

∑
i∈S

1

|S|
si ≤ Pr

i∼unifS

[
〈v,Xi − µ∗〉2 > r2 ‖v‖22

]
≤ 1

r2
. (8.20)

By Lemma 114, if Tin is γ-saturated then absS ∩ Tin ≥ 1
2 |S|; combining with (8.20) yields (8.19).

Lemma 120. Let A >
√

2, β ∈ (0, 1], and let K be such that A
1

(1+β)K >
√

2. Then, we have

K∑
j=0

A
1

(1+β)j ≤ 4A

β
.

Proof. Define f(x) = A
1

(1+β)x for any 0 ≤ x ≤ K, and note this is a decreasing function in x.

Thus, since by direct computation the antiderivative of AB
x

is 1
logBEi(Bx log(A)) where Ei is the

exponential integral,

K∑
j=0

A
1

(1+β)j ≤ A+

∫ K

0

f(x)dx = A+
1

log(1 + β)

(
Ei (logA)− Ei

(
logA

(1 + β)K

))
≤ A+

2

β
(Ei (logA) + 1) .

In the last line, we used log(1 + β) ≥ β
2 for β ∈ (0, 1], logA

(1+β)K
> log(

√
2) by assumption, and Ei is

increasing with Ei(log(
√

2)) > −1. The conclusion follows from Ei(logA) + 1 ≤ 3
2A for A >

√
2.

8.4.4 Fixing a cluster via fast filtering

In this section, we prove Lemma 118 by providing Fixing and giving its analysis. Before stating the

algorithm, we provide a helper result which analyzes the effect of a “randomized dropout scheme”

with respect to safe scores, and shows with high probability it is still safe.

In other words, RandDrop removes points from T ′ with probability proportional to their score.

Lemma 121. The output of RandDrop satisfies the guarantees given in Line 2 of Algorithm 37.

Proof. For all i ∈ T ′, let Zi be the random variable defined as

Zi =

1 with probability si
smax

0 with probability 1− si
smax

.

Note that the number of points removed from T ′ and T ′∩S are respectively
∑
i∈T ′ Zi and

∑
i∈T ′∩S Zi.

We now obtain high-probability bounds on both of these totals.

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 351

Algorithm 37: RandDrop(T ′, δrd, s)

1 Input: T ′ ⊆ T , δrd ∈ (0, 1), 4γ-safe scores {si}i∈T ′ with respect to w := 1
n1T ′ such that

smax := maxi∈T ′ si ≤ 24|T ′ ∩ S|, and∑
i∈T ′

1

|T ′|
si ≥ 288γ log

(
2

δrd

)
. (8.21)

;
2 Output: With failure probability ≤ δrd, outputs T ′′ ⊆ T ′ such that if w is γ-saturated,

then 1
n1T ′′ is γ-saturated.;

3 T ′′ ← ∅;
4 for i ∈ T ′ do
5 T ′′ ← T ′′ ∪ {Xi} with probability 1− si

smax
;

6 Return: T ′′;

First, we lower bound
∑
i∈T ′ Zi. Observe that E

[∑
i∈T ′ Zi

]
=
∑
i∈T ′

si
smax

, and each Zi is

Bernoulli. Thus we can apply a Chernoff bound to obtain

Pr

[∑
i∈T ′

Zi <
1

2

∑
i∈T ′

si
smax

]
≤ exp

(
−1

8

∑
i∈T ′

si
smax

)
≤ δrd

2
,

where we used smax ≤ 24|T ′| and the assumed lower bound (8.21) to conclude

∑
i∈T ′

si
smax

≥
∑
i∈T ′

si
24|T ′|

≥ 8 log

(
2

δrd

)
.

Next, we upper bound
∑
i∈T ′∩S Zi. We claim with failure probability at most δrd

2 ,

∑
i∈T ′∩S

Zi ≤
1

2γ

absT ′ ∩ S
|T ′|

∑
i∈T ′

si
smax

. (8.22)

Define µ :=
∑
i∈T ′∩S

si
smax

to be the expectation of the left hand side of (8.22), and set

∆ :=
1

µ

(
1

2γ

absT ′ ∩ S
|T ′|

∑
i∈T ′

si
smax

)
− 1

so that (1 + ∆)µ is the right hand side of (8.22). Recall that we assumed that {si}i∈T were 4γ-safe;

rearranging this definition (cf. Definition 29) yields

µ ≤ 1

4γ
· absT ′ ∩ S

|T ′|
∑
i∈T ′

si
smax

=⇒ ∆µ =
1

2γ

absT ′ ∩ S
|T ′|

∑
i∈T ′

si
smax

− µ ≥ 1

4γ
· absT ′ ∩ S

|T ′|
∑
i∈T ′

si
smax

.

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 352

However, since absT ′∩S
smax

≥ 1
24 by assumption, we use (8.21) and the above equation to conclude

∆µ ≥ 3 log

(
2

δrd

)
.

Finally, a Chernoff bound shows the failure probability of (8.22) is at most exp
(
−∆µ

3

)
≤ δrd

2 , as

desired. Thus with probability at least 1− δrd,

∑
i∈T ′∩S

1

|T ′ ∩ S|
Zi ≤

1

γ

∑
i∈T ′

1

|T ′|
Zi.

Now observe that the {Zi}i∈T ′ meet the definition of γ-safe scores (Definition 29). Thus, Lemma 112

applies with weights 1
n1T ′ and 1

n1T ′′ and we obtain the conclusion.

We are now ready to state the algorithm Fixing and prove its guarantees in Lemma 118.

Lemma 118. There is an algorithm, Fixing (Algorithm 38), which takes as input Tin ⊆ T , v ∈
Rd, and R ∈ R≥0 and produces Tout with the following guarantee with probability at least 1 − δ.

Define Tmid as in Line 5 of Algorithm 35. Then if 1
n1Tin is γ-saturated, so is 1

n1Tout , and if〈
C̃ov 1

n1(Tmid), vv>
〉
≤ 1

8R
2 ‖v‖22, then

〈
C̃ov 1

n1(Tout), vv
>
〉
≤ 1

2R
2 ‖v‖22.

Proof. This proof proceeds in three parts. First, we show that whenever the average score is small:

1

|Tout|
∑
i∈Tout

si ≤ 288γ log

(
2

δrd

)
‖v‖22 ,

then the check in Line 11 will fail and the algorithm will terminate. Next, we show calls to RandDrop

meet its input criteria so its conclusion holds inductively (correctness of Line 10 is also handled here).

Finally, we show that Fixing fails with probability at most δ. Assume throughout that 1
n1Tin

is γ-

saturated; else there is nothing to prove. We also use the following notation throughout:

Varv (T ′) :=
1

absT ′

∑
i∈T ′

(Yi − µv (T ′))
2
, where µv (T ′) :=

〈
v, µ 1

n1 (T ′)
〉
, for all T ′ ⊆ T. (8.23)

Small average score implies termination. We show that whenever the average score is small:
1
|Tout|

∑
i∈Tout

si ≤ 288γ log
(

2
δrd

)
‖v‖22, we terminate since this implies

〈
C̃ov 1

n1(Tout), vv
>
〉
≤ 1

2
R2 ‖v‖22 .

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 353

Algorithm 38: Fixing(Tin, α, v, δ, R)

1 Input: Tin ⊆ T , α ∈ (0, 1
2), v ∈ Rd, δ ∈ (0, 1), R ∈ R≥0 satisfying (for a sufficiently large

constant)

R = Ω

(√
γ log

(
log d

δ

))
,

such that for Tmid defined in Algorithm 35,
〈

C̃ov 1
n1(Tmid), vv>

〉
≤ 1

8R
2 ‖v‖22;

2 Output: Outputs Tout ⊂ Tin with〈
C̃ov 1

n1(Tout), vv
>
〉
≤ 1

2
R2 ‖v‖22 .

If 1
n1Tin

is γ-saturated, so is 1
n1Tout

, with failure probability ≤ δ.;
3 if

〈
C̃ov 1

n1(Tin), vv>
〉
≤ 1

2R
2 ‖v‖22 then

4 Return: Tin;

5 Yi ← 〈v,Xi〉 for all i ∈ Tin, τmed ← med ({Yi | i ∈ Tin});
6 I ← [τmed − c, τmed + c] is the smallest interval containing the 1− α

4 quantiles of
{Yi | i ∈ Tin} for c ∈ R≥0 and 2I ← [τmed − 2c, τmed + 2c];

7 Define scores {si}i∈Tin
by

si ←

0 Yi ∈ I
(Yi − (τmed − c))2 Yi ≤ τmed − c
(Yi − (τmed + c))2 Yi ≥ τmed + c

;

8 δrd ← δ

Ω(log d·log d
δ)

for a sufficiently large constant;

9 Tout ← Tin \ {Xi | si ≥ 12 ‖v‖22 |S|};
10 while

〈
C̃ov 1

n1(Tout), vv
>
〉
> 1

2R
2 ‖v‖22 do

11 Tout ← RandDrop(Tout, δrd,
s
‖v‖22

);

12 Return: Tout;

To show this, we first prove

si >
1

16
(Yi − µ2I)

2
for all i ∈ Tout, Yi 6∈ 2I,

where µ2I :=
1

absTin ∩ {i | Yi ∈ 2I}
∑

i∈Tout∩{i|Yi∈2I}

Yi.
(8.24)

In other words, µ2I is the mean of points in 2I. To see this, if Yi = τmed − 2c−∆ for ∆ > 0,

si = (c+ ∆)
2
, (Yi − µ2I)

2 ≤ (4c+ ∆)
2
< 16si.

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 354

The case when Yi = τmed + 2c + ∆ is handled similarly, which covers all Yi 6∈ 2I. Then, following

notation (8.23),

Varv(Tout) =
∑
i∈Tout

1

absTout
(Yi − µv(Tout))

2 ≤
∑
i∈Tout

1

absTout
(Yi − µ2I)

2

=
∑

i∈Tout∩{i|Yi∈2I}

1

|Tout|
(Yi − µ2I)

2
+

∑
i∈Tout∩{i|Yi /∈2I}

1

|Tout|
(Yi − µ2I)

2

≤
∑

i∈Tout∩{i|Yi∈2I}

1

|Tout|
(Yi − µ2I)

2
+ 16

∑
i∈Tout

1

|Tout|
si

≤
∑

i∈Tout∩{i|Yi∈2I}

1

|Tout|
(Yi − µ2I)

2
+O

(
γ log

(
1

δrd

))
‖v‖22 .

Here, the first line used Fact 15, the third used (8.24) and that all scores are nonnegative, and the

last used our assumption on the average score in Tout. Thus,〈
C̃ov 1

n1 (Tout) , vv
>
〉

=
∑
i∈Tout

1

n
(Yi − µv(Tout))

2

≤
∑

i∈Tout∩{i|Yi∈2I}

1

n
(Yi − µ2I)

2 +O

(
γ log

(
1

δrd

))
‖v‖22

=
〈

C̃ov 1
n1 (Tout ∩ {i | Yi ∈ 2I}) , vv>

〉
+O

(
γ log

(
1

δrd

))
‖v‖22

≤ 1

8
R2 ‖v‖22 +O

(
γ log

(
1

δrd

))
‖v‖22 ≤

1

2
R2 ‖v‖22 .

In the second line we used n ≥ |Tout| to handle the second term, the third line used the definition

of C̃ov, and the fourth line used the assumed bound on
〈

C̃ov 1
n1(Tmid), vv>

〉
, and

C̃ov 1
n1 (Tout ∩ {i | Yi ∈ 2I}) � C̃ov 1

n1 (Tmid)

since Tout ∩ {i | Yi ∈ 2I} ⊆ Tmid and Fact 15 implies that dropping terms from the covariance

formula and shifting to the mean only decreases Loewner order. The last line used the lower bound

on R.

Correctness of calls to RandDrop. We first bound the average score in Tin ∩ S at the beginning

of the algorithm. Let Varv(Tin∩S) denote the variance of Tin∩S in the direction v following (8.23).

We claim that the mean of Tin ∩ S lies close to I: in particular,

µ 1
n1(Tin ∩ S) ∈

[
τmed − c−

√
2Varv (Tin ∩ S), τmed + c+

√
2Varv (Tin ∩ S)

]
. (8.25)

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 355

If this were not the case, we would have a contradiction:

Varv (Tin ∩ S) ≥ 1

absTin ∩ S
∑

i∈Tin∩S|Yi∈I

(Yi − µv (Tin ∩ S))
2

>
absTin ∩ S ∩ {i | Yi ∈ I}

absTin ∩ S
(2Varv (Tin ∩ S)) ≥ Varv (Tin ∩ S) .

The second inequality used that every summand is at least 2Varv (Tin ∩ S) if (8.25) does not hold,

and the last used that I contains a 1− α
4 proportion of the points in Tin, and by Lemma 114 Tin ∩S

contains at least α
2 of the points in Tin. Now using (8.25) and the definition of the scores,

∑
i∈Tin∩S

1

absTin ∩ S
si ≤

∑
i∈Tin∩S

1

absTin ∩ S

(
absYi − µv (Tin ∩ S) +

√
2Varv (Tin ∩ S)

)2

≤ 6Varv (Tin ∩ S) ≤ 12 ‖v‖22 .
(8.26)

In the last line, we used that Tin ∩ S contains at least half the points in S by Lemma 114, so

Assumption 13 applies with a normalizing factor at most twice as large. This shows that Line 10 of

Algorithm 38 preserves saturation, since it can only remove points in Tin \S (if any point in Tin ∪S
had a score larger than 12|S| ‖v‖22, it would violate (8.26)). This also shows that if at any point in

running Algorithm 38 we have a γ-saturated subset Tout ⊂ Tin, then

∑
i∈Tout∩S

1

absTout ∩ S
si ≤ 24 ‖v‖22 . (8.27)

This is because compared to (8.26), we can at most double the normalizing factor by Lemma 114,

and all scores are nonnegative. By combining with the first part of this proof, whenever Line 11

passes,
1

|Tout|
∑
i∈Tout

si > 288γ log

(
2

δrd

)
‖v‖22 , (8.28)

and hence the scores are 4γ-safe as required by RandDrop. The second requirement of RandDrop is

that smax ≤ 24|Tout ∩ S| ‖v‖22, which is taken care of by Line 10 as |S| ≤ 2|Tout ∩ S| by Lemma 114.

Finally, Line 11 implies (8.28) by the first part of this proof, which is the third condition of RandDrop.

Bounding failure probability. We bound the failure probability in two steps. First, we show with

probability at least 1− δ
2 , there are at most (for a suitable constant)

N := O

(
log d · log

d

δ

)
calls to RandDrop. Then, we union bound to show that all these calls to RandDrop pass with

probability at least 1− δ
2 . Combining gives the overall failure probability to Fixing.

To see the bound on N , observe that after Line 10, the largest score is at most O(‖v‖22 d), and

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 356

the algorithm ends when the largest score is at most a constant (since then (8.28) clearly fails, at

which point we terminate on Line 11 by the first part of this proof). Thus, the largest score can

only halve at most O(log d) times. However, observing the implementation of RandDrop, any point

with score at least half the largest is dropped with probability at least 1
2 , and hence after O(log d

δ)

rounds, the largest score will halve with probability at least 1 − δ
Ω(log d) . Union bounding over all

the phases of halving the max score implies after N loops the algorithm terminates with probability

1− δ
2 .

Since there are at most N calls to RandDrop, it suffices to set δrd = δ
2N to check that all calls to

RandDrop pass with probability 1− δ
2 . If all calls pass, we have the desired conclusion.

8.4.5 Runtime analysis

We now give a runtime bound for 1DPartition, and use it to obtain a similar bound on Partition.

Lemma 122. Let n′ := |T ′|, where T ′ is the input to 1DPartition. Then 1DPartition can be imple-

mented to run in time

O

(
n′d+ (n′)1+β

(
1

β
log log d · log

(
1

αβ

)
+ log d log

d

δ

))
.

Proof. We begin by computing all the points Yi := 〈v,Xi〉 for i ∈ T ′ and sorting them, and store all

quantiles (i.e. the number of points less than any given Yi), which takes time O(n′d+ n′ log n′).

Next, we bound the cost of running Fixing on an input Tin of size nin. Given access to quantile

information, and since Fixing is only ever called on a set which is formed after applying some number

of splits to the original dataset T ′, it is straightforward to implement Lines 3-10 in time O(nin).

Moreover, each loop in Lines 11-13 costs O(nin) time, and by the proof of Lemma 118, there are at

most O(log d log d
δ) loops. Thus overall the runtime of Fixing is

O

(
nin log d log

d

δ

)
.

We now consider the cost of running SplitOrTailBound with a given threshold τ0. If τ0 does not lie in

the interval of {Yi}i∈Tin , then the runtime is O(1). Otherwise, consider the case τ0 ≥ τmed (note τmed

can be computed in constant time given quantile information). Since at least one point is larger than

τ0, g0 ≥ 1
n , and hence (8.17) shows the number of threshold checks is bounded by O(1

β log log d).

Each threshold check takes constant time (we just need to compute the cardinalities of the induced

T
(1)
out, T

(2)
out) and computing the next gj and rj takes constant time given quantile information, so the

cost of SplitOrTailBound is

O

(
1

β
log log d

)
.

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 357

Correspondingly, the cost of each run of Lines 8-11 of SplitOrCluster is bounded by

O

(
1

β
log log d · log

(
1

αβ

))
.

Now, consider the structure of 1DPartition. Lemma 116 shows that there are at most (n′)1+β split

steps total, so the total cost of all split steps (which run Lines 8-11 of SplitOrCluster) is

O

(
(n′)1+β

β
log log d · log

(
1

αβ

))
.

Finally, consider all nodes in the 1DPartition which are parents of leaves. The sums of cardinalities

of all such nodes is bounded by (n′)1+β , so the cost of running Fixing on all these nodes is

O

(
(n′)1+β log d log

d

δ

)
.

As an immediate corollary, we obtain a runtime bound on Partition.

Corollary 29. Let np := |Tp| for some Tp ⊆ T . Partition called on input Tp with parameter C can

be implemented to run in time

O

(
n1+β
p d log d log

d

δ
+ n1+β

p

(
1

β
log log d · log

(
1

αβ

)
log

d

δ
+ log d log2 d

δ

))
.

Proof. The proof is identical to Corollary 68, where we use Lemma 122 to bound the cost over all

elements of each Sj , and there are Ndir = Θ(log d
δ) calls to 1DPartition.

8.4.6 Full bounded covariance algorithm

Finally, we give our full algorithm for list-decodable mean estimation under Assumption 13. As

in Section G.5.3, we will reduce to the bounded diameter case via the algorithm NaiveCluster (cf.

Lemma 311); we reproduce its guarantees for arbitrary failure probabilities as NaiveClusterPlus.

Lemma 123 (Restatement, Lemma 306). There is a randomized algorithm, NaiveClusterPlus(T, δ),

which takes as input T ⊂ Rd satisfying Assumption 13 and partitions it into disjoint subsets {T ′i}i∈[k]

such that with probability at least 1 − δ, all of S is contained in the same subset, and every subset

has diameter bounded by O(d
8

δ2). The runtime of NaiveClusterPlus is O(nd+ n log n).

We also require a post-processing procedure to reduce the list size, which we call IteratePostProcess.

We state its guarantees in Lemma 124, and defer the description and analysis to Section 8.4.7.

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 358

Lemma 124. There is an algorithm, IteratePostProcess (Algorithm 41), which takes as input T

satisfying Assumption 13 and a list L ⊂ Rd of length m ≤ n such that

min
µ̂∈L
‖µ̂− µ∗‖2 ≤ ∆, ∆ = Ω

(
1√
α

)
and returns with probability at least 1−δ a subset L′ ⊂ L of size O(1

α) such that minµ̂∈L′ ‖µ̂− µ∗‖2 =

O(∆), within runtime

O

((
(m+ n)d+ αm2n

)
log

d

δ

)
.

Algorithm 39: FastMultifilter(T, α, δ, β)

1 Input: T ⊂ Rd, |T | = n satisfying Assumption 13 with parameter α ∈ (0, 1
2), δ ∈ (0, 1),

β ∈ (0, 1] ;

2 Output: With failure probability ≤ δ: L with |L| = O(1
α) such that some µ̂ ∈ L satisfies

‖µ̂− µ∗‖2 = O

√ log
(

1
α

)
α

·max

(
1

β

√
log

(
1

αβ

)
,
√

log log d

) . (8.29)

;

3 δouter ← 1
2 ;

4 Nruns ← d2 log 2
δ e;

5 L← ∅;
6 for j ∈ [Nruns] do

7 {T ′i}i∈[k] ← NaiveClusterPlus(T, δouter

3);

8 αi ← |T |
|T ′i |

α for all i ∈ [k];

9 L←
L ∪ IteratePostProcess

(
T,
⋃
i∈[k] FastMultifilterBoundedDiameter(T ′i , αi,

δouter

3 , β), δouter

3

)
;

10 Return: IteratePostProcess
(
T, L, δ2

)
;

Proposition 31. FastMultifilterBoundedDiameter meets its output specifications with probability at

least 1− δ, within runtime

O

(
n1+βd log2 d log2 d

δ
+ n1+β

(
1

β
log log d · log

(
1

αβ

)
log d log2 d

δ
+ log2 d log3 d

δ

))
.

Proof. The proof of the error rate is identical to that in Proposition 73, where the initial potential

Φ0 is bounded by (dδ)O(log d) via Lemma 123, which implies the operator norm of C̃ov 1
n1(T ′) for

every node T ′ on layer D is O(R2), and inductively at least one such node has |T ′ ∩ S| ≥ 1
2 |S| by

virtue of being γ-saturated and applying Lemma 114. The failure probability follows since Partition

is called at most n1+βD times, as there are at most n1+β elements of each L(`). Finally, the list size

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 359

Algorithm 40: FastMultifilterBoundedDiameter(T, α, δ, β)

1 Input: T ⊂ Rd, |T | = n satisfying Assumption 13 with parameter α ∈ (0, 1
2), δ ∈ (0, 1),

β ∈ (0, 1];

2 Output: With failure probability ≤ δ: Lout with |Lout| = O(n
β

α) such that some µ̂ ∈ Lout

satisfies

‖µ̂− µ∗‖2 = O

√ log
(

1
α

)
α

·max

(
1

β

√
log

(
1

αβ

)
,

√
log

(
log d

δ

)) .

;

3 L(0) ← {T}, Lout ← ∅;
4 For sufficiently large constants,

R← Θ

(
max

(
1

β
·

√
log

(
1

α

)
log

(
1

αβ

)
,

√
log

(
1

α

)
log

(
d

δ

)))
, D ← Θ

(
log d log

d

δ

)
;

5 for ` ∈ [D] do
6 L(`) ← ∅;
7 for T ′ ∈ L(`−1) do
8 Append all elements of Partition(T ′, α, δ

n1+βD
, β, R) to L(`);

9 Return: List of empirical means of all sets in L(D) with size at least αn
2 ;

follows since Lemma 114 implies every leaf node contains αn
2 , but the total size across leaves is at

most n1+β .

Finally, to obtain the runtime bound we can sum the guarantee of Corollary 29 across each of

the D layers, and use the potential to bound the sum of all n1+β
p across the layer.

We are now ready to state our main claim on list-decodable mean estimation. For simplicity, we

state the result for β ≥ 1
log d , as otherwise there are no runtime or statistical gains asymptotically.

Theorem 51. For 1
log d ≤ β ≤ 1, and logΩ(1)(d) ≤ α−1 ≤ d, FastMultifilter returns a list of size

O(1
α) such that

min
µ̂∈L
‖µ̂− µ∗‖2 = O

(
1

β
·

log
(

1
α

)
α

)
,

with probability at least 1− δ, within runtime

O

(
n1+2βd log4 d log

1

δ
+ nd log2 1

δ
log

d

δ

)
.

Proof. We first analyze Lines 6-10 of FastMultifilter. We claim that each of the Nruns times these

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 360

lines run, there is a ≥ 1
2 probability that some µ̂ will be added to L satisfying (G.2), within runtime

O

(
n1+2βd log4 d+ n1+β

(
1

β
log log d · log

(
1

αβ

)
log3 d+ log5 d

))
= O

(
n1+2βd log4 d

)
.

To see this, we apply Proposition 31 to the relevant call of FastMultifilterBoundedDiameter. The

correctness follows identically to the proof of Theorem 91, except that the size of the list of candidate

means
⋃
i∈[k] FastMultifilterBoundedDiameter(T ′i , αi,

δouter

3 , β) is m = O(n
β

α). By Lemma 124, after

applying IteratePostProcess the error rate is not affected by more than a constant, and the list size

is O(1
α). The runtime of this last step is dominated by O(αm2n log d) = O(n1+2βd log d).

Next, this implies that after all runs of Lines 6-10 have finished running (with independent

internal randomness), there is a ≥ 1− δ
2 probability that L contains an element µ̂ satisfying (G.2).

At this point, the size of the list is m = O(log δ−1

α), so Line 11 takes time O(nd log2 1
δ log d

δ) by

Lemma 124.

This theorem, combined with the previously discussed fact that we can assume that α ∈ [1/d, 1/ logΩ(1) d],

gives our desired conclusion.

8.4.7 Cleaning up the list

In this section, we provide the subroutine IteratePostProcess used in FastMultifilter, and prove

Lemma 124, which shows correctness of this subroutine. At a high level, IteratePostProcess first

finds a greedy cover of the input list L at distance O(∆). Then, while the greedy cover has size at

least 4k for k := d 1
αe, it iteratively prunes away 2k out of 4k hypotheses by testing that there are

enough datapoints closest to retained hypotheses; otherwise, it returns the greedy cover.

Lemma 124. There is an algorithm, IteratePostProcess (Algorithm 41), which takes as input T

satisfying Assumption 13 and a list L ⊂ Rd of length m ≤ n such that

min
µ̂∈L
‖µ̂− µ∗‖2 ≤ ∆, ∆ = Ω

(
1√
α

)
and returns with probability at least 1−δ a subset L′ ⊂ L of size O(1

α) such that minµ̂∈L′ ‖µ̂− µ∗‖2 =

O(∆), within runtime

O

((
(m+ n)d+ αm2n

)
log

d

δ

)
.

Proof. We first prove correctness, and then prove the runtime bound.

Correctness. By the Johnson-Lindenstrauss lemma as analyzed in [6], with probability at least

1− δ every pair of points in L ∪ T ∪ {µ∗} has their distance preserved to a 1.1 multiplicative factor

under multiplication by G>. Condition on this event for the remainder of the proof.

Let µ̄ be the element of the input L which is guaranteed to be within distance ∆ of µ∗. We will

first show that µ̄ is never removed from L by the loop in Lines 6-11. If µ̄ is not a part of Lhead in a

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 361

Algorithm 41: IteratePostProcess(T, α, L, δ,∆)

1 Input: T ⊂ Rd, |T | = n satisfying Assumption 13 with parameter α ∈ (0, 1
2), δ ∈ (0, 1), L

with |L| = m ≤ n such that

min
µ̂∈L
‖µ̂− µ∗‖2 ≤ ∆, ∆ = Ω

(
1√
α

)
.

;

2 Output: With failure probability ≤ δ: L′ ⊂ L with |L′| = O(1
α) such that

min
µ̂∈L′

‖µ̂− µ∗‖2 = O(∆).

;

3 G ∈ Rd×c ← entrywise ± 1√
c

uniformly at random, for c = Θ(log d
δ) (Johnson-Lindenstrauss

matrix [6]);

4 k ← d 1
αe;

5 L′ ← maximal subset of L such that ∀µ̂ 6= µ̂′ ∈ L′,
∥∥G>(µ̂− µ̂′)

∥∥
2
≥ 5∆;

6 while |L′| ≥ 4k do
7 Lhead ← first 4k elements of L′;
8 Lprune ← elements of Lhead which are nearest neighbors of < αn

2 elements of T , where

µ̂ ∈ Lhead is the nearest neighbor of Xi ∈ T if
∥∥G>(µ̂−Xi)

∥∥
2

is minimal amongst

Lhead ;
9 L← L \ Lprune;

10 L′ ← maximal subset of L such that ∀µ̂ 6= µ̂′ ∈ L′,
∥∥G>(µ̂− µ̂′)

∥∥
2
≥ 5∆;

11 Return: L′;

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 362

given loop, clearly this is true, so suppose µ̄ ∈ Lhead, and let µ̂ be some other element in Lhead with∥∥G>(µ̄− µ̂)
∥∥

2
≥ 5∆; by definition of Lhead as a subset of L′, all such µ̂ satisfy this. Our goal will

be to show that at least half of the points in S have nearest neighbor µ̄; to do so, it suffices to show

that
∥∥G>(Xi − µ̂))

∥∥
2
≥
∥∥G>(Xi − µ̄))

∥∥
2

with probability at most 1
8k over i ∼ S for each µ̂ 6= µ̄,

so the < 4k other hypotheses in Lhead can only remove αn
2 of the points in S from having nearest

neighbor µ̄, and hence µ̄ will not be pruned.

We now show the key claim: that for all µ̂ 6= µ̄ ∈ Lhead,

Pr
i∼unifS

[∥∥G> (Xi − µ̂)
∥∥

2
≤
∥∥G> (Xi − µ̄)

∥∥
2

]
≤ 1

8k
.

Observe that by the triangle inequality, for any i ∈ S satisfying the event above,

2
∥∥G> (Xi − µ̄)

∥∥
2
≥
∥∥G> (Xi − µ̄)

∥∥
2

+
∥∥G> (Xi − µ̂)

∥∥
2

≥
∥∥G> (µ̂− µ̄)

∥∥
2
≥ 5∆

=⇒ ‖Xi − µ∗‖2 ≥ ‖Xi − µ̄‖2 − ‖µ̄− µ
∗‖2 ≥ ∆.

Here we used ‖Xi − µ̄‖2 ≥
1

1.1

∥∥G>(Xi − µ̄)
∥∥

2
≥ 2∆, and ‖µ̄− µ∗‖2 ≤ ∆ by assumption. By

Chebyshev’s inequality and Assumption 13, we conclude for sufficiently large ∆ = Ω(1√
α

),

Pr
i∼unifS

[∥∥G> (Xi − µ̂)
∥∥

2
≤
∥∥G> (Xi − µ̄)

∥∥
2

]
≤ Pr
i∼unifS

[‖µ̄− µ∗‖2 ≥ ∆] ≤ 1

8k
.

Finally, we have shown that when the algorithm exits on Line 12, L′ is a maximal separated subset

of a pruned list L containing µ̄. If µ̄ ∈ L′, the guarantee is immediate; otherwise, there must have

been some other µ̂ ∈ L′ with
∥∥G>(µ̂− µ̄)

∥∥
2
≤ 5∆, else µ̄ would have been added. For this µ̂,

‖µ̂− µ∗‖2 ≤ 1.1
∥∥G>(µ̂− µ∗)

∥∥
2
≤ 1.1

∥∥G>(µ̂− µ̄)
∥∥

2
+ 1.1

∥∥G>(µ̄− µ∗)
∥∥

2
= O(∆).

The list size bound follows from Line 6, as the returned L′ has at most 4k elements.

Runtime. First, the cost of computing all projections G>X for X ∈ L ∪ T is O((m+ n)d log d
δ).

Next, Lines 6-11 can only be looped over at most O(αm) times, since every loop removes 2k elements

from L which originally has size m. It remains to argue about the complexity of each loop.

The cost of computing a maximal subset in Lines 5 and 10 is O(m2 log d
δ), since distance compar-

isons under multiplication by G take O(log d
δ) and it suffices to greedily loop over the list. Similarly,

the cost of computing nearest neighbors of all elements in T in Line 8 is O(mn log d
δ), which is the

dominant term. Combining these components yields the claim.

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 363

8.4.8 (Slightly) improving the error rate

We give a brief discussion of how it is possible to shave a
√

logα−1 factor from the error guarantees

of Theorem 51, bringing it to within a
√

logα−1 factor from optimal when β is a constant. At a

high level, this extraneous factor is due to our insistence that all weight removals be γ-safe, for some

γ = Θ(logα−1). This causes the thresholds required for termination of our subroutines (e.g. for

SplitOrCluster to enter the Fixing stage) to be inflated by roughly a γ factor.

We can remove this factor by using 2-safe scores instead of Θ(logα−1)-safe scores, an idea

introduced by Section G.2 to obtain improved estimation rates over the multifilter of [179]. The idea

is to restart the algorithm in phases, where each phase corresponds to the total maintained weight

being stable up to a factor of 2 (in our case, this means subset sizes are stable up to factors of 2).

We now summarize the changes to our algorithm. We will run the “outer loop” subroutine

FastMultifilterBoundedDiameter (which can be viewed as constructing a multifilter tree) up until a

depth of O(log2 d log 1
α) is reached, in batches of O(log2 d) each corresponding to a stable phase.

Each batch will either meet the relevant termination condition (bounded covariance, such that e.g.

(8.10) is trivially satisfied), or make progress by entering the next phase via safe weight removals.

Correspondingly, the condition (8.6) required to make improvements on the potential will be

scaled differently, according to the size of the relevant set Tp at some node p. In particular, suppose

we are in a phase when 1
2n
′ < |Tp| ≤ n′. Then we will aim to guarantee

〈
Y2
p,Mc`

〉
≤ R2

√
n′

n
Tr(Y2

p),

where R has the same value as in FastMultifilterBoundedDiameter up to removing a
√

logα−1. This

allows us to terminate when the operator norm of some (unnormalized) C̃ov matrix is O(R2
√

n′

n),

at which point Lemma 113 concludes a distance of

O

√R2

√
n

n′
· n′

|Tp ∩ S|

 = O

(
R ·

4
√
n′n√
|Tp ∩ S|

)
= O

(
R√
α

)
,

where we use that 2-saturation of Tp implies
|Tp∩S|
n ≥ α

√
n′

2n .

Because of the complications this type of argument introduces, e.g. every one of our subroutines

needs an extra exit condition (when the maintained subset enters the next phase), we omit a formal

treatment here. However, we remark that to remove the entire logα−1 factor from our error likely

requires new ideas. This is because both branches of our key subroutine SplitOrCluster, namely

SplitOrTailBound and Fixing, require this overhead. The former is because integrating variance tail

bounds decaying as t · 1
t2 out to O(α) quantiles (cf. Lemma 119) introduces a gap of log(1

α). The

latter is because we employ randomize dropout to maintain subsets (rather than weights); our

dropout method requires a threshold of roughly log log d (cf. Lemma 121) to obtain high-probability

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 364

guarantees after union bounding polylog(d) times. For α−1 = logΩ(1) d, this is again a log(1
α) gap.

8.5 Clustering mixture models

We define a mixture model to be a mixture
∑
i∈[k] αi disti where {αi}i∈[k] ∈ Rk≥0,

∑
i∈[k] αi = 1, and

all disti are supported on Rd. In Sections 8.5.1 and 8.5.2 we handle the case where all distributions

are sub-Gaussians: disti has mean µi, and sub-Gaussian parameter ≤ 1 in all directions (cf. Sec-

tion 8.3.1). We begin with the uncorrupted, uniform mixture case as a warmup in Section 8.5.1, and

show how our method tolerates non-uniformity and adversarial outliers in Section 8.5.2. We then

give a simple extension of our algorithm to handle mixtures where each component has bounded

fourth moment in Section 8.5.3, and finally tackle the case of bounded-covariance mixture models

in Section 8.5.4.

Broadly, all of our clustering algorithms follow the same design framework. We first demonstrate

using concentration and existence of a good hypothesis (the list-decodable learning guarantee), that

the “nearest hypothesis” to every non-adversarial point is close to the true mean. We next prune

our hypotheses down by only keeping those with a substantial number of nearby points; by arguing

that the number of adversarial points (or points that appear adversarial due to anti-concentration)

is small, no large “coalition” of bad points can be formed, and hence all kept hypotheses are near a

true mean. Finally, assuming enough separation between true means, we can define a partition of the

points based on their nearest hypotheses. In Section 8.5.4, we will use a more direct clustering process

in the subspace spanned by candidates, combined with fast projected distance approximations, in

order to obtain a tighter separation guarantee.

Throughout, we will frequently use that by Chernoff, the sum of any Bernoulli random variables

whose expectation is Ω(d) will deviate from its expectation by at most any multiplicative constant

with probability at least 1− exp(−Ω(d)). For example, for a dataset of size n = Ω(dk) drawn from

a uniform mixture
∑
i∈[k]

1
k disti, each component disti will contribute between 0.99nk and 1.01nk

points with probability at least 1− k exp(−Ω(d)), or more simply 1− exp(−Ω(d)) for k = O(d).

8.5.1 Clustering uniform (sub-)Gaussian mixture models

We first consider the simple setting where all αi = 1
k and all disti has mean µi and sub-Gaussian

parameter ≤ 1 in all directions. We assume access to a list-decoding algorithm A which returns a

list L of length O(k), such that for each i ∈ [k], L contains µ̂i such that ‖µ̂i − µi‖2 ≤ ∆, for some

∆ = Ω(
√
k) (in particular, FastMultifilter suffices for A). Finally, we assume access to a dataset

X = {Xj}j∈[n] of size n = Θ(dk) drawn from the mixture model independently of A, where we say

that each Xj is “associated with” an index i ∈ [k] (designating the component it is drawn from).

We will now demonstrate how to cluster a dataset using calls to A, assuming a sufficiently large

separation between the means of any two mixture components.

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 365

Algorithm 42: ClusterUniformGMM(X, L,∆, k, δ)

1 Input: X = {Xj}j∈[n] ∼
∑
i∈[k]

1
k disti where disti has mean µi and sub-Gaussian

parameter ≤ 1 in all directions, and n = Θ(dk), L of size O(k) containing (for all i ∈ [k])
µ̂i ∈ L with ‖µ̂i − µi‖2 ≤ ∆ for ∆ = Ω(

√
k), δ ∈ (0, 1);

2 G ∈ Rd×c ← entrywise ± 1√
c

uniformly at random, for c = Θ(log n
δ) (Johnson-Lindenstrauss

matrix [6]);

3 Let m : [n]→ L map each Xj to the element µ̂ ∈ L minimizing
∥∥G>(Xj − µ̂)

∥∥
2
;

4 Define an equivalence relation ∼ on X by Xi ∼ Xj iff
∥∥G>(m(i)−m(j))

∥∥
2
≤ 18∆; if this is

not an equivalence relation, then return any labeling;
5 Return: Labeling of X associated with ∼;

We begin with the following observation.

Lemma 125. Consider some Xj ∈ X associated with i ∈ [k]. With probability at least 1 −
exp(−Ω(∆2))), for every pair µ̂, µ̂′ ∈ L, µ̂ 6= µ̂′ letting vµ̂µ̂′ be the unit vector in the direction

µ̂− µ̂′,
〈vµ̂µ̂′ , Xj〉 < 〈vµ̂µ̂′ , µi〉+ ∆.

Proof. This is a standard application of sub-Gaussian concentration (on the one-dimensional distri-

bution N (〈vµ̂µ̂′ , µi〉, 〈Σi, vµ̂µ̂′v
>
µ̂µ̂′〉)), where we union bound across O(k2) pairs of elements in L. We

simplify by using ∆ = Ω(
√
k), so the exponential term dominates the k2 union bound overhead.

Next, we give our key structural lemma regarding the map m.

Lemma 126. Following notation of Algorithm 42, with probability at least 1− δ − n exp(−Ω(∆2)),

every Xj associated with i ∈ [k] satisfies ‖m(j)− µi‖2 ≤ 7∆.

Proof. With probability at least 1−δ, all pairwise distances between X∪L and itself are preserved by

multiplication through G> up to a 1± 0.1 factor [6] (which we will call the “Johnson-Lindenstrauss

guarantee” henceforth); condition on this event for the remainder of the proof. Suppose for contra-

diction that ‖m(j)− µi‖2 > 7∆, and let µ̂i ∈ L denote any (fixed) hypothesis which is promised to

satisfy ‖µ̂i − µi‖2 ≤ ∆.6 By the triangle inequality, ‖m(j)− µ̂i‖2 > 6∆. Then letting v be the unit

vector in the direction of m(j)− µ̂i,

〈v, µi〉 ≤ 〈v, µ̂i〉+ ∆, 〈v,m(j)〉 > 〈v, µ̂i〉+ 6∆

=⇒ 〈v, µi〉 < 〈v,m(j)〉 − 5∆.

6In the case multiple such hypotheses exist, any satisfactory (but fixed) {µ̂i}i∈[k] ⊆ L will do.

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 366

Next,
∥∥G>(Xj −m(j))

∥∥
2
≤
∥∥G>(Xj − µ̂i)

∥∥
2

implies ‖Xj −m(j)‖2 ≤ 2 ‖Xj − µ̂i‖2 by the Johnson-

Lindenstrauss guarantee, or 〈v,Xj〉 ≥
〈
v, 2µ̂i+m(j)

3

〉
. Combining with the above displayed equation,

〈v,Xj〉 ≥
2

3
〈v, µ̂i〉+

1

3
〈v,m(j)〉 > 〈v, µi〉+ ∆.

Applying Lemma 125 and union bounding over all j ∈ [n] concludes the proof.

This implies that with high probability, Algorithm 42 (given a list L meeting its prerequisites)

succeeds in correctly labelling all data points, assuming Ω(∆) separation between component means.

Lemma 127. Suppose every pair i, i′ ∈ [k], i 6= i′′ satisfies ‖µi − µi′‖2 > 34∆. Then with probability

at least 1−δ−n exp(−Ω(∆2)), Algorithm 42 (assuming its preconditions) outputs a correct clustering

of all points (up to label permutation).

Proof. Assume the result of Lemma 126 and that multiplication through G> preserves all pairwise

distances between X ∪ L and itself up to a 1± 0.1 factor throughout this proof.

We first prove that for any two Xj , Xj′ associated to the same i ∈ [k], Line 4 of Algorithm 42

sets Xj ∼ Xj′ . To see this, Lemma 126 and the triangle inequality give ‖m(j)−m(j′)‖2 ≤ 14∆, so

this will pass Line 4 by the Johnson-Lindenstrauss guarantee. Next, suppose Xj is associated with

i ∈ [k] and Xj′ is associated with i′ ∈ [k] with i 6= i′, and suppose for contradiction Xj ∼ Xj′ . By

the Johnson-Lindenstrauss guarantee, ‖m(j)−m(j′)‖2 ≤ 20∆, which yields by Lemma 126 and the

triangle inequality that ‖µi − µi′‖2 ≤ 34∆, contradicting the separation assumption.

We conclude with the following guarantee on ClusterUniformGMM.

Corollary 30. Suppose every pair i, i′ ∈ [k], i 6= i′ satisfies ‖µi − µi′‖2 = Ω(
√
k log k) for an appro-

priate constant. There is an algorithm drawing n = Θ(dk) samples from the mixture
∑
i∈[k]

1
k disti

where disti has mean µi and sub-Gaussian parameter ≤ 1 in all directions, and returns a correct

clustering of all points (up to label permutation) with probability at least

1− δ − n exp
(
−Ω

(
k log2 k

))
− k exp(−Ω(d)).

The algorithm runs in time, for any fixed ε0 > 0,

O
(
n1+ε0d log4 n log4 n

δ
+ k2 log4 n

δ
+ nk log

n

δ

)
.

Proof. We begin by stating the algorithm. We take 1
10 of the dataset and run FastMultifilter7 on

it to produce L satisfying the prerequisites of Algorithm 42, and then cluster the remaining 9
10 of

7If α−1 = logo(1) d, we instead run the algorithm in Section G.4 to obtain the desired error guarantee, which fits
within the runtime budget. Similarly, if α−1 = Ω(d), we instead run the algorithm in Section G.1 which fits within
the runtime budget by Proposition 9 of that paper.

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 367

the dataset using L via ClusterUniformGMM; then, we take a disjoint 1
10 and cluster the remaining

9
10 using ClusterUniformGMM. We then match labels based on which clusters overlap on at least 1

2

of their points between these two runs. The runtime follows from Theorem 91, and the runtime of

ClusterUniformGMM, which is clearly O(nk log n
δ) since Line 3 dominates, as Line 4 can be greedily

implemented using distance comparisons between only L once the map m has been formed.

Next, for correctness, Theorem 51 and Proposition B.1 of [118] (which says Assumption 13 is

met for both FastMultifilter runs with probability ≥ 1−exp(Ω(d))) imply both runs of FastMultifilter

correctly return lists satisfying the precondition of Algorithm 42; here we note that the dataset

partition ensures independence of lists used and datasets clustered. Then, Lemma 127 implies both

clusterings are completely correct on 9
10 of the data. The conclusion follows from standard binomial

concentration, which implies that the 8
10 of the data which was held-out contains at least 1

2 the points

associated with each i ∈ [k] in the overall dataset, with probability at least 1− exp(−Ω(d)).

We remark that for n which grows super-exponentially in k (such that the failure probabil-

ity guarantee of Corollary 30 becomes vacuous), it is straightforward to obtain an appropriate

high-probability guarantee for clustering all points by assuming that the minimum pairwise cluster

separation scales as
√

log n. A similar remark also applies to Corollary 33.

8.5.2 Robustly clustering (sub-)Gaussian mixture models

In this section, we generalize Corollary 30 to non-uniform corrupted mixture models. In particular,

we consider an adversarially corrupted mixture model

M = (1− ε)
∑
i∈[k]

αi dist
i

+ε dist
adv

, (8.30)

where for all i ∈ [k], disti has mean µi and sub-Gaussian parameter ≤ 1 in all directions. Moreover,

for some fixed known α, we assume all αi ≥ α and ε ≤ α
4 . By definition of α, note that we must have

α = O(1
k). In this section, we assume our list-decoding subroutine A returns a list of size O(α−1),

and guarantees estimation error ∆. We now state our algorithm.

We again refer to Xj as associated with some i ∈ [k] if it is a draw from disti, and as “adversarial”

if it is drawn from distadv. We begin with the following consequences of Lemma 126.

Corollary 31. With probability at least 1−δ−n exp(−Ω(∆2))−k exp(−Ω(d)), both of the following

events hold. For all i ∈ [k], every µ̂ ∈ L with ‖µ̂− µi‖2 ≤ 7∆ is in L′. Moreover, every µ̂ ∈ L′ has

‖µ̂− µi‖2 ≤ 25∆ for some i ∈ [k].

Proof. By standard binomial concentration, for every i ∈ [k], the set of j ∈ [n] associated with i

has size at least 0.9αn with probability 1 − k exp(−Ω(d)). Condition on this event, all pairwise

distances between X∪L and itself being preserved up to 1± 0.1 by multiplication through G>, and

the conclusion of Lemma 125 for the remainder of this proof.

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 368

Algorithm 43: ClusterRobustGMM(X, L,∆, k, δ, α)

1 Input: X = {Xj}j∈[n] ∼ (1− ε)
∑
i∈[k] αi disti +ε distadv where disti has mean µi and

sub-Gaussian parameter ≤ 1 in all directions, all αi ≥ α, ε ≤ α
4 , and n = Θ(dα), L of size

O(α−1) containing (for all i ∈ [k]) µ̂i ∈ L with ‖µ̂i − µi‖2 ≤ ∆ for ∆ = Ω(
√
α−1), δ ∈ (0, 1);

2 G ∈ Rd×c ← entrywise ± 1√
c

uniformly at random, for c = Θ(log n
δ) (Johnson-Lindenstrauss

matrix [6]);

3 Let m : [n]→ L map each Xj to the element µ̂ ∈ L minimizing
∥∥G>(Xj − µ̂)

∥∥
2
;

4 Sµ̂ ← {j ∈ [n] | m(j) = µ̂} for all µ̂ ∈ L, Bµ̂ ←
⋃
µ̂′∈L|‖G>(µ̂−µ̂′)‖2≤16∆ Sµ̂′ ;

5 L′ ← {µ̂ ∈ L | |Bµ̂| ≥ 0.9αn};
6 Define an equivalence relation ∼ on X′ by Xi ∼ Xj iff

∥∥G>(m(i)−m(j))
∥∥

2
≤ 55∆, for

X′ := {Xi ∈ X | m(i) ∈ L′}; if this is not an equivalence relation, then return any labeling;
7 Return: Labeling of X′ associated with ∼, along with X \X′ as “unlabeled”;

We begin with the first claim: let ‖µ̂− µi‖2 ≤ 7∆. For every Xj associated with i, Lemma 126

shows ‖m(j)− µi‖2 ≤ 7∆, implying by the Johnson-Lindenstrauss guarantee and triangle inequality,∥∥G>(m(j)− µ̂)
∥∥

2
≤ 16∆. Hence Xj counts towards Bµ̂, which then captures all points associated

with i, so µ̂ ∈ L′. For the second claim, suppose ‖µ̂− µi‖2 > 25∆; then, no µ̂′ ∈ L with ‖µ̂′ − µi‖2 ≤
7∆ will count towards Bµ̂, since such µ̂′ has

∥∥G>(µ̂− µ̂′)
∥∥

2
> 16∆. By Lemma 126, the only

points that can contribute to Bµ̂ are then the ones drawn from Dadv, which by standard binomial

concentration will be less than 0.6αn with probability 1− exp(−Ω(d)), and hence µ̂ 6∈ L′.

The following conclusion then follows immediately in the vein of Lemma 127.

Corollary 32. Suppose every pair i, i′ ∈ [k], i 6= i′ satisfies ‖µi − µi′‖2 > 55∆. Then with probability

at least 1 − δ − n exp(−Ω(∆2)) − k exp(−Ω(d)), Algorithm 43 (assuming its preconditions) outputs

a correct clustering of all points associated with some component i ∈ [k] (up to label permutation).

Proof. The proof is identical to Lemma 127, where we note for each µ̂ ∈ L′, there is a unique i ∈ [k]

promised by Corollary 31 where ‖µ̂− µi‖2 ≤ 25∆ (by our separation assumption). Thus, ∼ defines

an equivalence relation, since every µ̂ ∈ L′ is mapped to the unique equivalence class associated with

µ̂i. This successfully recovers the true clusters, since every point Xj associated with some i ∈ [k]

will be in X′ by Corollary 31 and Lemma 126, and thus it will be classified correctly by ∼.

Finally, we give a complete guarantee on ClusterRobustGMM.

Corollary 33. Suppose every pair i, i′ ∈ [k], i 6= i′ satisfies ‖µi − µi′‖2 = Ω(
√
α−1 logα−1) for

an appropriate constant. There is an algorithm drawing n = Θ(dα) samples from the mixture (1 −
ε)
∑
i∈[k] αi disti +εdistadv where disti has mean µi and sub-Gaussian parameter ≤ 1 in all directions,

and returns a correct clustering of all points drawn from some disti (up to label permutation) with

probability at least

1− δ − n exp
(
−Ω

(
α−1 log2 α−1

))
− k exp (−Ω(d)) .

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 369

The algorithm runs in time, for any fixed ε0 > 0,

O

(
n1+ε0d log4 n log4 n

δ
+

1

α2
log4 n

δ
+
n

α
log

n

δ

)
.

Proof. The proof is the same as Corollary 30, where we note that the mislabeled points from distadv

can only affect the overlapping labels between the two runs by at most a 1.1ε ≤ 1.1
4 α fraction, a

minority compared to the number of correct labels (due to the true mixture), which in both runs will

contribute at least 4
5αi of the points assigned by ∼ to the true clustering. Hence, between runs the

clusters assigned by ∼ to the points drawn from disti will overlap on at least half their points, and

we can use this agreement to correctly label all points not drawn from distadv (where throughout,

we conditioned on all high-probability events in Corollary 30’s proof holding).

8.5.3 Mixture models with bounded fourth moments

In this section, we consider non-uniform corrupted mixture models under a weaker distributional

assumption based on bounded fourth moments. We will no longer be able to correctly cluster all

(non-adversarial) points, but will instead guarantee that amongst non-adversarial points, at least a

1−o(α) fraction are correctly classified. Concretely, we consider the adversarially corrupted mixture

model (8.30), where for all i ∈ [k], and some constant C = O(1),

EX∼disti

[
〈v,X − µi〉4

]
≤ C for all v ∈ Rd, ‖v‖2 = 1. (8.31)

We remark that this fourth-moment bound also implies the covariance is bounded by O(1)I for all

components, by Jensen’s inequality. We again assume that all αi ≥ α, and ε ≤ α
4 . Our algorithm for

this setting will be exactly the same as ClusterRobustGMM, but for convenience we restate it under

the new distributional assumptions. We also assume ∆ = ω(
√
α−1) for notational simplicity.

Algorithm 44: ClusterRobustBFMM(X, L,∆, k, δ, α)

1 Input: X = {Xj}j∈[n] ∼ (1− ε)
∑
i∈[k] αi disti +ε distadv where disti has mean µi and

satisfies (8.31), all αi ≥ α, ε ≤ α
4 , and n = Θ(dα), L of size O(α−1) containing (for all

i ∈ [k]) µ̂i ∈ L with ‖µ̂i − µi‖2 ≤ ∆ for ∆ = ω(
√
α−1), δ ∈ (0, 1);

2 G ∈ Rd×c ← entrywise ± 1√
c

uniformly at random, for c = Θ(log n
δ) (Johnson-Lindenstrauss

matrix [6]);

3 Let m : [n]→ L map each Xj to the element µ̂ ∈ L minimizing
∥∥G>(Xj − µ̂)

∥∥
2
;

4 Sµ̂ ← {j ∈ [n] | m(j) = µ̂} for all µ̂ ∈ L, Bµ̂ ←
⋃
µ̂′∈L|‖G>(µ̂−µ̂′)‖2≤15∆ Sµ̂′ ;

5 L′ ← {µ̂ ∈ L | |Bµ̂| ≥ 0.9αn};
6 Define an equivalence relation ∼ on X′ by Xi ∼ Xj iff

∥∥G>(m(i)−m(j))
∥∥

2
≤ 55∆, for

X′ := {Xi ∈ X | m(i) ∈ L′}; if this is not an equivalence relation, then return any labeling;
7 Return: Labeling of X′ associated with ∼, along with X \X′ as “unlabeled”;

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 370

Our analysis of ClusterRobustBFMM follows from the following key observation: define Xj ∈ X

as “adversarial” if it is drawn from distadv, and say it is “pseudo-adversarial” if it is drawn from

some component i ∈ [k], but satisfies ‖m(j)− µi‖2 > 7∆. Then, by the bounded fourth moment

assumption (8.31), there are few pseudo-adversarial points, made rigorous as follows.

Lemma 128. With probability at least 1− δ− exp(−Ω(d)), the number of pseudo-adversarial points

in X is o(αn).

Proof. We first bound the probability that some Xj ∼ disti will be pseudo-adversarial. By the

proof of Lemma 126, if Xj were pseudo-adversarial, it must be the case that in the direction v

corresponding to m(j)− µ̂i, 〈v,Xj〉 > 〈v, µi〉+ ∆. However, by (8.31) and Markov,

Pr
X∼disti

[
〈v,X − µi〉4 ≥ ∆4

]
≤ C

∆4
= o

(
α2
)
.

Union bounding over all possible directions v (one for each of the O(α−1) elements of L other than

µ̂i), this implies the chance that X drawn from any disti is pseudo-adversarial is o(α). Hence, the

expected number of pseudo-adversarial points in our entire dataset is o(αn), and the conclusion

follows by applying standard binomial concentration.

Now, Corollary 31 holds for ClusterRobustBFMM simply by lumping together the pseudo-adversarial

points and the adversarial points in its proof (in particular, no hypothesis more than 25∆ away from

a true mean can capture any points in the dataset other than adversarial and pseudo-adversarial

ones). We now state analogs of Corollaries 32 and 33.

Corollary 34. Suppose every pair i, i′ ∈ [k], i 6= i′ satisfies ‖µi − µi′‖2 > 55∆. Then with probability

at least 1 − δ − n exp(−Ω(∆2)) − k exp(−Ω(d)), Algorithm 44 (assuming its preconditions) outputs

a correct clustering of a 1− o(α) proportion of points associated with some component i ∈ [k] (up to

label permutation).

Proof. The proof is identical to Corollary 32, where we only guarantee correctly labeling points which

are not pseudo-adversarial; ∼ will correctly cluster all such points by separation and Corollary 31.

Corollary 35. Suppose every pair i, i′ ∈ [k], i 6= i′ satisfies ‖µi − µi′‖2 = Ω(
√
α−1 logα−1) for

an appropriate constant. There is an algorithm drawing n = Θ(dα) samples from the mixture

(1 − ε)
∑
i∈[k] αi disti +εdistadv where disti has mean µi and satisfies the bounded fourth moment

condition (8.31), and returns a correct clustering of a 1 − o(α) fraction of all points drawn from

some disti (up to label permutation) with probability at least

1− δ − k exp (−Ω(d)) .

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 371

The algorithm runs in time, for any fixed ε0 > 0,

O

(
n1+ε0d log4 n log4 n

δ
+

1

α2
log4 n

δ
+
n

α
log

n

δ

)
.

Proof. The proof is identical to Corollary 33, using Corollary 34 instead of Corollary 32, and using

that the pseudo-adversarial points will not substantially affect cluster overlap guarantees.

8.5.4 Bounded-covariance mixture models

In this section, we finally handle the case of non-uniform corrupted mixture models under only

a bounded-covariance assumption; in particular, we study (8.30) where every component disti for

i ∈ [k] has covariance bounded by I. We again assume that all αi ≥ α, and ε ≤ α
4 .

Algorithm 45: ClusterRobustBCMM(X, L,∆, k, δ, α)

1 Input: X = {Xj}j∈[n] ∼ (1− ε)
∑
i∈[k] αi disti +ε distadv where disti has mean µi and has

covariance bounded by I, all αi ≥ α, ε ≤ α
4 , and n = Θ(dα), L of size O(α−1) containing

(for all i ∈ [k]) µ̂i ∈ L with ‖µ̂i − µi‖2 ≤ ∆ for ∆ = Ω(
√
α−1 logα−1), δ ∈ (0, 1);

2 G ∈ Rd×c ← entrywise ± 1√
c

uniformly at random, for c = Θ(log n
δ) (Johnson-Lindenstrauss

matrix [6]);

3 P← L>(LL>)−1L (i.e. projection matrix onto the subspace spanned by L) where

L ∈ RO(α−1)×d is the vertical concatenation of L;

4 X̃j ← G>PXj for all j ∈ [n], µ̃i ← G>µ̂i for all µ̂i ∈ L;

5 L̃←
{
µ̂i ∈ L

∣∣∣ |S(µ̂i)| ≥ αn
2

}
, where S(µ̂i) :=

{
Xj ∈ X

∣∣∣ ∥∥∥X̃j − µ̃i
∥∥∥

2
≤ 2.5∆

}
;

6 Define an equivalence relation ∼ on L̃ by µ̂i ∼ µ̂j iff ‖µ̃i − µ̃j‖2 ≤ 20∆; if this is not an
equivalence relation, then return any labeling;

7 Return: Labeling of X where X̃j and X̃j′ have the same label iff X̃j ∈ S(µ̂i) and

X̃j′ ∈ S(µ̂i′) for µ̂i ∼ µ̂i′ ;

We briefly describe Algorithm 45. Line 3 forms the projection matrix onto the span of L. Line

5 “prunes” the set L to a set L̃ where we only keep candidates with enough data points close by

(in the subspace spanned by L). Line 6 then appropriately partitions the candidates, and Line 7

partitions the dataset based on the candidate partition. In the following proof we use Pµ̂ = µ̂ for

all µ̂ ∈ L, and that all µi have a point in the subspace projected to by P at most ∆ away.

Lemma 129. With probability at least 1 − δ − k exp(−Ω(d)), if ∆ = Ω(
√
α−1 logα−1), and every

pair i, i′ ∈ [k], i 6= i′ satisfies ‖µi − µi′‖2 > 20∆, Algorithm 45 returns a correct clustering of a

1− o(1) fraction of all pointns drawn from some disti. The algorithm runs in time

O

(
n ·
(
d+

1

α

)
· log

n

δ

)
.

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 372

Proof. Throughout this proof, condition on the event that distances between PX∪L are preserved

up to 1 ± 0.1 by multiplication through G> and that there are at most αn
3 adversarial points; we

will union bound this conditioning with an event of probability 1− k exp(−Ω(d)).

We first claim that any µ̂ ∈ L satisfying ‖µ̂− µi‖2 ≤ ∆ for some i ∈ [k] is contained in L̃,

with probability at least 1 − exp(−Ω(d)): call this claim †. To see †, with probability at least

1 − exp(−Ω(d)), a 9
10 fraction of Xj ∈ X sampled from disti satisfy ‖P(Xj − µi)‖2 ≤ ∆. This

follows since Chebyshev’s inequality, ∆ = ω(
√
α−1), and P projecting onto a O(α−1)-dimensional

subspace imply the probability ‖P(Xj − µi)‖2 ≤ ∆ is o(1). By triangle inequality and P � I, for

such Xj ,

‖P(Xj − µ̂)‖2 ≤ ‖P(Xj − µi)‖2 + ‖P(µ̂− µi)‖2 ≤ ∆ + ‖µ̂− µi‖2 ≤ 2∆.

Since G> preserves distances to a 1.1 factor, this implies
∥∥∥X̃j − µ̃

∥∥∥
2
≤ 2.5∆ as desired.

We next claim that any µ̂ ∈ L satisfying ‖µ̂− µi‖2 > 7∆ for all i ∈ [k] will not be contained in

L̃, with probability at least 1 − exp(−Ω(d)). To see this, we claim S(µ̂) can only contain an o(α)

fraction of the points drawn from disti; summing over all disti, and adding in all ≤ αn
3 adversarial

points, shows |S(µ̂)| < αn
2 . This latter claim follows by first observing that for Xj ∈ S(µ̂),

‖P(Xj − µi)‖2 ≥ ‖µi − µ̂‖2 − ‖µi −Pµi‖2 − ‖P(Xj − µ̂)‖2
> 7∆−∆− 3∆ = 3∆ ≥ ‖P(Xj − µ̂)‖2 .

The first inequality used that Pµ̂ = µ̂, and the triangle inequality twice. In the second inequality,

we used ‖µi −Pµi‖2 ≤ ∆ since the subspace projected to by P contains a point at most ∆ away

from µi, and ‖P(Xj − µ̂)‖2 ≤ 3∆ by the assumption on G and Xj ∈ S(µ̂). This implies that

the projection of Xj is closer to Pµ̂ = µ̂ than Pµi. Letting dist′i be the projection of disti by P,

X ∼ dist′i is closer to µ̂ than Pµi with probability at most 1
Ω(∆2) = o(α) by arguments in Lemma 126

and Chebyshev. Hence, the probability that Xj ∈ S(µ̂) is o(α), as desired.

Now, under the success of all above conditioning events, by the minimum separation assumption

of 20∆, each surviving µ̂ ∈ L̃ has a unique µi such that ‖µ̂− µi‖2 ≤ 7∆, and each designated µ̂i

with ‖µ̂i − µi‖2 ≤ ∆ survives. Hence, the equivalence partition succeeds and captures all µ̂ ∈ L̃ at

distance at most 7∆ from a µi. Moreover, for every pair µ̂, µ̂′ ∈ L̃ such that ‖µ̂− µi‖2 ≤ 7∆ and

‖µ̂′ − µi′‖2 ≤ 7∆ for some i 6= i′,

X ∈ S(µ̂) ∩ S(µ̂′) =⇒ ‖µ̂− µ̂′‖2 ≤ 6∆.

Since the minimum separation between µi and µi′ is 20∆, this is a contradiction by the triangle

inequality. So, no sets S(µ̂) and S(µ̂′) intersect, where the hypotheses are close to different means.

Thus the labeling in Line 7 is well-defined. It remains to show that if Xj ∼ disti, we will have

Xj ∈ S(µ̂i) with probability 1 − o(1) (and hence a 1 − o(1) fraction of points is labeled correctly).

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 373

This was in fact shown earlier, when we proved the claim †.
Finally, it is clear that all operations can be performed in the desired runtime: G>P can be

computed explicitly in time O(d2α−1 + d2 log n
δ) = O(nd + d2 log n

δ) via näıve matrix multiplica-

tion, and all projection and distance computations (multiplying all points and hypotheses by G>P,

computing all S(µ̂), and checking all pairwise distances in Line 6) take time O(n ·(d+ 1
α) · log n

δ).

Corollary 36. Suppose every pair i, i′ ∈ [k], i 6= i′ satisfies ‖µi − µi′‖2 = Ω(
√
α−1 logα−1) for

an appropriate constant. There is an algorithm drawing n = Θ(dα) samples from the mixture (1 −
ε)
∑
i∈[k] αi disti +εdistadv where disti has mean µi and covariance bounded by I, and returns a

correct clustering of a 1− ε1 fraction of all points drawn from some disti (up to label permutation)

for any fixed ε1 > 0, with probability at least

1− δ − k exp(−Ω(d)).

The algorithm runs in time, for any fixed ε0 > 0,

O

(
n1+ε0d log4 n log4 n

δ
+

1

α2
log4 n

δ
+
n

α
log

n

δ

)
.

Proof. Since the goal is to correctly label a 1− ε1 fraction of all points, we can use a ε1
2 fraction of

our dataset as holdout for learning an independent list L. We then use this list to cluster a 1− ε1
2

fraction of the remaining points via Lemma 129.

8.6 Robust regression

Parameter estimation in generalized linear models, such as linear and logistic regression problems,

is among the most fundamental and well-studied statistical optimization problems. It serves as the

primary workhorse in statistical studies arising from a variety of disciplines, ranging from economics

[489], biology [524], and the social sciences [249]. Formally, given a link function γ : R2 → R and

a dataset of covariates and labels {(Xi, yi)}i∈[n] ⊂ Rd × R drawn from an underlying distribution

DXy, the problem of statistical (generalized linear) regression asks to

estimate θ? := argminθ∈Rd
{
E(X,y)∼DXy [γ(〈θ,X〉 , y)]

}
. (8.32)

For example, when γ(v, y) = 1
2 (v − y)2, (8.32) corresponds to (statistical) linear regression. The

problem (8.32) also has an interpretation as computing a maximum likelihood estimate for a pa-

rameterized distributional model for data generation, and indeed is only tractable under certain

distributional assumptions, since we only have access to samples from DXy rather than the under-

lying distribution itself (see e.g. [53] for tractability results in the linear regression setting).

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 374

However, in modern settings, these strong distributional assumptions may fail to hold. In practi-

cally relevant settings, regression is often performed on massive datasets, where the data comes from

a poorly-understood distribution and has not been thoroughly vetted or cleaned of outliers. This

has prompted the study of robust regression, i.e. regression under weak distributional or corruption

assumptions. In this work, we study the problem of regression (8.32) in the strong contamination

model. In this model, we assume the data points we receive are independently drawn from DXy,

but that an arbitrary ε-fraction of the samples are then adversarially contaminated or replaced. The

strong contamination model has recently drawn interest in the algorithmic statistics and learning

communities for several reasons. Firstly, it is a flexible model of corruption and can be used to

study both truly adversarial data poisoning attacks (where e.g. part of the dataset is sourced from

malicious respondents), as well as model misspecification, where the generative DXy does not ex-

actly satisfy our distributional assumptions, but is close in total variation to a distribution that

does. Furthermore, a line of work building upon [175, 337] (discussed in our survey of prior work

in Section 8.6.2) has achieved remarkable positive results for mean estimation and related problems

under strong contamination, with statistical guarantees scaling independently of the dimension d.

This dimension-free error promise is important in modern high-dimensional settings.

8.6.1 Our results

We give multiple nearly-linear time algorithms8 for problem (8.32) under the strong contamination

model, with improved statistical or runtime guarantees compared to the state-of-the-art. Prior

algorithms for (8.32) under the strong contamination model typically followed one of two frameworks.

The first, which we refer to as robust gradient descent, was pioneered by [447], and is based on

reframing (8.32) as a problem where we have noisy gradient access to an unknown function we wish

to optimize, coupled with the design of a noisy gradient oracle based on a robust mean estimation

primitive. The second, which we refer to as Sever, originated in work of [176], and uses the guarantees

of stationary point finders such as stochastic gradient descent to repeatedly perform outlier removal.

In this work, we show that both approaches can be sped up dramatically, and give two complementary

types of algorithms within these frameworks.

Robust acceleration. Our first contribution is to demonstrate that within the noisy gradient

estimation framework for minimizing well-conditioned regression problems of the form (8.32), an

accelerated rate of optimization can be achieved, answering an open question asked by [447]. We

demonstrate the following result for smooth statistical regression problems, where we assume the

uncorrupted data is drawn from DXy with marginals DX and Dy, DX has support in Rd, and Õ hides

polylogarithmic factors in problem parameters (cf. Section 8.3.1 for technical definitions). Finally,

we remove κ dependences in sample complexity statements, as they are subsumed by ε dependences

8Throughout, we reserve the description “nearly-linear” for runtimes scaling linearly in the dataset size nd, and
polynomially in ε−1 and the condition number, up to a polylogarithmic overhead in problem parameters.

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 375

due to assumed bounds on εκ or εκ2.

Theorem 52 (informal, see Theorem 58). Suppose γ : R2 → R is such that γy(v) := γ(v, y) is

convex and has (absolute) first and second derivatives at most 1 for all y in the support of Dy, and

DX has second moment matrix Σ? � L · I. For some µ ≥ 0, let κ = max(1, Lµ) and let

θ?reg := argminθ∈Rd
{
E(X,y)∼DXy {γ (〈θ,X〉 , y)}+

µ

2
‖θ‖22

}
be the solution to the true regularized statistical regression problem.9 There is an algorithm that

given n := Õ(dε) ε-corrupted samples from DXy, for εκ2 at most an absolute constant, runs in time

Õ(nd
√
κ) and obtains θ with

∥∥θ − θ?reg

∥∥
2

= O
(√

κε
µ

)
with probability at least 1− δ.

A canonical example of a link function γ satisfying the assumptions of Theorem 52 is the logit

function γ(v, y) = log(1 + exp(−vy)), when the labels y are ±1. To contextualize Theorem 52, the

earlier work [447] obtains a similar statistical guarantee in its setting, using Õ(κ) calls to a noisy

gradient oracle, which they implement via a subroutine inspired by works on robust mean estimation.

At the time of its initial dissemination, nearly-linear time robust mean estimation algorithms were

not known; since then, [134] showed that for the case of linear regression (see Theorem 54 for the

formal setup, as the linear regression link function is not Lipschitz), the framework was amenable to

mean estimation techniques of [131], and gave an algorithm running in time Õ(ndκε−6). Theorem 52

represents an improvement to these results on two fronts: we apply tools from the mean-estimation

algorithm of [194] to remove the poly(ε−1) runtime dependence for a general class of regression

problems, and we achieve an iteration count of Õ(
√
κ), matching the accelerated gradient descent

runtime of [417] for smooth optimization in the non-robust setting. We remark that the application

of tools inspired by [194] is fairly straightforward, and not a primary contribution of our work

compared to the accelerated dependence on κ.

We demonstrate the generality of our acceleration framework by demonstrating that it applies to

optimizing the Moreau envelope for Lipschitz, but possibly non-smooth, link functions γ; a canonical

example of such a function is the hinge loss γ(v, y) = max(0, 1−vy) with ±1 labels, used in training

support vector machines. The Moreau envelope is a well-studied smooth approximation to a non-

smooth function which everywhere additively approximates the original function if it is Lipschitz (see

e.g. [485]), and in the non-robust setting many state-of-the-art rates for Lipschitz optimization are

known to be attained by accelerated optimization of an appropriate Moreau envelope [502]. We show

that even without explicit access to the Moreau envelope, we can obtain approximate minimizers to

it through our robust acceleration framework.

9To simplify our bounds and avoid estimation error for non-strongly convex statistical regression problems scaling
with the initial search radius (which may be dimension-dependent), we focus on regularized regression problems.
There is a substantial line of work on reductions between rates for strongly convex and convex smooth optimization
in the non-robust setting, see e.g. [551], and we defer an analogous exploration in the robust setting to future work.

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 376

Theorem 53 (informal, see Theorem 59). Suppose γ : R2 → R is such that γy(v) := γ(v, y) is

convex and has (absolute) first derivative at most 1 for all y in the support of Dy, and DX has

bounded second moment matrix. For some µ, λ ≥ 0, let κ = max(1, 1
λµ) and let

θ?env := argminθ∈Rd
{
F ?λ (θ) +

µ

2
‖θ‖22

}
, where F ?λ (θ) := inf

θ′

{
F ?(θ′) +

1

2λ
‖θ − θ′‖22

}
is the Moreau envelope of F ?(θ) := E(X,y)∼DXy {γ (〈θ,X〉 , y)} .

There is an algorithm that given n := Õ(dε) ε-corrupted samples from DXy, for εκ2 at most an

absolute constant, runs in time Õ(nd
√
κ

ε) and obtains θ with
∥∥θ − θ?reg

∥∥
2

= O
(√

κε
µ

)
with probability

at least 1− δ.

To obtain this result, we give a nearly-linear time construction of a noisy gradient oracle for the

Moreau envelope, which may be of independent interest; we note similar gradient oracle constructions

in different settings have been developed in the optimization literature (see e.g. [110]).

Robust linear regression. The specific problem of robust linear regression is perhaps the most

ubiquitous example of statistical regression [321, 315, 188, 550, 134, 53]. Amongst the algorithms

developed for this problem, the only nearly-linear time algorithm is the recent work of [134]. For

an instance of robust linear regression with noise variance bounded by σ2 and covariate second

moment matrix Σ? := EX∼DX [XX>], the algorithms of [176, 447, 134] attain distance to the true

regression minimizer θ? scaling as σκ
√
ε in the Σ? norm (the “Mahalanobis distance”) under a

bounded 4th moment assumption. We measure error in the Σ? norm as it is scale invariant and

the natural norm in which to measure the underlying (quadratic) statistical regression error.10 We

give one result (Theorem 54) which improves the runtime of [176, 447, 134] under the noisy gradient

descent framework, and one result (Theorem 55) which improves its estimation rate, under the Sever

framework.

We first demonstrate that directly applying our robust acceleration framework leads to a similar

estimation guarantee as [176, 447, 134] under the same assumptions.

Theorem 54 (informal, see Theorem 57). Suppose DX is a 2-to-4 hypercontractive distribution with

second moment matrix Σ? = EX∼DX [XX>] satisfying µ · I � Σ? � L · I, and y ∼ Dy is generated

as 〈θ?, X〉 + δ, for δ ∼ Dδ with variance at most σ2 independent of X. Let κ := L
µ . There is an

algorithm, RobustAccel, that given n := Õ(dε) ε-corrupted samples from DXy, for εκ2 at most an

absolute constant, runs in time Õ(nd
√
κ) and obtains θ with ‖θ − θ?‖Σ? = O(σκ

√
ε) with probability

1− δ.

We give a formal definition of 2-to-4 hypercontractivity in Section 8.3.1; as a lower bound of [53]

shows, attaining estimation rates for robust linear regression scaling polynomially in ε is impossible

under only bounded second moments, and such a 4th moment bound is the minimal assumption under

10Some prior works gave `2 norm guarantees, which we have translated for comparison.

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 377

which robust estimation is known to be possible. Theorem 57 matches the distribution assumptions

and error of [134], while obtaining an accelerated runtime.

Interestingly, under the 4th moment bound used in Theorem 57, [53] showed that the information-

theoretically optimal rate of estimation in the Σ? norm is independent of κ, and presented a matching

upper bound under an analogous, but more stringent, distributional assumption.11 We remark that

thus far robust linear regression algorithms have broadly fallen under two categories: The first

category (e.g. [321, 550, 53]), based on the sum-of-squares paradigm for algorithm design, sacrifices

practicality to obtain improved error rates by paying a large runtime and sample complexity overhead

(as well as requiring stronger distributional assumptions). The second (e.g. [176, 447, 134]), which

opts for more practical approaches to algorithm design, has been bottlenecked at Mahalanobis

distance O(σκ
√
ε) and the requirement that εκ2 = O(1).

We present a nearly-linear time method for robust linear regression overcoming this bottleneck

for the first time amongst non-sum-of-squares algorithms, and attaining improved statistical perfor-

mance compared to Theorem 54 while only requiring εκ = O(1).

Theorem 55 (informal, see Theorem 56). Suppose DX is a 2-to-4 hypercontractive distribution

with second moment matrix Σ? = EX∼DX [XX>] satisfying µ · I � Σ? � L · I, and y ∼ Dy is

generated as 〈θ?, X〉+ δ, for δ ∼ Dδ, a 2-to-4 hypercontractive distribution with variance at most σ2

independent of X. Let κ := L
µ . There is an algorithm, FastRegression, that given n := Õ((d

2

ε3 + d
ε4)) ε-

corrupted samples from DXy, for εκ at most an absolute constant, uses Õ(1
ε) calls to an empirical risk

minimization routine12 and Õ(ndε) additional runtime, and obtains θ with ‖θ − θ?‖Σ? = O(σ
√
κε)

with probability at least 9
10 .

This second algorithm does require more resources than that of Theorem 54: the sample com-

plexity scales quadratically in d, and the runtime is never faster. Further, we make the slightly

stronger assumption of hypercontractive noise for the uncorrupted samples. On the other hand, the

improved dependence on the condition number in the error can be significant for distributions in

practice, which may be far from isotropic. All told, Theorem 55 presents an intermediate tradeoff

inheriting some statistical gains of the sum-of-squares approach (albeit still depending on κ) with-

out sacrificing a nearly-linear runtime. Interestingly, we obtain Theorem 55 by reinterpreting an

identifiability proof used in the algorithm of [53], and combining it with tools inspired by the Sever

framework. Our sample complexity for Theorem 55 dramatically improves that of [176]’s original

linear regression algorithm in the Sever framework for moderate ε, which used Õ(d
5

ε2) samples (in

addition to beating their weaker error guarantee). We elaborate on these points further in Sec-

tion 8.2.2; we believe it is an interesting open problem to understand if the worse sample complexity

11The algorithm of [53] requires DX to be certifiably hypercontractive, an algebraic condition frequently required
by the sum-of-squares algorithmic paradigm to apply to robust statistical estimation problems.

12The empirical risk minimization algorithm used is up to the practitioner; its runtime will never scale worse than
Õ(nd

√
κ) by applying (non-robust) accelerated gradient descent, but can be substantially better if recent advances in

stochastic gradient methods are used, e.g. [18].

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 378

of Theorem 55 is truly necessary for the improved statistical guarantees.

Table 8.1: Robust linear regression results in the κ � 1 regime. All listed results assume 2-to-4
hypercontractivity and independent noise (although some also give rates for non-independent noise).
Error guarantees are in Mahalanobis distance. We omit polylogarithmic factors for simplicity.

Reference Runtime Error guarantee Range of ε Comments

[321] poly(d) σε
1
4 N/A Certifiable hypercontractivity

[550] poly(d) σε
1
2 N/A Certifiable hypercontractivity

[53] poly(d) σε
3
4 N/A Certifiable hypercontractivity

[176] poly(d) σκε
1
2 O(κ−2) Linear sample size

[134] ndκ · poly(ε−1) σκε
1
2 O(κ−2) Linear sample size

Theorem 54 nd
√
κ σκε

1
2 O(κ−2) Linear sample size

Theorem 55 nd · poly(ε−1) σ(κε)
1
2 O(κ−1) Quadratic sample size

8.6.2 Prior work

We give a general overview contextualizing our work in this section, and defer the comparison of

specific technical components we develop in this work to relevant discussions.

The study of learning in the presence of adversarial noise is known as robust statistics, with a long

history dating back over 60 years [31, 512, 278, 513, 279]. Despite this, the first efficient algorithms

with near-optimal error for many fundamental high dimensional robust statistics problems were only

recently developed [175, 337, 177]. Since these works, efficient robust estimators have been developed

for a variety of more complex problems; a full survey of this field is beyond our scope, and we defer

a more comprehensive overview to [182, 360, 492].

Our results sit within the line of work in this field on robust stochastic optimization. The first

works which achieved dimension-independent error rates with efficient algorithms for the problems

we consider are the aforementioned works of [447, 176]. Similar problems were previously considered

in [118, 54]. In [118], the authors consider a setting where a majority of the data is corrupted, and the

goal is to output a short list of hypotheses so that at least one is close to the true regressor. However,

because most of their data is corrupted, they achieve weaker statistical rates; in particular, their

techniques do not achieve vanishing error as the fraction of error goes to zero. In [54], the authors

consider a somewhat different model with stronger assumptions on the structure of the functions. In

particular, they assume that the uncorrupted covariates are Gaussian, and are primarily concerned

with the case where the regressors are sparse. Their main goal is to achieve sublinear sample

complexities by leveraging sparsity. We also remark that the algorithms in [118, 54] are also much

more cumbersome, requiring heavy-duty machinery such as black-box SDP solvers and cutting plane

methods, and as a result are more computationally intense than those considered in [447, 177].

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 379

There has been a large body of subsequent work on the special case of robust linear regres-

sion [321, 315, 188, 550, 134, 53]; however, the majority of this line of work focuses on achieving

improved error rates under additional distributional assumptions by using the sum-of-squares hier-

achy. As a result, their algorithms are likely impractical in high dimensions, and require large (albeit

polynomial) sample complexity and runtime. Of particular interest to us is [134], who combine the

framework of [447] with the robust mean estimation algorithm of [131] to achieve nearly-linear run-

times in the problem dimension and the number of samples. Our Theorem 54 can be thought of

as the natural accelerated version of [134], with an additional ε−6 runtime overhead removed using

more sophisticated mean estimation techniques.

8.6.3 Techniques

We now describe the techniques we use to obtain the accelerated rates of Theorems 52, 53, and 54

as well as the robust linear regression algorithm of Theorem 55.

Robust acceleration. Our robust acceleration framework is based on the following abstract for-

mulation of an optimization problem: there is an unknown function F ? : Rd → R with minimizer

θ? which is L-smooth and µ-strongly convex, and we wish to estimate θ?, but our only mode of

accessing F ? is through a noisy gradient oracle Ong. Namely, for some σ, ε, we can query Ong at

any point θ ∈ Rd with an upper bound R ≥ ‖θ − θ?‖2 and receive an estimate G(θ) such that

‖G(θ)−∇F ?(θ)‖2 = O
(√

Lεσ + L
√
εR
)
. (8.33)

In other words, we receive gradients perturbed by both fixed additive noise, and multiplicative noise

depending on the distance to θ?. The prior works [176, 447, 134] observed that by using tools from

robust mean estimation, appropriate noisy gradient oracles could be constructed for the functions

F ?(θ) = E(X,y)∼DXy [σ(〈θ,X〉 − y)] arising from the distributional assumptions in Theorems 52, 53,

and 54. Our first contribution is speeding up the implementation of Ong to run in nearly-linear time

Õ(nd), leveraging recent advances by [194] for robust mean estimation.

Our second, and more technically involved, contribution is demonstrating that accelerated run-

times are achievable under the noisy gradient oracle access model of (8.33). Designing accelerated

algorithms under noisy gradient access is an extremely well-studied problem, and there are both

strong positive results [162, 400, 209, 142, 395, 102] as well as negative results [172] showing that

under certain noise models, accelerated gradient descent may be outperformed by unaccelerated

methods. Indeed, it was asked (motivated by these negative results) as an open question in [447]

whether an accelerated rate was possible under the noise model (8.33).

Our accelerated algorithm runs in logarithmically many phases, where we halve the distance to

the optimizer (while it is above a certain noise floor depending on the additive error in (8.33)) in

each phase. The subroutine we design for implementing each phase is a robust accelerated “outer

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 380

loop” tolerant to noisy gradient access in the manner provided by our oracle Ong. By carefully

balancing the accuracy of subproblem solutions, the multiplicative error in our gradient estimates

within the accelerated outer loop, and the drift of the phase’s iterates (which may venture further

from θ? than our initial iterate upper bound), we show that above the noise floor we can halve the

distance to θ? in Õ(
√
κ) queries to Ong; recursing on this guarantee yields our complete algorithm.

To obtain Theorem 53, we demonstrate that for Lipschitz functions F ? admitting a radiusless

noisy gradient oracle, i.e. one which satisfies (8.33) with no dependence on R, we can further effi-

ciently construct a noisy gradient oracle for the Moreau envelope of F ? using projected subgradient

descent. This construction enables applying our robust accelerated method to Lipschitz regression

problems.

Our acceleration framework crucially tolerates both additive and multiplicative guarantees for

gradient estimation. While it is possible that arguments of other noisy acceleration frameworks

e.g. [142] may be extended to capture our gradient noise model, we give a self-contained derivation

specialized to our specific oracle access for convenience. We view our result as a proof-of-concept

that acceleration is possible under this noise model; we believe a unified study of acceleration under

noise models encompassing (8.33) warrants further exploration, and defer it to interesting future

work.

Robust linear regression. For the special case of linear regression, as discussed earlier, the robust

optimization methods of [176, 447, 134] attain Mahalanobis distance scaling as σκ
√
ε from the true

minimizer. Directly plugging in deterministic conditions proven by [134] to hold under an appro-

priate statistical model into our robust gradient descent framework, we obtain a similar guarantee

(Theorem 54) at an accelerated rate. In this technical overview, we now focus on how we obtain the

improvements of Theorem 55.

At a high level, prior works lose two factors of
√
κ in their error guarantees because of two norm

conversions from the Σ? norm to the `2 norm: one in gradient space, and one in parameter space.

Because we do not have access to the true covariance Σ?, it is natural to perform both gradient

estimation and the gradient descent procedure itself in the `2 norm. When the `2 guarantees of both

subroutines are converted back to the Σ? norm, the error rate is lossy by a factor of κ.

We give a different approach to robust linear regression which bypasses this barrier in parameter

space, saving a factor of
√
κ in our error rate. In particular, we measure progress of our parameter

estimates entirely in the Σ? norm in our analysis, which removes the need for an additional norm

conversion. Our starting point is the following identifiability proof guarantee of [53], which we

slightly repurpose for our needs. Let w ∈ ∆n be entrywise less than 1
n 1,1

such that ‖wG‖1 ≥ 1− 4ε

where G is our “uncorrupted” data, and let θ ∈ Rd. We demonstrate in Proposition 37 that

‖θ − θ?‖Σ? = O

(
σ
√
κε+

√∥∥∥Covw

(
{gi(θ)}i∈[n]

)∥∥∥
op

ε

µ
+
√
ε ‖∇Fw(θ)‖(Σ?)−1

)
. (8.34)

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 381

In the above display, gi(θ) is the empirical gradient of the squared loss at our ith data point,

Covw(·) is the empirical second moment matrix of its argument under the weighting w, and Fw is

the empirical risk under w. The guarantee (8.34) suggests a natural approach to estimation: if we

can simultaneously verify that θ is an approximate minimizer to Fw, and that the empirical second

moment of gradients at θ (according to w) are small, then we have a proof that θ and θ? are close.

Prior work by [53] used this approach to obtain a polynomial-time estimator by solving a joint

optimization problem in (w, θ), via an appropriate semidefinite program relaxation. However, in

designing near-linear time algorithms, we cannot afford to use said relaxation. This raises a chicken-

and-egg issue: for fixed w, it is straightforward to make ‖∇Fw(θ)‖(Σ?)−1 small, by setting θ to the

empirical risk minimizer (ERM) of Fw. Likewise, for fixed θ, known filtering techniques rapidly

decrease ‖Covw({gi(θ)})i∈[n]‖op while preserving most of wG, by using that the second moment

restricted to uncorrupted points has a small operator norm as a certificate for outlier removal.

However, performing either of these subroutines to guarantee one of our sufficient conditions passes

(small operator norm or gradient norm) may adversely affect the quality of the other.

We circumvent this chicken-and-egg problem by introducing a third potential, namely the actual

function value Fw(θ). In particular, notice that the two subroutines we described earlier (down-

weighting w or setting θ to the ERM) both decrease this third potential. Our linear regression

algorithm is an alternating procedure which iteratively filters w based on the gradients at the cur-

rent θ (to make the operator norm small), and sets θ to the ERM of Fw (to zero out the gradient

norm). We further show that if the ERM step does not make significant function progress (our third

potential), then it was not strictly necessary to make progress according to (8.34), since the gradient

norm was already small. This gives a dimension-independent bound on the number of times we

could have alternated, via tracking function progress, yielding Theorem 55.

8.7 Preliminaries: robust regression

We give the notation used throughout the sections dedicated to robust regression in Section 8.7.1, and

set up the statistical model we consider in Section 8.7.2. In Section 8.7.3, we give the deterministic

regularity assumptions used by our regression algorithm in Section 8.8. In Section 8.7.4, we give the

deterministic regularity assumptions used by our stochastic optimization algorithms in Sections 8.9

and 8.10. Finally, in Section 8.7.5, we state a nearly-linear time procedure for robustly decreasing

the operator norm of the second moment matrix of a set of vectors. Some proofs are deferred to the

appendices.

8.7.1 Notation

General notation. For d ∈ N we let [d] := {j | j ∈ N, 1 ≤ j ≤ d}. The `p norm of a vector

argument is denoted ‖·‖p, where ‖·‖∞ is the element with largest absolute value; when the argument

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 382

is a symmetric matrix, we overload this to mean the Schatten-p norm. The all-ones vector (of

appropriate dimension from context) is denoted 1,1. The (solid) probability simplex is denoted

∆n := {w ∈ Rn≥0, ‖w‖1 ≤ 1}. We use Õ to suppress logarithmic factors in dimensions, distance

ratios, the problem condition number κ, the inverse corruption parameter ε−1, and the inverse

failure probability. For v ∈ Rn and S ⊆ [n], we let vS ∈ Rn denote v with coordinates in [n] \ S
zeroed out. For a set S, we call S1, S2 a bipartition of S if S1 ∩ S2 = ∅ and S1 ∪ S2 = S.

Matrices. Matrices are denoted in boldface. We denote the zero and identity matrices (of

appropriate dimension) by 0 and I. The d × d symmetric matrices are Sd, and the d × d positive

semidefinite cone is Sd≥0. For A,B ∈ Sd we write A � B to mean B − A ∈ Sd≥0. The largest

and smallest eigenvalue and trace of a symmetric matrix are respectively denoted λmax(·), λmin(·),
and Tr(·). The inner product on Sd is 〈A,B〉 := Tr(AB). For positive definite M, we define the

induced norm ‖v‖M :=
√
v>Mv. We use ‖·‖op to mean the `2-`2 operator norm of a matrix; when

the argument is symmetric, it is synonymous with λmax, and otherwise is the largest singular value.

Functions. The gradient and Hessian of a twice-differentiable function are denoted ∇ and ∇2.

We say differentiable f : Rd → R is λ-Lipschitz in a quadratic norm ‖·‖M if ‖∇f(θ)‖M−1 ≤ λ for all

θ ∈ Rd. We say twice-differentiable f : Rd → R is L-smooth and µ-strongly convex in ‖·‖M if

µM � ∇2f(θ) � LM, for all θ ∈ Rd.

When M is not specified, we assume M = I (i.e. the norm in question is `2). For any M, smoothness

and strong convexity imply the following bounds for all θ, θ′ ∈ Rd,

f(θ) + 〈∇f(θ), θ′ − θ〉+
µ

2
‖θ′ − θ‖2M ≤ f(θ′) ≤ f(θ) + 〈∇f(θ), θ′ − θ〉+

L

2
‖θ′ − θ‖2M .

It is well-known that L-smoothness of function f implies L-Lipschitzness of the function gradient

∇f , i.e. ‖∇f(θ)−∇f(θ′)‖M−1 ≤ L ‖θ − θ′‖M for all θ, θ′ ∈ Rd. For any f which is L-smooth and

µ-strongly convex in ‖·‖M, with θ∗ := argminθ∈Rdf(θ), it is straightforward to show

1

2L
‖∇f(θ)‖2M−1 ≤ f(θ)− f(θ?) ≤ 1

2µ
‖∇f(θ)‖2M−1 for all θ ∈ Rd.

Distributions. The multivariate Gaussian distribution with mean µ and covariance Σ is denoted

N (µ,Σ). For weights w ∈ Rn≥0 and a set of vectors X := {Xi}i∈[n], we let

µw (X) :=
∑
i∈[n]

wi
‖w‖1

Xi, Covw,X̄ (X) :=
∑
i∈[n]

wi
‖w‖1

(
Xi − X̄

) (
Xi − X̄

)>
.

be the empirical mean and (centered) covariance matrix; when X̄ is not specified, it is the zeroes vec-

tor. Draws from the uniform distribution on {Xi}i∈[n] are denoted X ∼unif X. We say distribution

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 383

D supported on Rd is 2-to-4 hypercontractive with parameter C2→4 if for all v ∈ Rd,

EX∼D
[
〈X, v〉4

]
≤ C2→4EX∼D

[
〈X, v〉2

]2
.

We will refer to this property as being C2→4-hypercontractive for short; by massaging the definition,

we observe C2→4-hypercontractivity is preserved under linear transformations of the distribution.

Filtering. We will make much use of the following algorithmic technique, which refer to as

filtering. In the filtering paradigm, we have an index set [n], and a fixed, unknown bipartition

[n] = G ∪ B, G ∩ B = ∅. The set G is a “good” set of indices that we wish to keep, and the set B

is a set of “bad” indices which we would like to remove. The algorithm maintains a set of weights

w ∈ ∆n (with the goal of producing a weight vector which is close to the uniform distribution on G).

These weights are iteratively updated according to “scores” τ ∈ Rn≥0; the goal of filtering is to assign

large scores to coordinates in B and small scores to coordinates in G, so that the bad coordinates

can be filtered out according to their scores. Concretely, we use the following definition.

Definition 30 (saturated weights). We say weights w ∈ ∆n are c-saturated with respect to the

bipartition G ∪B = [n] if w ≤ 1
n 1,1

entrywise, and

∥∥∥∥[1

n 1,1
− w

]
G

∥∥∥∥
1

≤
∥∥∥∥[1

n 1,1
− w

]
B

∥∥∥∥
1

+ c.

If c = 0, we refer to w as simply saturated.

In words, w is saturated if its difference from the uniform distribution has more weight on B

than G (in the context of our algorithm, if we have started with uniform weights and produced a

saturated w, then we have removed more mass from B than G). We allow for a “fudge factor”

of an additive c to relax the above definition, which will come in handy in our linear regression

applications.

Definition 31 (safe scores). Suppose G ∪B is a bipartition of [n], and suppose w ∈ ∆n is a set of

weights. We call a set of scores τ = {τi}i∈[n] ∈ Rn≥0 safe with respect to w if it satisfies

〈wG, τ〉 ≤ 〈wB , τ〉 .

The following simple lemma (implicit in prior works [177, 118, 360, 492]) is the crux of the

filtering paradigm, relating these two definitions.

Lemma 130. Suppose w ∈ ∆n is saturated, and τ ∈ Rn≥0 is safe with respect to w. Defining w′ by

w′i ←
(

1− τi
τmax

)
wi for all i ∈ [n], and τmax := max

i∈[n]|wi 6=0
τi,

then w′ ∈ ∆n is also saturated.

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 384

Proof. If G ∪B = [n] is the bipartition with good coordinates G, then by definition of safe scores,

‖[w − w′]G‖1 =
1

τmax
〈wG, τ〉 ≤

1

τmax
〈wG, τ〉 ≤ ‖[w − w′]B‖1 .

Now, since w is saturated, and since w′ ≤ w ≤ 1
n 1,1

by definition of saturation,

∥∥∥[1
n 1,1
− w′

]
G

∥∥∥
1

=
∥∥∥[1

n 1,1
− w

]
G

∥∥∥
1
+‖[w − w′]G‖1 ≤

∥∥∥[1
n 1,1
− w

]
B

∥∥∥
1
+‖[w − w′]B‖1 =

∥∥∥[1
n 1,1
− w′

]
G

∥∥∥
1
.

We will also frequently using the following simple fact.

Lemma 131. Suppose w ∈ ∆n is c-saturated with respect to bipartition [n] = G ∪ B, and suppose

the bad set |B| ≤ εn. Let w̃ = w
‖w‖1

be the distribution with probabilities proportional to w and

w?G = 1
|G|1G be uniform over G. Then, ‖w̃ − w?G‖1 ≤ 6ε+ 2c.

Proof. By the definition of saturation, since there is only ε mass to remove from the coordinates of

B on 1
n 1,1

, clearly ‖w‖1 ≥ 1− 2ε− c. By the triangle inequality, we have

‖w̃ − w?G‖1 ≤ ‖w̃ − w‖1 +
∥∥∥w − 1

n 1,1

∥∥∥
1

+
∥∥∥ 1
n 1,1
− w?G

∥∥∥
1
.

By definition of w̃, ‖w̃ − w‖1 = 1 − ‖w‖1 ≤ 2ε + c. By saturation,
∥∥∥w − 1

n 1,1

∥∥∥
1
≤ 2ε + c. Finally,

since |G| ≥ (1− ε)n,
∥∥∥ 1
n 1,1
− w?G

∥∥∥
1
≤ 2ε. Combining these pieces yields the claim.

8.7.2 Our statistical models

We provide provable guarantees for optimization problems captured by the following statistical

model.

Model 1 (stochastic optimization in the strong contamination model). For Df a distribution over

functions f : Rd → R, our goal is to optimize Ef∼Df [f(θ)]. We are given access to n samples

{fi}i∈[n] produced as follows:

1. Functions {f̃i}i∈[n] are drawn independently from Df .

2. An arbitrary subset B ⊂ [n] of the samples is replaced with arbitrary functions from supp(Df).

3. For each i ∈ [n], if i ∈ B we observe fi as the corrupted sample, otherwise, we observe fi = f̃i.

We call B the corrupted samples. When |B| = εn, we say {fi}i∈[n] is drawn ε-corrupted from Df .

Throughout we use the convention that G∪B = [n] is the bipartition of sample coordinates with

B the corrupted samples and G the “good” samples. For simplicity, we assume throughout that

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 385

ε = |B|
n is smaller than some globally fixed constant. We will also frequently use the notation gi to

mean ∇fi for all i ∈ [n]. When Df is clear from context, we denote the “true average function” by

F ?(θ) := Ef∼Df [f(θ)] .

For w ∈ ∆n and functions {fi}i∈[n], the (unnormalized) weighted empirical average function is

Fw(θ) :=
∑
i∈[n]

wifi(θ). (8.35)

We will use w?G to denote the uniform distribution over G, w?G := 1
|G|1G, and we use FG as shorthand

for the function Fw?G . The goal of robust parameter estimation is to estimate the true optimizer,

which we always denote by θ? := argminθ∈RdF
?(θ). For example, the problem estimating the mean

of D can be expressed by choosing fi(θ) = 1
2 ‖θ −Xi‖22 for Xi ∼ D. In the uncorrupted setting (i.e.

ε = 0), a typical strategy (given reasonable regularity assumptions on Df) is to choose the estimator

θG := argminθ∈RdFG(θ). The challenge is to obtain comparable estimation performance to θG which

is robust to an ε-fraction of unknown corruptions.

Our focus is optimizing generalized linear models. In particular, throughout we will work only

with Df of the following form.

Model 2 (generalized linear model). A generalized linear model is a distribution over functions

fi : Rd → R which is defined by a joint distribution DXy over pairs {Xi, yi} ∈ Rd × R and a link

function γ : R2 → R, so that samples fi ∼ Df are generated as

fi(θ) := γ (〈Xi, θ〉 , yi) , for (Xi, yi) ∼ DXy. (8.36)

Note that observing {fi}i∈[n] is equivalent to observing the dataset {Xi, yi}i∈[n] when γ is known.

For instance, when γ(v, y) = 1
2 (v − y)2, this is the problem of (statistical) linear regression.

Further, when γ(v, y) = log(1 + exp(−vy)), our problem is logistic regression, and when γ(v, y) =

max(0, 1− vy), it is fitting a support vector machine. We refer to the X and y marginals over DXy
respectively by DX and Dy, and we denote Σ? := EX∼DX

[
XX>

]
when DX is clear from context.

8.7.3 Linear regression

In Section 8.8 and (part of) Section 8.9, we develop algorithms for the well-studied special case of

the generalized linear model, Model 2 wherein γ(v, y) = 1
2 (v − y)2, i.e. a statistical variant of linear

regression. We obtain guarantees under the following model and regularity assumptions for DXy.

Model 3 (distributional regularity for linear regression). Given distributions DX and Dδ over

Rd,Rd respectively, the distribution DXy over Rd×R is sampled as follows: for an underlying vector

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 386

θ? ∈ Rd, independently sample X ∼ DX and δ ∼ Dδ, and set y ← 〈θ?, X〉+ δ. Further, DX and Dδ
satisfy the following regularity assumptions.

1. For Σ? = EDX [XX>] and 0 < µ < L, we have µI � Σ? � LI.

2. DX is C2→4-hypercontractive for a constant C2→4.

3. Dδ is a C2→4-hypercontractive distribution with mean zero and variance ≤ σ2.

For {(Xi, yi)}i∈[n] (in particular, overloading to include i ∈ B), we use the notation δi :=

yi − 〈Xi, θ
?〉. We also use the following notation when discussing linear regression:

fi(θ) :=
1

2
(〈Xi, θ〉 − yi)2

, gi(θ) := ∇fi(θ) = Xi (〈Xi, θ〉 − yi) . (8.37)

We will denote the condition number of Σ? by κ := L
µ throughout. Under Model 3, it is immediate

from the first-order optimality condition that for

F ?(θ) := EX,y∼DXy
[

1

2
(〈X, θ〉 − y)

]2

,

the optimizer argminθ∈RdF
?(θ) is exactly θ?.

In our setting, following the description in Section 8.7.2 we independently draw {(Xi, yi)}i∈G ∼
DXy for |G| = (1−ε)n and observe {(Xi, yi)}i∈[n] where [n] = G∪B and {(Xi, yi)}i∈B are arbitrarily

chosen. We will frequently refer to {Xi}i∈[n] as X ∈ Rn×d. Under Model 3, recent work [53] obtained

the following results.

Proposition 32 ([53], Theorem 1.7, Theorem 1.9, Theorem 1.2). For Models 1 and 3, the minimax

optimal error rate for estimators θ̂ is ∥∥∥θ̂ − θ?∥∥∥
Σ?

= O
(
σε

3
4

)
.

When the distribution DX is further certifiably hypercontractive in the sum-of-squares proof system,

there is a poly(d)-time estimator requiring poly(d) samples achieving this rate with high probabil-

ity. Moreover, without the hypercontractivity condition in Model 3, even when µ,L = Θ(1) it is

information-theoretically impossible to attain an error rate depending polynomially on ε.

The algorithmic result of [53] (and all known techniques with error rate�
√
ε) crucially requires

that the distributions are sum-of-squares certifiably hypercontractive, which is a stronger assump-

tion than (standard) hypercontractivity. There is evidence that the problem of certifying 2 → 4

hypercontractivity is computationally intractable in general (under e.g. the small-set expansion hy-

pothesis, see [58, 78]). Even for certifiably hypercontractive distributions, known algorithms require

use spectral estimators of higher-order moment matrices, and thus more samples and increased

runtime complexity. Hence, error
√
ε is a standing barrier for fast algorithms.

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 387

In Section 8.8, whenever we discuss robust linear regression we operate in Models 1 and 3. These

assumptions imply that the data {Xi, yi}i∈[n] will satisfy the following deterministic conditions with

probability 9
10 . For convenience we work with these deterministic conditions directly in our proofs.

Assumption 7 (deterministic regularity for linear regression). Let ε be sufficiently small, and let

r ∈ (0, ε2). Assume {(Xi, yi)}i∈[n] ⊂ Rd × R is (ε, r)-good for linear regression (or (ε, r)-good if

context is clear), which means there is a partition [n] = G ∪B with |G| ≥ (1− ε)n which satisfies:

1. For any w ∈ ∆n with ‖wG‖1 ≥ 1− 4ε, 1
2Σ? � CovwG(X) � 3

2Σ?.

2. There is a constant Cest such that for all θ ∈ Rd, there exists a G′ ⊆ G satisfying |G′| ≥
(1− r)|G| such that for all ε-saturated w ∈ ∆n, if we let w̃ := wG′

‖wG′‖1
,

‖∇Fw̃(θ)−∇F ?(θ)‖2 ≤ Cest

√
Lε (σ + ‖θ − θ?‖Σ?) , (8.38)∥∥Covw̃

(
{gi(θ)}i∈G′

)∥∥
op
≤ CestL

(
‖θ − θ?‖2Σ? + σ2

)
. (8.39)

3. There is a constant Cub such that

∑
i∈G

1

|G|
fi(θ

?) =
1

2|G|
∑
i∈G

(〈Xi, θ
?〉 − yi)2 ≤ Cubσ

2.

We defer the proof of the following claim, which establishes the probabilistic validity of As-

sumption 7 (up to adjusting constants in definitions) under the statistical Models 1 and 3, to

Appendix G.6.

Proposition 33. Let α ≥ 1 and let ε > 0 be sufficiently small. Let {(Xi, yi)}i∈[n] ⊂ Rd × R be an

ε-corrupted set of samples from a distribution DXy as in Model 3. Then, if

n = O

(
dα2 log d

ε4
+
d2α1.5 log(d/ε)

ε3

)
,

the set {(Xi, yi)}i∈[n] is (2ε, ε
2

α)-good for linear regression with probability at least 9
10 .

Remark 9. We remark that the gaurantees of Proposition 33 may be recovered with n = O(d log d/ε4+

d2 log d log 1
ε) samples when the Xi are further assumed to be subgaussian.

We observe that Assumption 7 implies the following useful bound.

Lemma 132. Let w ∈ ∆n be ε-saturated with respect to bipartition [n] = G ∪B, let G? ⊆ G be the

subset in Assumption 7.2 corresponding to θ?, and let w̃ = wG?
‖wG?‖1

. Let θw̃ = argminθ∈RdFw̃(θ) be

the empirical minimizer of Fw̃. Then,

‖θw̃ − θ?‖Σ? ≤ 4Cestσ
√
κε.

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 388

Proof. Applying Assumption 7.2 with θ = θ?, we have that

‖∇Fw̃(θ?)‖2 ≤ Cest

√
Lεσ.

However, applying Assumption 7.1 on the weights wG? implies that Fw̃ is 1
2 -strongly convex in the

Σ? norm (since wG? removes at most ε2 mass from wG) and minimized by θw̃, and hence by using

consequences of strong convexity and (Σ?)−1 � 1
µI,

‖∇Fw̃(θ?)‖2 ≥
√
µ ‖∇Fw̃(θ?)‖(Σ?)−1 ≥

√
µ

4
‖θw̃ − θ?‖Σ? .

Finally, in Section 8.9, when we develop an alternative approach to linear regression based on the

robust gradient descent framework, we require a slightly weaker set of distributional assumptions

and deterministic implications, which we now state.

Model 4 (distributional regularity for linear regression, gradient descent setting). Given distribu-

tions DX and Dδ over Rd,Rd respectively, the distribution DXy over Rd×R is sampled as follows: for

an underlying vector θ? ∈ Rd, independently sample X ∼ DX and δ ∼ Dδ, and set y ← 〈θ?, X〉+ δ.

Further, DX and Dδ satisfy the following regularity assumptions.

1. For Σ? = EDX [XX>] and 0 < µ < L, we have µI � Σ? � LI.

2. DX is C2→4-hypercontractive for a constant C2→4.

3. Dδ is a distribution with mean zero and variance ≤ σ2.

The main difference between Model 3 and Model 4 is that the latter no longer requires hyper-

contractive noise. This corresponds to the following deterministic assumption.

Assumption 8 (deterministic regularity for linear regression, gradient descent setting). Let ε be

sufficiently small. For every fixed θ ∈ Rd, there is a partition [n] = Gθ ∪ Bθ with |Gθ| ≥ (1 − ε)n
which satisfies: there is a constant Cest such that for w̃ :=

wGθ
‖wGθ‖1

,

‖∇Fw̃(θ)−∇F ?(θ)‖2 ≤ Cest

√
Lε (σ + ‖θ − θ?‖Σ?) , (8.40)∥∥Covw̃

(
{gi(θ)}i∈Gθ

)∥∥
op
≤ CestL

(
‖θ − θ?‖2Σ? + σ2

)
. (8.41)

The main difference between Assumption 7 and Assumption 8 is that the latter provides gradient

bounds using a different set Gθ for each θ (as opposed to the former, which uses the same set G for

all θ). The upshot is that the corresponding required sample complexity is lower.

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 389

Proposition 34 ([134], Lemma 5.5). Let ε > 0 be sufficiently small. Let {(Xi, yi)}i∈[n] ⊂ Rd × R
be an O(ε)-corrupted set of samples from a distribution DXy as in Model 8. Then if

n = O

(
d log(d/ε)

ε

)
,

Assumption 8 holds with probability at least 9
10 .

8.7.4 Regularity assumptions: Lipschitz and smooth stochastic optimiza-

tion

In Section 8.9, we develop algorithms for the special case of Model 2 when all γyi(v) := γ(v, yi), as

viewed as a function of its first variable, satisfy

∣∣γ′yi(v)
∣∣ ≤ 1, 0 ≤ γ′′yi(v) ≤ 1 for all v ∈ R, i ∈ [n].

In other words, all γyi are 1-smooth and 1-Lipschitz. A canonical example is when all yi = ±1 are

positive or negative labels, and γ is the logistic loss function, γ(v, y) = log(1 + exp(−vy)). In this

setting, we will focus on approximating the (population) regularized optimizer,

θ?reg := argminθ∈Rd
{
F ?(θ) +

µ

2
‖θ‖22

}
, where F ?(θ) := Ef∼Df [f(θ)] . (8.42)

Here, µ ∈ R≥0 controls the amount of regularization, and is used to introduce some amount of strong

convexity in the problem. Following Section 8.7.2, the distribution Df over sampled functions is

directly dependent on a dataset distribution, DXy, through the relationship in Model 2. Concretely,

we make the following regularity assumptions about the distribution DXy and its induced Df .

Model 5 (distributional regularity for smooth GLMs). DXy, supported on Rd × R, its marginals

DX , Dy, and its induced function distribution Df , have the following properties.

1. Letting the second moment matrix of DX be Σ? and 0 < L, we have Σ? � LI.

2. There is a link function γ : R2 → R, such that for all y in the support of Dy, γy(v) := γ(v, y)

satisfies
∣∣γ′y(v)

∣∣ ≤ 1 and 0 ≤ γ′′y (v) ≤ 1 for all v ∈ R.

3. The distribution of f ∼ Df is generated as follows: for (X, y) ∼ DXy, f(θ) = γ(〈X, θ〉 , y).

In Section 8.10, we further develop algorithms for the special case of Model 2 when all γyi(v) :=

γ(v, yi) satisfy only a first-derivative bound,

∣∣γ′yi(v)
∣∣ ≤ 1 for all v ∈ R, i ∈ [n].

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 390

In other words, all γyi are 1-Lipschitz (but possibly non-smooth). A canonical example is when all

yi = ±1 are positive or negative labels, and γ is the support vector machine loss function (hinge

loss), γ(v, y) = max(0, 1 − vy). In this setting, we will focus on approximating the (population)

regularized optimizer of the Moreau envelope,

θ?env := argminθ∈Rd
{
F ?γ (θ) +

µ

2
‖θ‖22

}
, where F ?(θ) = Ef∼Df [f(θ)],

and F ?λ (θ) := inf
θ′

{
F ?(θ′) +

1

2λ
‖θ − θ′‖22

}
.

The Moreau envelope is extremely well-studied [435], and can be viewed as a smooth approximation

to a non-smooth function. We choose to focus on optimizing the Moreau envelope because it is

amenable to acceleration techniques, trading off approximation for smoothness.

Model 6 (distributional regularity for Lipschitz GLMs). DXy, supported on Rd × R, its marginals

DX , Dy, and its induced function distribution Df , have the following properties.

1. Letting the second moment matrix of DX be Σ? and 0 < L, we have Σ? � LI.

2. There is a link function γ : R2 → R, such that for all y in the support of Dy, γy(v) := γ(v, y)

satisfies
∣∣γ′y(v)

∣∣ ≤ 1 for all v ∈ R.

3. The distribution of f ∼ Df is generated as follows: for (X, y) ∼ DXy, f(θ) = γ(〈X, θ〉 , y).

In other words, Model 6 is Model 5 without the smoothness assumption. Under the weaker

Model 6, [176] showed that we can make the following simplifying deterministic assumptions about

our observed dataset (which also extends to Model 5, as it a superset of conditions).

Assumption 9 (deterministic regularity for Lipschitz regression). The set {(Xi, yi)}i∈[n] ⊂ Rd×R,

and the link function γ : R2 → R, have the following properties, for [n] = G ∪B.

1. Letting w?G := 1
|G|1G, Covw?G(X) � 3

2LI.

2. There is a constant Cest such that for all θ ∈ Rd and all saturated w ∈ ∆n, letting w̃ := wG
‖wG‖1

,

‖∇Fw̃(θ)−∇F ?(θ)‖2 ≤ Cest

√
Lε,∥∥Covw̃

(
{gi(θ)}i∈G

)∥∥
op
≤ CestL.

Proposition 35 ([176], Proposition C.3). Let ε > 0 be sufficiently small. Let {(Xi, yi)}i∈[n] ⊂ Rd×R
be an ε-corrupted set of samples from a distribution DXy as in Model 6. Then, if

n = O

(
d log (d/ε)

ε

)
,

Assumption 9 holds with probability at least 9
10 .

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 391

Finally, we make the useful observation that F ? under Model 6 is also Lipschitz.

Lemma 133. Under Model 6, F ? = Ef∼Df [f] is
√
L-Lipschitz.

Proof. We wish to prove ‖∇F ?(θ)‖2 ≤
√
L for all θ ∈ Rd. By nonnegativity of covariance,

Ef∼Df
[
(∇f(θ)) (∇f(θ))

>
]
�
(
Ef∼Df [∇f(θ)]

) (
Ef∼Df [∇f(θ)]

)>
= (∇F ?(θ)) (∇F ?(θ))> .

Since the right-hand side of the above display is rank-one, ‖∇F ?(θ)‖22 is at most the largest eigenvalue

of the gradient second moment matrix, so it suffices to show the left-hand side is � LI: assuming

f ∼ Df is associated with (X, y) ∼ DXy,

Ef∼Df
[
(∇f(θ)) (∇f(θ))

>
]

= EX,y∼DXy
[
X (γ′ (〈X, θ〉 , y))

2
X>
]
� Σ? � LI.

8.7.5 Robustly decreasing the covariance operator norm

In this section, we describe a procedure, FastCovFilter, which takes as input a set of vectors V :=

{vi}i∈[n] ∈ Rn×d such that for an (unknown) bipartition [n] = G∪B, it is promised that Ei∼unifG

[
viv
>
i

]
is bounded in operator norm by R. Given this promise, FastCovFilter takes as input a set of saturated

weights w ∈ ∆n and performs a sequence of safe weight removals to obtain a new saturated w′ ∈ ∆n,

such that
∑
i∈[n] w

′
iviv

>
i is bounded in operator norm by O(R). Moreover, the procedure runs in

nearly-linear time in the description size of V. We formally describe the guarantees of FastCovFilter

here as Proposition 36, and defer the proof to Appendix G.6.

Proposition 36. There is an algorithm, FastCovFilter (Algorithm 92), taking inputs V := {vi}i∈[n] ∈
Rn×d, saturated weights w ∈ ∆n with respect to bipartition [n] = G ∪ B with |B| = εn, δ ∈ (0, 1],

and R ≥ 0 with the promise that ∥∥∥∥∥∑
i∈G

1

|G|
viv
>
i

∥∥∥∥∥
op

≤ R.

Then, with probability at least 1− δ, FastCovFilter returns saturated w′ ∈ ∆n such that∥∥∥∥∥∥
∑
i∈[n]

w′iviv
>
i

∥∥∥∥∥∥
op

≤ 5R.

The runtime of FastCovFilter is

O
(
nd log3(n) log

(n
δ

))
.

An algorithm with similar guarantees to FastCovFilter is implicit in the work [194], but we give

a self-contained exposition in this work for completeness. Our approach in designing FastCovFilter

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 392

is to use a matrix multiplicative weights-based potential function, along with the filtering approach

suggested by Lemma 130, to rapidly decrease the quadratic form of the empirical second moment

matrix in a number of carefully-chosen directions, and argue this quickly decreases the potential. We

remark that this potential-based approach was developed earlier in this chapter (see Section 8.3).

8.8 Linear regression

Throughout this section, we operate under Models 1 and 3, and Assumption 7. Namely, there is

a dataset {Xi, yi}i∈[n] and an unknown bipartition [n] = G ∪ B, such that {Xi, yi}i∈G were draws

from a distribution DXy, and we wish to estimate

θ? := argminθ∈RdF
?(θ), where F ?(θ) := EX,y∼DXy

[
1

2
(〈X, θ〉 − y)

2

]
.

We follow notation (8.35), (8.37) in this section, and define G? ⊆ G as the subset given by Assump-

tion 7.2 for the true minimizer θ?. We also define B? := [n] \G?, so B? ⊇ B.

We begin in Section 8.8.1 with a preliminary on filtering under a weaker assumption than the

safety condition in Definition 29; in particular, Assumption 7 is not quite compatible with Defini-

tion 29 because G′ can change based on θ, but will not affect saturation by more than constants. In

Section 8.8.2, we then state a general “identifiability proof” showing that controlling certain quanti-

ties such as the operator norm of the gradient covariances and near-optimality of a current estimate

θ, with respect to some weights w ∈ ∆n, suffices to bound closeness of θ and θ?. This identifiability

proof is motivated by an analogous argument in [53], and will guide our algorithm design. Next,

we give a self-contained oracle which rapidly halves the distance to θ? outside of a sufficiently large

radius in Section 8.8.3, and analyze the final phase (once this radius is reached) in Section 8.8.4. We

put the pieces together to give our main result and full algorithm in Section 8.8.5.

8.8.1 Filtering under (ε, ε
2

α
)-goodness

Throughout this section, we will globally fix a value (for a sufficiently large constant)

α = O

(
max

(
1, εκ log

R0

σ

))
. (8.43)

In this definition, R0 is an initial distance bound on ‖θ0 − θ?‖Σ? we will provide to our final algorithm

(see the statement of Theorem 56). We operate under Assumption 7 such that our dataset is (ε, ε
2

α)-

good, which inflates the sample complexity of Proposition 33 by a factor depending on α.

At a high level, this technical complication is to ensure that throughout the algorithm we never

remove more than 3ε mass from G, and that our weights are always ε-saturated with respect to

G ∪B, allowing for inductive application of Assumption 7. Formally, we demonstrate the following

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 393

(simple) generalization of Lemma 130, using safety definitions on different sets.

Lemma 134. Suppose Assumption 7 holds with r = ε2

α . Consider any algorithm which performs

the following weight removal.

1. w0 ← 1
n 1,1

2. For 0 ≤ t < T :

(a) [wt+1]i ←
(

1− τi
τmax

)
[wt]i for all i ∈ [n] and τmax := maxi∈[n]|wi 6=0 τi, for {τi}i∈[n] safe

with respect to wt and a bipartition G′t, [n] \G′t where G′t ⊆ G, |G′t| ≥ (1− ε2

α)|G|.

Suppose the number of distinct sets G′t throughout the algorithm is bounded by α
2ε . Then throughout

the algorithm, wt is ε-saturated with respect to the bipartition G ∪B.

Proof. Consider some distinct set G′. The proof of Lemma 130 demonstrates that under these

assumptions, in every iteration t using G′ for weight removal, the amount of mass removed from G′

is less than the amount removed from [n] \ G′. Moreover, the amount of mass removed from G in

these iterations can be at most the amount removed from G′, plus the weight assigned to the entire

difference G \ G′, which is at most a ε2

α fraction. Similarly, the amount of mass removed from B

is at least the amount of mass removed from [n] \ G′, minus their set difference, which is again at

most ε2

α . Combining over all distinct sets, this deviation is at most ε.

It will be straightforward to verify that throughout this section, all weight removals we perform

will be of the form in Lemma 134, and that we never perform weight removals with respect to more

than α
2ε distinct sets. Hence, we will always assume that any weights w we discuss are ε-saturated

with respect to the bipartition G ∪ B, and thus has ‖wG‖1 ≥ 1 − 3ε, allowing for application of

Assumption 7. Finally, we remark we sometimes will apply Assumption 7.1 with weight vectors wG?

instead of wG; since their difference is O(ε2) < ε, this is a correct application for any ‖wG‖1 ≥ 1−3ε.

8.8.2 Identifiability proof for linear regression

In this section, we give an identifiability proof similar to that appearing in [53] which demonstrates,

for a given weight-parameter estimate pair (w, θ) ∈ ∆n × Rd, verifiable technical conditions on this

pair which certify a bound on ‖θ − θ?‖Σ? . In short, Proposition 37 will show that if both of the

quantities

‖∇Fw(θ)‖(Σ?)−1 ,
∥∥∥Covw

(
{gi(θ)}i∈[n]

)∥∥∥
op

(8.44)

are simultaneously controlled, then we obtain a distance bound to θG? .

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 394

Proposition 37. Let w ∈ ∆n be ε-saturated with respect to the bipartition [n] = G ∪ B, and let

θ ∈ Rd. Assuming εκ is sufficiently small, there is a universal constant Cid such that

‖θ − θ?‖Σ? ≤ Cid

√ε
σ√κ+

√√√√∥∥∥Covw

(
{gi(θ)}i∈[n]

)∥∥∥
op

µ

+ ‖∇Fw(θ)‖(Σ?)−1

 .

Proof. Let G′ be the set promised by Assumption 7.2 for the point θ. Throughout this proof, we

define Gθ := G′∩G?, and we let w?θ := 1
|Gθ|1Gθ be the uniform weights on Gθ. Finally, let θ̂ minimize

Fw?θ . By applying Lemma 132 on the weights w?θ , we have that ‖θ̂ − θ?‖Σ? = O(σ
√
κε). Thus, in

the remainder of the proof we focus on bounding ‖θ − θ̂‖Σ? by the required quantity.

Let C(w?θ , w̃) supported on [n] × [n] be an optimal coupling between i ∼ w?θ and j ∼ w̃, where

w̃ := w
‖w‖1

is the distribution proportional to w; we denote the coupling as C for short. For a pair

(i, j) ∈ [n]× [n] sampled from C, we let 1i=j be the indicator of the event i = j, and similarly define

1i6=j . From the total variation characterization of coupling, we have by Lemma 131 that

Ei,j∼C [1i 6=j] = ‖w̃ − w?θ‖1 ≤ 9ε.

Here we used that ‖w?θ − w?G‖1 = O(ε2), where w?G is the uniform distribution onG, as in Lemma 131.

Now, let v = θ − θ̂. We have by Assumption 7.1 that

Ei∼w?θ
[
〈v,Xi〉

〈
Xi, θ − θ̂

〉]
=
〈
θ − θ̂,Ei∼w?θ

[
XiX

>
i

]
(θ − θ̂)

〉
≥ 1

2

∥∥∥θ − θ̂∥∥∥2

Σ?
. (8.45)

On the other hand,

Ei∼w?θ
[
〈v,Xi〉

〈
Xi, θ − θ̂

〉]
= Ei∼w?θ [〈v,Xi〉 (〈Xi, θ〉 − yi)] + Ei∼w?θ

[
〈v,Xi〉

(
yi −

〈
Xi, θ̂

〉)]
= Ei∼w?θ [〈v, gi(θ)〉]− Ei∼w?θ

[〈
v, gi(θ̂)

〉]
= Ei∼w?θ [〈v, gi(θ)〉] .

Here, we used that Ei∼w?θ
[
gi(θ̂)

]
= ∇Fw?θ (θ̂) = 0 by definition of θ̂. Continuing,

Ei∼w?θ
[
〈v,Xi〉

〈
Xi, θ − θ̂

〉]
= Ei,j∼C [〈v, gi(θ)〉1i=j] + Ei,j∼C [〈v, gi(θ)〉1i 6=j]

= Ej∼w̃ [〈v, gj(θ)〉]− Ei,j∼C [〈v, gj(θ)〉1i 6=j] + Ei,j∼C [〈v, gi(θ)〉1i6=j]

≤ 〈v,∇Fw̃ (θ)〉+ 3
√
ε

(
Ej∼w̃

[
〈v, gj(θ)〉2

] 1
2

+ Ei∼w?θ
[
〈v, gi(θ)〉2

] 1
2

)
.

(8.46)

In the last line, we used Cauchy-Schwarz and Ei,j∼C [12
i 6=j] ≤ 9ε to deal with the second and third

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 395

terms. To bound the term corresponding to i ∼ w?θ ,

Ei∼w?θ
[
〈v, gi(θ)〉2

]
≤ ‖v‖22

∥∥∥Covw?θ

(
{gi(θ)}i∈[n]

)∥∥∥
op
≤ 1.1Cestκ ‖v‖2Σ?

(
‖θ − θ?‖2Σ? + σ2

)
.

The first inequality is by definition of ‖·‖op, and the second used ‖v‖22 ≥
1
µ ‖v‖

2
Σ? and Assumption 7.2,

since Gθ is a subset of the set G′ promised by Assumption 7.2 (where we adjusted by a constant for

normalization). We similarly arrive at the bound

Ej∼w̃
[
〈v, gj(θ)〉2

]
≤
‖v‖2Σ?

µ

∥∥∥Covw

(
{gi(θ)}i∈[n]

)∥∥∥
op
.

Now plugging the above displays into (8.46) and combining with (8.45), as well as using ‖θ − θ?‖2Σ?+

σ2 = O(‖θ − θ̂‖2Σ? + σ2) by the triangle inequality and our earlier bound on ‖θ? − θ̂‖Σ? ,

∥∥∥θ − θ̂∥∥∥2

Σ?
≤
∥∥∥θ − θ̂∥∥∥

Σ?
‖∇Fw̃(θ)‖(Σ?)−1 +O

(√
εκ
)(

σ
∥∥∥θ − θ̂∥∥∥

Σ?
+
∥∥∥θ − θ̂∥∥∥2

Σ?

)

+O
(√
ε
)∥∥∥θ − θ̂∥∥∥Σ?

√√√√∥∥∥Covw

(
{gi(θ)}i∈[n]

)∥∥∥
op

µ

 .

In the first line, we used Cauchy-Schwarz to bound the term 〈v,∇Fw̃(θ)〉. Dividing through by

‖θ − θ̂‖Σ? , and using that εκ is sufficiently small, yields the conclusion.

Proposition 37 suggests a natural approach. On the one hand, if θ is an (approximate) minimizer

to Fw, the first quantity in (8.44) will be small. On the other hand, for a fixed θ ∈ Rd, we can

filter on w using our subroutine FastCovFilter until the second quantity in (8.44) is small. The main

challenge is accomplishing both bounds simultaneously. To this end, we show that the number of

times we have to repeat this process of filtering and then computing an approximate minimizer is

bounded, using Fw as a potential function; by preprocessing Fw so that is smooth at all points, if θ

is an approximate minimizer for the Fw attained after filtering on gradients at θ, then we can exit

the subroutine. Otherwise, we argue we make substantial function progress by calling an empirical

risk minimizer to terminate quickly. We make this strategy formal in the following sections.

8.8.3 Halving the distance to θ?

In this section, we design a procedure, HalfRadiusLinReg, with the following guarantee. Suppose that

we have ε-saturated w̄ ∈ ∆n and a parameter θ̄ ∈ Rd, as well as scalar R with the promise

∥∥θ̄ − θ?∥∥
Σ? ≤ R.

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 396

The goal of HalfRadiusLinReg is to return a new θ with ‖θ − θ?‖Σ? ≤ 1
2R; we require that R = Ω(σ)

for a sufficiently large constant in this section. We do so by using saturated weights to guide a

potential analysis, crucially using Proposition 37. Before stating HalfRadiusLinReg, we require two

additional helper tools. The first is an approximate optimization procedure.

Definition 32. We call OERM a γ-approximate ERM oracle if on input F : Rd → R it returns a

point θ̂ such that F (θ̂)− F (θ?F) ≤ γ, for θ?F := argminθ∈RdF (θ).

The second controls the initial error, which we use to yield distance bounds via strong convexity.

Lemma 135. There is an algorithm, FunctionFilter, which takes as input ε-saturated w ∈ ∆n,

θ ∈ Rd, and R ≥ ‖θ − θ?‖Σ? , and produces ε-saturated w′ ∈ ∆n such that Fw′(θ) ≤ 2Cub(σ2 +R2),

in time O(nd+ n log D
R2), where D is a bound on the largest 1

2 (〈Xi, θ〉 − yi)2 for any nonzero wi.

Proof. Define τi := fi(θ) = 1
2 (〈Xi, θ〉−yi)2. Assumption 7.1 shows that FwG? is 3

2 -smooth in the Σ?

norm, since its Hessian is exactly ‖wG?‖1 CovwG? (X) � 3
2Σ?. Moreover, letting θ̂ minimize FwG? ,

by Lemma 132, the triangle inequality and the assumed bound R,∥∥∥θ − θ̂∥∥∥
Σ?
≤ R+

∥∥∥θ? − θ̂∥∥∥
Σ?
≤ R+ σ.

Hence, assuming Cub is large enough and R ≥ σ, smoothness demonstrates

∑
i∈G?

wiτi = FwG? (θ) ≤ FwG? (θ̂) +
3

4

∥∥∥θ − θ̂∥∥∥2

Σ?
≤ Cub(σ2 +R2),

Next, letting τmax := maxi∈[n]|wi 6=0 τi and K ∈ N ∪ {0} be smallest such that

∑
i∈[n]

(
1− τi

τmax

)K
wiτi ≤ 2Cub(σ2 +R2),

each of the first K weight removals according to the scores τ are safe with respect to G? ∪B?, and

Lemma 134 implies we can output ε-saturated w′i =
(

1− τi
τmax

)K
wi entrywise. It remains to binary

search for K; given access to the scores τ , checking if a given K passes the above display takes O(n)

time. We can upper bound K by the following inequality:

∑
i∈[n]

(
1− τi

τmax

)K
wiτi ≤

∑
i∈[n]

exp

(
− Kτi
τmax

)
wiτi ≤

1

eK

∑
i∈[n]

wiτmax ≤
τmax

K
.

Here the second inequality used x exp(−Cx) ≤ 1
eC for all nonnegative x, C, where we chose C = K

τmax

and x = τi. Hence, K = O(DR2). The runtime follows as computing scores takes time O(nd).

We remark that every time we use FunctionFilter is a weight removal of the form in Lemma 134,

which is safe with respect to the bipartition G? ∪B?. This accounts for one distinct set throughout.

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 397

Algorithm 46: HalfRadiusLinReg(X, y, w̄, θ̄, R,D,OERM, δ)

1 Input: Dataset X = {Xi}i∈[n] ∈ Rn×d, y = {yi}i∈[n] ∈ Rn, satisfying Assumption 7,

ε-saturated w̄ ∈ ∆n with respect to bipartition [n] = G∪B such that X>diag (w̄) X � 8LI,

θ̄ ∈ Rd with
∥∥θ̄ − θ?∥∥

Σ? ≤ R, δ ∈ (0, 1), O(σ
2

κ)-approximate ERM oracle OERM,

D ≥ max
i∈[n]

1

2
(
〈
Xi, θ̄

〉
− yi)2. (8.47)

;
2 Output: With probability ≥ 1− δ, saturated w with respect to G ∪B, and θ with

‖θ − θ?‖Σ? ≤
1

2
R.

;

3 t← 0, w(0) ← FunctionFilter(w, θ̄, R,D), ∆0 ←∞;

4 while ∆t >
R2

512κC2
id

do

5 θ(t) ← OERM(Fw(t));

6 w(t+1) ← FastCovFilter
({
gi
(
θ(t)
)}
i∈[n]

, w(t), δ
O(κ) , 40CestCubLR

2
)

;

7 ∆t+1 ← Fw(t+1)

(
θ(t)
)
− Fw(t+1)

(
θ(t+1)

)
;

8 t← t+ 1;

9 Return:
(
w(t), θ(t−1)

)

Lemma 136. HalfRadiusLinReg is correct, i.e. if its preconditions are met, it successfully returns

(w, θ) such that w ∈ ∆n is ε-saturated and ‖θ − θ?‖Σ? ≤ 1
2R. It runs in O(κ) calls to OERM, plus

O

(
n log

(
D

R2

)
+ ndκ log3(n) log

(nκ
δ

))
additional time.

Proof. We discuss correctness and runtime separately.

Correctness. The first step of our correctness proof is to show that throughout the algorithm,∥∥∥θ(t) − θ?
∥∥∥

Σ?
≤ 6
√
CubR. (8.48)

To see this, consider iteration t and suppose w(t) is ε-saturated. Let G′ ⊆ G be the set promised by

Assumption 7.2 for the pair (w(t), θ(t)), and let Gt = G′ ∩G?. At the beginning of the algorithm we

applied FunctionFilter (see Lemma 135), and the minimum value of Fw is monotone nonincreasing

as w is decreasing, and OERM only decreases function value (else Line 4 would fail), so since R ≥ σ,

F
w

(t)
Gt

(
θ(t)
)
≤ Fw(t)

(
θ(t)
)
≤ 4CubR

2.

On the other hand, F
w

(t)
Gt

is 1
3 -strongly convex in the Σ? norm by Assumption 7.1 (adjusting for the

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 398

normalization factor), and hence letting θ?t be the minimizer of F
w

(t)
Gt

, we have

4CubR
2 ≥ F

w
(t)
Gt

(
θ(t)
)
≥ F

w
(t)
Gt

(
θ(t)
)
−F

w
(t)
Gt

(θ?t) ≥ 1

6

∥∥∥θ(t) − θ?t
∥∥∥2

Σ?
=⇒

∥∥∥θ(t) − θ?t
∥∥∥

Σ?
≤ 5
√
CubR.

Finally, by using Lemma 132 on θ?t , we have ‖θ?t − θ?‖Σ? ≤ 4Cestσ
√
κε ≤ R. From this and the

above display, the triangle inequality yields (8.48). Now, (8.48) with Assumption 7.2 shows that for

all t, ∥∥∥∥Cov 1
|Gt|

1Gt

({
gi(θ

(t))
}
i∈Gt

)∥∥∥∥
op

≤ 40CestCubLR
2.

We argue later in this proof that there are at most O(κ) loops throughout the algorithm. This shows

all calls to FastCovFilter are safe with respect to the bipartition Gt, [n] \Gt (adjusting the definition

of ε by a constant in Proposition 36), and thus taking a union bound the algorithm succeeds with

probability at least 1− δ. Condition on this for the remainder of the proof.

The success of all calls to FastCovFilter implies that in every iteration t (following Proposition 36),∥∥∥∥Covw(t+1)

({
gi(θ

(t))
}
i∈[n]

)∥∥∥∥
op

= O
(
LR2

)
. (8.49)

Next, in any iteration where ∆t+1 ≤ R2

512κC2
id

, we claim that

∥∥∥∇Fw(t+1)

(
θ(t)
)∥∥∥

(Σ?)−1
≤ R

4Cid
. (8.50)

This is because Fw(t+1) is 8κ-smooth in the Σ? norm, since ∇2Fw(t+1) = X>diag
(
w(t+1)

)
X � 8LI

by assumption, and 8κΣ? � 8LI by assumption, so by the guarantees of OERM,

1

16κ

∥∥∥∇Fw(t+1)

(
θ(t)
)∥∥∥2

(Σ?)−1
≤ Fw(t+1)

(
θ(t)
)
− min
θ∈Rd

Fw(t+1) (θ)

≤ ∆t+1 +O

(
σ2

κ

)
≤ R2

256κC2
id

.

Rearranging indeed yields (8.50). Now by combining (8.49) and (8.50) in Proposition 37, we see

that if ∆t+1 ≤ R2

512κC2
id

in an iteration, we obtain the desired
∥∥θ(t) − θ?

∥∥
Σ? ≤ 1

2R.

Runtime. We first observe that the loop in Lines 4-9 of Algorithm 46 can only run O(κ)

times. This is because FunctionFilter decreases the initial function value until it is O(R2), and

every loop decreases the function value by Ω(R
2

κ). Hence, the cost of the whole algorithm is one

call to FunctionFilter, and O(κ) calls to OERM, FastCovFilter, and two function value computations,

which fit into the allotted runtime budget by Lemma 135 and Proposition 36.

Finally, we remark that throughout Algorithm 46, we only filtered weight based on FunctionFilter

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 399

and FastCovFilter, with respect to at mostO(κ) distinct sets (in the manner described by Lemma 134):

the sets {Gt} used in correctness calls to FastCovFilter, and the setG? for the one call to FunctionFilter.

8.8.4 Last phase analysis

In this section, we give a slight variant of Algorithm 46 which applies when R ≤ Clpσ for a universal

constant Clp. It will have a somewhat more stringent termination condition, because we require the

gradient term in Proposition 37 to be O(σ
√
εκ), but otherwise is identical.

Algorithm 47: LastPhase(X, y, w̄, θ̄, D,OERM, δ)

1 Input: Dataset X = {Xi}i∈[n] ∈ Rn×d, y = {yi}i∈[n] ∈ Rn, satisfying Assumption 7,

ε-saturated w̄ ∈ ∆n with respect to bipartition [n] = G∪B such that X>diag (w̄) X � 8LI,
θ̄ ∈ Rd with

∥∥θ̄ − θ?∥∥
Σ? ≤ Clpσ, δ ∈ (0, 1), O(σ2ε)-approximate ERM oracle OERM,

D ≥ max
i∈[n]

1

2
(
〈
Xi, θ̄

〉
− yi)2. (8.51)

;
2 Output: With probability ≥ 1− δ, saturated w with respect to G ∪B, and θ with

‖θ − θ?‖Σ? = O
(
σ
√
κε
)
.

;

3 t← 0, w(0) ← FunctionFilter(w, θ̄, Clpσ,D), ∆0 ←∞;
4 while ∆t > σ2ε do
5 θ(t) ← OERM(Fw(t));

6 w(t+1) ← FastCovFilter
({
gi
(
θ(t)
)}
i∈[n]

, w(t), O (δε) , 40CestCubC
2
lpLσ

2
)

;

7 ∆t+1 ← Fw(t+1)

(
θ(t)
)
− Fw(t+1)

(
θ(t+1)

)
;

8 t← t+ 1;

9 Return:
(
w(t), θ(t−1)

)
;

Lemma 137. LastPhase is correct, i.e. if its preconditions are met, it successfully returns (w, θ)

such that w ∈ ∆n is ε-saturated and ‖θ − θ?‖Σ? = O (σ
√
κε). It runs in O(1

ε) calls to OERM, plus

O

(
n log

(
D

R2

)
+
nd

ε
log3(n) log

(n
δε

))
additional time.

Proof. On the correctness side, the analysis is nearly identical to Lemma 136; the same logic applies

to yield an analogous bound to (8.48), which shows that all iterates are within O(σ) from the

minimizer, so all calls to FastCovFilter are correct. This implies that (analogous to (8.49)) the

gradient operator norm is always bounded by O(Lσ2). Similarly, since the threshold for termination

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 400

is when the function decrease is σ2ε, we have that on the terminating iteration,

1

16κ

∥∥∥∇Fw(t+1)

(
θ(t)
)∥∥∥2

(Σ?)−1
= O(σ2ε),

and combining this with the operator norm bound in Proposition 37 yields the conclusion. On the

runtime side, the analysis is the same as Lemma 136, except that there are now O(1
ε) iterations.

Again, we remark here that throughout Algorithm 47, we filtered weight with respect to at most

O(ε−1) distinct sets (in the manner described by Lemma 134).

8.8.5 Full algorithm

Before we give our full algorithm, we require some preliminary pruning procedures on the dataset.

Lemma 138. Under Assumption 7, for all i ∈ G, ‖Xi‖2 ≤
√

2Ln.

Proof. Suppose otherwise for some i ∈ G. Then, since CovwG (X) � 1
|G|XiX

>
i � 1

nXiX
>
i , CovwG (X)

has an eigenvalue larger than 3
2L (certified by Xi

‖Xi‖2
), contradicting Assumption 7.1.

We next give a bound on D required by Algorithms 46 and 47, assuming a bound on
∥∥θ̄ − θ?∥∥

Σ? .

Lemma 139. Suppose all {Xi}i∈[n] satisfy ‖Xi‖2 ≤
√

2Ln, and we have a bound
∥∥θ̄ − θ?∥∥

Σ? ≤ R.

Under Assumption 7, it suffices to set D in HalfRadiusLinReg or LastPhase to

D = 2nCubσ
2 + 2κnR2. (8.52)

Proof. First, under Assumption 7 we have that for all i ∈ G,

|〈Xi, θ
?〉 − yi| ≤

√
2nCubσ2.

Applying Cauchy-Schwarz, we have that for all i ∈ G, since
∥∥θ̄ − θ?∥∥

2
≤ 1√

µ

∥∥θ̄ − θ?∥∥
Σ? ≤ R√

µ ,

∣∣〈Xi, θ̄
〉
− yi

∣∣ ≤√2nCubσ2 + ‖Xi‖2
∥∥θ̄ − θ?∥∥

2
≤
√

2nCubσ2 +
√

2κnR.

Finally, we give our full algorithm for regression, FastRegression, below.

Theorem 56. In Models 1 and 3, under Assumption 7 with r = ε2

α for α as in (8.43), supposing εκ is

sufficiently small, given θ0 ∈ Rd and ‖θ0 − θ?‖Σ? ≤ R0, FastRegression returns θ with ‖θ − θ?‖Σ? =

O(σ
√
κε) with probability at least 1 − δ. The algorithm runs in O

(
1
ε + κ log R0

σ

)
calls to a O(σ2ε)-

approximate ERM oracle, and

O

((
nd log3(n) log

(
nR0

σδε

))(
1

ε
+ κ log

R0

σ

))
additional time.

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 401

Algorithm 48: FastRegression(X, y, θ0, R0,OERM, δ)

1 Input: Dataset X = {Xi}i∈[n] ∈ Rn×d, y = {yi}i∈[n] ∈ Rn, satisfying Models 1 and 3, and

satisfying Assumptions 7, θ0 ∈ Rd with ‖θ0 − θ?‖Σ? ≤ R0, δ ∈ (0, 1), O(σ2ε)-approximate
ERM oracle OERM.;

2 Output: With probability ≥ 1− δ, θ with

‖θ − θ?‖Σ? = O
(
σ
√
κε
)
.

;

3 Remove all (Xi, yi) with ‖Xi‖2 >
√

2nL, n← new dataset size;

4 w ← FastCovFilter(X, 1
n 1,1

, δ3 ,
3
2L, 2nL), R← R0 + 4Cestσ

√
κε, θ ← θ0;

5 T ← O(log R0

σ) for a sufficiently large constant;
6 while R > Clpσ do
7 D ← value in (8.52) with current setting of R ;
8 Remove all (Xi, yi) not satisfying bound (8.47), n← new dataset size;

9 (w, θ)← HalfRadiusLinReg(X, y, w, θ,R,D,OERM,
δ

3T);

10 R← 1
2R;

11 D ← value in (8.52) with current setting of R ;
12 Remove all (Xi, yi) not satisfying bound (8.47), n← new dataset size;

13 (w, θ)← HalfRadiusLinReg(X, y, w, θ,D,OERM,
δ
3);

14 Return: θ;

Proof. First, correctness of Lines 3, 8, and 13 of the algorithm follow from Lemmas 138 and 139. Also,

Line 4 ensures that throughout the algorithm we have X>diag (w) X � 8LI, so the preconditions of

HalfRadiusLinReg and LastPhase are met. Finally, the initial setting of R is correct by Lemma 132

and the assumed bound R0. The correctness and runtime then follow from applying Lemma 136 T

times and Lemma 137 once. The failure probability comes from union bounding over the one call

to FastCovFilter, the T calls to HalfRadiusLinReg, and the one call to LastPhase.

Finally, for completeness we check that the promise of Section 8.8.1 is kept by Algorithm 48.

There are at most log(R0

σ) calls to HalfRadiusLinReg, and one call to LastPhase. Combined, this

accounts for at most O(1
ε +κ log R0

σ) distinct sets we filtered with respect to, in the manner described

by Lemma 134. For a sufficiently large α in (8.43), this is indeed at most α
2ε distinct sets.

We conclude this section by noting that the guarantees of Proposition 33 imply the sample

complexity required for Algorithm 48 to succeed with probability at least 9
10 − δ is n = Õ(dε4 + d2

ε3).

8.9 Robust acceleration

In this section, we give a general-purpose algorithm for solving statistical optimization problems

with a finite condition number κ under the strong contamination model. We study the following

abstract problem: we wish to minimize a function F : Rd → R which is L-smooth and µ-strongly

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 402

convex with minimizer θ?F , but we only have black-box access to F through a noisy gradient oracle

Ong. In particular, we can query Ong at any point θ ∈ Rd with a parameter R ≥ ‖θ − θ?F ‖2 and

receive G(θ) such that for a universal constant Cng,

‖G(θ)−∇F (θ)‖2 ≤ Cng

(√
Lεσ + L

√
εR
)
.

Notably, our algorithm is accelerated, running in a number of iterations depending on
√
κ rather

than κ. It applies to both the regression setting of Section 8.7.3 and the smooth stochastic opti-

mization setting of Section 8.7.4. We demonstrate in Section 8.9.1 how to build a noisy gradient

oracle for regression and smooth stochastic optimization settings. We then build in Section 8.9.2 a

simple subroutine based on the robust gradient descent framework of [447] to approximately solve

regularized subproblems encountered by our final algorithm. We put the pieces together and give our

complete algorithm in Sections 8.9.3 and 8.9.4. Throughout we assume εκ2 < 1 is sufficiently small.

8.9.1 Noisy gradient oracle

In this section, we build noisy gradient oracles for the problems in Sections 8.7.3 and 8.7.4. We now

give a formal definition below; the remaining sections will access F through this abstraction.

Definition 33 (Noisy gradient oracle). We call Ong(θ,R) a (L, σ, δ)-noisy gradient oracle for F :

Rd → R with minimizer θ?F if on query θ ∈ Rd and given R ≥ ‖θ − θ?F ‖2, with probability ≥ 1− δ it

returns G(θ) satisfying for a universal constant Cng,

‖G(θ)−∇F (θ)‖2 ≤ Cng

(√
Lεσ + L

√
εR
)
.

If the returned G(θ) always satisfies the stronger bound ‖G(θ)−∇F (θ)‖2 ≤ Cng

√
Lεσ, we call Ong

a (L, σ, δ)-radiusless noisy gradient oracle.

Before developing our implementations, we state a useful identifiability result relating gradient

estimation to controlling operator norms of gradient second moments for finite sum functions.

Lemma 140. Suppose FG(θ) = 1
|G|
∑
i∈G fi(θ) for some functions {fi}i∈G, and let w ∈ ∆n be

saturated with respect to bipartition [n] = G ∪B. For w̃ := w
‖w‖1

and w?G = 1
|G|1G, we have

∥∥Ei∼w?G [∇fi(θ)]− Ej∼w̃ [∇fj(θ)]
∥∥

2
≤
√

24ε

(∥∥∥Covw?G

(
{∇fi(θ)}i∈[n]

)∥∥∥ 1
2

op
+
∥∥∥Covw̃

(
{∇fi(θ)}i∈[n]

)∥∥∥ 1
2

op

)
.

Proof. Throughout this proof, we let C supported on [n]×[n] be an optimal coupling between i ∼ w?G

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 403

and j ∼ w̃, and follow notation from Proposition 37. For some unit vector v ∈ Rd, we have

〈
v,Ei∼w?G [∇fi(θ)]− Ej∼w̃ [∇fj(θ)]

〉
= Ei,j∼C [〈v,∇fi(θ)−∇fj(θ)〉]

= Ei,j∼C [〈v,∇fi(θ)−∇fj(θ)〉1i 6=j]

≤
√

6εEi,j∼C
[
〈v,∇fi(θ)−∇fj(θ)〉2

] 1
2

≤
√

24ε

(
Ei∼w?G

[
〈v,∇fi(θ)〉2

] 1
2

+ Ej∼w̃
[
〈v,∇fj(θ)〉2

] 1
2

)
.

The conclusion follows from choosing v to be in the direction of Ei∼w?G [∇fi(θ)]−Ej∼w̃ [∇fj(θ)], and

using the definition of the operator norm.

Lemma 140 implies that for approximating gradients of functions F which are “closely approx-

imated” by an (unknown) finite sum function FG, it suffices to find a weighting w̃ such that the

operator norm of Covw̃ applied to gradients is bounded. We now demonstrate applications of this

strategy to linear regression and smooth stochastic optimization.

Corollary 37. Consider a robust linear regression instance where we have sample access to datasets

X = {Xi}i∈[n] ∈ Rn×d and y = {yi}i∈[n] ∈ Rn under Models 1, 4, with sample size n corresponding

to Proposition 34. For

F (θ) = F ?(θ) = EX,y∼DXy
[

1

2
(〈Xi, θ〉 − yi)2

]
,

we can construct a (L, σ, δ)-noisy gradient oracle for F in O
(
nd log3(n) log2

(
n
δ

))
time, using O(log 1

δ)

queries of samples from Proposition 34.

Proof. We first demonstrate how to construct a noisy gradient oracle with success probability ≥ 8
10 .

The algorithm is as follows: first, sample a dataset under Models 1, 4, according to Proposition 34.

Then, at point θ ∈ Rd, with probability 9
10 Assumption 8 gives us a set G := Gθ (where we drop the

subscript for simplicity, as this proof only discusses a single θ) with |G| = (1 − ε) such that (8.41)

holds. If we have the promise ‖θ − θ∗‖2 ≤ R, let w ∈ ∆n be the output of

FastCovFilter

(
{gi(θ)}i∈[n],

1

n 1,1
,

9

10
, Cest

(
Lσ2 + LR2

))
, where gi(θ) := Xi (〈Xi, θ〉 − yi) .

where FastCovFilter (Algorithm 92) is the algorithm of Proposition 36. We then output Ej∼w̃ [gj(θ)],

where w̃ = w
‖w‖1

. The runtime is O(nd log4 n) from the bottleneck operation of running FastCovFilter.

The assumptions of FastCovFilter, namely a bound on Covw?G
(
{gi(θ)}i∈[n]

)
, are satisfied by Assump-

tion 8.2. Guarantees of FastCovFilter and Lemma 140 then imply

∥∥Ei∼w?G [gi(θ)]− Ej∼w̃ [gj(θ)]
∥∥

2
= O

(√
Lεσ + L

√
εR
)
.

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 404

The conclusion follows from Assumption 8.2 which bounds
∥∥Ei∼w?G [gi(θ)]−∇F (θ)

∥∥
2
.

We now describe how to boost the success probability, by calling our sample access T = O(log 1
δ)

times. Let G? := ∇F (θ) be the true gradient, and run the procedure described above T times,

producing {Gt}t∈[T], such that each Gt satisfies ‖Gt −G?‖2 ≤ C(
√
Lεσ + L

√
εR) with probability

at least 4
5 , for some constant C. By standard binomial concentration, with probability at least 1−δ,

at least 3
5 of the {Gt}t∈[T] will satisfy this bound; call such a satisfying Gt “good.” We return any

Gt which is within distance 2C(
√
Lεσ + L

√
εR) from at least 3

5 of the gradient estimates. Note

this will never return any Gt with ‖Gt −G?‖2 > 4C(
√
Lεσ + L

√
εR), since the triangle inequality

implies this Gt will miss all the good estimates, a contradiction since there is at most a 2
5 fraction

which is not good. Thus, this procedure satisfies the requirements with Cng = 4C; the additional

runtime overhead is O(log2(1
δ)) distance comparisons between our gradient estimates.

Corollary 38. Consider a robust Lipschitz (not necessarily smooth) stochastic optimization instance

where we have sample access to datasets X = {Xi}i∈[n] ∈ Rn×d and y = {yi}i∈[n] ∈ Rn under

Models 1, 2, 6 with sample size n corresponding to Proposition 35. For

F (θ) = F ?(θ) +
µ

2
‖θ‖22 = Ef∼Df [f(θ)] +

µ

2
‖θ‖22 ,

we can construct a (L, 1, δ)-radiusless noisy gradient oracle for F in O
(
nd log3(n) log2

(
n
δ

))
time,

using O(log 1
δ) queries of samples from Proposition 35.

Proof. The proof follows identically to that of Corollary 37, where we use Assumption 9.2 in place

of Assumption 8.2.

In most of Sections 8.9.2, 8.9.3, and 8.9.4, we will no longer discuss any specifics of the unknown

function F : Rd → R we wish to optimize, except that it is L-smooth, µ-strongly convex, has

minimizer θ?F , and supports a noisy gradient oracle Ong. We will apply Corollaries 37 and 38 to

derive concrete rates and sample complexities for specific applications at the conclusion of this

section.

8.9.2 Proximal subproblems

In this section, we develop a subroutine which obtains approximate minimizers of certain regularized

problems which we call proximal subproblems. Concretely, we now formally define the notion of a

noisy proximal oracle, an abstraction we will use in the following Section 8.9.4.

Definition 34 (Noisy proximal oracle). We call Onp a (σ, δ)-noisy proximal oracle for L-smooth

F : Rd → R with minimizer θ?F if on query θ̄ ∈ Rd and given R ≥
∥∥θ̄ − θ?F∥∥2

, with probability ≥ 1−δ

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 405

it returns θ̂ satisfying for a universal constant Cnp,

∥∥∥θ̂ − θ?θ̄∥∥∥
2
≤ Cnp

(
σ

√
ε

L
+
√
εR

)
, where θ?θ̄ := argminθ∈Rd

{
F (θ) +

L

2

∥∥θ − θ̄∥∥2

2

}
. (8.53)

The main goal of this section is to give a reduction from implementation of a noisy proximal oracle

to implementation of a noisy gradient oracle. We first require a standard helper result bounding the

distance from θ?F to θ?
θ̄

by R, which we later use to show stability of our iterates.

Lemma 141. Following definition (8.53),
∥∥θ?
θ̄
− θ?F

∥∥
2
≤ R.

Proof. The first-order optimality condition of θ?
θ̄

and the three-point identity

〈c− b, a− c〉 =
1

2
‖b− a‖22 −

1

2
‖c− a‖22 −

1

2
‖c− b‖22 (8.54)

yield the standard `2 mirror descent guarantee

0 ≤ F (θ?θ̄)− F (θ?F) ≤
〈
∇F

(
θ?θ̄
)
, θ?θ̄ − θ

?
F

〉
≤ L

2

∥∥θ̄ − θ?F∥∥2

2
− L

2

∥∥θ?θ̄ − θ?F∥∥2

2
− L

2

∥∥θ?θ̄ − θ̄∥∥2

2
.

The first two inequalities used convexity of F and that θ?F is the minimizer of F . Rearranging yields

the desired conclusion, via
∥∥θ?
θ̄
− θ?F

∥∥
2
≤
∥∥θ̄ − θ?F∥∥2

≤ R.

We can now define our noisy proximal oracle implementation, Algorithm 49.

Algorithm 49: NoisyProximalOracle(θ̄, R,Ong, σ, δ)

1 Input: Ong, a (L, σ, δT)-noisy gradient oracle for L-smooth F : Rd → R with minimizer θ?F

for T = O
(

log
(

1√
ε

+ R
√
L

σ
√
ε

))
, θ̄ ∈ Rd with

∥∥θ̄ − θ?F∥∥2
≤ R, δ ∈ (0, 1);

2 Output: With probability ≥ 1− δ, θ̂ satisfying (8.53) for a universal constant Cnp;

3 T ← O
(

log
(

1√
ε

+ R
√
L

σ
√
ε

))
for a sufficiently large constant, t← 0, θ0 ← θ̄;

4 while t < T and F (θt) + L
2

∥∥θt − θ̄∥∥2

2
≤ 2

3 (F (θt−1) + L
2

∥∥θt−1 − θ̄
∥∥2

2
) do

5 gt ← Ong(θt, 4R,
δ
T) + L(θt − θ̄);

6 θt+1 ← θt − 1
2Lgt;

7 t← t+ 1;

8 Return: θt−1;

Proposition 38. NoisyProximalOracle correctly implements a (σ, δ)-noisy proximal oracle for F in

T = O
(

log
(

1√
ε

+ R
√
L

σ
√
ε

))
calls to a (L, σ, δT)-noisy gradient oracle Ong, and O(dT) additional time.

Proof. The runtime is immediate from the description of Algorithm 49, so we focus on correctness.

For notational simplicity, denote the function we wish to minimize (with minimizer θ?
θ̄
) by

F θ̄(θ) := F (θ) +
L

2

∥∥θ − θ̄∥∥2

2
.

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 406

By Lemma 141 and the assumption on θ0 = θ̄, we have that
∥∥θ0 − θ?θ̄

∥∥
2
≤ 2R via the triangle

inequality. We first claim that for all 0 ≤ t < T , it is the case that

∥∥θt − θ?θ̄∥∥2
≤ 3R =⇒ ‖θt − θ?F ‖2 ≤ 4R. (8.55)

In order to show this bound, since F θ̄ is L-strongly convex, it suffices to show

F θ̄ (θt)− F θ̄
(
θ?θ̄
)
≤ 4LR2 =⇒ L

2

∥∥θt − θ?θ̄∥∥2

2
≤ 4LR2 =⇒

∥∥θt − θ?θ̄∥∥2
≤ 3R.

Thus, it suffices to show that the function error at all points θt is bounded by 4LR2; this is true

initially since
∥∥θ0 − θ?θ̄

∥∥
2
≤ 2R and F θ̄ is 2L-smooth by L-smoothness of F , and the termination

condition guarantees that while the algorithm runs it is always a descent algorithm. Hence, all calls

to Ong are successful. This implies for the error of the gradient estimation, et := gt−∇F θ̄(θt), that

‖et‖2 =

∥∥∥∥Ong

(
θt, 3R,

δ

T

)
−∇F (θt)

∥∥∥∥
2

≤ Cng

(√
Lεσ + 4L

√
εR
)
. (8.56)

Next, we expand: since F θ̄ is 2L-smooth,

F θ̄ (θt+1)− F θ̄
(
θ?θ̄
)
≤ F θ̄ (θt) +

〈
∇F θ̄(θt), θt+1 − θt

〉
+ L ‖θt+1 − θt‖22 − F

θ̄
(
θ?θ̄
)

= F θ̄ (θt)−
1

2L

〈
∇F θ̄(θt),∇F θ̄(θt) + et

〉
+

1

4L

∥∥∥∇F θ̄(θt) + et

∥∥∥2

2
− F θ̄

(
θ?θ̄
)

= F θ̄ (θt)− F θ̄
(
θ?θ̄
)
− 1

4L

∥∥∥∇F θ̄ (θt)
∥∥∥2

2
+

1

4L
‖et‖22

≤ 1

2

(
F θ̄ (θt)− F θ̄

(
θ?θ̄
))

+
1

4L
‖et‖22 .

(8.57)

In the last line, we used that L-strong convexity of F θ̄ implies

1

2L

∥∥∥∇F θ̄ (θt)
∥∥∥2

2
≥ F θ̄ (θt)− F θ̄

(
θ?θ̄
)
.

Continuing from (8.57), we have from (8.56) that

F θ̄ (θt+1)− F θ̄
(
θ?θ̄
)
≤ 1

2

(
F θ̄ (θt)− F θ̄

(
θ?θ̄
))

+
1

4L
‖et‖22

≤ 1

2

(
F θ̄ (θt)− F θ̄

(
θ?θ̄
))

+
C2

ng

2

(
σ2ε+ 16LR2ε

)
.

Thus, we will continue decreasing the suboptimality gap by a 1
3 factor so long as

C2
ng

2

(
σ2ε+ 16LR2ε

)
≤ 1

6

(
F θ̄ (θt)− F θ̄

(
θ?θ̄
))
.

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 407

Suppose Line 4 terminates because the function value failed to improve. From the above,

L

2

∥∥θt−1 − θ?θ̄
∥∥2

2
≤ F θ̄ (θt−1)− F θ̄

(
θ?θ̄
)
≤ 3C2

ng

(
σ2ε+ 16LR2ε

)
.

Rearranging yields the desired conclusion. Otherwise, in T iterations we improve the function error

from at most 4LR2 in the first iteration, to at most 3C2
ng

(
σ2ε+ 16LR2ε

)
(since it is decreasing by a

constant factor each time), which again yields the desired conclusion by the above calculation.

8.9.3 Halving the distance to θ?F

In this section, we give a subroutine used in our full algorithm, which halves the distance to θ?F , the

minimizer of F , outside of a sufficiently large radius. Suppose that we have an initial point θ̄ ∈ Rd,
as well as a sufficiently large scalar R ≥ 0 with the promise that (for a universal constant Clp)

∥∥θ̄ − θ?F∥∥2
≤ R, where R ≥ Clpσ

√
κε

µ
. (8.58)

We now state a procedure, HalfRadiusAccel, which returns a new θ with ‖θ − θ?F ‖2 ≤
1
2R. In its

statement, we define a sequence of scalars {at, At}0≤t<T given by the recursions

A0 = 0, At = La2
t , At+1 = At + at+1. (8.59)

The following fact is well-known (see for instance Chapter 2.2 of [418]).

Fact 19. For all 0 ≤ t < T , At = Θ(t
2

L) and at = Θ(tL).

Algorithm 50: HalfRadiusAccel(θ̄, R,Onp, δ)

1 Input: Onp, a (σ, δ
O(
√
κ)

)-noisy proximal oracle for L-smooth, µ-strongly convex

F : Rd → R with minimizer θ?F , θ̄ ∈ Rd and R ∈ R≥0 satisfying (8.58), δ ∈ (0, 1);

2 Output: With probability ≥ 1− δ, θ ∈ Rd with ‖θ − θ?F ‖2 ≤
1
2R;

3 T ← O (
√
κ) for a sufficiently large constant, t← 0, θ0 ← θ̄, v0 ← θ̄;

4 while t < T do
5 yt ← At

At+1
θt + at+1

At+1
vt ;

6 θt+1 ← Onp(yt, 3R);

7 vt+1 ← argminv∈B

{
at+1 〈yt − θt+1, v〉+ 1

2L ‖v − vt‖
2
2

}
, where B := {v |

∥∥v − θ̄∥∥
2
≤ R};

8 t← t+ 1;

9 Return: θt;

We assume for simplicity that we can exactly solve the constrained subproblem in Line 7 in each

iteration in O(d) time; by a standard binary search on a Lagrange multiplier, we can solve this

problem to high accuracy (cf. Proposition 8, [109]) and it is straightforward to verify this will not

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 408

be the bottleneck operation compared to calling Onp. Before analyzing the algorithm, we require a

helper argument which shows that all iterates lie close to θ?F .

Lemma 142. In every iteration 0 ≤ t ≤ T , ‖yt − θ?F ‖2 ≤ 3R.

Proof. Because yt is a convex combination of θt and vt, and vt is constrained to lie at distance at

most 2R from θ?F by the triangle inequality since vt and θ?F both lie in B, it suffices to show that all

‖θt − θ?F ‖2 ≤ 3R. We show a slightly stronger statement: defining Dt := 2R+ tCnp(σ
√

ε
L + 3

√
εR)

where Cnp is the constant from Definition 34, we claim that

‖θt − θ?F ‖2 ≤ Dt. (8.60)

The conclusion then follows from

DT = 2R+O

(
σ

√
εκ

L
+
√
κεR

)
≤ 3R,

assuming κε is small enough and using the lower bound on R from (8.58). To show (8.60), assume

inductively that ‖θt − θ?F ‖2 ≤ Dt for some t, and observe by convexity that we also have ‖yt − θ?F ‖2 ≤
Dt. Letting θ?t be the optimal solution to the proximal subproblem defining Onp(yt, 3R), we have

from the proof of Lemma 141 that ‖θ?t − θ?F ‖2 ≤ ‖yt − θ
?
F ‖2 ≤ Dt. The conclusion follows from the

bound ‖θt − θ?t ‖2 ≤ Cnp(σ
√

ε
L + 3

√
εR), given by the guarantees of Onp.

The distance bound of Lemma 142 implies all calls to Onp are correct. We now give the main

technical lemma of this section, which shows a potential bound on iterates of HalfRadiusAccel.

Lemma 143. In every iteration 0 ≤ t ≤ T , define

Et := F (θt)− F (θ?F), Dt :=
1

2
‖vt − θ?F ‖

2
2 , Φt := AtEt +Dt.

Then, for all 0 ≤ t < T , for a universal constant Cpot,

Φt+1 − Φt ≤ Cpot

(
tσ

√
ε

L
R+ t

√
εR2 + t2σ2 ε

L
+ t2εR2

)
.

Proof. Throughout this proof, let θ?t be the solution to the subproblem defining Onp(yt, 3R), namely

θ?t := argminθ

{
F (θ) +

L

2
‖θ − yt‖22

}
.

Fix an iteration t. Define for notational convenience ρ := Cnp(σ
√

1
L + 3R), so the error guarantee

of Onp is that
∥∥θ?t+1 − θt+1

∥∥
2
≤
√
ερ. The optimality conditions of θ?t+1 and vt+1 respectively show

〈
∇F

(
θ?t+1

)
, θ?t+1 − u

〉
≤ L

2
‖yt − u‖22 −

L

2

∥∥θ?t+1 − u
∥∥2

2
− L

2

∥∥yt − θ?t+1

∥∥2

2
for all u ∈ Rd, (8.61)

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 409

where we used the identity (F.1), and (since θ?F ∈ B)

at+1L 〈yt − θt+1, vt+1 − θ?F 〉 ≤
1

2
‖vt − θ?F ‖

2
2 −

1

2
‖vt+1 − θ?F ‖

2
2 −

1

2
‖vt − vt+1‖22 . (8.62)

Moreover, define the point qt = At
At+1

θt + at+1

At+1
vt+1. Rearranging,

vt+1 =
1

at+1
(At+1qt −Atθt) = θ?t+1 +

At
at+1

(
θ?t+1 − θt

)
− At+1

at+1

(
θ?t+1 − qt

)
.

By convexity of F , the above display yields

〈
∇F

(
θ?t+1

)
, vt+1 − θ?F

〉
=
〈
∇F

(
θ?t+1

)
, θ?t+1 − θ?F

〉
+

At
at+1

〈
∇F

(
θ?t+1

)
, θ?t+1 − θt

〉
− At+1

at+1

〈
∇F

(
θ?t+1

)
, θ?t+1 − qt

〉
≥ F

(
θ?t+1

)
− F (θ?F) +

At
at+1

(
F
(
θ?t+1

)
− F (θt)

)
− At+1

at+1

〈
∇F

(
θ?t+1

)
, θ?t+1 − qt

〉
=
At+1

at+1

(
F
(
θ?t+1

)
− F (θ?F)

)
− At
at+1

(F (θt)− F (θ?F))

− At+1

at+1

〈
∇F

(
θ?t+1

)
, θ?t+1 − qt

〉
.

(8.63)

Next, since the proximal problem defining θt+1 is 2L-smooth, the guarantees of Onp imply

F (θt+1) +
L

2
‖θt+1 − yt‖22 ≤ F

(
θ?t+1

)
+
L

2

∥∥θ?t+1 − yt
∥∥2

2
+ L

∥∥θt+1 − θ?t+1

∥∥2

2

≤ F
(
θ?t+1

)
+
L

2

∥∥θ?t+1 − yt
∥∥2

2
+ Lερ2.

Substituting the above into (8.63) yields

at+1

〈
∇F

(
θ?t+1

)
, vt+1 − θ?F

〉
≥ At+1Et+1 −AtEt −At+1

〈
∇F

(
θ?t+1

)
, θ?t+1 − qt

〉
+At+1

(
L

2
‖θt+1 − yt‖22 −

L

2

∥∥θ?t+1 − yt
∥∥2

2
− Lερ2

)
.

(8.64)

Next, since (unconstrained) optimality of θ?t+1 implies θ?t+1 = yt − 1
L∇F (θ?t+1),

at+1

〈
∇F (θ?t+1), vt+1 − θ?F

〉
= L

〈
yt − θ?t+1, vt+1 − θ?F

〉
≤ at+1L 〈yt − θt+1, vt+1 − θ?F 〉+ at+1L

∥∥θ?t+1 − θt+1

∥∥
2
‖vt+1 − θ?F ‖2

≤ at+1L 〈yt − θt+1, vt+1 − θ?F 〉+ 2at+1L
√
ερR.

In the last inequality, we used that vt+1 and θ?F both lie in B. Finally, combining the above display,

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 410

(8.64), and (8.62) yields the bound

Φt+1 − Φt ≤ At+1

〈
∇F

(
θ?t+1

)
, θ?t+1 − qt

〉
− 1

2
‖vt − vt+1‖22 + 2at+1L

√
ερR

−At+1

(
L

2
‖θt+1 − yt‖22 −

L

2

∥∥θ?t+1 − yt
∥∥2

2
− Lερ2

)
= At+1

(〈
∇F

(
θ?t+1

)
, θ?t+1 − qt

〉
+
L

2

∥∥θ?t+1 − yt
∥∥2

2
− L

2
‖θt+1 − yt‖22 −

L

2
‖yt − qt‖22

)
+ 2at+1L

√
ερR+At+1Lερ

2.

In the second-to-last line, we used that vt − vt+1 = At+1

at+1
(yt − qt) and

A2
t+1

a2
t+1

= LAt+1 by using

definitions. Now applying (8.61) with u = qt gives

〈
∇F

(
θ?t+1

)
, θ?t+1 − qt

〉
+
L

2

∥∥θ?t+1 − yt
∥∥2

2
− L

2
‖θt+1 − yt‖22 −

L

2
‖yt − qt‖22

≤ −L
2
‖θt+1 − yt‖22 −

L

2

∥∥θ?t+1 − qt
∥∥2

2
≤ 0.

Thus, applying Fact 19 shows the potential change is bounded by the desired

2at+1L
√
ερR+At+1Lερ

2 = O
(
t
√
ερR+ t2ερ2

)
= O

(
tσ

√
ε

L
R+ t

√
εR2 + t2σ2 ε

L
+ t2εR2

)
.

Finally, we are ready to analyze the output of HalfRadiusAccel.

Lemma 144. With probability at least 1− δ, the output θT of HalfRadiusAccel satisfies

‖θT − θ?F ‖2 ≤
1

2
R.

Proof. The failure probability comes from union bounding over the failures of calls to Onp, so we

discuss correctness assuming all calls succeed. By telescoping Lemma 143 over T iterations, we have

ΦT ≤ Φ0 + Cpot

∑
t∈[T]

(
tσ

√
ε

L
R+ t

√
εR2 + t2σ2 ε

L
+ t2εR2

)
.

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 411

It is clear from definition that Φ0 ≤ 1
2R

2, so it remains to bound all other terms. By examination,

∑
t∈[T]

tσ

√
ε

L
R = O

(
σκ

√
ε

L
R

)
= O

(
R2
)
,

∑
t∈[T]

t
√
εR2 = O

(
κ
√
εR2

)
= O

(
R2
)
,

∑
t∈[T]

t2σ2 ε

L
= O

(
κ1.5σ2 ε

L

)
= O

(
R2
)
,

∑
t∈[T]

t2εR2 = O
(
κ1.5εR2

)
= O

(
R2
)
.

Each of the above lines follows from εκ2 being sufficiently small, and the lower bound in (8.58). Thus

for a large enough value of Clp in (8.58), we have that ΦT ≤ R2. Since ΦT = ATET +DT ≥ ATET ,

choosing a sufficiently large value of T =
√
κ combined with Fact 19 yields

ET = F (ΘT)− F (θ?F) ≤ R2

AT
≤ LR2

8κ
=
µR2

8
.

The conclusion follows from strong convexity of F , which implies ET ≥ µ
2 ‖θT − θ

?
F ‖

2
2.

A note on constants. To check there are no conflict of interests hidden in the constants of this

proof, note first that conditional on the bound at time T being at most R2, the number of iterations

T can be chosen solely as a function of the constants in Fact 19. From this point, the constant Clp

in (8.58) can be chosen to ensure that the potential bound is indeed R2.

8.9.4 Full accelerated algorithm

We conclude this section with a statement of a complete accelerated algorithm, and its applications.

Proposition 39. RobustAccel correctly returns θ satisfying (8.65) with probability ≥ 1− δ. It runs

in O
(√

κ log2
(
R0

√
L

σ
√
ε

))
calls to Ong, and O

(√
κd log2

(
R0

√
L

σ
√
ε

))
additional time.

Proof. Correctness is immediate by iterating the guarantees of Lemma 144 T times, and taking a

union bound over all (at most N) calls to Ong, the only source of randomness in the algorithm. The

runtime follows from examining HalfRadiusAccel and NoisyProximalOracle, since all operations take

O(d) time other than calls to Ong.

By combining Proposition 39 with Corollary 37 and 38, we derive the following conclusions.

Theorem 57. Under Models 1, 4, supposing εκ2 is sufficiently small, given θ0 ∈ Rd and ‖θ0 − θ?‖Σ? ≤
R0, RobustAccel using the noisy gradient oracle of Corollary 37 returns θ with ‖θ − θ?‖Σ? =

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 412

Algorithm 51: RobustAccel(θ0, R0,Ong, δ)

1 Input: Ong, a (L, σ, δN)-noisy gradient oracle for L-smooth, µ-strongly convex F : Rd → R
with minimizer θ?F for N = O

(√
κ log2

(
R0

√
L

σ
√
ε

))
, θ0 ∈ Rd with ‖θ0 − θ?F ‖2 ≤ R0, δ ∈ (0, 1);

2 Output: With probability ≥ 1− δ, θ ∈ Rd with

‖θ − θ?F ‖2 = O

(
σ

√
κε

µ

)
. (8.65)

;

3 T ← O
(

log
(
R0
√
µ

σ
√
κε

))
for a sufficiently large constant, t← 0;

4 Onp ← NoisyProximalOracle(·, ·,Ong, σ,
δ
N);

5 while t < T do
6 θt+1 ← HalfRadiusAccel(θt, Rt,Onp,

δ
T);

7 Rt+1 ← 1
2Rt;

8 t← t+ 1;

9 Return: θt;

O (σκ
√
ε) with probability at least 1− δ. The algorithm runs in

O

(
nd
√
κ log2

(
R0

σ
√
ε

)
log3(n) log2

(
n log

(
R0

σ

)
δε

))
time,

where n is the dataset size of Proposition 34. The sample complexity of the method is

O

(
log

(
log
(
R0

σ

)
δε

)
·
(
d log(d/ε)

ε

))
.

Theorem 58. Under Models 1, 2, and 5, supposing εκ2 is sufficiently small for κ := max(1, Lµ),

given θ0 ∈ Rd and
∥∥θ0 − θ?reg

∥∥
2
≤ R0, RobustAccel using the noisy gradient oracle of Corollary 38

returns θ with
∥∥θ − θ?reg

∥∥
2

= O
(√

κε
µ

)
with probability at least 1− δ. The algorithm runs in

O

(
nd
√
κ log2

(
R0

√
L+ µ

ε

)
log3(n) log2

(
n log

(
R0

√
L+ µ

)
δε

))
time,

where n is the dataset size of Proposition 35. The sample complexity of the method is

O

(
log

(
log
(
R0

√
L+ µ

)
δε

)
·
(
d log(d/ε)

ε

))
.

We remark that Theorem 57 can afford to reuse the same samples to construct gradient estimates

for all θ we query per Assumption 8: though the set Gθ may change per θ, our noisy estimator also

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 413

provides a per-θ guarantee (and hence does not require the set to be consistent across calls).

8.10 Lipschitz generalized linear models

In this section, we give an algorithm for minimizing the regularized Moreau envelopes of Lipschitz

statistical optimization problems under the strong contamination model, following the exposition of

Section 8.7.4. Concretely, we recall we wish to compute an approximation to

θ?env := argminθ∈Rd
{
F ?λ (θ) +

µ

2
‖θ‖22

}
, where F ?(θ) = Ef∼Df [f(θ)],

and F ?λ (θ) := inf
θ′

{
F ?(θ′) +

1

2λ
‖θ − θ′‖22

}
.

(8.66)

Recall that in Corollary 38, we developed a noisy gradient oracle for F ?, as long as our function

distribution is captured by Model 6. However, techniques of Section 8.9 do not immediately apply

to this setting, as F ? is not smooth. On the other hand, we do not have direct access to F ?λ .

We ameliorate this by developing a noisy gradient oracle (Definition 33) for the Moreau envelope

F ?λ in Section 8.10.1, under only Assumption 9; this will allow us to apply the acceleration techniques

of Section 8.9 to the problem (8.66), which we complete in Section 8.10.2. Interestingly, our noisy

gradient oracle for F ?λ will have noise and runtime guarantees independent of the envelope parameter

λ, allowing for a range of statistical and runtime tradeoffs for applications.

8.10.1 Noisy gradient oracle for the Moreau envelope

In this section, we give an efficient reduction which enables the construction of a noisy gradient

oracle for F ?λ , assuming a radiusless noisy gradient oracle for F ?, and that F ? is Lipschitz. We

note that both of these assumptions hold under Model 6: we showed in Lemma 133 that F ? is
√
L-Lipschitz, and constructed a radiusless noisy gradient oracle in Corollary 38.

To begin, we recall standard facts about the Moreau envelope F ?λ , which can be found in e.g.

[435].

Fact 20. F ?λ is λ−1-smooth, satisfies 0 ≤ F ?(θ)− F ?λ (θ) ≤ Lλ for all θ ∈ Rd, and has gradient

∇F ?λ (θ) =
1

λ

(
θ − proxλ,F?(θ)

)
, where proxλ,F?(θ) := argminθ′

{
F ?(θ′) +

1

2λ
‖θ − θ′‖22

}
.

Fact 20 demonstrates that to construct a noisy gradient oracle for F ?λ , it suffices to approximate

the minimizer of the subproblem defining the proxλ,F? operator. To this end, we give a simple

algorithm which approximates this proximal minimizer, based on noisy projected gradient descent.

We now begin our analysis of ApproxMoreauMinimizer. In the following discussion, for notational

simplicity define θ?
θ̄

:= proxλ,F?(θ̄) to be the exact minimizer of the proximal subproblem. We

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 414

Algorithm 52: ApproxMoreauMinimizer(θ̄,Ong, δ)

1 Input: Ong, a (L, 1, δT)-radiusless noisy gradient oracle for
√
L-Lipschitz F ? : Rd → R for

T = O
(

1
ε log 1

ε

)
, θ̄ ∈ Rd, δ ∈ (0, 1);

2 Output: With probability ≥ 1− δ, θ̂ satisfying for a universal constant Cenv,∥∥∥θ̂ − proxλ,F?(θ̄)
∥∥∥

2
≤ Cenv

√
Lελ. (8.67)

;

3 T ← O
(

1
ε log 1

ε

)
for a sufficiently large constant, t← 0, θ0 ← θ̄, η ← 4C2

ngελ

5 ;
4 while t < T do
5 gt ← Ong(θt,∞, δT) + 1

γ (θt − θ̄);
6 θt+1 ← ProjB(θt − ηgt), where Proj is the `2 projection and

B :=
{
θ |
∥∥θ − θ̄∥∥

2
≤ 2
√
Lλ
}

;

7 t← t+ 1;

8 Return: θt;

require a simple helper bound showing θ?
θ̄

does not lie too far from θ̄.

Lemma 145. For B :=
{
θ |
∥∥θ − θ̄∥∥

2
≤ 2
√
Lλ
}

and θ?
θ̄

:= proxλ,F?(θ̄), θ?
θ̄
∈ B.

Proof. Let R :=
∥∥θ?
θ̄
− θ̄
∥∥

2
. Since θ?

θ̄
minimizes the proximal subproblem and F ? is convex,

F ?
(
θ?θ̄
)

+
R2

2λ
≤ F ?

(
θ̄
)
≤ F ?

(
θ?θ̄
)

+
〈
∇F ?

(
θ̄
)
, θ?θ̄ − θ̄

〉
=⇒ R2

2λ
≤
√
LR.

We now prove correctness of ApproxMoreauMinimizer.

Lemma 146. ApproxMoreauMinimizer correctly computes θ̂ satisfying (8.67) in O
(

1
ε log 1

ε

)
calls to

Ong, with probability ≥ 1− δ.

Proof. We assume throughout correctness of all calls to Ong, which follows from a union bound.

Consider some iteration 0 ≤ t < T , and let θ̂t+1 := θt − ηgt be the unprojected iterate. Since

Euclidean projections decrease distances to points within a set (see e.g. Lemma 3.1, [98]), letting

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 415

gt = et +∇F ?(θt) + 1
λ (θt − θ̄), where ‖et‖2 ≤ Cng

√
Lε,

1

2

∥∥θt+1 − θ?θ̄
∥∥2

2
≤ 1

2

∥∥∥θ̂t+1 − θ?θ̄
∥∥∥2

2
=

1

2

∥∥θt − ηgt − θ?θ̄∥∥2

2

=
1

2

∥∥θt − θ?θ̄∥∥2

2
− η

〈
et +∇F ?(θt) +

1

λ
(θt − θ̄), θt − θ?θ̄

〉
+
η2

2
‖gt‖22

≤ 1

2

∥∥θt − θ?θ̄∥∥2

2
− η

λ

∥∥θt − θ?θ̄∥∥2

2
+ η ‖et‖2

∥∥θt − θ?θ̄∥∥2
+
η2

2
‖gt‖22

≤ 1

2

∥∥θt − θ?θ̄∥∥2

2
− η

λ

∥∥θt − θ?θ̄∥∥2

2
+ ηCng

√
Lε
∥∥θt − θ?θ̄∥∥2

+ 5η2L.

(8.68)

In the third line, we lower bounded
〈
∇F ?(θt) + 1

λ (θt − θ̄), θ̄ − θ?θ̄
〉

by using strong convexity of

F ? + 1
λ

∥∥· − θ̄∥∥2

2
; in the last line, we used the assumed bound on et as well as

‖gt‖2 ≤ ‖∇F
?(θt)‖2 + ‖et‖2 +

1

λ

∥∥θt − θ̄∥∥2
≤ 3
√
L+ Cng

√
Lε ≤

√
10L,

for sufficiently small ε. Next, consider some iteration t where iterate θt satisfies

∥∥θt − θ?θ̄∥∥2
≥ 4Cng

√
Lελ. (8.69)

On this iteration, we have from the definition of η that

ηCng

√
Lε
∥∥θt − θ?θ̄∥∥2

≤ η

4λ

∥∥θ − θ?θ̄∥∥2

2
, 5η2L ≤ η

4λ

∥∥θ − θ?θ̄∥∥2

2
.

Plugging these bounds back into (8.68), on any iteration where (8.69) holds,

∥∥θt+1 − θ?θ̄
∥∥2

2
≤
(

1− η

λ

)∥∥θt − θ?θ̄∥∥2

2
=

(
1− 4

5
C2

ngε

)∥∥θt − θ?θ̄∥∥2

2
.

Because the squared distance
∥∥θt − θ?θ̄∥∥2

2
is bounded by 16Lλ2 initially and decreases by a factor of

O(ε) every iteration until (8.69) no longer holds, it will reach an iteration where (8.69) no longer

holds within T iterations. Finally, by (8.68), in every iteration t after the first where (8.69) is

violated, either the squared distance to θ?
θ̄

goes down, or it can go up by at most

ηCng

√
Lε
∥∥θt − θ?θ̄∥∥2

+ 5η2L = O
(
ε2λ2L

)
.

Here we used our earlier claim that the distance can only go up when (8.69) is false. Thus, the

squared distance will never be more than 16C2
ngL(ε+O(ε2))λ2 within T iterations, as desired.

By using the gradient characterization in Fact 20 and the noisy gradient oracle implementation

of Corollary 38, we conclude this section with our Moreau envelope noisy gradient oracle claim.

Corollary 39. Consider a robust Lipschitz stochastic optimization instance where we have sample

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 416

access to datasets X = {Xi}i∈[n] ∈ Rn×d and y = {yi}i∈[n] ∈ Rn under Models 1, 2, 6 with sample

size n corresponding to Proposition 35. For

F (θ) = F ?λ (θ) +
µ

2
‖θ‖22 ,

we can construct a (L,O(1), δ)-radiusless noisy gradient oracle in O(ndε log3(n) log2(nδε) log(1
ε)) time.

The sample complexity of our noisy gradient oracle is

O

(
log

(
1

δε

)
·
(
d log(d/ε)

ε

))
.

8.10.2 Accelerated optimization of the regularized Moreau envelope

We conclude by combining Proposition 39, the smoothness bound from Fact 20, and the noisy

gradient oracle implementation of Corollary 39 to give this section’s main result, Theorem 59.

Theorem 59. Under Models 1, 2, and 6, supposing εκ2 is sufficiently small for κ := max(1, 1
λµ),

given θ0 ∈ Rd and ‖θ0 − θ?env‖2 ≤ R0, RobustAccel using the noisy gradient oracle of Corollary 39

returns θ with ‖θ − θ?env‖2 = O
(√

κε
µ

)
with probability at least 1− δ. The algorithm runs in

O

nd√κ
ε

log

(
R0

√
λ−1 + µ

ε

)
log3(n) log2

n log
(
R0

√
λ−1 + µ

)
δε

 log

(
1

ε

) time,

where n is the dataset size of Proposition 35. The sample complexity of the method is

O

log

 log
(
R0

√
λ−1 + µ

)
δε

 · (d log(d/ε)

ε

) .

Combined with Fact 20, Theorem 59 offers a range of tradeoffs by tuning the parameter λ: the

smaller λ is, the more the Moreau envelope resembles the original function, but the statistical and

runtime guarantees offered by Theorem 59 become correspondingly weaker.

8.11 Robust sub-Gaussian principal component analysis

We consider the following statistical task, which we call robust sub-Gaussian principal component

analysis (PCA). Given samples X1, . . . , Xn from sub-Gaussian13 distribution D with covariance

Σ, an ε fraction of which are arbitrarily corrupted, the task asks to output unit vector u with

u>Σu ≥ (1− γ) ‖Σ‖∞14 for tolerance γ. Ergo, the goal is to robustly return a (1− γ)-approximate

13See Section 3.2 for a formal definition.
14Throughout we use ‖M‖p to denote the Schatten p-norm.

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 417

top eigenvector of the covariance of sub-Gaussian D. This is the natural extension of PCA to the

robust statistics setting.

There has been a flurry of recent work on efficient algorithms for robust statistical tasks, e.g.

covariance estimation and PCA. From an information-theoretic perspective, sub-Gaussian concen-

tration suffices for robust covariance estimation. Nonetheless, to date all polynomial-time algorithms

achieving nontrivial guarantees on covariance estimation (including PCA specifically) in the pres-

ence of adversarial noise require additional algebraic structure. For instance, sum-of-squares certi-

fiably bounded moments have been leveraged in polynomial time covariance estimation algorithms

[275, 330]; however, this is a stronger assumption than sub-Gaussianity.

In many applications (see discussion in [177]), the end goal of covariance estimation is PCA. Thus,

a natural question which relaxes robust covariance estimation is: can we robustly estimate the top

eigenvector of the covariance Σ, assuming only sub-Gaussian concentration? Our work answers

this question affirmatively via two incomparable algorithms. The first achieves γ = O(ε log ε−1) in

polynomial time; the second achieves γ = O(
√
ε log ε−1 log d), in nearly-linear time under a mild

gap assumption on Σ. Moreover, both methods have nearly-optimal sample complexity.

Previous work

The study of estimators robust to a small fraction of adversarial outliers dates back to foundational

work, e.g. [278, 512]. Following more recent work [337, 175], there has been significant interest in

efficient, robust algorithms for statistical tasks in high-dimensional settings. We focus on methods

robustly estimating covariance properties here, and defer a thorough discussion of the (extensive)

robust statistics literature to [492, 360, 182].

There has been quite a bit of work in understanding and giving guarantees for robust covariance

estimation where the uncorrupted distribution is exactly Gaussian [177, 178, 175, 132]. These

algorithms strongly use relationships between higher-order moments of Gaussian distributions via

Isserlis’ theorem. Departing from the Gaussian setting, work of [337] showed that if the distribution

is an affine transformation of a 4-wise independent distribution, robust covariance estimation is

possible. This was extended by [330], which also assumed nontrivial structure in the moments of the

distribution, namely that sub-Gaussianity was certifiable via the sum-of-squares proof system. To

the best of our knowledge it has remained open to give nontrivial guarantees for robust estimation

of any covariance properties under minimal assumptions, i.e. sub-Gaussian concentration.

All aforementioned algorithms also yield guarantees for robust PCA, by applying a top eigenvec-

tor method to the learned covariance. However, performing robust PCA via the intermediate covari-

ance estimation step is lossy, both statistically and computationally. From a statistical perspective,

Ω(d2) samples are necessary to learn the covariance of a d-dimensional Gaussian in Frobenius norm

(and for known efficient algorithms for spectral norm error [185]); in contrast, O(d) samples suffice

for (non-robust) PCA. Computationally, even when the underlying distrubution is exactly Gaussian,

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 418

the best-known covariance estimation algorithms run in time Ω(d3.25); algorithms working in more

general settings based on the sum-of-squares approach require much more time. In contrast, the

power method for PCA in a d× d matrix takes time Õ(d2)15. Motivated by this, our work initiates

the direct study of robust PCA, which is often independently interesting in applications.

We remark there is another problem termed “robust PCA” in the literature, e.g. [103], under a

different generative model. We defer a detailed discussion to [177], which experimentally shows that

algorithms from that line of work do not transfer well to our corruption model.

Our results

We give two algorithms for robust sub-Gaussian PCA. Both are sample optimal, polynomial-time,

and assume only sub-Gaussianity. We follow the distribution and corruption model described in

Assumption 10.

Assumption 10 (Corruption model, see [175]). Let D be a mean-zero distribution on Rd with

covariance Σ and sub-Gaussian proxy Γ � cΣ for a constant c. Denote by index set G′ with

|G′| = n a set of (uncorrupted) samples {Xi}i∈G′ ∼ D. An adversary arbitrarily replaces εn points

in G′; we denote the new index set by [n] = B ∪G, where B, is the (unknown) set of points added

by an adversary, and G ⊆ G′ is the set of points from G′ that were not changed.

As we only estimate covariance properties, the assumption that D is mean-zero only loses con-

stants in problem parameters, by pairing samples and subtracting them (cf. [175], Section 4.5.1).

Our first method is via a simple filtering approach, as summarized in the following (and developed

in Section 8.11.1).

Theorem 60. Under Assumption 10, let δ ∈ [0, 1], and n = Ω
(
d+log δ−1

(ε log ε−1)2

)
. Algorithm 94 runs in

time O(nd
2

ε log n
δε log n

δ), and outputs u with u>Σu > (1−C?ε log ε−1)‖Σ‖∞, for C? a fixed multiple

of parameter c in Assumption 10, with probability at least 1− δ.

Our second algorithm is more efficient under mild conditions, but yields a worse approximation

1 − γ for γ = O(
√
ε log ε−1 log d). Specifically, if there are few eigenvalues of Σ larger than 1 −

γ, our algorithm runs in nearly-linear time. Note that if there are many eigenvalues above this

threshold, then the PCA problem itself is not very well-posed; our algorithm is very efficient in

the interesting setting where the approximate top eigenvector is identifiable. We state our main

algorithmic guarantee here, and defer details to Section 8.11.2.

Theorem 61. Under Assumption 10, let δ ∈ [0, 1], n = Ω
(
d+log δ−1

(ε log ε−1)2

)
, γ = C

√
ε log ε−1 log d, for

C a fixed multiple of parameter c from Assumption 10, and let t ∈ [d] satisfy Σt+1 < (1− γ) ‖Σ‖∞.

Algorithm 53 outputs a unit vector u ∈ Rd with u>Σu ≥ (1− γ)‖Σ‖∞ in time Õ(ndε4.5 + ndt
ε1.5).

15We say g = Õ(f) if g = O(f logc f) for some constant c > 0.

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 419

We remark that Ω(dε−2) samples are necessary for a (1−ε)-approximation to the top eigenvector

of Σ via uncorrupted samples from N (0,Σ), so our first method is sample-optimal, as is our second

up to a Õ(ε−1) factor.

Preliminaries

General notation. [n] denotes the set 1 ≤ i ≤ n. Applied to a vector, ‖·‖p is the `p norm; applied to

a symmetric matrix, ‖·‖p is the Schatten-p norm, i.e. the `p norm of the spectrum. The dual norm

of `p is `q for q = p
p−1 ; when p = ∞, q = 1. ∆n is the n-dimensional simplex (subset of positive

orthant with `1-norm 1) and we define Sn
ε ⊆ ∆n to be the truncated simplex:

Sn
ε :=

{
w ∈ Rn≥0

∣∣∣∣∣ ‖w‖1 = 1, w ≤ 1

n(1− ε)
entrywise

}
. (8.70)

Matrices. Sd is d × d symmetric matrices, and Sd≥0 is the positive semidefinite subset. I is the

identity of appropriate dimension. λmax, λmin, and Tr are the largest and smallest eigenvalues and

trace of a symmetric matrix. For M,N ∈ Sd, 〈M,N〉 := Tr (MN) and we use the Loewner order �,

(M � N iff N−M ∈ Sd≥0). The seminorm of M � 0 is ‖v‖M :=
√
v>Mv.

Fact 21. For A, B with compatible dimension, Tr(AB) = Tr(BA). For M,N ∈ Sd≥0, 〈M,N〉 ≥ 0.

Fact 22. We have the following characterization of the Schatten-p norm: for M ∈ Sd, and q = p
p−1 ,

‖M‖p = sup
N∈Sd, ‖N‖q=1

〈N,M〉 .

For M =
∑
j∈[d] λiviv

>
i , the satisfying N is

∑
j∈[d]±λ

p−1
i viv

>
i

‖M‖p−1
p

, so NM has spectrum |λ|p

‖M‖p−1
p

.

Distributions. We denote drawing vector X from distribution D by X ∼ D, and the covariance

Σ of D is EX∼D
[
XX>

]
. We say scalar distribution D is γ2-sub-Gaussian if EX∼D[X] = 0 and

EX∼D [exp (tX)] ≤ exp

(
t2γ2

2

)
∀t ∈ R.

Multivariate D has sub-Gaussian proxy Γ if its restriction to any unit v is ‖v‖2Γ-sub-Gaussian, i.e.

EX∼D
[
exp

(
tX>v

)]
≤ exp

(
t2 ‖v‖2Γ

2

)
for all ‖v‖2 = 1, t ∈ R. (8.71)

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 420

8.11.1 Robust sub-Gaussian PCA via filtering

In this section, we sketch the proof of Theorem 60, which gives guarantees on our filtering algorithm

for robust sub-Gaussian PCA. This algorithm obtains stronger statistical guarantees than Theo-

rem 61, at the cost of super-linear runtime; the algorithm is given as Algorithm 94. Our analysis

stems largely from concentration facts about sub-Gaussian distributions, as well as the following

(folklore) fact regarding estimation of variance along any particular direction.

Lemma 147. Under Assumption 10, let δ ∈ [0, 1], n = Ω
(

log δ−1

(ε log ε−1)2

)
, and u ∈ Rd be a fixed

unit vector. Algorithm 93, 1DRobustVariance, takes input {Xi}i∈[n], u, and ε, and outputs σ2
u with

|u>Σu − σ2
u| < Cu>Σu · ε log ε−1 with probability at least 1 − δ, and runs in time O(nd + n log n),

for C a fixed multiple of the parameter c in Assumption 10.

In other words, we show that using corrupted samples, we can efficiently estimate a 1+O(ε log ε−1)-

multiplicative approximation of the variance of D in any unit direction16. This proof is deferred

to Appendix G.8 for completeness. Algorithm 94 combines this key insight with a soft filtering

approach, suggested by the following known structural fact found in previous work (e.g. Lemma A.1

of [194], see also [493, 492]).

Lemma 148. Let {ai}i∈[m], {wi}i∈[m] be sets of nonnegative reals, and amax = maxi∈[m] ai. Define

w′i =
(

1− ai
amax

)
wi, for all i ∈ [m]. Consider any disjoint partition IB, IG of [m] with

∑
i∈IB wiai >∑

i∈IG wiai. Then,
∑
i∈IB wi − w

′
i >

1
2amax

∑
i∈[m] wiai >

∑
i∈IG wi − w

′
i.

Our Algorithm 94, PCAFilter, takes as input a set of corrupted samples {Xi}i∈[n] following

Assumption 10 and the corruption parameter ε. At a high level, it initializes a uniform weight

vector w(0), and iteratively operates as follows (we denote by M(w) the empirical covariance∑
i∈[n] wiXiX

>
i).

1. ut ← approximate top eigenvector of M(w(t−1)) via power iteration.

2. Compute σ2
t ← 1DRobustVariance({Xi}i∈[n], ut, ε).

3. If σ2
t > (1−O(ε log ε−1)) · u>t M(w(t−1))ut, then terminate and return ut.

4. Else:

(a) Sort indices i ∈ [n] by ai ← 〈ut, Xi〉2, with a1 smallest.

(b) Let ` ≤ i ≤ n be the smallest set for which
∑n
i=` wi ≥ 2ε, and apply the downweighting

procedure of Lemma 148 to this subset of indices.

The analysis of Algorithm 94 then proceeds in two stages.

16Corollary 71 gives a slightly stronger guarantee that reusing samples does not break dependencies of u.

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 421

Monotonicity of downweighting. We show the invariant criteria for Lemma 148 (namely, that for

the set ` ≤ i ≤ n in every iteration, there is more spectral mass on bad points than good) holds

inductively for our algorithm. Specifically, lack of termination implies M(w(t−1)) puts significant

mass on bad directions, which combined with concentration of good directions yields the invariant.

The details of this argument can be found as Lemma 320.

Roughly uniform weightings imply approximation quality. As Lemma 148 then applies, the pro-

cedure always removes more mass from bad points than good, and thus can only remove at most 2ε

mass total by the corruption model. Thus, the weights w(t) are always roughly uniform (in Sn
O(ε)),

which by standard concentration facts (see Appendix G.7) imply the quality of the approximate top

eigenvector is good. Moreover, the iteration count is bounded by roughly d because whenever the

algorithm does not terminate, enough mass is removed from large spectral directions. Combining

with the termination criteria imply that when a vector is returned, it is a close approximation to

the top direction of Σ. Details can be found as Lemma 322 and in the proof of Theorem 60.

8.11.2 Robust sub-Gaussian PCA in nearly-linear time

We give our nearly-linear time robust PCA method, leveraging developments of Section 7.5. Through-

out, we will be operating under Assumption 10, for some corruption parameter ε with ε log ε−1 log d =

O(1); ε = O(1
log d log log d) suffices. We now develop tools to prove Theorem 61.

Algorithm 53 uses three subroutines: our earlier 1DRobustVariance method (Lemma 147), an

application of our earlier Proposition 30 to approximate the solution to

min
w∈Snε

∥∥∥∥∥∥
∑
i∈[n]

wiXiX
>
i

∥∥∥∥∥∥
p

, for p = Θ

(√
log d

ε log ε−1

)
, (8.72)

and a method for computing approximate eigenvectors by [404] (discussed in Appendix G.9).

Proposition 40. There is an algorithm Power (Algorithm 1, [404]), parameterized by t ∈ [d],

tolerance ε̃ > 0, p ≥ 1, and A ∈ Sd≥0, which outputs orthonormal {zj}j∈[t] with the guarantee

∣∣z>j Apzj − λpj (A)

∣∣ ≤ ε̃λpj (A)∣∣∣z>j Ap−1zj − λp−1
j (A)

∣∣∣ ≤ ε̃λp−1
j (A)

for all j ∈ [t]. (8.73)

Here, λj(A) is the jth largest eigenvalue of A. The total time required by the method is O(nnz(A) tp log d
ε).

Algorithm 53 is computationally bottlenecked by the application of Proposition 30 on Line 2 and

the t calls to 1DRobustVariance on Line 5, from which the runtime guarantee of Theorem 61 follows

straightforwardly. To demonstrate correctness, we first certify the quality of the solution to (8.72).

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 422

Algorithm 53: RobustPCA({Xi}i∈[n], ε, t)

1 Input: {Xi}i∈[n] ε = O(1
log d log log d), t ∈ [d] with Σt+1 ≤ (1− γ)Σ for γ in Theorem 61;

2 w ← BoxedSchattenPacking (Proposition 30) on {Ai = XiX
>
i }i∈[n], α← ε, p as in (8.72);

3 M =
∑
i∈[n] wiXiX

>
i ;

4 {zj}j∈[t] = Power(t, ε, p,M);

5 αj ← 1DRobustVariance({Xi}i∈[n],M
p−1

2 zj/‖M
p−1

2 zj‖2, ε) for all j ∈ [t];
6 Return: zj∗ for j∗ = argmaxj∈[t]αj ;

Lemma 149. Let n = Ω
(
d+log δ−1

(ε log ε−1)2

)
. With probability 1 − δ

2 , the uniform distribution over G

attains value (1+ ε̃
2)‖Σ‖p for objective (8.72), where ε̃ = C ′ε log ε−1 for a universal constant C ′ > 0.

The proof of this is similar to results in e.g. [175, 360], and combines concentration guarantees

with a union bound over all possible corruption sets B. This implies the following immediately,

upon applying the guarantees of Proposition 30.

Corollary 40. Let w be the output of Line 2 of RobustPCA. Then, we have ‖w‖∞ ≤
1

(1−2ε)n , and∥∥∥∑i∈[n] wiXiX
>
i

∥∥∥
p
≤ (1 + ε̃) ‖Σ‖p under the guarantee of Lemma 149.

Let w be the output of the solver. Recall that M =
∑n
i=1 wiXiX

>
i . Additionally, define

MG :=
∑
i∈G

wiXiX
>
i , wG :=

∑
i∈G

wi, MB :=
∑
i∈B

wiXiX
>
i , wB :=

∑
i∈G

wi . (8.74)

Notice in particular that M = MG + MB , and that all these matrices are PSD. We next prove the

second, crucial fact, which says that MG is a good approximator to Σ in Loewner ordering:

Lemma 150. Let n = Ω
(
d+log δ−1

(ε log ε−1)2

)
. With probability at least 1− δ

2 , (1 + ε̃)Σ �MG � (1− ε̃)Σ.

The proof combines the strategy in Lemma 149 with the guarantee of the SDP solver. Perhaps

surprisingly, Corollary 40 and Lemma 150 are the only two properties about M that our final

analysis of Theorem 61 will need. In particular, we have the following key geometric proposition,

which carefully combines trace inequalities to argue that the corrupted points MB cannot create

too many new large eigendirections.

Proposition 41. Let M = MG + MB be so that ‖M‖p ≤ (1 + ε̃) ‖Σ‖p, MG � 0 and MB � 0, and

so that (1 + ε̃)Σ �MG � (1− ε̃)Σ. Following notation of Algorithm 53, let

M =
∑
j∈[d]

λjvjv
>
j , Σ =

∑
j∈[d]

σjuju
>
j (8.75)

be sorted eigendecompositions of M and Σ, so λ1 ≥ . . . ≥ λd, and σ1 ≥ . . . ≥ σd. Let γ be as in

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 423

Theorem 61, and assume σt+1 < (1− γ)σ1. Then,

max
j∈[t]

v>j Σvj ≥ (1− γ) ‖Σ‖∞ .

Proof. For concreteness, we will define the parameters

p =
2

7

√
log(3d)

ε̃
, γ = 14

√
ε̃ log(3d) = 49pε̃.

For these choices of p, γ, we will use the following (loose) approximations for sufficiently small ε̃:

(
1− γ

4

)p
=
(

1− γ

4

) 4
γ log(3d)

≤ 1

3d
, (1 + ε̃)p − (1− ε̃)p ≤ exp(pε̃)− (1− pε̃) ≤ 3pε̃. (8.76)

Suppose for contradiction that all v>j Σvj < (1 − γ)σ1 for j ∈ [t]. By applying the guarantee of

Corollary 40 and Fact 22, it follows that

〈
M,Mp−1

〉
= ‖M‖pp ≤ (1 + ε̃)p ‖Σ‖pp . (8.77)

Let s ∈ [d] be the largest index such that σs >
(
1− γ

4

)
σ1, and note that s ≤ t. We define

N :=
∑
j∈[s]

λp−1
j vjv

>
j �Mp−1.

That is, N is the restriction of Mp−1 to its top s eigendirections. Then,

〈
M,Mp−1

〉
=
〈
MB ,M

p−1
〉

+
〈
MG,M

p−1
〉

≥
〈
MB ,M

p−1
〉

+
〈
(1− ε̃)Σ,Mp−1

〉
≥ 〈MB ,N〉+ (1− ε̃)p ‖Σ‖pp .

(8.78)

In the second line, we used Lemma 150 twice, as well as the trace inequality Lemma 151 with A = M

and B = (1− ε̃)Σ. Combining (8.77) with (8.78), and expanding the definition of MB , yields

((1 + ε̃)p − (1− ε̃)p) ‖Σ‖pp ≥ 〈MB ,N〉 =

〈
MB ,

∑
j∈[s]

λp−1
j vjv

>
j

〉

=

〈
M,

∑
j∈[s]

λp−1
j vjv

>
j

〉
−

〈
MG,

∑
j∈[s]

λp−1
j vjv

>
j

〉

≥

〈
M,

∑
j∈[s]

λp−1
j vjv

>
j

〉
− (1 + ε̃)

〈
Σ,
∑
j∈[s]

λp−1
j vjv

>
j

〉

=
∑
j∈[s]

(
λpj − (1 + ε̃)λp−1

j v>j Σvj

)
≥
∑
j∈[s]

(
λpj − λ

p−1
j (1 + ε̃)(1− γ)σ1

)
.

(8.79)

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 424

The third line followed from from the spectral bound MG � (1 + ε̃)Σ of Lemma 150, and the

fourth followed from the fact that {λj}j∈[d], {vj}j∈[d] eigendecompose M, as well as the assumption

v>j Σvj ≤ (1− γ)σ1 for all j ∈ [t]. Letting S :=
∑
j∈[s] σ

p
j , and using both approximations in (8.76),

‖Σ‖pp ≤
∑
j∈[s]

σpj +
(

1− γ

4

)p
(d− s)σp1 ≤

4

3
S =⇒ ((1 + ε̃)p − (1− ε̃)p) ‖Σ‖pp ≤ 4pε̃S. (8.80)

Next, we bound the last term of (8.79). By using (1 + ε̃)(1− γ) ≤ 1− γ
2 ,

∑
j∈[s]

(
λpj − λ

p−1
j (1 + ε̃)(1− γ)σ1

)
≥
∑
j∈[s]

λp−1
j

(
λj −

(
1− γ

2

)
σ1

)
≥ γ

6

∑
j∈[s]

λp−1
j σ1 ≥

γ

6
(1− ε̃)p−1

∑
j∈[s]

σpj ≥
γ

12
S.

(8.81)

The second line used λj − (1− γ
2)σ1 ≥ (1− ε̃)σj − (1− γ

2)σ1 ≥ γ
6σ1 by definition of s, Lemma 152

(twice), and (1− ε̃)p−1 ≥ 1
2 . Combining (8.81) and (8.80) and plugging into (8.79),

4pε̃S ≥ γ

12
S =⇒ 48pε̃ ≥ γ.

By the choice of γ and p (i.e. γ = 49pε̃), we attain a contradiction.

In the proof of Proposition 41, we used the following facts.

Lemma 151. Let A � B � 0 be symmetric matrices and p a positive integer. Then we have

Tr
(
Ap−1B

)
≥ Tr (Bp) .

Proof. For any 1 ≤ k ≤ p− 1,

Tr
(
AkBp−k) ≥ Tr

(
Ak−1B

p−k
2 AB

p−k
2

)
≥ Tr

(
Ak−1B

p−k
2 BB

p−k
2

)
= Tr

(
Ak−1Bp−k+1

)
.

The first step used the Extended Lieb-Thirring trace inequality Tr(MN2) ≥ Tr(MαNM1−αN) for

α ∈ [0, 1], M,N ∈ Sd≥0 (see e.g. Lemma 2.1, [19]), and the second A � B. Finally, induction on k

yields the claim.

Lemma 152. For all j ∈ [d], λj ≥ (1− ε̃)σj.

Proof. By the Courant-Fischer minimax characterization of eigenvalues,

λj ≥ min
k∈[j]

u>k Muk.

However, we also have M �MG � (1− ε̃)Σ (Lemma 150), yielding the conclusion.

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 425

The guarantees of Proposition 41 were geared towards exact eigenvectors of the matrix M. We

now modify the analysis to tolerate inexactness in the eigenvector computation, in line with the

processing of Line 5 of our Algorithm 53. This yields our final claim in Theorem 61.

Corollary 41. In the setting of Proposition 41, and letting {zj}j∈[t] satisfy (8.73), set for all j ∈ [t]

yj :=
M

p−1
2 zj∥∥∥M p−1

2 zj

∥∥∥
2

.

Then with probability at least 1− δ,

max
j∈[t]

y>j Σyj ≥ (1− γ) ‖Σ‖∞ .

Proof. Assume all yj have y>j Σyj ≤ (1 − γ)σ1 for contradiction. We outline modifications to the

proof of Proposition 41. Specifically, we redefine the matrix N by

N := M
p−1

2

∑
j∈[s]

zjz
>
j

M
p−1

2 .

Because
∑
j∈[s] zjz

>
j is a projection matrix, it is clear N � Mp−1. Therefore, by combining the

derivations (8.77) and (8.78), it remains true that

((1 + ε̃)p − (1− ε̃)p) ‖Σ‖pp ≥ 〈MB ,N〉 = 〈M,N〉 − 〈MG,N〉 .

We now bound these two terms in an analogous way from Proposition 41, with negligible loss;

combining these bounds will again yield a contradiction. First, we have the lower bound〈
M,

∑
j∈[s]

M
p−1

2 zjz
>
j M

p−1
2

〉
=
∑
j∈[s]

z>j Mpzj ≥ (1− ε̃)
∑
j∈[s]

λpj .

Here, the last inequality applied the assumption (8.73) with respect to Mp. Next, we upper bound〈
MG,

∑
j∈[s]

M
p−1

2 zjz
>
j M

p−1
2

〉
≤ (1 + ε̃)

〈
Σ,
∑
j∈[s]

M
p−1

2 zjz
>
j M

p−1
2

〉

= (1 + ε̃)
∑
j∈[s]

∥∥∥M p−1
2 zj

∥∥∥2

2
y>j Σyj

≤ (1 + ε̃)(1− γ)σ1

∑
j∈[s]

z>j Mp−1zj

≤ (1− γ)(1 + ε̃)2σ1

∑
j∈[s]

λp−1
j ,

CHAPTER 8. HIGH-DIMENSIONAL ROBUST STATISTICS IN ALMOST-LINEAR TIME 426

The first line used MG � (1+ε̃)Σ, the second used the definition of yj , the third used our assumption

y>j Σyj ≤ (1−γ)σ1, and the last used (8.73) with respect to Mp−1. Finally, the remaining derivation

(8.81) is tolerant to additional factors of 1 + ε̃, yielding the same conclusion up to constants.

Finally, we prove Theorem 61 by combining the tools developed thus far.

Proof of Theorem 61. Correctness of the algorithm is immediate from Corollary 41 and the guaran-

tees of 1DRobustVariance. Concretely, Corollary 41 guarantees that one of the vectors we produce

will be a (1−γ)-approximate top eigenvector (say some index j ∈ [t]), and 1DRobustVariance will only

lose a negligible fraction O(ε log ε−1) of this quality (see Lemma 147); the best returned eigenvector

as measured by 1DRobustVariance can only improve the guarantee. Finally, the failure probability

follows by combining the guarantees of Lemmas 147, 149, and 150.

We now discuss runtime. The complexity of lines 2, 4, and 5, as guaranteed by Proposition 30,

Proposition 40, and Lemma 147 are respectively (recalling p = Õ(ε−0.5))

Õ

(
nd

ε4.5

)
, Õ

(
ndt

ε1.5

)
, Õ (ndt) .

Throughout we use that we can compute matrix-vector products in an arbitrary linear combination

of the XiX
>
i in time O(nd); it is easy to check that in all runtime guarantees, nnz can be replaced

by this computational cost. Combining these bounds yields the final conclusion.

Chapter 9

Semi-Random Linear Systems

This chapter is based on [287, 319], with Arun Jambulapati, Jonathan A. Kelner, Jerry Li, Allen

Liu, Christopher Musco, and Aaron Sidford.

9.1 Organization

In this chapter, we present several related results on solving various linear systems or regression tasks

under the presence of a semi-random adversary. We will consider both the overcomplete, full-rank

case (when the number of linear measurements is at least the dimensionality of the problem, and

the solution is fully determined) as well as the undercomplete case (when the measurement matrix

is rank-deficient and therefore additional structural assumptions, e.g. sparsity of the solution vector,

must be imposed). In both settings, we will investigate the curious phenomenon that the guarantees

of nearly-linear time algorithms for regression (as typically presented) do not behave well under data

augmentation. Namely, by giving additional consistent information which does not impede upon

the statistical tractability of the problem, an adversary can arbitrarily break the runtime guarantees

of first-order methods. We propose two new robust solvers for these respective cases, which are

able to match in appropriate semi-random settings (up to logarithmic factors) the performance of

nearly-linear time algorithms succeeding under fully random, “well-conditioned” data.

Because our solution for the overcomplete case is encapsulated by a natural self-contained prob-

lem in numerical linear algebra, that of designing an optimal diagonal preconditioner for an arbitrary

full-rank matrix, we present this result first in two self-contained sections (Sections 9.2, 9.3); the

algorithm follows fairly straightforwardly (with a few tweaks) from our earlier developments in Sec-

tion 7.4. We then give exposition and our algorithm for the undercomplete case in the later portion

of this chapter.

427

CHAPTER 9. SEMI-RANDOM LINEAR SYSTEMS 428

9.2 Diagonal preconditioning

We demonstrate applications of our SDP solvers (Theorems 42, 43) to a classic problem in numerical

linear algebra: how to best reduce the condition number of a PSD matrix K ∈ Rd×d via a diagonal

scaling. Specifically, the goal is to find a d × d positive diagonal matrix W that approximately

minimizes κ(W
1
2 KW

1
2)1. Given such a W, a solution to the linear system Kx = b can then be

obtained by solving the better-conditioned system W
1
2 KW

1
2 y = W

1
2 b and returning x = W

1
2 y.

Diagonal preconditioning has been studied since at least the 1950s [225, 518, 445]. Since the high

computational cost of a generic SDP solver outweighs any computational benefits from reducing the

condition number of K, until our work finding a near optimal diagonal W has has not been feasible

[448]. Instead, prior work mostly studies heuristics like Jacobi preconditioning, which simply chooses

W to be the inverse-diagonal of K, so W
1
2 KW

1
2 has a constant diagonal [369, 225]2. Another

approach is to choose W to minimize ‖I −W
1
2 KW

1
2 ‖F [254, 71]. We also note that diagonal

preconditioning bears superficial resemblance to the matrix scaling problem, which has received

recent attention in theoretical computer science [552, 145, 234]. The goal in matrix scaling is to

find a diagonal scaling that equalizes the row and column norms of K. While sometimes effective

as a heuristic [322], since they target a different objective, scaling algorithms do not yield provable

guarantees on κ(W
1
2 KW

1
2).

In contrast to prior work on efficient algorithms, our main result yields a provably near optimal

result for any K. Specifically, letting κ?o(K) := mindiagonal W�0 κ(W
1
2 KW

1
2), we show that:

Theorem 62. Let ε > 0 be a fixed constant.3 There is an algorithm, which given full-rank K ∈ Sd�0

computes w ∈ Rd≥0 such that κ(W
1
2 KW

1
2) ≤ (1 + ε)κ?o(K) with probability ≥ 1− δ in time

O

(
Tmv(K) · (κ?o(K))

1.5 · log7

(
dκ?o(K)

δ

))
.

Importantly the runtime in Theorem 62 does not depend on the original condition number,

κ(K). Instead, it scales with the optimal κ?o(K), meaning that there is only a small computational

overhead in comparison to the cost of solving the linear system after preconditioning, which is is

Õ(Tmv(K) ·
√
κ?o(K)) using conjugate gradient or accelerate gradient descent. Roughly, whenever

κ(K) ≥ (κ?o(K))3, we obtain a faster linear system solver for K. This has applications to e.g. solving

least squares regression problems of the form minx ‖Ax − b‖2. Solving the least squares problem

1The symmetry of the rescaling W
1
2 KW

1
2 is important, as it preserves the symmetry and positive definiteness of

K, which is required for iterative solvers like the conjugate gradient method.
2A well-known result of van der Sluis [518, 251] proves that the Jacobi preconditioner gives an m-factor approx-

imation to the optimal preconditioning problem where m ≤ d is the maximum number of non-zeros in any row of
K. We review and slightly strengthen this result in Appendix H.1.3. We also prove a new dimension-independent
baseline result that may be of independent interest: the Jacobi preconditioner always obtains condition number no

worse than (minW
1
2 KW

1
2)2.

3We do not focus on the ε dependence and instead take it to be constant since, in applications involving solving
linear systems, there is little advantage to obtaining better than a two factor approximation (i.e. setting ε = 1).

CHAPTER 9. SEMI-RANDOM LINEAR SYSTEMS 429

requires solving a linear system in the PSD matrix K = A>A. In this setting, Tmv(K) = O(nnz(A)),

where nnz(A) denotes the number of non-zeros in A.

A result analogous to Theorem 62 but depending quadratically on κ?o(K)) can be obtained by

directly applying Theorem 43 with n = d, Mi = eie
>
i , κ = κ?o(K), and B = 1

κK (i.e. using the

dictionary of 1-sparse diagonal matrices to approximate K). We obtain an improved (κ?o(K))1.5

dependence via another homotopy method (similar to the one used for our SDP solver), which

allows us to efficiently compute matrix-vector products with a symmetric square-root of K. Access

to the square root allows us to reduce the iteration complexity of our SDP solver.

In addition to standard diagonal preconditioning, which is an “outer scaling” problem, we also

introduce an analogous “inner scaling” problem. Given a full rank n × d matrix A with n ≥ d,

the inner scaling problem asks to find an n× n nonnegative diagonal matrix W that approximately

minimizes κ
(
A>WA

)
. Let κ?i (A) := mindiagonal W�0 κ

(
A>WA

)
denote the minimum (inner)-

rescaled condition number. In contrast to the outer scaling problem applied e.g. to K = A>A,

where the goal is to rescale columns of A by W
1
2 , the inner scaling problem asks to rescale A’s

rows. To the best of our knowledge, this problem has not been studied previously. Directly applying

Theorem 42 with κ = κ?i (A) and Mi = aia
>
i for all i ∈ [n] yields the following.

Theorem 63. Let ε > 0 be a fixed constant. There is an algorithm, which given full-rank A ∈ Rn×d

for n ≥ d computes w ∈ Rn≥0 such that κ(A>WA) ≤ (1 + ε)κ?i (A) with probability ≥ 1− δ in time

O

(
Tmv(A) · (κ?i (A))

1.5 · log6

(
nκ?i (A)

δ

))
.

A natural open question is if the κ?o(K) dependence in Theorem 62 (and the corresponding

dependence in Theorem 63) can be reduced even further, ideally to
√
κ?o(K). This would match

the most efficient linear system solvers in K under diagonal rescaling, if the best known rescaling

was known in advance. We prove in Appendix H.1.4 that if a sufficiently approximation-tolerant

width-independent variant of Theorem 42 is developed, it can be used to achieve such a runtime for

both the classical outer scaling problem, and the inner scaling problem we introduce. We also give

generalizations to finding rescalings which minimize natural average notions of conditioning, under

existence of such a conjectured solver.

9.2.1 Inner scaling

We prove Theorem 63 on computing constant-factor optimal inner scalings.

Proof of Theorem 63. We apply Theorem 42 with κ = κ?i (A) and Mi = aia
>
i for all i ∈ [n], where

rows of A are denoted {ai}i∈[n]. The definition of κ?i (A) and A>WA =
∑
i∈[n] wiaia

>
i (where

W = diag (w)) implies that (7.7) is feasible for these parameters: namely, there exists w? ∈ Rn≥0

CHAPTER 9. SEMI-RANDOM LINEAR SYSTEMS 430

such that

I �
∑
i∈[n]

wiMi � κI.

Moreover, factorizations (7.9) hold with Vi = ai and m = 1. Note that Tmv({Vi}i∈[n]) = O(nnz(A))

since this is the cost of multiplication through all rows of A.

9.2.2 Outer scaling

In this section, we prove a result on computing constant-factor optimal outer scalings of a matrix

K ∈ Sd�0. We first remark that we can obtain a result analogous to Theorem 63, but which scales

quadratically in the κ?o(K), straightforwardly by applying Theorem 43 with n = d, Mi = eie
>
i for

all i ∈ [d], κ = κ?o(K), and B = 1
κK. This is because the definition of κ?o implies there exists

w? ∈ Rd≥0 with I � (W?)−
1
2 K(W?)−

1
2 � κI, where W? = diag (w?) and where this w? is the

entrywise inverse of the optimal outer scaling attaining κ?o(K). This then implies

1

κ
K �

∑
i∈[d]

w?iMi � K,

since
∑
i∈[d] w

?
iMi = W? and hence Theorem 43 applies, obtaining a runtime for the outer scaling

problem of roughly V(K) · κ?o(K)2 (up to logarithmic factors).

We give an alternative approach in this section which obtains a runtime of roughly Tmv(K) ·
κ?o(K)1.5, matching Theorem 63 up to logarithmic factors. Our approach is to define

A := K
1
2

to be the positive definite square root of K; we use this notation throughout the section, and let

{ai}i∈[d] be the rows of A. We cannot explicitly access A, but if we could, directly applying The-

orem 63 suffices because κ(W
1
2 KW

1
2) = κ(W

1
2 A2W

1
2) = κ(AWA) for any nonnegative diagonal

W ∈ Rd×d. We show that by using a homotopy method similar to the one employed in Section 7.4.2,

we can implement this strategy with only a polylogarithmic runtime overhead. At a high level, the

improvement from Theorem 43 is because we have explicit access to K = A2. By exploiting can-

cellations in polynomial approximations we can improve the cost of iterations of Algorithm 29 from

roughly κ (where one factor of
√
κ comes from the cost of rational approximations to square roots

in Section 7.4.2, and the other comes from the degree of polynomials), to roughly
√
κ.

Finally, throughout this section we will assume κ(A) ≤ κ?o(K), which is without loss of generality

by rescaling based on the diagonal (Jacobi preconditioning), as we show in Appendix H.1.3. Also,

for notational convenience we will fix a matrix K ∈ Sd�0 and denote κ? := κ?o(K).

CHAPTER 9. SEMI-RANDOM LINEAR SYSTEMS 431

Preliminaries

We first state a number of preliminary results which will be used in buliding our outer scaling

method. We begin with a polynomial approximation to the square root, proven in Appendix H.1.

It yields a corollary regarding approximating matrix-vector products with a matrix square root.

Fact 23 (Polynomial approximation of
√
·). Let M ∈ Sd�0 have µI �M � κµI where µ is known.

Then for any δ ∈ (0, 1), there is an explicit polynomial p of degree O(
√
κ log κ

δ) with

(1− δ)M 1
2 � p(M) � (1 + δ)M

1
2 .

Corollary 42. For any vector b ∈ Rd, δ, ε ∈ (0, 1), and M ∈ Sd�0 with κ(M) ≤ κ, with probability

≥ 1− δ we can compute u ∈ Rd such that

∥∥∥u−M
1
2 b
∥∥∥

2
≤ ε

∥∥∥M 1
2 b
∥∥∥

2
in time O

(
Tmv (M) ·

(√
κ log

κ

ε
+ log

d

δ

))
.

Proof. First, we compute a 2-approximation to µ in Fact 23 within the runtime budget using the

power method (Fact 40), since κ is given. This will only affect parameters in the remainder of the

proof by constant factors. If u = Pb for commuting P and M, our requirement is equivalent to

−ε2M �
(
P−M

1
2

)2

� ε2M.

Since square roots are operator monotone (by the Löwner-Heinz inequality), this is true iff

−εM 1
2 � P−M

1
2 � εM 1

2 ,

and such a P which is applicable within the runtime budget is given by Fact 23.

We next demonstrate two applications of Corollary 42 in estimating applications of products

involving A = K
1
2 , where we can only explicitly access K. We will use the following standard fact

about operator norms, whose proof is deferred to Appendix H.1.

Lemma 153. Let B ∈ Rd×d and let A ∈ Sd�0. Then min (‖AB‖2 , ‖BA‖2) ≥ 1
κ(A) ‖B‖2 ‖A‖2.

First, we discuss the application of a bounded-degree polynomial in AWA to a uniformly random

unit vector, where W is an explicit nonnegative diagonal matrix.

Lemma 154. Let u ∈ Rd be a uniformly random unit vector, let K ∈ Sd�0 such that A := K
1
2 and

κ(K) ≤ κ, and let P be a degree-∆ polynomial in AWA for an explicit diagonal W ∈ Sd≥0. For

δ, ε ∈ (0, 1), with probability ≥ 1− δ we can compute w ∈ Rd so ‖w −Pu‖2 ≤ ε ‖Pu‖2 in time

O

(
Tmv(K) ·

(
∆ +

√
κ log

dκ

δε

))
.

CHAPTER 9. SEMI-RANDOM LINEAR SYSTEMS 432

Proof. We can write P = ANA for some matrix N which is a degree-O(∆) polynomial in K and W,

which we have explicit access to. Standard concentration bounds show that with probability at least

1−δ, for some N = poly(d, δ−1), ‖Pu‖2 ≥
1
N ‖P‖2. Condition on this event for the remainder of the

proof, such that it suffices to obtain additive accuracy ε
N ‖P‖2. By two applications of Lemma 153,

we have

‖ANA‖2 ≥
1

κ
‖A‖22 ‖N‖2 . (9.1)

Our algorithm is as follows: for ε′ ← ε
3Nκ , compute v such that ‖v −Au‖2 ≤ ε′ ‖A‖2 ‖u‖2 using

Corollary 42, explicitly apply N, and then compute w such that ‖w −ANv‖2 ≤ ε′ ‖A‖2 ‖Nv‖2; the

runtime of this algorithm clearly fits in the runtime budget. The desired approximation is via

‖w −ANAu‖2 ≤ ‖w −ANv‖2 + ‖ANv −ANAu‖2
≤ ε′ ‖A‖2 ‖N‖2 ‖v‖2 + ‖ANv −ANAu‖2
≤ 2ε′ ‖A‖22 ‖N‖2 + ‖A‖2 ‖N‖2 ‖v −Au‖2
≤ 2ε′ ‖A‖22 ‖N‖2 + ε′ ‖A‖22 ‖N‖2
≤ 3ε′κ ‖ANA‖2 =

ε

N
‖P‖2 .

The third inequality used ‖v‖2 ≤ ‖Au‖2 + ε ‖A‖2 ‖u‖2 ≤ (1 + ε) ‖A‖2 ≤ 2 ‖A‖2.

We give a similar guarantee for random bilinear forms through A involving an explicit vector.

Lemma 155. Let u ∈ Rd be a uniformly random unit vector, let K ∈ Sd�0 such that A := K
1
2 and

κ(K) ≤ κ, and let v ∈ Rd. For δ, ε ∈ (0, 1), with probability ≥ 1 − δ we can compute w ∈ Rd so

〈w, v〉 is an ε-multiplicative approximation to u>Av in time

O

(
Tmv(K) ·

√
κ log

dκ

δε

)
.

Proof. As in Lemma 154, for some N = poly(d, δ−1) it suffices to give a ε
N ‖Av‖2-additive approxi-

mation. For ε′ ← ε
N
√
κ

, we apply Corollary 42 to obtain w such that ‖w −Au‖2 ≤ ε′ ‖Au‖2, which

fits within the runtime budget. Correctness follows from

|〈Au− w, v〉| ≤ ‖Au− w‖2 ‖v‖2 ≤ ε
′ ‖A‖2 ‖v‖2 ≤ ε

′√κ ‖Av‖2 ≤
ε

N
‖Av‖2 .

Implementing Algorithm 29 implicitly

In this section, we bound the complexity of Algorithm 29 in the following setting. Throughout this

section denote Mi = aia
>
i for all i ∈ [d], where A ∈ Sd�0 has rows {ai}i∈[d], and A2 = K. We

CHAPTER 9. SEMI-RANDOM LINEAR SYSTEMS 433

assume that

κ(K) ≤ κscale := 3κ?,

and we wish to compute a reweighting w ∈ Rd≥0 such that

κ

∑
i∈[d]

wiaia
>
i

 = κ
(
W

1
2 KW

1
2

)
≤ (1 + ε)κ?,

assuming there exists a reweighting w? ∈ Rd≥0 such that above problem is feasible with conditioning

κ?. In other words, we assume we start with a matrix whose conditioning is within a 3-factor of the

optimum after rescaling, and wish to obtain a 1 + ε-approximation to the optimum. We show in the

next section how to use a homotopy method to reduce the outer scaling problem to this setting.

Our strategy is to apply the method of Theorem 63. To deal with the fact that we cannot

explictly access the matrix A, we give a custom analysis of the costs of Lines 6, 7, and 13 under

implicit access in this section, and prove a variant of Theorem 63 for this specific setting.

Estimating the smallest eigenvalue implicitly. We begin by discussing implicit implementation

of Line 13. Our strategy combines the approach of Lemma 101 (applying the power method to the

negative exponential), with Lemma 154 since to handle products through random vectors.

Lemma 156. Given δ ∈ (0, 1), constant ε > 0, K ∈ Sd�0 such that A := K
1
2 and κ(K) ≤ κscale,

and diagonal W ∈ Sd≥0 such that M := AWA � O(κscale log d)I, we can compute a O(log d)-additive

approximation to λmin(M) with probability ≥ 1− δ in time

O

(
Tmv(K) ·

√
κscale · log2 dκscale

δ

)
.

Proof. The proof of Lemma 101 implies it suffices to compute a 0.2-multiplicative approximation

to the largest eigenvalue of P, a degree-∆ = O(
√
κscale log d) polynomial in M. Moreover, letting

∆′ = O(log d
δ) be the degree given by Fact 40 with δ ← δ

3 , the statement of the algorithm in Fact 40

shows it suffices to compute for a uniformly random unit vector u,

∥∥P∆u
∥∥

2
and

∥∥P∆+1u
∥∥

2
to multiplicative accuracy

1

30
.

We demonstrate how to compute
∥∥P∆u

∥∥
2

to this multiplicative accuracy with probability at least 1−
δ
3 ; the computation of

∥∥P∆+1u
∥∥

2
is identical, and the failure probability follows from a union bound

over these three random events. Since P∆ is a degree-O(∆∆′) = O(
√
κscale log d log d

δ) polynomial

in AWA, the conclusion follows from Lemma 154.

Estimating inner products with a negative exponential implicitly. We next discuss implicit im-

plementation of Line 6. In particular, we give variants of Lemmas 97 and 98 which are tolerant to

implicit approximate access of matrix-vector products.

CHAPTER 9. SEMI-RANDOM LINEAR SYSTEMS 434

Lemma 157. Given δ ∈ (0, 1), constant ε > 0, K ∈ Sd�0 such that A := K
1
2 and κ(K) ≤ κscale,

and diagonal W ∈ Sd≥0 such that M := AWA � O(κscale log d)I and λmin(M) = O(log d), we can

compute an ε-multiplicative approximation to Tr exp(−M) with probability ≥ 1− δ in time

O

(
Tmv(K) ·

√
κscale · log2 dκscale

δ

)
.

Proof. The proof of Lemma 97 shows it suffices to compute k = O(log d
δ) times, an ε

3 exp(−R)-

additive approximation to u>Pu where R = O(log d), for uniformly random unit u and P, a

degree-∆ = O(
√
κscale log d)-polynomial in M with ‖P‖2 ≤ ‖exp(−M)‖2 + ε

3 exp(−R) ≤ 4
3 exp(−R).

Applying Lemma 154 with ε← ε
4 to compute w, an approximation to Pu, the approximation follows:

|〈w, u〉 − 〈Pu, u〉| ≤ ‖w −Pu‖2 ≤
ε

4
‖P‖2 ≤

ε

3
exp(−R).

The runtime follows from the cost of applying Lemma 154 to all k random unit vectors.

Lemma 158. Given δ ∈ (0, 1), constant ε > 0, K ∈ Sd�0 such that A := K
1
2 and κ(K) ≤ κscale,

and diagonal W ∈ Sd≥0 such that M := AWA � O(κscale log d)I, we can compute (ε, O(1
κscaled

))-

approximations to all {〈
aia
>
i , exp(−M)

〉}
i∈[d]

,

with probability ≥ 1− δ in time

O

(
Tmv(K) ·

√
κscale · log2 dκscale

δ

)
.

Proof. The proof of Lemma 98 implies it suffices to compute k = O(log d
δ) times, for each i ∈ [d],

the quantity 〈u,Pai〉 to multiplicative error ε
2 , for uniformly random unit vector u and P, a degree-

∆ = O(
√
κscale log(κscaled))-polynomial in M. Next, note that since ai = Aei and P = ANA for

N an explicit degree-O(∆) polynomial in K and W, we have 〈u,Pai〉 = u>A (NKei). We can

approximate this by some 〈w,NKei〉 via Lemma 155 to the desired accuracy. The runtime comes

from applying Lemma 155 k times, multiplying each of the resulting vectors w by KN and stacking

them to form a k × d matrix Q̃, and then computing all ‖Q̃ei‖2 for i ∈ [d].

Implementing a packing oracle implicitly. Finally, we discuss implementation of Line 7 of Algo-

rithm 29. The requirement of Line 7 is a multiplicative approximation (and a witnessing reweighting)

to the optimization problem

max∑
i∈[d] wiMi�I

w∈Rd≥0

v>w.

Here, v is explicitly given by an implementation of Line 6 of the algorithm, but we do not have

{Mi}i∈[d] explicitly. To implement this step implicitly, we recall the approximation requirements of

CHAPTER 9. SEMI-RANDOM LINEAR SYSTEMS 435

the solver of Proposition 26, as stated in Section 7.5. We remark that the approximation tolerance

is stated for the decision problem tester of Section 7.5 (Proposition 66); once the tester is implicitly

implemented, the same reduction as described in Appendix F.2 yields an analog to Proposition 26.

Corollary 43 (Approximation tolerance of Proposition 26). Let ε > 0 be a fixed constant. The

runtime of Proposition 26 is due to T = O(log(dδ) log d · log log OPT+

OPT−
) iterations, each of which

requires O(1) vector operations and O(ε)-multiplicative approximations to

Tr (Mp) ,
{〈

Ai,M
p−1
〉}
i∈[d]

for M :=
∑
i∈[d]

wiMi for an explicitly given w ∈ Rd≥0, (9.2)

where p = O(log d) ∈ N is odd, and SI �M � RI, for R = O(log d) and S = poly(1
nd , κ((

∑
i∈[n] Mi))

−1).

We remark that the lower bound S comes from the fact that the initial matrix of the solver of

Section 7.5 is a bounded scaling of
∑
i∈[n] Mi, and the iterate matrices are monotone in Loewner

order. We now demonstrate how to use Lemmas 154 and 155 to approximate all quantities in (9.2).

Throughout the following discussion, we specialize to the case where each Mi = aia
>
i , so M in (9.2)

will always have the form M = AWA for diagonal W ∈ Sd≥0, and S = poly((dκscale)−1).

Lemma 159. Given δ ∈ (0, 1), constant ε > 0, K ∈ Sd�0 such that A := K
1
2 and κ(K) ≤ κscale,

and diagonal W ∈ Sd≥0 such that SI � M := AWA � O(log d)I where S = poly((dκscale)−1), we

can compute an ε-multiplicative approximation to Tr(Mp) for integer p in time

O

(
Tmv(K) ·

(
p+
√
κscale log

dκscale

δ

)
· log

d

δ

)
.

Proof. As in Lemma 157, it suffices to compute k = O(log d
δ) times, an ε

N S
p-additive approximation

to u>Mpu, for uniformly random unit vector u and N = poly(d, δ−1). By applying Lemma 154 with

accuracy ε′ ← εSp

NRp to obtain w, an approximation to Mpu, we have the desired

|〈u,Mpu〉 − 〈u,w〉| ≤ ‖Mpu− w‖2 ≤ ε
′ ‖Mpu‖2 ≤ ε

′Rp ≤ ε

N
Sp.

The runtime follows from k applications of Lemma 154 to the specified accuracy level.

Lemma 160. Given δ ∈ (0, 1), constant ε > 0, K ∈ Sd�0 such that A := K
1
2 and κ(K) ≤ κscale,

and diagonal W ∈ Sd≥0 such that M := AWA � O(log d)I, we can compute an ε-multiplicative

approximation to all

{〈
aia
>
i ,M

p−1
〉}
i∈[d]

where {ai}i∈[d] are rows of A,

CHAPTER 9. SEMI-RANDOM LINEAR SYSTEMS 436

where p is an odd integer, with probability ≥ 1− δ in time

O

(
Tmv(K) ·

(
p+
√
κscale log

dκscale

δ

)
· log

d

δ

)
.

Proof. First, observe that for all i ∈ [d] it is the case that

〈
aia
>
i ,M

p−1
〉

= (Aei)
>

Mp−1 (Aei) ≥ Sp−1 ‖A‖22 κ
−2
scale.

Letting r = 1
2 (p− 1) and following Lemma 158 and the above calculation, it suffices to show how to

compute k = O(log d
δ) times, for each i ∈ [d], the quantity 〈u,Mrai〉 to multiplicative error ε

2 , for

uniformly random unit vector u and N = poly(d, δ−1). As in Lemma 158, each such inner product

is u>A(NKei) for N an explicit degree-O(p) polynomial in K and W. The runtime follows from

applying Lemma 155 k times and following the runtime analysis of Lemma 158.

Putting it all together. Finally, we state our main result of this section, regarding rescaling

well-conditioned matrices, by combining the pieces we have developed.

Corollary 44. Given δ ∈ (0, 1), constant ε > 0, K ∈ Sd�0 such that κ(K) ≤ 3κ?, and such that

κ?o(K) = κ?, we can compute diagonal W ∈ Sd≥0 such that κ(W
1
2 KW

1
2) ≤ (1+ ε)κ? with probability

≥ 1− δ in time

O

(
Tmv(K) · (κ?)1.5 · log6

(
dκ?

δ

))
.

Proof. The proof is essentially identical to the proof of Theorem 63 by way of Theorem 42. In

particular, we parameterize Theorem 42 with Mi = aia
>
i where A = K

1
2 is the positive definite

square root of K with rows {ai}i∈[d]. Then, running Algorithm 29 with an incremental search for

the optimal κ? yields an overhead of Õ(κ? log(dκ?)). The cost of each iteration of Algorithm 29

follows by combining Lemmas 156, 157, 158, 159, 160, and Corollary 43.

Homotopy method

In this section, we use Corollary 44, in conjunction with a homotopy method similar to that of

Section 7.4.2, to obtain our overall algorithm for outer scaling. We state here three simple helper

lemmas which follow almost identically from corresponding helper lemmas in Section 7.4.2; we

include proofs of these statements in Appendix H.1 for completeness.

Lemma 161. For any matrix K ∈ Sd�0 and λ ≥ 0, κ?o(K + λI) ≤ κ?o(K).

Lemma 162. Let K ∈ Sd�0. Then, for λ ≥ 1
ελmax(K), κ(K+λI) ≤ 1+ε. Moreover, given a diagonal

W ∈ Sd≥0 such that κ(W
1
2 (K+λI)W

1
2) ≤ κscale for 0 ≤ λ ≤ ελmin(K)

1+ε , κ(W
1
2 KW

1
2) ≤ (1+ ε)κscale.

CHAPTER 9. SEMI-RANDOM LINEAR SYSTEMS 437

Lemma 163. Let K ∈ Sd�0, and let W ∈ Sd≥0 be diagonal. Then for any λ > 0,

κ
(
W

1
2 (K + λI) W

1
2

)
≤ 2κ

(
W

1
2

(
K +

λ

2
I

)
W

1
2

)
.

Theorem 62. Let ε > 0 be a fixed constant.4 There is an algorithm, which given full-rank K ∈ Sd�0

computes w ∈ Rd≥0 such that κ(W
1
2 KW

1
2) ≤ (1 + ε)κ?o(K) with probability ≥ 1− δ in time

O

(
Tmv(K) · (κ?o(K))

1.5 · log7

(
dκ?o(K)

δ

))
.

Proof. We will assume we know the correct value of κ?o(K) up to a 1 +O(ε) factor throughout this

proof for simplicity, and call this estimate κ?. This will add an overall multiplicative overhead of

O(1) by using an incremental search as in Theorem 42. We will also assume that κ(K) = O((κ?)2)

by first applying the Jacobi preconditioner; see Appendix H.1.3 for a proof.

Our algorithm follows the framework of Section 7.4.2 and runs in phases indexed by k for 0 ≤
k ≤ K for some K, each computing a scaling of K +λkI with condition number (1 + ε)κ?; note that

a scaling with condition number κ? is always feasible for any λk ≥ 0 by Lemma 161. We will define

λ0 = 1
εV where V is a constant-factor overestimate of λmax(K), which can be obtained by Fact 40

without dominating the runtime. We will then set

λk =
λ0

2k
, K = O (log κ?) .

Lemma 162 shows that we have a trivial scaling attaing condition number (1 + ε)κ? for K + λ0I,

and that if we can compute rescalings for all λk where 1 ≤ k ≤ K, then the last rescaling is also a

(1 + ε)κ?-conditioned rescaling for K up to adjusting ε by a constant.

Finally, we show how to implement each phase of the algorithm, given access to the reweighting

from the previous phase. Note that Lemma 163 shows that the reweighting W computed in phase

k yields a rescaling W
1
2 (K + λk+1I)W

1
2 which is 3κ?-conditioned. By running the algorithm of

Corollary 44 on K ← W
1
2 (K + λk+1I)W

1
2 , we compute the desired reweighting for phase k + 1.

The final runtime loses one logarithmic factor over Corollary 44 due to running for K phases.

9.3 Overcomplete semi-random linear systems

Unlike a diagonal preconditioner, a good inner scaling does not yield a faster solution to a given

least squares regression problem minx ‖Ax − b‖2. Instead, it allows for a faster solution to the

weighted least squares problem minx ‖W
1
2 Ax −W

1
2 b‖2. It turns out that this has a number of

interesting applications. Specifically, we now explore an interesting connection to semi-random

4We do not focus on the ε dependence and instead take it to be constant since, in applications involving solving
linear systems, there is little advantage to obtaining better than a two factor approximation (i.e. setting ε = 1).

CHAPTER 9. SEMI-RANDOM LINEAR SYSTEMS 438

noise models for least-squares regression. As a motivating example, consider the case when there

is a hidden parameter vector xtrue ∈ Rd that we want to recover, and we have a “good” set of

consistent observations Agxtrue = bg, in the sense that κ(A>g Ag) is small. Here, we can think of Ag

as being drawn from a well-conditioned distribution. Now, suppose an adversary gives us a superset

of these observations (A, b) such that Axtrue = b, and Ag are an (unknown) subset of rows of A,

but κ(A>A) � κ(A>g Ag). Perhaps counterintuitively, by giving additional consistent data, the

adversary can arbitrarily hinder the cost of iterative methods for finding xtrue. Our inner scaling

methods can be viewed as a way of “robustifying” linear system solvers to such noise models (finding

W which yields a rescaled condition number that is at least as good as the indicator of the rows of

Ag, which are not known a priori). We also demonstrate additional applications in reducing risk in

more general statistical regression settings.

The semi-random noise model we introduce for linear system solving follows a line of work

originating in [85] for graph coloring. A semi-random model consists of an (unknown) planted

instance which a classical algorithm performs well against, augmented by additional information

given by a “monotone” or “helpful” adversary masking the planted instance. Conceptually, when

an algorithm fails given this “helpful” information, the algorithm may have overfit to its problem

specification. This model has been studied in various statistical settings [294, 220, 219, 397, 380]. Of

particular relevance to our work, which studies robustness to semi-random noise in the context of fast

algorithms (as opposed to the distinction between polynomial-time algorithms and computational

intractability) is [133], which developed an algorithm for matrix completion under semi-random noise

extending work of [353].

9.3.1 Semi-random linear systems

Consider the following semi-random noise model for solving an overdetermined, consistent linear

system Axtrue = b where A ∈ Rn×d for n ≥ d.

Definition 35 (Semi-random linear systems). In the semi-random noise model for linear systems,

a matrix Ag ∈ Rm×d with κ(A>g Ag) = κg, m ≥ d is “planted” as a subset of rows of a larger matrix

A ∈ Rn×d. We observe the vector b = Axtrue for some xtrue ∈ Rd we wish to recover.

We remark that we call the model in Definition 35 “semi-random” because of the following

motivating example: the rows Ag are feature vectors drawn from some “nice” (e.g. well-conditioned)

distribution, and the dataset is contaminated by an adversary supplying additional data (a priori

indistinguishable from the “nice” data), aiming to hinder conditioning of the resulting system.

Interestingly, Definition 35 demonstrates in some sense a shortcoming of existing linear system

solvers: their brittleness to additional, consistent information. In particular, κ(A>A) can be ar-

bitrarily larger than κg. However, if we were given the indices of the subset of rows Ag, we could

CHAPTER 9. SEMI-RANDOM LINEAR SYSTEMS 439

instead solve the linear system bg = Agxtrue with iteration count dependent on the condition num-

ber of Ag. Counterintuitively, by giving additional rows, the adversary can arbitrarily increase the

condition number of the linear system, hindering the runtime of conditioning-dependent solvers.

The inner rescaling algorithms we develop in Section 9.2 are well-suited for robustifying linear

system solvers to the type of adversary in Definition 35. In particular, note that

κ?i (A) ≤ κ
(
A>WgA

)
= κ

(
A>g Ag

)
= κg,

where Wg is the diagonal matrix which is the 0-1 indicator of rows of Ag. Our solvers for reweightings

approximating κ?i can thus be seen as trading off the sparsity of Ag for the potential of “mixing

rows” to attain a runtime dependence on κ?i (A) ≤ κg. In particular, our resulting runtimes scale

with nnz(A) instead of nnz(Ag), but also depend on κ?i (A) rather than κg.

We remark that the other solvers we develop are also useful in robustifying against variations on

the adversary in Definition 35. For instance, the adversary could instead aim to increase τ(A>A),

or give additional irrelevant features (i.e. columns of A) such that only some subset of coordinates

xg are important to recover. For brevity, we focus on the model in Definition 35 in this work.

9.3.2 Statistical linear regression

The second application we give is in solving noisy variants of the linear system setting of Definition 35.

In particular, we consider statistical regression problems with various generative models.

Definition 36 (Statistical linear regression). Given full rank A ∈ Rn×d and b ∈ Rd produced via

b = Axtrue + ξ, ξ ∼ N (0,Σ), (9.3)

where we wish to recover unknown xtrue ∈ Rd, return x so that (where expectations are taken over

the randomness of ξ) the risk (mean-squared error) E[‖x− xtrue‖22] is small.

In this section, we define a variety of generative models (i.e. specifying a covariance matrix Σ of

the noise) for the problem in Definition 36. For each of the generative models, applying our rescaling

procedures will yield computational gains, improved risk bounds, or both. We give statistical and

computational results for statistical linear regression in both the homoskedastic and heteroskedastic

settings. In particular, when Σ = σ2I (i.e. the noise for every data point has the same variance),

this is the well-studied homoskedastic setting pervasive in stastical modeling. When Σ varies with

the data A, the model is called heteroskedastic (cf. [252]).

In most cases, we do not directly give guarantees on exact mean squared errors via our prepro-

cessing, but rather certify (possibly loose) upper bound surrogates. We leave direct certification of

conditioning and risk simultaneously without a surrogate bound as an interesting future direction.

CHAPTER 9. SEMI-RANDOM LINEAR SYSTEMS 440

Heteroskedastic statistical guarantees

We specify two types of heteroskedastic generative models (i.e. defining the covariance Σ in (9.3)),

and analyze the effect of rescaling a regression data matrix on reducing risk.

Noisy features. Consider the setting where the covariance in (9.3) has the form Σ = AΣ′A>,

for matrix Σ′ ∈ Sd≥0. Under this assumption, we can rewrite (9.3) as b = A(xtrue + ξ′), where

ξ′ ∼ N (0,Σ′). Intuitively, this corresponds to exact measurements through A, under noisy features

xtrue + ξ′. As in this case b ∈ Im(A) always, regression is equivalent to linear system solving, and

thus directly solving any reweighted linear system W
1
2 Ax∗ = W

1
2 b will yield x∗ = xtrue + ξ′.

We thus directly obtain improved computational guarantees by computing a reweighting W
1
2

with κ(A>WA) = O(κ?i (A)). Moreover, we note that the risk (Definition 36) of the linear system

solution x∗ is independent of the reweighting:

E
[
‖x∗ − xtrue‖22

]
= E

[
‖ξ′‖22

]
= Tr

(
Σ′
)
.

Hence, computational gains from reweighting the system are without statistical loss in the risk.

Row norm noise. Consider the setting where the covariance in (9.3) has the form

Σ = σ2diag

({
‖ai‖22

}
i∈[n]

)
. (9.4)

Intuitively, this corresponds to the setting where noise is independent across examples and the size

of the noise scales linearly with the squared row norm. We first recall a standard characterization

of the regression minimizer.

Fact 24 (Regression minimizer). Let the regression problem ‖Ax− b‖22 have minimizer x?, and

suppose that A>A is invertible. Then,

x? =
(
A>A

)−1
A>b.

Using Fact 24, we directly prove the following upper bound surrogate holds on the risk under

the model (9.3), (9.4) for the solution to any reweighted regression problem.

Lemma 164. Under the generative model (9.3), (9.4), letting W ∈ Sn≥0 be a diagonal matrix and

x?w := argminx

{∥∥∥W 1
2 (Ax− b)

∥∥∥2

2

}
,

we have

E
[
‖x?w − xtrue‖22

]
≤ σ2 Tr

(
A>WA

)
λmin (A>WA)

.

CHAPTER 9. SEMI-RANDOM LINEAR SYSTEMS 441

Proof. By applying Fact 24, we have that

x?w =
(
A>WA

)−1
A>W (Axtrue + ξ) = xtrue +

(
A>WA

)−1
A>Wξ.

Thus, we have the sequence of derivations

E
[
‖x?w − xtrue‖2A>WA

]
= E

[∥∥∥(A>WA
)−1

A>Wξ
∥∥∥2

A>WA

]
= E

[〈
W

1
2 ξξ>W

1
2 ,W

1
2 A
(
A>WA

)−1
A>W

1
2

〉]
= σ2

〈
diag

({
wi ‖ai‖22

})
,W

1
2 A
(
A>WA

)−1
A>W

1
2

〉
≤ σ2Tr

(
A>WA

)
.

(9.5)

The last inequality used the `1-`∞ matrix Hölder inequality and that W
1
2 A
(
A>WA

)−1
A>W

1
2 is

a projection matrix, so ‖W 1
2 A
(
A>WA

)−1
A>W

1
2 ‖∞ = 1. Lower bounding the squared A>WA

norm by a λmin(A>WA) multiple of the squared Euclidean norm yields the conclusion.

We remark that the analysis in Lemma 164 of the surrogate upper bound we provide was loose

in two places: the application of Hölder and the norm conversion. Lemma 164 shows that the risk

under the generative model (9.4) can be upper bounded by a quantity proportional to τ(A>WA),

the average conditioning of the reweighted matrix.

Directly applying Lemma 164, our risk bounds improve with the conditioningof the reweighted

system. Hence, our scaling procedures improve both the computational and statistical guarantees

of regression under this generative model, albeit only helping the latter through an upper bound.

Homoskedastic statistical guarantees

In this section, we work under the homoskedastic generative model assumption. In particular,

throughout the covariance matrix in (9.3) will be a multiple of the identity:

Σ = σ2I. (9.6)

We begin by providing a risk upper bound under the model (9.3), (9.6).

Lemma 165. Under the generative model (9.3), (9.6), let x? := argminx{‖Ax− b‖
2
2}. Then,

E
[
‖x? − xtrue‖2A>A

]
= σ2d =⇒ E

[
‖x∗ − xtrue‖22

]
≤ σ2d

λmin(A>A)
. (9.7)

CHAPTER 9. SEMI-RANDOM LINEAR SYSTEMS 442

Proof. Using Fact 24, we compute

x? − xtrue =
(
A>A

)−1
A>b− xtrue

=
(
A>A

)−1
A> (Axtrue + ξ)− xtrue =

(
A>A

)−1
A>ξ.

Therefore via directly expanding, and using linearity of expectation,

E
[
‖x∗ − xtrue‖2A>A

]
= E

[∥∥∥A (A>A
)−1

A>ξ
∥∥∥2

2

]
= E

[〈
ξξ>,A

(
A>A

)−1
A>
〉]

= σ2
(
A
(
A>A

)−1
A>
)

= σ2d.

The final implication follows from λmin(A>A) ‖x∗ − xtrue‖22 ≤ ‖x∗ − xtrue‖2A>A.

Lemma 165 shows that in regards to our upper bound (which is loose in the norm conversion at

the end), the notion of adversarial semi-random noise is at odds in the computational and statistical

senses. Namely, given additional rows of the matrix A, the bound (9.7) can only improve, since λmin

is monotonically increasing as rows are added. To address this, we give guarantees about recover-

ing reweightings which match the best possible upper bound anywhere along the “computational-

statistical tradeoff curve.” We begin by providing a weighted analog of Lemma 165.

Lemma 166. Under the generative model (9.3), (9.6), letting W ∈ Sn≥0 be a diagonal matrix and

x?w := argminx

{∥∥∥W 1
2 (Ax− b)

∥∥∥2

2

}
,

we have

E
[
‖x?w − xtrue‖22

]
≤ σ2d ·

‖w‖∞
λmin (A>WA)

. (9.8)

Proof. By following the derivations (9.5) (and recalling the definition of x?w),

E
[
‖x?w − xtrue‖2A>WA

]
= E

[〈
ξξ>,WA

(
A>WA

)−1
A>W

〉]
= σ2Tr

(
WA

(
A>WA

)−1
A>W

)
.

(9.9)

Furthermore, by W � ‖w‖∞ I we have A>W2A � ‖w‖∞A>WA. Thus,

Tr
(
WA

(
A>WA

)−1
A>W

)
=
〈
A>W2A,

(
A>WA

)−1
〉
≤ ‖w‖∞ Tr(I) = d ‖w‖∞ .

Using this bound in (9.9) and converting to Euclidean norm risk yields the conclusion.

Lemma 166 gives a quantitative version of a computational-statistical tradeoff curve. Specifically,

we give guarantees which target the best possible condition number of a 0-1 reweighting, subject to

CHAPTER 9. SEMI-RANDOM LINEAR SYSTEMS 443

a given level of λmin(A>WA). In the following discussion we assume there exists Ag ⊆ A, a subset

of rows, satisfying (for known κg, νg, and sufficiently small constant ε ∈ (0, 1))

κg ≤ κ
(
A>g Ag

)
≤ (1 + ε)κg,

1

λmin

(
A>g Ag

) ≤ νg. (9.10)

Our key observation is that we can use existence of a row subset satisfying (9.10), combined with a

slight modification of Algorithm 29, to find a reweighting w such that

κ
(
A>WA

)
= O (κg) ,

‖w‖∞
λmin (A>WA)

= O(νg). (9.11)

Lemma 167. Consider running Algorithm 29, with the modification that in Line 7, we set

xt ← an
ε

10
-multiplicative approximation of argmax∑

i∈[n] wiÃi�I

x∈Rn≥0

〈κvt, w〉 ,

where for all i ∈ [n], Ãi :=

 Ai 0d×n

0n×d diag
(
κg
νg
ei

)
 .

(9.12)

Then, if (9.10) is satisfied for some A ∈ Rn×d and row subset Ag ⊆ A, Algorithm 29 run on κ← κg

and {Ai = aia
>
i }i∈[n] where {ai}i∈[n] are rows of A will produce w satisfying (9.11).

Proof. We note that each matrix Ãi is the same as the corresponding Ai, with a single nonzero

coordinate along the diagonal bottom-right block. The proof is almost identical to the proof of

Lemma 96, so we highlight the main differences here. The main property that Lemma 96 used was

that Line 9 did not pass, which lets us conclude (7.63). Hence, by the approximation guarantee on

each xt, it suffices to show that for any Yt ∈ Sd≥0 with Tr(Yt) = 1, (analogously to (7.62)),

max∑
i∈[n] wiÃi�I

x∈Rn≥0

κg

〈
Yt,

∑
i∈[n]

wiAi

〉
≥ 1−O(ε). (9.13)

However, by taking w to be the 0-1 indicator of the rows of Ag scaled down by λmax(A>g Ag), we

have by the promise (9.10) that

∑
i∈[n]

wiÃi =
1

λmax(A>g Ag)
� I ⇐=

1

λmax(A>g Ag)
A>g Ag � I,

κg
νg
· 1

λmax(A>g Ag)
≤ 1. (9.14)

Now, it suffices to observe that (9.14) implies our indicator w is feasible for (9.13), so

max∑
i∈[n] wiÃi�I

x∈Rn≥0

κg

〈
Yt,

∑
i∈[n]

wiAi

〉
≥
λmin

(
A>g Ag

)
λmax

(
A>g Ag

) · κg ≥ 1−O(ε).

CHAPTER 9. SEMI-RANDOM LINEAR SYSTEMS 444

The remainder of the proof is identical to Lemma 96, where we note the output w satisfies

∑
i∈[n]

wiÃi � I,
∑
i∈[n]

wiAi �
1−O(ε)

κg
I,

which upon rearrangement and adjusting ε by a constant yields (9.11).

By running the modification of Algorithm 29 described for a given level of νg, it is straightforward

to perform an incremental search on κg to find a value satisfying the bound (9.11) as described in

Theorem 63. It is simple to verify that the modification in (9.12) is not the dominant runtime in

any of Theorems 63 or 62 since the added constraint is diagonal and Ãi is separable. Hence, for

every “level” of νg in (9.10) yielding an appropriate risk bound (9.8), we can match this risk bound

up to a constant factor while obtaining computational speedups scaling with κg.

9.4 Semi-random sparse recovery

Sparse recovery is one of the most fundamental and well-studied inverse problems, with numerous

applications in prevalent real-world settings [214]. In its most basic form, we are given an entrywise

Gaussian measurement matrix G ∈ Rm×d and measurements b = Gx? for an unknown s-sparse

x? ∈ Rd; the goal of the problem is to recover x?. Seminal works by Candès, Romberg, and

Tao [104, 106, 105] showed that even when the linear system in G is extremely underconstrained,

recovery is tractable so long as m = Ω(s log d). Further they gave a polynomial-time algorithm

known as basis pursuit based on linear programming recovering x? in this regime.

Unfortunately, the runtime of linear programming solvers, while polynomial in the size of the

input, can still be prohibitive in many high-dimensional real-world settings. Correspondingly, a

number of alternative approaches which may broadly be considered first-order methods have been

developed. These methods provably achieve similar recovery guarantees under standard generative

models such as Gaussian measurements, with improved runtimes compared to the aforementioned

convex programming methods. We refer to these first-order methods through as “fast” algorithms

throughout and they may roughly be placed in the following (potentially non-disjoint) categories.

• Greedy algorithms, e.g. [382, 437, 411], seek to greedily find elements in the support of the

true x? using different combinatorial search criteria.

• Non-convex iterative algorithms, e.g. [410, 86, 87, 381, 226], directly optimize a (poten-

tially non-convex) objective over a non-convex domain.

• Convex first-order methods, e.g. [223, 164, 148, 66, 68, 412, 9] quickly solve the convex

objective underlying basis pursuit using first-order methods.

CHAPTER 9. SEMI-RANDOM LINEAR SYSTEMS 445

We also note that theoretically, when n is sufficiently large, recent advances by [517, 516], also

obtain fast runtimes for the relevant linear programming objective. The fastest IPM for the noiseless

sparse recovery objective runs in time5 Õ(nd + n2.5) which is nearly-linear when A is dense and

n � d2/3. For a range of (superlogarithmic, but sublinear) n, these runtimes are no longer nearly-

linear; furthermore, these IPMs are second-order and our focus is on designing first-order sparse

recovery methods, which are potentially more practical.6

It has often been observed empirically that fast first-order methods can have large error, or

fail to converge, in real-world settings [166, 280, 446] where convex programming-based algorithms

(while potentially computationally cumbersome) perform well statistically [548, 15]. This may be

surprising, given that in theory, fast algorithms essentially match the statistical performance of the

convex programming-based algorithms under standard generative assumptions. While there have

been many proposed explanations for this behavior, one compelling argument is that fast iterative

methods used in practice are more brittle to changes in modeling assumptions. We adopt this view-

point in this chapter, and develop fast sparse recovery algorithms which achieve optimal statistical

rates under a semi-random adversarial model [85, 219], a popular framework for investigating the

robustness of learning algorithms under changes to the data distribution.

Semi-random adversaries. Semi-random adversaries are a framework for reasoning about algo-

rithmic robustness to distributional shift. They are defined in statistical settings, and one com-

mon type of semi-random adversary is one which corresponds to generative models where data has

been corrupted in a “helpful” or “monotone” way. Such a monotone semi-random adversary takes

a dataset from which learning is information-theoretically tractable, and augments it with addi-

tional information; this additional information may not break the problem more challenging from

an information-theoretic perspective,7 but may affect the performance of algorithms in other ways.

In this chapter, we consider a semi-random adversary which makes the computational problem more

difficult without affecting the problem information-theoretically, by returning a consistent superset

of the unaugmented observations. This contrasts with other adversarial models such as gross cor-

ruption [31, 512, 278, 513], where corruptions may be arbitrary, and the corrupted measurements

incorrect. It may be surprising that a “helpful” adversary has any implications whatsoever on a

learning problem, from either an information-theoretic or computational standpoint.

Typically, convex programming methods for statistical recovery problems are robust to these

sorts of perturbations — in brief, this is because constraints to a convex program that are met by

an optimum point does not change the optimality of that point. However, greedy and non-convex

methods — such as popular practical algorithms for sparse linear regression — can be susceptible

to semi-random adversaries. Variants of this phenomenon have been reported in many common

5We use Õ to hide polylogarithmic factors in problem parameters for brevity of exposition throughout.
6We also note that these IPM results do not immediately apply to natural (nonlinear) convex programs for sparse

recovery under noisy observations, see Appendix H.2.
7There are notable exceptions, e.g. the semi-random stochastic block model of [397].

CHAPTER 9. SEMI-RANDOM LINEAR SYSTEMS 446

statistical estimation problems, such as stochastic block models and broadcast tree models [397],

PAC learning [84], matrix completion [396, 133], and principal component regression [77]. This can

be quite troubling, as semi-random noise can be thought of as a relatively mild form of generative

model misspecification: in practice, the true distribution is almost always different from the models

considered in theory. Consequently, an algorithm’s non-robustness to semi-random noise is suggestive

that the algorithm may be more unreliable in real-world settings.

We consider a natural semi-random adversarial model for sparse recovery (see e.g. page 284 of

[46]), which extends the standard restricted isometry property (RIP) assumption, which states that

applying matrix A approximately preserves the `2 norm of sparse vectors. Concretely, throughout

the chapter we say matrix A satisfies the (s, c)-restricted isometry (RIP) property if for all s-sparse

vectors v,
1

c
‖v‖22 ≤ ‖Av‖

2
2 ≤ c ‖v‖

2
2 .

We state a basic version of our adversarial model here, and defer the statement of the fully general

version to Definition 38.8 We defer the introduction of notation used in the remainder of the chapter

to Section 9.5.

Definition 37 (pRIP matrix). Let m,n, d ∈ N be known with n ≥ m. We say A ∈ Rn×d is ρ-pRIP

(planted RIP) if there is an (unknown) G ∈ Rm×d such that each row of G is also a row of A and
1√
m

G is (Θ(s),Θ(1))-RIP for appropriate constants, and ‖G‖max ≤ ρ. When ρ = Õ(1) for brevity

we say A is pRIP.

Under the problem parameterizations used in this chapter, standard RIP matrix constructions

satisfy ρ = Õ(1) with high probability. For example, when G is entrywise Gaussian and m =

Θ(s log d), a tail bound shows that with high probability we may set ρ = O(
√

log d) to be compatible

with the assumptions in Definition 37.

pRIP matrices can naturally be thought of as arising from a semi-random adversarial model as

follows. First, an RIP matrix G ∈ Rm×d is generated, for example from a standard ensemble (e.g.

Gaussian or subsampled Hadamard). An adversary inspects G, and forms A ∈ Rn×d by reshuffling

and arbitrarily augmenting rows of G. Whenever we refer to a “semi-random adversary” in the

remainder of the introduction, we mean the adversary provides us a pRIP measurement matrix A.

The key recovery problem we consider in the remainder of this chapter is recovering an unknown

s-sparse vector x? ∈ Rd given measurements b ∈ Rn through A. We consider both the noiseless

or exact setting where b = Ax? and the noisy setting where b = Ax? + ξ for bounded ξ. In the

noiseless setting in particular, the semi-random adversary hence only gives the algorithm additional

consistent measurements of the unknown s-sparse vector x?. In this sense, the adversary is only

“helpful,” as it returns a superset of information which is sufficient for sparse recovery (formally, this

8When clear from context, as it will be throughout the main sections of the remainder of the chapter, s will always
refer to the sparsity of a vector x? ∈ Rd in an exact or noisy recovery problem through A ∈ Rn×d. For example, the
parameter s in Definition 37 is the sparsity of the vector in an associated sparse recovery problem.

CHAPTER 9. SEMI-RANDOM LINEAR SYSTEMS 447

adversary cannot break the standard restricted nullspace condition which underlies the successful

performance of convex programming methods). We note n may be much larger than m, i.e. we

impose no constraint on how many measurements the adversary adds.

Semi-random sparse recovery in nearly-linear time. We devise algorithms which match the nearly-

linear runtimes and optimal recovery guarantees of faster algorithms on fully random data, but which

retain both their runtime and the robust statistical performances of convex programming methods

against semi-random adversaries. In this sense, our algorithms obtain the “best of both worlds.”

We discuss and compare more extensively to existing sparse recovery algorithms under Definition 37

in the following section. We first state our result in the noiseless observation setting.

Theorem 64 (informal, see Theorem 66). Let x? ∈ Rd be an unknown s-sparse vector. Let A ∈
Rn×d be pRIP. There is an algorithm, which given A and b = Ax?, runs in time Õ(nd), and outputs

x? with high probability.

Since our problem input is of size nd, our runtime in Theorem 64 is nearly-linear in the problem

size. We also extend our algorithm to handle the noisy observation setting, where we are given

perturbed linear measurements of x? from a pRIP matrix.

Theorem 65 (informal, see Theorem 67). Let x? ∈ Rd be an unknown s-sparse vector, and let

ξ ∈ Rn be arbitrary. Let A ∈ Rn×d be pRIP. There is an algorithm, which given A and b = Ax?+ξ,

runs in time Õ(nd), and with high probability outputs x satisfying

‖x− x?‖2 ≤ O
(

1√
m

∥∥ξ(m)

∥∥
2

)
,

where ξ(m) denotes the largest m entries of ξ by absolute value, with other coordinates set to 0.

The error scaling of Theorem 65 is optimal in the semi-random setting. Indeed, when there is no

semi-random noise, the guarantees of Theorem 65 exactly match the standard statistical guarantees

in the fully-random setting for sparse recovery, up to constants; for example, when A =
√
mI (which

is clearly RIP, in fact an exact isometry, after rescaling), it is information-theoretically impossible to

obtain a better `2 error.9 The error bound of Theorem 65 is similarly optimal in the semi-random

setting because in the worst case, the largest entries of ξ may correspond to the rows of the RIP

matrix from which recovery is information-theoretically possible.

Performance of existing algorithms. To contextualize Theorems 64 and 65, we discuss the per-

formance of existing algorithms for sparse recovery under the semi-random adversarial model of

Definition 37. First, it can be easily verified that our semi-random adversary never changes the

9In the literature it is often standard to scale down the sensing matrix A by
√
m; this is why our error bound is

similarly scaled. However, this scaling is more convenient for our analysis, especially when stating weighted results.

CHAPTER 9. SEMI-RANDOM LINEAR SYSTEMS 448

information-theoretic tractability of sparse recovery. In the noiseless setting for example, the per-

formance of the minimizer to the classical convex program based on `1 minimization,

min
Ax=b

‖x‖1 ,

is unchanged in the presence of pRIP matrices (as x? is still consistent with the constraint set, and

in particular a RIP constraint set), and hence the semi-random problem can be solved in polynomial

time via convex programming. This suggests the main question we address: can we design a near-

linear time algorithm obtaining optimal statistical guarantees under pRIP measurements?

As alluded to previously, standard greedy and non-convex methods we have discussed may fail

to converge to the true solution against appropriate semi-random adversaries generating pRIP ma-

trices. We give explicit counterexamples to several popular methods such as orthogonal matching

pursuit and iterative hard thresholding in Appendix H.2. Further, it seems likely that similar coun-

terexamples also break other, more complex methods commonly used in practice, such as matching

pursuit [382] and CoSaMP [410].

Additionally, while fast “convex” iterative algorithms (e.g. first-order methods for solving ob-

jectives underlying polynomial-time convex programming approaches) will never fail to converge

to the correct solution given pRIP measurements, the analyses which yield fast runtimes for these

algorithms [412, 9] rely on properties such as restricted smoothness and strong convexity (a spe-

cialization of standard conditioning assumptions to numerically sparse vectors). These hold under

standard generative models but again can be broken by pRIP measurements; consequently, standard

convergence analyses of “convex” first-order methods may yield arbitrarily poor rates.

One intuitive explanation for why faster methods fail is that they depend on conditions such as

incoherence [196] or the restricted isometry property [106], which can be destroyed by a semi-random

adversary. For instance, RIP states that if S is any subset of m = Θ(s) columns of A, and AS is the

submatrix formed by taking those columns of A, then A>SAS is an approximate isometry (i.e. it is

well-conditioned). While it is well-known that RIP is satisfied with high probability when A consists

of Θ(s log d) Gaussian rows, it is not too hard to see that augmenting A with additional rows can

easily ruin the condition number of submatrices of this form. In contrast, convex methods work

under weaker assumptions such as the restricted nullspace condition, which cannot be destroyed

by the augmentation used by pRIP matrices. Though these weaker conditions (e.g. the restricted

nullspace condition) suffice for algorithms based on convex programming primitives, known analyses

of near-linear time “fast” algorithms require additional instance structure, such as incoherence or

RIP. Thus, it is plausible that fast algorithms for sparse recovery are less robust to the sorts of

distributional changes that may occur in practice.

Beyond submatrices. Our methods naturally extend to a more general setting (see Definition 38,

wherein we define “weighted RIP” (wRIP) matrices, a generalization of Definition 37). Rather than

assuming there is a RIP submatrix G, we only assume that there is a (nonnegative) reweighting of

CHAPTER 9. SEMI-RANDOM LINEAR SYSTEMS 449

the rows of A so that the reweighted matrix is “nice,” i.e. it satisfies RIP. Definition 37 corresponds

to the special case of this assumption where the weights are constrained to be either 0 or 1 (and

hence must indicate a subset of rows). In our technical sections (Sections 9.6 and 9.7), our results are

stated for this more general semi-random model, i.e. sparse recovery from wRIP measurements. For

simplicity of exposition, throughout the introduction, we mainly focus on the simpler pRIP sparse

recovery setting described following Definition 37.

Towards instance-optimal guarantees. While the performance of the algorithms in Theorems 64

and 65 is already nearly-optimal in the worst case semi-random setting, one can still hope to improve

our runtime and error bounds in certain scenarios. Our formal results, Theorems 66 and 67, provide

these types of fine-grained instance-optimal guarantees in several senses.

In the noiseless setting (Theorem 66), if it happens to be that the entire matrix A is RIP (and not

just G), then standard techniques based on subsampling the matrix can be used to solve the problem

in time Õ(sd) with high probability. For example, if A is pRIP where, following the notation of

Definition 37, G is entrywise Gaussian, and the adversary chose to give us additional Gaussian rows,

one could hope for a runtime improvement (simply by ignoring the additional measurements given).

Theorem 66 obtains a runtime which smoothly interpolates between the two regimes of a worst-case

adversary and an adversary which gives us additional random measurements from an RIP ensemble.

Roughly speaking, if there exists a (a priori unknown) submatrix of A of m � Θ̃(s) rows which is

RIP, then we show that our algorithm runs in sublinear time Õ(nd · sm), which is Õ(sd) when m ≈ n.

We show this holds in our weighted semi-random model (under wRIP measurements, Definition 38)

as well, where the runtime depends on the ratio of the `1 norm of the (best) weight vector to its `∞

norm, a continuous proxy for the number of RIP rows under pRIP.

We show a similar interpolation holds in the noisy measurement setting, both in the runtime

sense discussed previously, and also in a statistical sense. In particular, Theorem 67 achieves (up to

logarithmic factors) the same interpolating runtime guarantee of Theorem 66, but further attains a

squared `2 error which is roughly the average of the m largest elements of the squared noise vector

ξ (see the informal statement in Theorem 65). This bound thus improves as m � Θ̃(s); we show

it extends to weighted RIP matrices (Definition 38, our generalization of Definition 37) in a natural

way depending on the `∞-`1 ratio of the weights.

9.4.1 Our techniques

Our overall approach for semi-random sparse recovery is fairly different from two recent works in

the literature which designed fast iterative methods succeeding under a semi-random adversarial

model: [133] and Section 9.3. In particular, these two algorithms were both based on the following

natural framework, which separates the “planted learning” problem (e.g. identifying the planted

benign matrix) from the “estimation” task (e.g. solving a linear system or regression problem).

1. Compute a set of weights for the data (in linear regression for example, these are weights on

CHAPTER 9. SEMI-RANDOM LINEAR SYSTEMS 450

each of the rows of a measurement matrix A), such that after re-weighting, the data fits the

input assumptions of a fast iterative method which performs well on a fully random instance.

2. Apply said fast iterative algorithm on the reweighted data in a black-box manner.

To give a concrete example, Section 9.3 studied the standard problem of overdetermined linear

regression with a semi-random adversary, where a measurement matrix A is received with the

promise that A contains a “well-conditioned core” G. The algorithm of Section 9.3 first learned a

re-weighting of the rows of A by a diagonal matrix W
1
2 , such that the resulting system in A>WA

is well-conditioned and hence can be solved using standard first-order methods.

In the case of semi-random sparse recovery, there appear to be significant barriers to reweighting

approaches (which we will shortly elaborate on). We take a novel direction that involves designing a

new nearly-linear time iterative method for sparse recovery tailored to the geometry of the problem.

Why not (globally) reweight the rows? There are several difficulties immediately encountered

when trying to use the aforementioned reweighting framework for sparse recovery. First of all, there

is no effective analog of condition number for an underdetermined linear system. The standard

assumption on the measurement matrix A to make sparse recovery tractable for fast iterative meth-

ods is that A satisfies RIP, i.e. A is roughly an isometry when restricted to O(s)-sparse vectors.

However, RIP is NP-hard to verify [57] and this may suggest that it is computationally hard to try,

say, learning a reweighting of the rows of A such that the resulting reweighted matrix is guaranteed

to be RIP (though it would be very interesting if this were achievable). More broadly, almost all

explicit conditions (e.g. RIP, incoherence etc.) which make sparse recovery tractable for fast algo-

rithms are conditions about subsets of the columns of A. Thus, any approach which reweights rows

of A such that column subsets of the reweighted matrix satisfy an appropriate condition results in

optimization problems that seems challenging to solve in nearly-linear time.

We circumvent these difficulties in two steps. First, we propose a new analysis of an iterative

method based on (reweighted) projected gradient descent, which obtains a fast convergence rate

whenever each step satisfies certain locally verifiable properties. Next, our algorithm computes a

sequence of local reweightings (which can be different in each iteration) of the rows of our measure-

ment matrix, such that each local reweighting satisfies our requisite progress conditions for that

step. We use the existence of a global reweighting satisfying RIP to demonstrate that each local

reweighting subproblem has a good solution, and design an efficient method for computing each lo-

cal reweighting. Our framework of bypassing hardness of computing a global reweighting to recover

planted statistical information, by instead designing an iterative method capable of exploiting local

reweightings with (computationally tractable) certifiable progress conditions, is quite general, and

we hope it will find uses in semi-random settings beyond our particular problem.

The geometry of sparse recovery. We now explain our new approach, and how we derive de-

terministic conditions on the steps of an iterative method which certify progress by exploiting the

geometry of sparse recovery. We focus on the clean observation setting in this technical overview.

CHAPTER 9. SEMI-RANDOM LINEAR SYSTEMS 451

Suppose that we wish to solve a sparse regression problem Ax? = b where x? is s-sparse, and we

are given A and b. To fix a scale, suppose for simplicity that we know ‖x?‖1 =
√
s and ‖x?‖2 = 1.

Also, assume for the purpose of conveying intuition that A is pRIP, and that the planted matrix G

in Definition 37 is an entrywise random Gaussian matrix.

We next consider a natural family of iterative algorithms for solving the system Ax? = b. For

simplicity, assume that our current iterate is xt = 0 (such that b is the residual vector b − Axt;

more generally, in the following description b will be replaced by the current residuals). Inspired by

gradient methods for solving regression, we consider “first-order” algorithms of the following form:

yt ← xt + A>u

xt+1 ← P(yt)
(9.15)

where u ∈ Rn are coefficients to be computed (for example, a natural attempt could be to set u to

be a multiple of Axt − b, resulting in the step being a scaled gradient of ‖Ax− b‖22 at xt) and P

denotes projection onto the (convex) `1 ball of radius
√
s. Our goal will be to make constant-factor

progress in terms of ‖xt − x?‖2 in each application of (9.15), to yield a Õ(1) iteration method. Note

that xt+1 must at minimum make constant factor progress in the direction x? − xt (in terms of

decreasing the projection onto this direction) if we hope to make constant factor progress in overall

distance to x?. In other words, we must have

〈xt+1 − xt, x? − xt〉 = Ω(‖x? − xt‖22) = Ω(1) .

First, observe that by the definition of our step and shifting so that xt = 0, the point yt satisfies

〈yt − xt, x? − xt〉 = 〈A>u, x? − xt〉 = u>(b−Axt) = u>b,

so to obtain a corresponding progress lower bound for the move to yt, we require

u>b = Ω(1). (9.16)

Of course, this condition alone is not enough, for two reasons: the step also moves in directions

orthogonal to x? − xt, and we have not accounted for the projection step P. If all of the rows of A

were random, then standard Gaussian concentration implies that we expect ‖b‖2 =
√

n
d , and thus

to satisfy (9.16) we need ‖u‖2 ≥
√

d
n . This also implies

‖yt − xt‖2 =
∥∥A>u∥∥

2
≈
√
d

n
,

since for Gaussian A, we expect that its rows are roughly orthogonal. Moreover, since
√

d
n � 1 in

CHAPTER 9. SEMI-RANDOM LINEAR SYSTEMS 452

xt x?

xt+1

yt

√
d
n

1

Figure 9.1: The effect of `1 projection on iterate progress. The dashed line represents a facet of the
`1-ball around xt of radius ‖xt − x?‖1.

the typical underconstrained setting, almost all of the step from xt to yt is actually orthogonal to

the desired “progress direction” parallel to x? − xt. This appears to be a serious problem, because

in order to argue that our algorithm makes progress, we need to argue that the `1 projection step

xt+1 = P(yt) “undoes” this huge `2 movement orthogonal to the progress direction (see Figure 1).

Our key geometric insight is that the `1 ball is very thin in most directions, but is thick in

directions that correspond to “numerically sparse” vectors, namely vectors with bounded `1 to `2

ratios. Crucially, the movement of our step in the progress direction parallel to x?−xt is numerically

sparse because x? − xt is itself O(s)-numerically sparse by assumption. However, for Gaussian A,

the motion in the subspace orthogonal to the progress direction ends up being essentially random

(and thus is both not sparse, and is `∞-bounded). Formally, we leverage this decomposition to show

that the `1 projection keeps most of the forward movement in the progress direction x? − xt but

effectively filters out much of the orthogonal motion, as demonstrated by the figure below.

This geometric intuition is the basis for the deterministic conditions we require of the steps of

our iterative method, to guarantee that it is making progress. More precisely, the main condition

we require of our step in each iteration, parameterized by the coefficients u used to induce (9.15), is

that yt − xt has a “short-flat” decomposition into two vectors p+ e where

‖p‖2 = O(1) is “short” and ‖e‖∞ = O

(
1√
s

)
is “flat”.

Intuitively, the short component is a proxy for the progress component (in the direction towards x?),

and the flat component is a proxy for the orthogonal component, which should be filtered out by the

CHAPTER 9. SEMI-RANDOM LINEAR SYSTEMS 453

projection step onto an `1 ball. The above bounds are rescaled appropriately in our actual method.

We state these requirements formally (in the clean observation case, for example) in Definition 39,

where we define a “step oracle” which is guaranteed to make constant-factor progress towards x?.

By combining the above short-flat decomposition requirement with a progress requirement such as

(9.16), we can show that as long as we can repeatedly implement a satisfactory step, our method is

guaranteed to converge rapidly.

This framework for sparse recovery effectively reduces the learning problem to the problem of

implementing an appropriate step oracle. Note that a valid step always exists by only looking at

the Gaussian rows. To complete our algorithm, we give an implementation of this step oracle (i.e.

actually solving for a valid step) which runs in nearly-linear time even when the data is augmented by

a semi-random adversary (that is, our measurement matrix is pRIP or wRIP rather than RIP), and

demonstrate that our framework readily extends to the noisy observation setting. Our step oracle is

motivated by stochastic gradient methods. In particular, we track potentials corresponding to the

progress made by our iterative method and the short-flat decomposition, and show that uniformly

sampling rows of a pRIP (or wRIP) matrix A and taking steps in the direction of these rows which

maximally improve our potentials rapidly implements a step oracle.

9.4.2 Related work

Sparse recovery. Sparse recovery, and variants thereof, are fundamental statistical and algorithmic

problems which have been studied in many of settings, including signal processing [355, 469, 196,

86, 59], and compressed sensing [104, 106, 105, 195, 462]. A full review of the extensive literature on

sparse recovery is out of the scope of the present chapter; we refer the reader to e.g. [214, 165, 335, 471]

for more extensive surveys.

Within the literature on sparse recovery, arguably the closest line of work to ours is the line of

work which attempts to design efficient algorithms which work when the restricted condition number

of the sensing or measurement matrix is large. Indeed, it is known that many nonconvex methods

fail when the restricted condition number of the sensing matrix is far from 1, which is often the

case in applications [280]. To address this, several works [280, 471] have designed novel non-convex

methods which still converge, when the restricted condition number of the matrix is much larger

than 1. However, these methods still require that the restricted condition number is constant or

bounded, whereas in our setting, the restricted condition number could be arbitrarily large due to

the generality of the semi-random adversary assumption.

Another related line of work considers the setting where, instead of having a sensing matrix

with rows which are drawn from an isotropic Gaussian, have rows drawn from N (0,Σ), for some

potentially ill-conditioned Σ [79, 453, 514, 280, 324, 154, 546, 70, 317]. This setting is related to

our semi-random adversarial model, in that the information-theoretic content of the problem does

not change, but obtaining efficient algorithms which match the optimal statistical rates is very

CHAPTER 9. SEMI-RANDOM LINEAR SYSTEMS 454

challenging. However, there does not appear to be any further concrete connection between this “ill-

conditioned covariance” setting and the semi-random model we consider in this work. Indeed, the ill-

conditioned setting appears to be qualitatively much more difficult for algorithms: in particular, [317]

shows evidence that there are in fact no efficient algorithms that achieve the optimal statistical

rates, without additional assumptions on Σ. In contrast in the semi-random setting, polynomial-

time convex programming approaches, while having potentially undesirable superlinear runtimes,

still obtain optimal statistical guarantees.

Finally as discussed earlier in the introduction, there is a large body of work on efficient algorithms

for sparse recovery in an RIP matrix (or a matrix satisfying weaker or stronger analogous properties).

These works e.g. [104, 106, 105, 382, 437, 411, 410, 86, 87, 381, 226, 223, 164, 148, 66, 68, 412, 9]

are typically based on convex programming or different iterative first-order procedures.

Semi-random models. Context for semi-random models was previously discussed in Section 9.3.

We also note that the well-studied Massart noise model in PAC learning [386] can be thought of

as a semi-random variant of the random classification noise model. However, this setting appears

to be quite different from ours: in particular, it was not until quite recently that polynomial-time

algorithms were even known to be achievable for a number of fundamental learning problems under

Massart noise [173, 189, 126, 183, 184, 187, 190, 174, 544].

9.5 Preliminaries: semi-random sparse recovery

General notation. We let [n] := {i ∈ N, 1 ≤ i ≤ n}. The `p norm of a vector is denoted ‖·‖p,
and the sparsity (number of nonzero entries) of a vector is denoted ‖·‖0. For a vector v ∈ Rd and

k ∈ [d], we let v(k) be the vector equalling v on the largest k entries of v in absolute value (with

other coordinates zeroed out). The all-zeroes vector of dimension n is denoted 0n. The nonnegative

probability simplex in dimension n (i.e. ‖p‖1 = 1, p ∈ Rn≥0) is denoted ∆n.

For mean µ ∈ Rd and positive semidefinite covariance Σ ∈ Rd×d, N (µ,Σ) denotes the corre-

sponding multivariate Gaussian. i ∼unif. S denotes a uniform random sample from set S. For N ∈ N
and p ∈ ∆n we we use Multinom(N, p) to denote the probability distribution corresponding to N

independent draws from [n] as specified by p.

Sparsity. We say v is s-sparse if ‖v‖0 ≤ s. We define the numerical sparsity of a vector by

NS(v) := ‖v‖21 / ‖v‖
2
2. Note that from the Cauchy-Schwarz inequality, if ‖v‖0 ≤ s, then NS(v) ≤ s.

Matrices. Matrices are in boldface throughout. The zero and identity matrix of appropriate

dimension from context are 0 and I. For a matrix A ∈ Rn×d, we let its rows be Ai:, i ∈ [n] and

its columns be A:j , j ∈ [d]. The set of d × d symmetric matrices is Sd, and its positive definite

and positive semidefinite restrictions are Sd�0 and Sd≥0. We use the Loewner partial order � on Sd.
The largest entry of a matrix A ∈ Rn×d is denoted ‖A‖max := maxi∈[n],j∈[d] |Aij |. When a matrix

A ∈ Rn×d is clear from context, we refer to its rows as {ai}i∈[n].

CHAPTER 9. SEMI-RANDOM LINEAR SYSTEMS 455

Short-flat decompositions. Throughout we frequently use the notion of “short-flat decomposi-

tions.” We say v ∈ Rd has a (C2, C∞) short-flat decomposition if v = p + e for some e ∈ Rd with

‖e‖2 ≤ C2 and p ∈ Rd with ‖p‖∞ ≤ C∞. Further, we use trunc(v, c) ∈ Rd for c ∈ R≥0 to denote

the vector which coordinatewise [trunc(v, c)]i = sgn(vi) max(|vi| − c, 0) (i.e. the result of adding or

subtracting at most c from each coordinate to decrease the coordinate’s magnitude). Note that

v ∈ Rd has a (C2, C∞) short-flat decomposition if and only if ‖trunc(v, C∞)‖2 ≤ C2 (in which case

p = trunc(v, C∞) and e = v − p is such a decomposition).

Restricted isometry property. We say that matrix A ∈ Rn×d satisfies the (s, c)-restricted isometry

property (RIP) or (more concisely) A is (s, c)-RIP, if for all s-sparse vectors v ∈ Rd,

1

c
‖v‖22 ≤ ‖Av‖

2
2 ≤ c ‖v‖

2
2 .

9.6 Exact recovery

In this section, we give an algorithm for solving the underconstrained linear system Ax? = b given

the measurement matrix A ∈ Rn×d (for n ≤ d) and responses b ∈ Rn (i.e. noiseless or “exact”

regression), and x? is s-sparse. Our algorithm succeeds when A is weighted RIP (wRIP), i.e. it

satisfies Definition 38, a weighted generalization of Definition 37.

Definition 38 (wRIP matrix). Let w?∞ ∈ [0, 1]. We say A ∈ Rn×d is (ρ, w?∞)-wRIP if ‖A‖max ≤ ρ,

and there exists a weight vector w? ∈ ∆n satisfying ‖w?‖∞ ≤ w?∞, such that diag (w?)
1
2 A is

(Θ(s),Θ(1))-RIP for appropriate constants. When ρ = Õ(1) for brevity we say A is w?∞-wRIP.

As discussed after Definition 37, a wRIP matrix can be thought of as arising from a “semi-random

model” because it strictly generalizes our previously-defined pRIP matrix notion in Definition 37

with w?∞ = 1
m , by setting w? to be 1

m times the zero-one indicator vector of rows of G. The main

result of this section is the following theorem regarding sparse recovery with wRIP matrices.

Theorem 66. Let δ ∈ (0, 1), r > 0, and suppose R0 ≥ ‖x?‖2 for s-sparse x? ∈ Rd. Then with

probability at least 1− δ, Algorithm 54 using Algorithm 55 as a step oracle takes as input a (ρ, w?∞)-

wRIP matrix A ∈ Rn×d and b = Ax?, and computes x̂ satisfying ‖x̂− x?‖2 ≤ r in time

O

((
nd log3(ndρ) log

(
1

δ
· log

R0

r

)
log

(
R0

r

))
·
(
w?∞sρ

2 log d
))

.

Under the wRIP assumption, Theorem 66 provides a natural interpolation between the fully

random and semi-random generative models. To build intuition, if a pRIP matrix contains a planted

RIP matrix with Õ(s) rows (the information-theoretically minimum size), then by setting w?∞ ≈ 1

Õ(s)
,

we obtain a near-linear runtime of Õ(nd). However, in the fully random regime where w?∞ ≈ 1
n (i.e.

all of A is RIP), the runtime improves Õ(sd) which is sublinear for n� s.

CHAPTER 9. SEMI-RANDOM LINEAR SYSTEMS 456

The roadmap of our algorithm and its analysis are as follows.

1. In Section 9.6.1, we give an algorithm (Algorithm 54) which iteratively halves an upper bound

on the radius to x?, assuming that either an appropriate step oracle (see Definition 39) based

on short-flat decompositions can be implemented for each iteration, or we can certify that the

input radius bound is now too loose. This algorithm is analyzed in Lemma 170.

2. We state in Assumption 11 a set of conditions on a matrix-vector pair (A,∆) centered around

the notion of short-flat decompositions, which suffice to provide a sufficient step oracle im-

plementation with high probability in nearly-linear time. In Section 9.6.2 we analyze this

implementation (Algorithm 55) in the proof of Lemma 168 assuming the inputs satisfy As-

sumption 11.

3. In Section 9.6.3, we show Assumption 11, with appropriate parameters, follows from A being

wRIP. This is a byproduct of a general equivalence we demonstrate between RIP, restricted

conditioning measures used in prior work [9], and short-flat decompositions.

9.6.1 Radius contraction using step oracles

In this section, we provide and analyze the main loop of our overall algorithm for proving Theorem 66.

This procedure, HalfRadiusSparse, takes as input an s-sparse vector xin and a radius bound R ≥
‖xin − x?‖2 and returns an s-sparse vector xout with the guarantee ‖xout − x?‖2 ≤

1
2R. As a

subroutine, it requires access to a “step oracle” Ostep, which we implement in Section 9.6.2 under

certain assumptions on the matrix A.

Definition 39 (Step oracle). We say that Ostep is a (Cprog, C2, δ)-step oracle for ∆ ∈ Rn and

A ∈ Rn×d, if the following holds. Whenever there is v ∈ Rd with 1
4 ≤ ‖v‖2 ≤ 1 and ‖v‖1 ≤ 2

√
2s

such that ∆ = Av, with probability ≥ 1 − δ, Ostep returns w ∈ Rn≥0 such that the following two

conditions hold. First, ∑
i∈[n]

wi∆
2
i ≥ Cprog. (9.17)

Second, there exists a (C2,
Cprog

6
√
s

) short-flat decomposition of A>diag (w) ∆:

∥∥∥∥trunc

(
A>diag (w) ∆,

Cprog

6
√
s

)∥∥∥∥
2

≤ C2. (9.18)

Intuitively, (9.18) guarantees that we can write γ = p + e where p denotes a “progress” term

which we require to be sufficiently short in the `2 norm, and e denotes an “error” term which we

require to be small in `∞. We prove that under certain assumptions on the input A (stated in

Assumption 11 below), we can always implement a step oracle with appropriate parameters.

CHAPTER 9. SEMI-RANDOM LINEAR SYSTEMS 457

Assumption 11. The matrix A ∈ Rn×d satisfies the following. There is a weight vector w? ∈ ∆n

satisfying ‖w?‖∞ ≤ w?∞, a constant L, ρ ≥ 1, and a constant K (which may depend on L) such that

for all v ∈ Rd with 1
4 ≤ ‖v‖2 ≤ 1 and ‖v‖1 ≤ 2

√
2s we have, defining ∆ = Av:

1. A is entrywise bounded by ±ρ, i.e. ‖A‖max ≤ ρ.

2.
1

L
≤
∑
i∈[n]

w?i ∆2
i ≤ L. (9.19)

3. For W? := diag (w?), there is a (L, 1
K
√
s
) short-flat decomposition of A>W?∆ =

∑
i∈[n] w

?
i ∆iai:∥∥∥∥trunc

(
A>W?∆,

1

K
√
s

)∥∥∥∥
2

≤ L. (9.20)

Our Assumption 11 may also be stated in a scale-invariant way (i.e. with (9.19), (9.20) scaling

with ‖v‖2), but it is convenient in our analysis to impose a norm bound on v. Roughly, the second

property in Assumption 11 is (up to constant factors) equivalent to the “restricted strong convexity”

and “restricted smoothness” assumptions of [9], which were previously shown for specific measure-

ment matrix constructions such as random Gaussian matrices. The use of the third property in

Assumption 11 (the existence of short-flat decompositions for numerically sparse vectors) in design-

ing an efficient algorithm is a key contribution of our work. Interestingly, we show in Section 9.6.3

that these assumptions are up to constant factors equivalent to RIP.

More specifically, we show that when A is wRIP, we can implement a step oracle for ∆ = Av

where v = 1
R (x − x?) for some iterate x of Algorithm 54, which either makes enough progress to

advance the algorithm or certifies that v is sufficiently short, by using numerical sparsity properties

of v. We break this proof into two parts. In Lemma 168, we show that Assumption 11 suffices

to implement an appropriate step oracle; this is proven in Section 9.6.2. In Lemma 169, we then

demonstrate the wRIP assumption with appropriate parameters implies our measurement matrix

satisfies Assumption 11, which we prove by way of a more general equivalence in Section 9.6.3.

Lemma 168. Suppose A satisfies Assumption 11. Algorithm 55 is a (Cprog, C2, δ) step oracle

StepOracle for (∆,A) with Cprog = Ω(1), C2 = O(1) running in time

O

((
nd log3(ndρ) log

1

δ

)
·
(
w?∞sρ

2 log d
))

.

Lemma 169. Suppose A ∈ Rn×d is (ρ, w?∞)-wRIP with a suitable choice of constants in the RIP

parameters in Definition 38. Then, A also satisfies Assumption 11.

We now give our main algorithm HalfRadiusSparse, assuming access to the step oracle Ostep from

Section 9.6.2 with appropriate parameters, and that A obeys Assumption 11.

CHAPTER 9. SEMI-RANDOM LINEAR SYSTEMS 458

Algorithm 54: HalfRadiusSparse(xin, R,Ostep, δ,A, b)

1 Input: s-sparse xin ∈ Rd, R ≥ ‖xin − x?‖2 for s-sparse x? ∈ Rd, (Cprog, C2, δ)-step oracle

Ostep for all (∆,A) with ∆ ∈ Rn, δ ∈ (0, 1), A ∈ Rn×d, b = Ax? ∈ Rn ;

2 Output: s-sparse vector xout that satisfies ‖xout − x?‖2 ≤
1
2R with probability ≥ 1− Tδ ;

3 Set x0 ← xin, X ← {x ∈ Rd | ‖x− xin‖1 ≤
√

2sR} T ←
⌈

6C2
2

C2
prog

⌉
, η ← Cprog

2C2
2

;

4 for 0 ≤ t ≤ T − 1 do
5 wt ← Ostep(∆t,A) for ∆t ← 1

R (Axt − b), γt ← A>diag (wt) ∆t =
∑
i∈[n][wt]i[∆t]iai ;

6 if
∑
i∈[n][wt]i[∆t]

2
i < Cprog or

∥∥∥trunc(γt,
Cprog

6
√
s

)
∥∥∥

2
> C2 then

7 Return: xout ← [xt](s)

8 else xt+1 ← argminx∈X ‖x− xt − ηRγt‖2 ;

9 Return: xout ← [xt](s)

Lemma 170. Assume A satisfies Assumption 11. With probability at least 1 − Tδ, Algorithm 54

succeeds (i.e. ‖xout − x?‖2 ≤
1
2R).

Proof. Throughout this proof, condition on the event that all step oracles succeed (which provides

the failure probability via a union bound). We first observe that x? ∈ X because of Cauchy-Schwarz,

the 2s-sparsity of xin − x?, and the assumption ‖xin − x?‖2 ≤ R.

Next, we show that in every iteration t of Algorithm 54,

‖xt+1 − x?‖22 ≤
(

1− C2
2

2C2
prog

)
‖xt − x?‖22 . (9.21)

As x? ∈ X , the optimality conditions of xt+1 as minimizing ‖x− (xt − ηRγt)‖22 over X imply

2 〈xt+1 − xt + ηRγt, xt+1 − x?〉 ≤ 0

=⇒ ‖xt − x?‖22 − ‖xt+1 − x?‖22 ≥ 2ηR 〈γt, xt+1 − x?〉+ ‖xt − xt+1‖22 .
(9.22)

Hence, it suffices to lower bound the right-hand side of the above expression. Let γt = pt+et denote

the (C2,
Cprog

6
√
s

) short-flat decomposition of γt which exists by Definition 39 assuming the step oracle

succeeded. We begin by observing

2ηR 〈γt, xt+1 − xt〉+ ‖xt − xt+1‖22 = 2ηR 〈et, xt+1 − xt〉+ 2ηR 〈pt, xt+1 − xt〉+ ‖xt − xt+1‖22
≥ −2ηR ‖et‖∞ ‖xt+1 − xt‖1 − η

2R2 ‖pt‖22
≥ −ηR2Cprog − η2R2C2

2 .

(9.23)

The first inequality followed from Hölder on the first term and Cauchy-Schwarz on the latter two

terms in the preceding line. The second followed from the `1 radius of X , and the bounds on et and

CHAPTER 9. SEMI-RANDOM LINEAR SYSTEMS 459

pt from (9.18). Next, from Definition 39, for ∆ = ∆t = 1
R (Axt − b) and v = 1

R (xt − x?),

2ηR 〈γt, xt − x?〉 = 2ηR
∑
i∈[n]

wi∆i 〈ai, v〉 = 2ηR2
∑
i∈[n]

wi∆
2
i ≥ 2ηR2Cprog. (9.24)

Finally, (9.21) follows from combining (9.22), (9.23), and (9.24), with our choice of η, and the fact

that inducting on this lemma implies the `2 distance to x? of the iterates is monotone decreasing.

Next, we claim that regardless of whether Algorithm 54 terminates on Line 7 or Line 11, we

have ‖xt − x?‖2 ≤
1
4R. Note that the vector v = 1

R (xt − x?) satisfies Av = ∆ := 1
R (Axt − b). By

assumption the condition ‖v‖1 ≤ 2
√

2s is met (since xt, x
? ∈ X), and upon iterating (9.21) on our

radius bound assumption, this implies that the condition ‖v‖2 ≤ 1 is met. Hence, if the algorithm

terminated on Line 7, we must have ‖v‖2 ≤
1
4R =⇒ ‖xt − x?‖2 ≤

1
4R, as otherwise the termination

condition would have been false. On the other hand, by (9.21), after T steps we have

‖xT − x?‖22 ≤ exp

(
− TC2

2

2C2
prog

)
‖x0 − x?‖22 ≤

1

16
R2.

We conclude that at termination, ‖xt − x?‖2 ≤
1
4R. Now, s-sparsity of x? and the definition of

xout = argmin‖x‖0≤s ‖x− xt‖2 imply the desired

‖xout − x?‖2 ≤ ‖xout − xt‖2 + ‖x? − xt‖2 ≤ 2 ‖x? − xt‖2 ≤
1

2
R. (9.25)

9.6.2 Designing a step oracle

In this section, we design a step oracle Ostep(∆,A) (see Definition 39) under Assumption 11 on the

input matrix A ∈ Rn×d. Our step oracle iteratively builds a weight vector w̄ ∈ Rn≥0. It will be

convenient to define

γw̄ :=
∑
i∈[n]

w̄i∆iai. (9.26)

Note that a valid step oracle always exists (although it is unclear how to implement the following

solution): namely, setting w̄ = w? satisfies the oracle assumptions by the second and third conditions

in Assumption 11. In order to ensure Algorithm 58 is indeed a step oracle, we track two potentials

for some µ, C we will define in Algorithm 55:

Φ2(w̄) :=
∑
i∈[n]

w̄i∆
2
i and Φsqmax(w̄) :=

(
min

‖p‖2≤L‖w̄‖1
sqmaxµ (γw̄ − p)

)
+
‖w̄‖1
4CLs

,

where sqmaxµ(x) := µ2 log

∑
j∈[d]

exp

(
x2
j

µ2

) .

(9.27)

CHAPTER 9. SEMI-RANDOM LINEAR SYSTEMS 460

Intuitively, Φ2(w̄) corresponds to progress on (9.17), and Φsqmax(w̄) is intended to track the bounds

(9.18). We note the following fact about the sqmax function which follows from direct calculation.

Fact 25. For all x ∈ Rd, ‖x‖2∞ ≤ sqmaxµ(x), and sqmaxµ(x) ≥ µ2 log(d).

Also it will be important to note that Φsqmax(w̄) can be computed to high precision efficiently.

We state this claim in the following and defer a full proof to Appendix H.3; we give a subroutine

which performs a binary search on a Lagrange multiplier on the `2 constraint on p, and then solves

for each optimal pj using another binary search based on the Lagrange multiplier value.

Lemma 171. Let δ > 0 and θ ≥ 0. For any vector γ ∈ Rd, we can solve the optimization problem

min
‖p‖2≤θ

sqmaxµ(γ − p)

to additive accuracy δ in time

O

(
d log2

(
‖γ‖22
µ
√
δ

))
.

We state the full implementation of our step oracle as Algorithm 55 below.

Algorithm 55: StepOracle(∆,A, δ)

1 Input: ∆ ∈ Rn,A ∈ Rn×d satisfying Assumption 11, δ ∈ (0, 1) ;

2 Output: w such that if there is v ∈ Rd with 1
4 ≤ ‖v‖2 ≤ 1 and ‖v‖1 ≤ 2

√
2s such that

∆ = Av, with probability ≥ 1− δ, (9.17), (9.18) are satisfied with Cp = 1, C2 = O(1).

3 C ← 200, µ← 1√
Cs log d

, η ← 1
Kw?∞sρ

2 log d , N ′ ← dlog2
1
δ e ;

4 for 0 ≤ k ≤ N ′ do
5 w0 ← 0n, N ← d 5Ln

η e;
6 for 0 ≤ t ≤ N do
7 if Φ2(wt) ≥ 1 then Return: w ← wt ;
8 Sample i ∼unif. [n] ;
9 Compute (using Lemma 171) dt ∈ [0, ηw?∞] maximizing to additive O(ηn)

Γt(d) := Φ2(wt + dei)− CsΦsqmax(wt + dei) (9.28)

wt+1 ← wt + dtei ;

10 Return: w ← 0n ;

Our main helper lemma bounds the expected increase in Φsqmax from choosing a row of A

uniformly at random, and choosing a step size according to w?. We do not know w?, but we argue

that our algorithm makes at least this much expected progress. Define the decomposition promised

by (9.20):

p? := trunc

(
A>W?∆,

1

K
√
s

)
, e? := A>W?∆− p?.

CHAPTER 9. SEMI-RANDOM LINEAR SYSTEMS 461

Furthermore, define for all i ∈ [n],

z(i) := ηw?i (∆iai − p?), (9.29)

where p? is given by (9.20). We use {z(i)}i∈[n] as certificates of Φsqmax’s growth in the following.

Lemma 172. Assume that the constant K in Assumption 11 is sufficiently large, and that ∆ =

Av where v satisfies the norm conditions in Assumption 11. Then for any w̄ ∈ Rn≥0 such that

Φsqmax(w̄) ≤ C2µ2 log d, and η ≤ 1
Kw?∞sρ

2 log d , we have

Ei∼unif.[n] [Φsqmax(w̄ + ηw?i)] ≤ Φsqmax(w̄) +
1

2CLs
· η
n
.

Proof. We assume for simplicity L ≥ 2
√

2 as otherwise we may set L ← max(2
√

2, L) and (9.19)

remains true. Let pw̄ be the minimizing argument in the definition of Φsqmax(w̄) in (9.27). For

any i ∈ [n], it is clear that pw̄ + (ηw?i)p? is a valid argument for the optimization problem defining

Φsqmax(w̄ + ηw?i) by ‖p?‖2 ≤ L, and since ‖w‖1 grows by ηw?i . Next, define

F (x) :=
∑
j∈[d]

exp

(
x2
j

µ2

)
(9.30)

such that Φsqmax(w̄) = µ2 logF (x)+
‖w̄‖1
4CLs for x = γw̄−pw̄. As discussed earlier, since ‖pw̄ + (ηw?i)p?‖2 ≤

‖pw̄‖2 + ηw?iL, we conclude

Φsqmax(w̄ + ηw?i) ≤ µ2 logF (x+ z(i)) +
‖w̄ + ηw?i ‖1

4CLs
. (9.31)

We next compute

1

n

∑
i∈[n]

F (x+ z(i)) =
1

n

∑
j∈[d]

exp

(
x2
j

µ2

)∑
i∈[n]

exp

(
2xjz

(i)
j + (z

(i)
j)2

µ2

)
≤ 1

n
F (x) max

j∈[d]

∑
i∈[n]

exp

(
2xjz

(i)
j + (z

(i)
j)2

µ2

) .

(9.32)

We now bound the right-hand side of this expression. For any i ∈ [n] and j ∈ [d], recalling (9.29),∣∣∣z(i)
j

∣∣∣ ≤ ηw?i (|∆i| ‖ai‖∞ + ‖p?‖2) ≤ ηw?∞L(
√
sρ2 + 1). (9.33)

The second inequality used our bounds from Assumption 11; note that for ∆ = Av where v satisfies

the norm conditions in Assumption 11, |∆i| ≤ ρ ‖v‖1 ≤ 2
√

2sρ. Hence, if we choose a sufficiently

CHAPTER 9. SEMI-RANDOM LINEAR SYSTEMS 462

large constant K in Assumption 11, we have

1

µ

∣∣∣z(i)
j

∣∣∣ ≤ √
C

K
√
s log dρ2

·
(
L(
√
sρ2 + 1)

)
≤ 1

4C
√

log d
.

Also by the assumption that Φsqmax(w̄) ≤ C2µ2 log d we must have that for all j ∈ [d],

|xj |
µ
≤ C

√
log d.

Now, using exp(c) ≤ 1 + c+ c2 for |c| ≤ 1, we get

∑
i∈[n]

exp

(
2xjz

(i)
j + (z

(i)
j)2

µ2

)
≤
∑
i∈[n]

1 +
2xjz

(i)
j

µ2
+

(z
(i)
j)2

µ2
+

(
2xjz

(i)
j + (z

(i)
j)2

µ2

)2

≤
∑
i∈[n]

(
1 +

2xjz
(i)
j

µ2
+ 10C2 log d ·

(z
(i)
j)2

µ2

)
.

(9.34)

We control the first-order term via the observation that
∑
i∈[n] z

(i) = ηe? which is `∞-bounded from

(9.20), so taking the constant K in Assumption 11 sufficiently large, we have∣∣∣∣∣∣
∑
i∈[n]

z
(i)
j

µ

∣∣∣∣∣∣ ≤ η

µ
‖e?‖∞ ≤

η
√
C log d

K

=⇒

∣∣∣∣∣∣
∑
i∈[n]

2xjz
(i)
j

µ2

∣∣∣∣∣∣ ≤ 2C
√

log d · η
√
C log d

K
≤ η log d

8L
.

(9.35)

In the last inequality we assumed K ≥ 16C1.5L. We control the second-order term by using (a+b)2 ≤
2a2 + 2b2, ‖p?‖∞ ≤ ‖p?‖2 ≤ L, and (9.19):

∑
i∈[n]

(
z

(i)
j

)2

≤ 2η2w?∞

∑
i∈[n]

w?i [p?]2j +
∑
i∈[n]

w?i ∆2
i ρ

2

 ≤ 2η2w?∞(Lρ2 + L2). (9.36)

Putting together (9.34), (9.35), and (9.36), with the definition of µ, we conclude for sufficiently large

K,

1

n

∑
i∈[n]

exp

(
2xjz

(i)
j + (z

(i)
j)2

µ2

)
≤ 1 +

η log d

8Ln
+

2η2w?∞(Lρ2 + L2)

nµ2

≤ 1 +
η log d

4Ln
.

CHAPTER 9. SEMI-RANDOM LINEAR SYSTEMS 463

Hence, combining the above with (9.32), and using log(1 + c) ≤ c for all c,

µ2 log

 1

n

∑
i∈[n]

F (x+ z(i))

 ≤ µ2 logF (x) +
µ2η log d

4Ln
= µ2 logF (x) +

1

Cs
· η

4Ln
. (9.37)

Finally, we compute via (9.31) and concavity of log,

Ei∼unif.[n][Φsqmax(w̄ + ηw?i)] ≤ µ2

n

∑
i∈[n]

logF (x+ z(i)) +
‖w̄‖1
4CLs

+
1

4CLs

 1

n

∑
i∈[n]

ηw?i

≤ µ2 log

 1

n

∑
i∈[n]

F (x+ z(i))

+
‖w̄‖1
4CLs

+
1

4CLs
· η
n

≤ µ2 logF (x) +
‖w̄‖1
4CLs

+
1

Cs
· η

2Ln
= B(w̄) +

1

Cs
· η

2Ln
.

In the last line, we used the bound (9.37).

Finally, we can complete the analysis of Algorithm 55.

Lemma 168. Suppose A satisfies Assumption 11. Algorithm 55 is a (Cprog, C2, δ) step oracle

StepOracle for (∆,A) with Cprog = Ω(1), C2 = O(1) running in time

O

((
nd log3(ndρ) log

1

δ

)
·
(
w?∞sρ

2 log d
))

.

Proof. It suffices to prove Algorithm 55 meets its output guarantees in this time. Throughout this

proof, we consider one run of Lines 5-10 of the algorithm, and prove that it successfully terminates

on Line 7 with probability ≥ 1
2 assuming A satisfies Assumption 11 and that ∆ = Av for v satisfying

the norm bounds in Assumption 11. This yields the failure probability upon repeating N ′ times.

For the first part of this proof, we assume we can exactly compute ∆t, and carry out the proof

accordingly. We discuss issues of approximation tolerance at the end, when bounding the runtime.

Correctness. We use the notation At := Φ2(wt), Bt := Φsqmax(wt), and Φt := At − CsBt. We

first observe that At is 1-Lipschitz, meaning it can only increase by 1 in any given iteration; this

follows from ηw?∞∆2
i ≤ 1

8sρ2 ∆2
i ≤ 1, since ∆2

i = 〈ai, v〉2 ≤ 8sρ2 by `∞-`1 Hölder.

Suppose some run of Lines 5-13 terminates by returning on Line 8 in iteration T , for 0 ≤ T ≤ N .

The termination condition implies that AT ≥ 1 = Cprog, so to show that the algorithm satisfies

Definition 39, it suffices to show existence of a short-flat decomposition in the sense of (9.18).

Clearly, Φt is monotone non-decreasing in t, since we may always force Γt = 0 by choosing dt = 0.

Moreover, Φ0 = −CsB0 = −Csµ2 log d = −1. The above Lipschitz bound implies that AT ≤ 2,

CHAPTER 9. SEMI-RANDOM LINEAR SYSTEMS 464

since AT−1 ≤ 1 by the termination condition; hence,

AT − CsBT = ΦT ≥ Φ0 = −1 =⇒ BT ≤
AT + 1

Cs
≤ 3

Cs
≤ C2µ2 log d.

Note that the above inequality and nonnegativity of sqmaxµ imply that
‖wT ‖1
4LCs ≤

3
Cs , so ‖wT ‖1 ≤

12L. For the given value of C = 200, and the first inequality in Fact 25, the definition of the first

summand in B implies there is a short-flat decomposition meeting (9.18) with C2 = L ‖wT ‖1 = O(1).

Hence, we have shown that Definition 39 is satisfied whenever the algorithm returns on Line 7.

We make one additional observation: whenever Φt ≥ 0, the algorithm will terminate. This follows

since on such an iteration,

At ≥ CsBt ≥ CsB0 = Csµ2 log d = 1,

since clearly the function B is minimized by the all-zeroes weight vector, attaining value µ2 log d.

Success probability. We next show that with probability at least 1
2 , the loop in Lines 5-10 will

terminate. Fix an iteration t. When sampling i ∈ [n], the maximum gain in Φt for dt ∈ [0, ηw?∞] is

at least that attained by setting dt = ηw?i , and hence

E[Φt+1 − Φt | At ≤ 1] ≥ η

Ln
− η

2Ln
=

η

2Ln
. (9.38)

Here, we used that the expected gain in At by choosing dt = ηw?i over a uniformly sampled i ∈ [n]

is lower bounded by η
Ln via (9.19), and the expected gain in CsBt is upper bounded by Lemma 172.

Let Zt be the random variable equal to Φt −Φ0, where we freeze the value of wt′ for all t′ ≥ t if

the algorithm ever returns on Line 8 in an iteration t. Notice that Zt ≤ 2 always: whenever Zt ≥ 1,

we have Φt ≥ 0 so the algorithm will terminate, and Zt is 1-Lipschitz because At is. Moreover,

whenever we are in an iteration t where Pr[At ≥ 1] ≤ 1
2 , applying (9.38) implies

E[Zt+1 − Zt] = E[Zt+1 − Zt | At ≤ 1] Pr[At ≤ 1] ≥ η

4Ln
.

Clearly, Pr[At ≥ 1] is a monotone non-decreasing function of t, since At is monotone. After N ≥ 5Ln
η

iterations, if we still have Pr[At ≥ 1] ≤ 1
2 , we would obtain a contradiction since recursing the above

display yields E[ZN] > 2. This yields the desired success probability.

Runtime. The cost of each iteration is dominated by the following computation in Line 9: we

wish to find d ∈ [0, ηw?∞] maximizing to additive O(ηn) the following objective:

Φ2(w + dei)− CsΦsqmax(w + dei).

We claim the above function is a concave function of d. First, we show Φsqmax is convex (and

the result will then follow from linearity of Φ2). To see this, for two values wi and w′i, let the

CHAPTER 9. SEMI-RANDOM LINEAR SYSTEMS 465

corresponding maximizing arguments in the definition of Φsqmax(w̄ + wi) and Φsqmax(w̄ + w′i) be

denoted p and p′. Then, 1
2 (p+p′) is a valid argument for w̄+ 1

2 (wi+w
′
i), and by convexity of sqmaxµ

and linearity of the `1 portion, we have the conclusion.

Next, note that all |∆i| are bounded by 2
√

2sρ (proven after (9.33)) and all aij are bounded by ρ

by assumption. It follows that the restriction of Φ2 to a coordinate is 8sρ2-Lipschitz. Moreover the

linear portion of Φsqmax is clearly 1
4CLs -Lipschitz in any coordinate. Finally we bound the Lipschitz

constant of the sqmax part of Φsqmax. It suffices to bound Lipschitzness for any fixed p of

sqmaxµ (γw̄ − p+ di∆iai)

because performing the minimization over p involved in two sqmax(γw̄−p+d∆iai) and sqmax(γw̄−
p+ d′∆iai) can only bring the function values closer together. By direct computation the derivative

of the above quantity with respect to di is

∑
j∈[d]

∆iaij

(
2 [γw̄ − p+ di∆iai]j

)
qj

for some probability density vector q ∈ ∆d. Further we have

|γw̄ − p+ di∆iai|j ≤ O
(√
sρ2
)

+O(1) + 2
√

2sρ2 · (ηw?∞).

Here we used our earlier proof that we must only consider values of ‖p‖2 = O(1) throughout the

algorithm (since ‖wt‖1 = O(1) throughout) and this also implies no coordinate of γw̄ can be larger

than (maxi∈[n] |∆i|)(maxi∈[n],j∈[d] |aij |) ‖w̄‖1 by definition of γw̄. Combined with our bounds on

linear portions this shows Φ2 and Φsqmax are poly(ndρ)-Lipschitz.

Hence, we may evaluate to the desired O(ηn) accuracy by approximate minimization of a Lipschitz

convex function over an interval (Lemma 33, [143]) with a total cost of O(d log3(ndρ)). Here we use

the subroutine of Lemma 171 in Lemma 33 of [143], with evaluation time O(d log2(ndρ)).

The algorithm then runs in NN ′ iterations, each bottlenecked by the cost of approximating

Γt; combining these multiplicative factors yields the runtime. We note that we do not precompute

∆ = Av; we can compute coordinates of ∆ in time O(d) as they are required by Algorithm 55.

9.6.3 Equivalence between Assumption 11 and RIP

The main result of this section is an equivalence between Assumption 11 and the weighted restricted

isometry property, which requires two helper tools to prove. The first is a “shelling decomposition.”

Lemma 173. Let v ∈ Rd have NS(v) ≤ σ. Then if we write v =
∑
l∈[k] v

(l) where v(1) is obtained

by taking the s largest coordinates of v, v(2) is obtained by taking the next s largest coordinates and

CHAPTER 9. SEMI-RANDOM LINEAR SYSTEMS 466

so on (breaking ties arbitrarily so that the supports are disjoint), we have

∑
2≤l≤k

∥∥∥v(l)
∥∥∥

2
≤
√
σ

s
‖v‖2 .

Proof. Note that the decomposition greedily sets v(l) to be the s largest coordinates (by absolute

value) of v−
∑
l′∈[l−1] v

(l′), zeroing all other coordinates and breaking ties arbitrarily. This satisfies

∥∥∥v(l+1)
∥∥∥

2
≤
√
s
∥∥∥v(l+1)

∥∥∥
∞
≤ 1√

s

∥∥∥v(l)
∥∥∥

1
.

The last inequality follows since every entry of v(l) is larger than the largest of v(l+1) in absolute

value. Finally, summing the above equation and using disjointness of supports yields

∑
2≤l≤k

∥∥∥v(l)
∥∥∥

2
≤ 1√

s
‖v‖1 ≤

√
σ

s
‖v‖2 .

The second bounds the largest entries of image vectors from the transpose of an RIP matrix.

Lemma 174. Let A ∈ Rn×d be (s, c)-RIP, and let u ∈ Rn. Then,

∥∥[A>u](s)
∥∥

2
≤ c ‖u‖2 .

Proof. Let v = [A>u](s). The lemma is equivalent to showing ‖v‖2 ≤ c ‖u‖2. Note that

‖v‖22 =
〈
v,A>u

〉
≤ ‖Av‖2 ‖u‖2 ≤ c ‖v‖2 ‖u‖2 .

The first inequality used Cauchy-Schwarz, and the second applied the RIP property of A to v, which

is s-sparse by construction. The conclusion follows via dividing by ‖v‖2.

Using these helper tools, we now prove the main result of this section.

Lemma 175. The following statements are true.

1. If A satisfies Assumption 11 with weight vector w?, then (W?)
1
2 A is (s, L)-RIP.

2. If the matrix (W?)
1
2 A is RIP with parameters(

12800L3K2s,

√
L

2

)

for L ≥ 1, and ‖A‖max ≤ ρ, then A satisfies Assumption 11.

CHAPTER 9. SEMI-RANDOM LINEAR SYSTEMS 467

Proof. We prove each equivalence in turn.

Assumption 11 implies RIP. The statement of RIP is scale-invariant, so we will prove it for

all s-sparse unit vectors v without loss of generality. Note that such v satisfies the condition in

Assumption 11, since ‖v‖2 = 1 and ‖v‖1 ≤
√
s by Cauchy-Schwarz. Then, the second condition of

Assumption 11 implies that for ∆ = Av, we have the desired norm preservation:

1

L
≤
∥∥∥(W∗)

1
2 Av

∥∥∥2

2
=
∑
i∈[n]

w?i ∆2
i ≤ L.

Boundedness and RIP imply Assumption 11. Let v ∈ Rd satisfy 1
4 ≤ ‖v‖2 ≤ 1 and ‖v‖1 ≤ 2

√
2s,

and define ∆ := Av. The first condition in Assumption 11 is immediate from our assumed entrywise

boundedness on A, so we begin by demonstrating the lower bound in (9.19). Let

s′ = 12800L3K2s

and let v(1), . . . , v(k) be the shelling decomposition into s′-sparse vectors given by Lemma 173, where

σ = 128s from the `1 and `2 norm bounds on v. By Lemma 173, we have∥∥∥v(2)
∥∥∥

2
+ · · ·+

∥∥∥v(k)
∥∥∥

2
≤ 0.1

L
‖v‖2 .

In particular, the triangle inequality then implies 0.9 ‖v‖2 ≤
∥∥v(1)

∥∥
2
≤ ‖v‖2. Next, recall that∑

i∈[n] w
?
i ∆2

i =
∥∥∥(W?)

1
2 Av

∥∥∥2

2
. By applying the triangle inequality and since (W?)

1
2 A is RIP,

∥∥∥(W?)
1
2 Av

∥∥∥2

2
≥

(∥∥∥(W?)
1
2 Av(1)

∥∥∥
2
−

k∑
l=2

∥∥∥(W?)
1
2 Av(l)

∥∥∥
2

)2

≥

(
5√
L
· 0.9 ‖v‖2 −

√
L

2
· 1

L
‖v‖2

)2

≥ 16

L
‖v‖22 ≥

1

L
.

In the second inequality, we applied the RIP assumption to each individual term, since all the vectors

are s′-sparse. Similarly, to show the upper bound in (9.19), we have

∥∥∥(W?)
1
2 Av

∥∥∥2

2
≤

(∥∥∥(W?)
1
2 Av(1)

∥∥∥
2

+

k∑
l=2

∥∥∥(W?)
1
2 Av(l)

∥∥∥
2

)2

≤

(√
L

2
· ‖v‖2 +

√
L

2
· 1

L
‖v‖2

)2

≤ L.

It remains to verify the final condition of Assumption 11. First, for u := W
1
2 Av, by applying

CHAPTER 9. SEMI-RANDOM LINEAR SYSTEMS 468

the shelling decomposition to v into s′-sparse vectors {v(l)}l∈[k],

‖u‖2 ≤
∑
l∈[k]

∥∥∥(W?)
1
2 Av(l)

∥∥∥
2
≤
√
L ‖v‖2 . (9.39)

Here, we used our earlier proof to bound the contribution of all terms but v(1). Applying Lemma 174

to the matrix (W?)
1
2 A and vector u, we have for ∆ = Av,∥∥∥∥[A>(W?)

1
2u
]

(s′)

∥∥∥∥
2

=
∥∥∥[A>W?∆

]
(s′)

∥∥∥
2
≤ L.

By setting the `2 bounded component in the short-flat decomposition of A>W?∆ to be the top s′

entries by magnitude, it remains to show the remaining coordinates are `∞ bounded by 1
K
√
s
. This

follows from the definition of s′ and (9.39), which imply that the s′ + 1th largest coordinate (in

magnitude) cannot have squared value larger than L2

s′ ≤
1

K2s without contradicting (9.39).

Finally, it is immediate that Lemma 169 follows from Lemma 175.

9.6.4 Putting it all together

At this point, we have assembled the tools to prove our main result on exact recovery.

Theorem 66. Let δ ∈ (0, 1), r > 0, and suppose R0 ≥ ‖x?‖2 for s-sparse x? ∈ Rd. Then with

probability at least 1− δ, Algorithm 54 using Algorithm 55 as a step oracle takes as input a (ρ, w?∞)-

wRIP matrix A ∈ Rn×d and b = Ax?, and computes x̂ satisfying ‖x̂− x?‖2 ≤ r in time

O

((
nd log3(ndρ) log

(
1

δ
· log

R0

r

)
log

(
R0

r

))
·
(
w?∞sρ

2 log d
))

.

Proof. With probability at least 1−δ, combining Lemma 168 and Lemma 169 implies that Assump-

tion 11 holds for all v ∈ Rd where 1
4 ≤ ‖v‖2 ≤ 1 and ‖v‖1 ≤ 2

√
2s, and that for N = O(log R0

r),

we can implement a step oracle for N runs of Algorithm 54 in the allotted time, each with fail-

ure probability 1 − δ
N . Moreover, Algorithm 54 returns in O(1) iterations, and allows us to halve

our radius upper bound. By taking a union bound on failure probabilities and repeatedly running

Algorithm 54 N times, we obtain a radius upper bound of r with probability ≥ 1− δ.

9.7 Noisy recovery

In this section, we give an algorithm for solving a noisy sparse recovery problem in a wRIP matrix

A ∈ Rn×d (where we recall Definition 38). In particular, we assume that we receive

b = Ax? + ξ, (9.40)

CHAPTER 9. SEMI-RANDOM LINEAR SYSTEMS 469

for an arbitrary unknown ξ ∈ Rn, and x? ∈ Rd is s-sparse. Throughout this section, we will define

m :=
1

w?∞
, (9.41)

where w?∞ is an entrywise bound on w in Definition 38. We define the (unknown) “noise floor”

Rξ :=
1√
m

∥∥ξ(m)

∥∥
2
,

where we defined ·(m) in Section 9.5. Our goal will be to return x such that ‖x− x?‖2 = O(Rξ).

We now formally state the main result of this section here.

Theorem 67. Let δ ∈ (0, 1), and suppose R0 ≥ ‖x?‖2 for s-sparse x? ∈ Rd. Further, suppose

A ∈ Rn×d is (ρ, w?∞)-wRIP and b = Ax? + ξ, and R1 ≥ Rξ :=
∥∥ξ(m)

∥∥
2
. Then with probability at

least 1− δ, Algorithm 56 using Algorithm 56 as a noisy step oracle computes x̂ satisfying

‖x̂− x?‖2 ≤ Rfinal = Θ(Rξ),

in time

O

((
ndw?∞s log4(ndρ) log2

(
d

δ
· log

(
R0

Rfinal

)
log

(
R1

Rfinal

)))
· ρ2 log

(
R0

Rfinal

)
log

(
R1

Rfinal

))
.

Similarly to Theorem 66, Theorem 67 provides a runtime guarantee which interpolates between

the fully random and semi-random settings, and runs in sublinear time when e.g. the entire measure-

ment matrix A satisfies RIP. Theorem 67 further provides a refined error guarantee as a function

of the noise vector ξ, which again interpolates based on the “quality” of the weights w. This is

captured through the parameter m = 1
w?∞

: when m ≈ n, the squared error bound R2
ξ scales as the

average squared entry of ξ, and more generally it scales as the average of the largest m entries.

We solve the noisy variant by essentially following the same steps as Section 9.6 and making minor

modifications to the analysis; we give an outline of the section here. In Section 9.7.1, we generalize

the framework of Section 9.6.1 to the setting where we only receive noisy observations (9.40), while

our current radius is substantially above the noise floor. We then implement an appropriate step

oracle for this outer loop in Section 9.7.2, and prove that the relevant Assumption 12 used in our

step oracle implementation holds when A is wRIP in Section 9.7.3.

9.7.1 Radius contraction above the noise floor using step oracles

In this section, we give the main loop of our overall noise-tolerant algorithm, HalfRadiusSparseNoisy,

which takes as input s-sparse xin and a radius bound R ≥ ‖xin − x?‖2. It then returns an s-sparse

vector xout with the guarantee ‖xout − x?‖2 ≤
1
2R, as long as R is larger than an appropriate

multiple of Rξ. We give the analog of Definition 39 in this setting, termed a “noisy step oracle.”

CHAPTER 9. SEMI-RANDOM LINEAR SYSTEMS 470

Definition 40 (Noisy step oracle). We say that Onstep is a (Cprog, C2, Cξ, δ)-noisy step oracle for

∆̃ ∈ Rn and A ∈ Rn×d if the following holds. Whenever there is v ∈ Rd with 1
12 ≤ ‖v‖2 ≤ 1 such

that ∆̃ = Av + ξ where
∥∥ξ(m)

∥∥
2
≤
√
m
Cξ

, with probability ≥ 1− δ, Onstep returns w ∈ Rn≥0 such that

the following two conditions hold. First,

∑
i∈[n]

wi∆̃i∆i ≥ Cprog. (9.42)

Second, there exists a (C2,
Cprog

6
√
s

) short-flat decomposition of A>diag (w) ∆:

∥∥∥∥trunc

(
A>diag (w) ∆,

Cprog

6
√
s

)∥∥∥∥
2

≤ C2.

We next characterize how a strengthened step oracle with appropriate parameters also is a noisy

step oracle. First, we will need a definition.

Definition 41. For distributions A,B on Rn, we say A stochastically dominates B if there is a

random variable C on Rn whose coordinates are always nonnegative such that the distribution of A

is the same as the distribution of B + C (where C may depend on the realization of B).

We now formalize the properties of the strengthened step oracle that we will construct.

Definition 42 (Strong step oracle). We say that Ostep is a (Cprog, C2, Cξ, δ)-strong step oracle for

∆̃ ∈ Rn and A ∈ Rn×d if it satisfies all the properties of a standard step oracle (Definition 39), as

well as the following additional guarantees.

1. For the output weights w, we have

‖w‖1 ≤
CprogC

2
ξ

4
· δ. (9.43)

2. The distribution of w output by the oracle is stochastically dominated by the distribution

δ

4sρ2 log d
δ

Multinom

⌈
CprogC

2
ξnsρ

2 log d
δ

m

⌉
,

 1

n
, . . . ,

1

n︸ ︷︷ ︸
n

for some ρ ≥ 1.

3. Compared to Definition 39 (the step oracle definition), we have the stronger guarantees that

A>diag (w) ∆ admits a (C2,
Cprog

24
√
s

) short-flat decomposition in (9.18), and obtains its guaran-

tees using the bounds 1
12 ≤ ‖v‖2 ≤ 1 (instead of a lower bound of 1

4).

We next demonstrate that a strong step oracle is a noisy step oracle.

CHAPTER 9. SEMI-RANDOM LINEAR SYSTEMS 471

Lemma 176. Suppose Ostep is a (Cprog, C2, Cξ, δ)-strong step oracle for ∆̃ ∈ Rn and A ∈ Rn×d.

Then, Ostep is also a (1
4Cprog, C2, Cξ, 2δ)-noisy step oracle for (∆̃,A).

Proof. In the definition of a noisy step oracle, we only need to check the condition that
∑
i∈[n] wi∆̃i∆i ≥

1
4Cprog for an arbitrary ∆ = ∆̃− ξ where

∥∥ξ(m)

∥∥
2
≤
√
mC−1

ξ , as all other conditions are immediate

from Definition 42. Note that

∑
i∈[n]

wi∆̃i∆i =
∑
i∈[n]

wi∆̃i(∆̃i − ξi)

≥ 1

2

∑
i∈[n]

wi∆̃
2
i −

1

2

∑
i∈[n]

wiξ
2
i .

where we used a2−ab ≥ 1
2a

2− 1
2b

2. The first sum above is at least 1
2Cprog by assumption. To upper

bound the second sum, we will use the second property in the definition of a strong step oracle. Let

S ⊂ [n] be the set consisting of the m largest coordinates of ξ (with ties broken lexicographically).

Let α be drawn from the distribution

δ

4sρ2 log d
δ

Multinom

⌈
CprogC

2
ξnsρ

2 log d
δ

m

⌉
,

 1

n
, . . . ,

1

n︸ ︷︷ ︸
n

 .

Note that with 1 − 0.1δ probability, by a Chernoff bound, we have that
∑
i∈S αi ≥

1
5δCprogC

2
ξ . If

this happens, then since S consists of the largest coordinates of ξ, any vector β such that β ≤ α

entrywise and ‖β‖1 ≤
1
4δCprogC

2
ξ must have

∑
i∈[n]

βiξ
2
i ≤

5

4

∑
i∈S

αiξ
2
i .

Now note that for any S with |S| = m,

E

[∑
i∈S

αiξ
2
i

]
≤
δCprogC

2
ξ

4m
·
∥∥ξ(m)

∥∥2

2
≤ δCprog

4
.

Combining the above two inequalities and Markov’s inequality and the fact that the distribution of

α stochastically dominates the distribution of w, we deduce that with at least 1− δ probability,

∑
i∈[n]

wiξ
2
i ≤

1

0.9δ
· E

 max
β≤α

‖β‖1≤
1
4 δCprogC

2
ξ

∑
i∈[n]

βiξ
2
i

 ≤ Cprog

2
.

CHAPTER 9. SEMI-RANDOM LINEAR SYSTEMS 472

Putting everything together, we conclude that we have

∑
i∈[n]

wi∆̃i∆i ≥
Cprog

4

with failure probability at most 2δ, completing the proof.

In Section 9.7.2, we prove that if A satisfies Assumption 12 (a slightly different assumption than

Assumption 11) then with high probability we can implement a strong step oracle with appropriate

parameters. This is stated more formally in the following; recall m is defined in (9.41).

Assumption 12. The matrix A ∈ Rn×d satisfies the following. There is a weight vector w? ∈ ∆n

with ‖w?‖∞ ≤ w?∞ = 1
m , a constants L, ρ ≥ 1, and constants K,Cξ (which may depend on L) such

that for all v ∈ Rd, ξ ∈ Rn with

1

4
≤ ‖v‖2 ≤ 1, ‖v‖1 ≤ 2

√
2s,

∥∥ξ(m)

∥∥
2
≤
√
m

Cξ

we have, defining ∆̃ = Av + ξ:

1. A is entrywise bounded by ±ρ, i.e. ‖A‖max ≤ ρ.

2.
1

L
≤
∑
i∈[n]

w?i ∆̃2
i ≤ L. (9.44)

3. There is a (L, 1
K
√
s
) short-flat decomposition of A>W?∆̃:

∥∥∥∥trunc

(
A>W?∆̃,

1

K
√
s

)∥∥∥∥
2

≤ L. (9.45)

Lemma 177. Suppose A satisfies Assumption 12. Algorithm 58 is a (Cprog, C2, Cξ, δ) strong step

oracle StrongStepOracle for (∆̃,A) with

Cprog = Ω(1), C2 = O (1) , Cξ = O(1), δ =
1

2

(
C2

105Cprog

)2

,

running in time

O

((
nd log3(ndρ) log

1

δ

)
·
(
w?∞sρ

2 log2 d

δ

))
.

Here, in contrast to the noiseless setting, we can only guarantee that the strong step oracle (and

thus also the noisy step oracle) succeeds with constant probability. In our full algorithm, we boost

the success probability of the oracle by running a logarithmic number of independent trials and

CHAPTER 9. SEMI-RANDOM LINEAR SYSTEMS 473

aggregating the outputs. We also show that for an appropriate choice of constants in Definition 38,

Assumption 12 is also satisfied, stated in Lemma 178 and proven in Section 9.7.3.

Lemma 178. Suppose A ∈ Rn×d is (ρ, w?∞)-wRIP with a suitable choice of constants in the RIP

parameters in Definition 38. Then, A also satisfies Assumption 12.

Algorithm 56: HalfRadiusSparseNoisy(xin, R,Rξ,Onstep, δ,A, b)

1 Input: s-sparse xin ∈ Rd, R ≥ ‖xin − x?‖2 for s-sparse x? ∈ Rd, (Cprog, C2, Cξ, δ
′)-noisy

step oracle Onstep for all (∆,A) with ∆ ∈ Rn, δ′ ≤ (10−4Cprog

C2
)2, A ∈ Rn×d,

b = Ax? + ξ ∈ Rn for
∥∥ξ(m)

∥∥
2
≤ Rξ

√
m, with R ≥ CξRξ ;

2 Output: s-sparse vector xout that satisfies ‖xout − x?‖2 ≤
1
2R with probability ≥ 1− δ

3 x0 ← xin, X ← {x ∈ Rd | ‖x− xin‖1 ≤
√

2sR} ;

4 T ←
⌈

100C2
2

C2
prog

⌉
, η ← Cprog

2C2
2

;

5 Ntrials ← 10 log d
δ ;

6 for 1 ≤ j ≤ Ntrials do

7 xj0 ← x0 ;
8 for 0 ≤ t ≤ T − 1 do

9 wjt ← Onstep(∆j
t ,A) for ∆j

t ← 1
R (Axjt − b),

γjt ← A>diag
(

[wjt]
)

∆j
t =

∑
i∈[n][w

j
t]i[∆

j
t]iai ;

10 if (wjt , γ
j
t) do not meet all of (9.17), (9.18) and the additional criteria in

Definition 42 then

11 xjT ← [xjt](s) ;
12 Break: ;

13 xjt+1 ← argminx∈X

∥∥∥x− xjt − ηRγt∥∥∥
2

;

14 xT ← Aggregate({x1
T , . . . , x

Ntrials

T }, R2) ;
15 Return: xout ← [xT](s) ;

Algorithm 57: Aggregate(S, R)

1 Input: S = {yi}i∈[k] ⊂ Rd, R ≥ 0 such that for some unknown z ∈ Rd, at least 0.51k points

yi ∈ S have ‖yi − z‖2 ≤
R
3 ;

2 Output: z̃ with ‖z̃ − z‖2 ≤ R ;
3 for 1 ≤ i ≤ k do
4 if at least 0.51k points yj ∈ S satisfy ‖yi − yj‖2 ≤

2R
3 then Return: z̃ ← yi ;

Next, we give a guarantee regarding our geometric post-processing step, Algorithm 57.

Claim 1. Aggregate(S, R) runs in O(k2d) time and meets its output guarantees.

Proof. Let T be the subset of indices i ∈ [k] such that ‖yi − z‖ ≤ R
3 . Whenever the algorithm tests

yi for some i ∈ T , it will be returned and satisfies the desired properties. Now consider any yi

CHAPTER 9. SEMI-RANDOM LINEAR SYSTEMS 474

returned by the algorithm. The ball of radius 2R
3 around yi intersects the ball of radius R

3 around

z, since otherwise it can only contain at most 0.49k points. Thus, ‖yi − z‖2 ≤ R. The runtime is

dominated by the time it takes to do k2 distance comparisons of points in Rd.

We remark that is possible that for k = Ω(log 1
δ) as is the case in our applications, the runtime

of Claim 1 can be improved to have a better dependence on k by subsampling the points and using

low-rank projections for distance comparisons.

Lemma 179. Assume A satisfies Assumption 12. Then, Algorithm 56 meets its output guarantees

in time

O

((
nd log3(ndρ)

)
·
(
w?∞sρ

2 log d
)
· log2 d

δ

)
.

Proof. We claim that for each independent trial j ∈ [Ntrials], except with probability 1 − Tδ′, the

output xjT satisfies ‖xjT −x?‖2 ≤
R
6 . Once we prove this, by Chernoff at least 0.51Ntrials of the trials

satisfy ‖xjT − x?‖2 ≤
R
6 except with probability at most δ, and then we are done by Claim 1.

It remains to prove the above claim. Fix a trial j, and drop the superscript j for notational

convenience. In every iteration t, ∆̃ := 1
R (Axt − b) is given to Onstep. Since b = Ax? + ξ, we have

∆̃ =
1

R
(A(x− x?) + ξ) = Av + ξ,

for ‖v‖2 ≤ 1, ‖v‖1 ≤ 2
√

2s, and ‖ξ‖2,(m) ≤
√
m
Cξ

, where the last inequality used the assumed bounds

∥∥ξ(m)

∥∥
2
≤ Rξ

√
m,

Rξ
R
≤ 1

Cξ
.

Hence, by the assumptions on Onstep, it will not fail for such inputs unless ‖v‖2 ≥
1
12 is violated,

except with probability ≤ δ′. If the check in Line 10 fails, then except with probability ≤ δ′, the

conclusion ‖xT − x?‖2 ≤ R
6 follows analogously to Lemma 170, since v = 1

R (x− x?).
The other case’s correctness follows identically to the proof of Lemma 170, except for one differ-

ence: to lower bound the progress term (9.24), we use the assumption (9.42) which shows

2ηR 〈γt, xt − x?〉 = 2ηR
∑
i∈[n]

wi∆̃i 〈ai, v〉 = 2ηR2
∑
i∈[n]

wi∆̃i∆i ≥ 2ηR2Cprog.

Hence, following the proof of Lemma 170 (and adjusting for constants), whenever the algorithm

does not terminate we make at least a 50
T fraction of the progress towards x?, so in T iterations

(assuming no step oracle failed) we will have ‖xT − x?‖2 ≤ R
6 .

Finally, the runtime follows from combining Lemma 177 (with constant failure probability) with

a multiplicative overhead of T ·Ntrials due to the number of calls to the step oracle, contributing one

additional logarithmic factor. We adjusted one of the log d terms to become a log d
δ term to account

for the runtime of Aggregate (see Claim 1).

CHAPTER 9. SEMI-RANDOM LINEAR SYSTEMS 475

9.7.2 Designing a strong step oracle

In this section, we design a strong step oracle Ostep(∆̃,A) under Assumption 12. As in Section 9.6.2,

our oracle iteratively builds a weight vector w̄, and sets

γw̄ :=
∑
i∈[n]

w̄i∆̃iai.

We will use essentially the same potentials as in (9.27), defined in the following:

Φ̃2(w̄) :=
∑
i∈[n]

w̄i∆̃
2
i , Φ̃sqmax(w̄) :=

(
min

‖p‖2≤L‖w̄‖1
sqmaxµ(γw̄ − p)

)
+
‖w̄‖1
4CLs

. (9.46)

Algorithm 58: StrongStepOracle(∆̃,A, δ)

1 Input: ∆̃ ∈ Rn,A ∈ Rn×d satisfying Assumption 11, δ ∈ (0, 1) ;

2 Output: (w, γ) such that γ =
∑
i∈[n] wi∆̃iai, and if there is v ∈ Rd with 1

12 ≤ ‖v‖2 ≤ 1

such that ∆̃ = Av + ξ where
∥∥ξ(m)

∥∥
2
≤
√
m
Cξ

, with probability ≥ 1− δ, (9.17), (9.18) are

satisfied with
Cprog = 1, C2 = O (1) .

Furthermore, the second condition in (9.18) is satisfied with the constant 24 rather than 6,
and there is Cξ = O(1) such that (9.43) is also satisfied.

3 C ← 3200, µ← 1√
Cs log d

, η ← 1
Kw?∞sρ

2 log d , N ′ ← dlog2
2
δ e ;

4 for 0 ≤ k ≤ N ′ do
5 w0 ← 0n, N ← d 5Ln

η e ;

6 for 0 ≤ t ≤ N do

7 if Φ̃2(wt) ≥ 1 then Return: γ ←
∑
i∈[n][wt]i∆̃iai, w ← wt ;

8 Sample i ∼unif. [n] ;
9 Compute (using Lemma 171) dt ∈ [0, ηw?∞] maximizing to additive O(ηn)

Γt(d) := Φ̃2(wt + dei)− CsΦ̃sqmax(wt + dei)

wt+1 ← wt + dtei ;

10 Return: γ ← 0d, w ← 0n

Algorithm 58 is essentially identical to Algorithm 55 except for changes in constants. We further

have the following which verifies the second property in the definition of strong step oracle.

CHAPTER 9. SEMI-RANDOM LINEAR SYSTEMS 476

Fact 26. The distribution of w returned by Algorithm 58 is stochastically dominated by the distri-

bution

ηw∗∞Multinom

5Ln

η
,

 1

n
, . . . ,

1

n︸ ︷︷ ︸
n

Proof. Every time we inspect a row, we change the corresponding entry of w by at most ηw∗∞. The

result follows from the number of iterations in the algorithm and uniformity of sampling rows.

To analyze Algorithm 58, we provide appropriate analogs of Lemmas 172 and 168. Because

Algorithm 58 is very similar to Algorithm 55, we will largely omit the proof of the following statement,

which follows essentially identically to the proof of Lemma 172 up to adjusting constants.

Lemma 180. Assume that the constant K in Assumption 12 is sufficiently large, and that ∆̃ =

Av + ξ where v, ξ satisfy the norm conditions in Assumption 12. Then for any w̄ ∈ Rn≥0 such that

B(w̄) ≤ C2µ2 log d, we have

Ei∼unif.[n][B(w̄ + ηw?i)] ≤ B(w̄) +
1

2CLs
· η
n
.

Proof. The analysis is essentially identical to that of Lemma 172; we discuss only the main difference.

To apply the Taylor expansion of the exponential, Lemma 172 required a bound that

1

µ

∣∣∣z(i)
j

∣∣∣ = O

(
1√

log d

)
⇐=

∣∣∣z(i)
j

∣∣∣ = O

(
1√
s log d

)
,

for all i ∈ [n] and j ∈ [d]. Note that in the setting of Lemma 172, we took z
(i)
j = ηw?i (∆iaij − p?j).

Here, we will take z
(i)
j = ηw?i (∆̃iaij − p?j); bounds on all of these terms follow identically to in

Lemma 172, except that ∆̃i = 〈ai, v〉+ ξi, so we need to show

ηw?i ρ|ξi| = O

(
1√
s log d

)
.

This follows since η ≤ 1
log d and |ξi| = O(

√
m) by assumption. Hence, as w?i ≤ 1

m by definition of m,

this is equivalent to m = Ω(sρ2), an explicit assumption we make.

We now give a full analysis of Algorithm 58, patterned off of Lemma 168.

Lemma 177. Suppose A satisfies Assumption 12. Algorithm 58 is a (Cprog, C2, Cξ, δ) strong step

oracle StrongStepOracle for (∆̃,A) with

Cprog = Ω(1), C2 = O (1) , Cξ = O(1), δ =
1

2

(
C2

105Cprog

)2

,

CHAPTER 9. SEMI-RANDOM LINEAR SYSTEMS 477

running in time

O

((
nd log3(ndρ) log

1

δ

)
·
(
w?∞sρ

2 log2 d

δ

))
.

Proof. The analysis is essentially identical to that of Algorithm 55 in Lemma 168; we discuss differ-

ences here. First, the stochastic domination condition follows from Fact 26 for sufficiently large Cξ,

K.

For the remaining properties, since the algorithm runs N ′ ≥ log2
2
δ times independently, it suffices

to show each run meets Definition 42 with probability ≥ 1
2 under the events of Assumption 12,

assuming there exists the desired decomposition ∆̃ = Av + ξ in the sense of Assumption 12. Union

bounding with the failure probability in Fact 26 yields the overall failure probability.

Correctness. As in Lemma 168, it is straightforward to see that Φ̃2 is 1-Lipschitz, since the value

of η is smaller than that used in Algorithm 55. The termination condition in iteration T then again

implies Φ̃2(wT) ≥ 1, and Φ̃sqmax(wT) ≤ 3
Cs . For C = 3200, this implies the short-flat decomposition

with stronger parameters required by Definition 42, as well as the ‖wT ‖1 bound.

Success probability. As in Lemma 168, the expected growth in Φt in any iteration where

Pr[Φ̃2(wt) ≥ 1] ≤ 1
2 is ≥ η

4Ln . Hence, running for ≥ 5Ln
η iterations and using Φt − Φ0 ≤ 2

yields the claim.

Runtime. This follows identically to the analysis in Lemma 168.

9.7.3 Equivalence between Assumption 12 and RIP

In this section, we prove Lemma 178, restated here for completeness. The proof will build heavily

on our previous developments in the noiseless case, as shown in Section 9.6.3.

Lemma 178. Suppose A ∈ Rn×d is (ρ, w?∞)-wRIP with a suitable choice of constants in the RIP

parameters in Definition 38. Then, A also satisfies Assumption 12.

Proof. The analysis is largely similar to the analysis of Lemma 175; we will now discuss the differences

here, which are introduced by the presence of the noise term ξ. There are three components to

discuss: the upper and lower bounds in (9.44), and the decomposition (9.45).

Regarding the bounds in (9.19), by changing constants appropriately in Definition 38, we can

assume that A satisfies the second property in Assumption 11 with the parameters 4
L and L

4 . In

particular, for ∆ = Av, we then have

4

L
≤
∑
i∈[n]

w?i ∆2
i ≤

L

4
.

CHAPTER 9. SEMI-RANDOM LINEAR SYSTEMS 478

Recall that ∆̃ = ∆ + ξ for some
∥∥ξ(m)

∥∥
2
≤
√
m
Cξ

. Hence,

∑
i∈[n]

w?i ∆̃2
i ≤ 2

∑
i∈[n]

w?i ∆2
i + 2

∑
i∈[n]

w?i ξ
2
i

≤ L

2
+ 2

(
1

m

∥∥ξ(m)

∥∥2

2

)
≤ L,

for an appropriately large C2
ξ ≥ 4

L . Here the first inequality used (a + b)2 ≤ 2a2 + 2b2, and the

second inequality used that the largest
∑
i∈[n] w

?
i ξ

2
i can be subject to ‖w?‖1 = 1 and ‖w?‖∞ ≤

1
m is

attained by greedily choosing the m largest coordinates of ξ by their magnitude, and setting w?i = 1
m

for those coordinates. This gives the upper bound in Assumption 12, and the lower bound follows

similarly: for appropriately large C2
ξ ≥ L

2 ,

∑
i∈[n]

w?i ∆̃2
i ≥

1

2

∑
i∈[n]

w?i ∆2
i −

1

2

∑
i∈[n]

w?i ξ
2
i

≥ 2

L
− 1

2

(
1

m

∥∥ξ(m)

∥∥2

2

)
≥ 1

L
.

Lastly, for the decomposition required by (9.45), we will use the decomposition of Lemma 169 for the

component due to
∑
i∈[n] w

?
i ∆iai; in particular, assume by adjusting constants that this component

has a (L2 ,
1

2K
√
s
) short-flat decomposition. It remains to show that

∑
i∈[n]

w?i ξiai = A>W?ξ.

also admits a (L2 ,
1

2K
√
s
) short-flat decomposition, at which point we may conclude by the triangle

inequality. Let u = (W?)
1
2 ξ; from earlier, we bounded

‖u‖22 ≤
1

m

∥∥ξ(m)

∥∥2

2
=⇒ ‖u‖2 ≤

1

Cξ
.

Hence, applying Lemma 174 using the RIP matrix (W?)
1
2 A with appropriate parameters yields the

conclusion, for large enough Cξ. In particular, the `2-bounded part of the decomposition follows

from Lemma 174, and the proof of the `∞-bounded part is identical to the proof in Lemma 175.

9.7.4 Putting it all together

We now prove our main result on noisy recovery.

Theorem 67. Let δ ∈ (0, 1), and suppose R0 ≥ ‖x?‖2 for s-sparse x? ∈ Rd. Further, suppose

A ∈ Rn×d is (ρ, w?∞)-wRIP and b = Ax? + ξ, and R1 ≥ Rξ :=
∥∥ξ(m)

∥∥
2
. Then with probability at

CHAPTER 9. SEMI-RANDOM LINEAR SYSTEMS 479

least 1− δ, Algorithm 56 using Algorithm 56 as a noisy step oracle computes x̂ satisfying

‖x̂− x?‖2 ≤ Rfinal = Θ(Rξ),

in time

O

((
ndw?∞s log4(ndρ) log2

(
d

δ
· log

(
R0

Rfinal

)
log

(
R1

Rfinal

)))
· ρ2 log

(
R0

Rfinal

)
log

(
R1

Rfinal

))
.

Proof. Our algorithm will iteratively maintain a guess Rguess on the value of 1√
m

∥∥ξ(m)

∥∥
2
, initialized

at Rguess ← R1. For each value of Rguess ≥ Rξ, the hypothesis of Algorithm 56 is satisfied, and hence

using a strategy similar to the proof of Theorem 66 (but terminating at accuracy R = O(Rguess)

where the constant is large enough to satisfy the assumption R ≥ CξRguess) results in an estimate

at distance R with probability at least 1− δ, with runtime

O

((
ndw?∞sρ

2 log4(ndρ) log2

(
d

δ
· log

(
R0

Rfinal

)))
· ρ2 log

(
R0

Rfinal

))
.

The runtime above follows from Lemma 179.

Our overall algorithm repeatedly halves Rguess, and outputs the last point returned by a run of

the algorithm where it can certify a distance bound to x? of R = CξRguess. We use Rfinal to denote

CξRguess on the last run. Clearly for any Rguess ≥ Rξ this certification will succeed, so we at most

lose a factor of 2 in the error guarantee as we will have Rfinal ≤ 2CξRξ. The final runtime follows

from adjusting δ by a factor of O(log R1

Rfinal
) to account for the multiple runs of the algorithm.

Chapter 10

Towards an Oracle Complexity of

Sampling

This chapter is based on [344, 346, 345], with Yin Tat Lee and Ruoqi Shen.

10.1 Introduction

Since its study was pioneered by the celebrated randomized convex body volume approximation

algorithm of Dyer, Frieze, and Kannan [212], designing samplers for logconcave distributions has been

a very active area of research in theoretical computer science and statistics with many connections

to other fields. In a generic form, the problem can be stated as: sample from a distribution whose

negative log-density is convex, under various access models to the distribution.

Developing efficient algorithms for sampling from structured logconcave densities is a topic that

has received significant recent interest due to its widespread practical applications. There are many

types of structure which densities commonplace in applications may possess that are exploitable

for improved runtimes. Examples of such structure include derivative bounds (“well-conditioned

densities”) and various types of separability (e.g. “composite densities” corresponding to possibly

non-smooth regularization or restrictions to a set, and “logconcave finite sums” corresponding to

averages over multiple data points).1 Building an algorithmic theory for sampling these latter two

families, which are not well-understood in the literature, is a primary motivation of this chapter.

There are strong parallels between the types of structured logconcave families garnering recent

attention and the classes of convex functions known to admit efficient first-order optimization algo-

rithms. Notably, gradient descent and its accelerated counterpart [417] are well-known to quickly

1We make this terminology more precise in Section 10.2.1, which contains various definitions used in this paper.

480

CHAPTER 10. TOWARDS AN ORACLE COMPLEXITY OF SAMPLING 481

optimize a well-conditioned function, and have become ubiquitous in both practice and theory. Sim-

ilarly, various methods have been developed for efficiently optimizing non-smooth but structured

composite objectives [66] and well-conditioned finite sums [17].

Logconcave sampling and convex optimization are intimately related primitives (cf. e.g. [75, 2]), so

it is perhaps unsurprising that there are analogies between the types of structure algorithm designers

may exploit. Nonetheless, our understanding of the complexity landscape for sampling is quite a

bit weaker in comparison to counterparts in the field of optimization; few lower bounds are known

for the complexity of sampling tasks, and obtaining stronger upper bounds is an extremely active

research area (contrary to optimization, where matching bounds exist in many cases). Moreover

(and perhaps relatedly), the toolkit for designing logconcave samplers is comparatively lacking; for

many important primitives in optimization, it is unclear if there are analogs in sampling, possibly

impeding improved bounds.

Broadly speaking, this chapter presents improved upper and lower bounds aimed towards advanc-

ing the program of understanding the following question for various natural, practically-motivated

types of structure and oracle access.

What is the oracle complexity of sampling from various structured density families?

The upper bounds presented in this chapter broadly fall under the themes of (1) understanding which

types of structured logconcave distributions admit efficient samplers, and (2) leveraging connections

between optimization and sampling for algorithm design. The lower bounds presented in this chapter

aim to characterize the complexity of sampling from logconcave densities exhibiting a basic form of

structure (well-conditioning), by demonstrating hardness for various standard sampling frameworks.

Altogether, we address the oracle complexity of sampling on each of the following fronts, which

constitute the primary technical contributions of this chapter.

1. We give a general reduction framework for bootstrapping samplers with mixing times with

polynomial dependence on a conditioning measure κ to mixing times with linear dependence

on κ. The framework is heavily motivated by a perspective on proximal point methods in

structured convex optimization as instances of optimizing composite objectives, and leverages

this connection via a surprisingly simple analysis (cf. Theorem 68).

2. We develop novel “base samplers” for composite logconcave distributions and logconcave finite

sums (cf. Theorems 69, 70). The former is the first composite sampler with stronger guar-

antees than those known in the general logconcave setting. The latter constitutes the first

high-accuracy finite sum sampler whose gradient query complexity improves upon the näıve

strategy of querying full gradients of the negative log-density in each iteration. Using our

novel base samplers within our reduction framework, we obtain state-of-the-art samplers for

all of the aforementioned structured families, i.e. well-conditioned, composite, and finite sum,

CHAPTER 10. TOWARDS AN ORACLE COMPLEXITY OF SAMPLING 482

as Corollaries 45, 46, and 47.

3. We give lower bounds on the performance of two of the most popular sampling methods

in practice, the Metropolis-adjusted Langevin algorithm (MALA) and multi-step Hamiltonian

Monte Carlo (HMC) with a leapfrog integrator, when applied to well-conditioned distributions.

Our main lower bound result, Theorem 73, is a nearly-tight lower bound of Ω̃(κd) on the

mixing time of MALA from an exponentially warm start, matching upper bounds obtained in

this chapter up to logarithmic factors and answering an open question of [137]. We also show

that a polynomial dependence on dimension is necessary for the relaxation time of HMC under

any number of leapfrog steps, and bound the gains achievable by changing the step count (see

Theorem 74 for a representative result).

We formally state our upper bound results in Section 10.1.1, our lower bound results in Sec-

tion 10.1.2, and situate each in the literature in Section 10.1.3. Section 10.1.4 is a technical overview

of our approaches for developing our base samplers for composite and finite sum-structured densi-

ties, as well as our reduction framework (Section 10.1.4). Section 10.1.5 is a technical overview for

our various lower bound constructions. Finally, Section 10.1.6 gives a roadmap for the rest of the

chapter.

10.1.1 Our results: upper bounds

Before stating our results, we first require the notion of a restricted Gaussian oracle, whose definition

is a key ingredient in giving our reduction framework as well as our later composite samplers.

Definition 43 (Restricted Gaussian oracle). O(λ, v) is a restricted Gaussian oracle (RGO) for

convex g : Rd → R if it returns

O(λ, v)← sample from the distribution with density ∝ exp

(
− 1

2λ
‖x− v‖22 − g(x)

)
.

In other words, an RGO asks to sample from a multivariate Gaussian (with covariance a multiple

of the identity), “restricted” by some convex function g. Intuitively, if we can reduce a sampling

problem for the density ∝ exp(−g) to calling an RGO a small number of times with a small value of

λ, each RGO subproblem could be much easier to solve than the original problem. This can happen

for a variety of reasons, e.g. if the regularized density is extremely well-conditioned, or because it

inherits concentration properties of a Gaussian. This idea of reducing a sampling problem to multiple

subproblems, each implementing an RGO, underlies the framework of Theorem 68. Because the

idea of regularization by a large Gaussian component repeatedly appears in this paper, we make the

following more specific definition for convenience, which lower bounds the size of the Gaussian.

Definition 44 (η-RGO). We say O(λ, v) is an η-restricted Gaussian oracle (η-RGO) if it satisfies

Definition 43 with the restriction that parameter λ is required to be always at most η in calls to O.

CHAPTER 10. TOWARDS AN ORACLE COMPLEXITY OF SAMPLING 483

Variants of our notion of an RGO have implicitly appeared previously [149, 401], and efficient

RGO implementation was a key subroutine in the fastest sampling algorithm for general logconcave

distributions [149]. It also extends a similar oracle used in composite optimization, which we will

discuss shortly. However, the explicit use of RGOs in a framework such as Theorem 68 is a novel

technical innovation of our work, and we believe this abstraction will find further uses.

Proximal reduction framework. In Section 10.3, we prove correctness of our proximal reduction

framework, whose guarantees are stated in the following Theorem 68.

Theorem 68. Let π be a distribution on Rd with dπ
dx (x) ∝ exp(−foracle(x)) such that foracle is

µ-strongly convex, and let ε ∈ (0, 1). Let η ≤ 1
µ , T = Θ(1

ηµ log d
ηµε) for some β ≥ 1, and O be a

η-RGO for foracle. Algorithm 59, initialized at the minimizer of foracle, runs in T iterations, each

querying O a constant number of times, and obtains ε total variation distance to π.

In other words, if we can implement an η-RGO for a µ-strongly convex function foracle in time

TRGO, we can sample from exp(−foracle) in time Õ(1
ηµ · TRGO). To highlight the power of this

reduction framework, suppose there was an existing sampler A for densities ∝ exp(−f) with mixing

time Õ(κ10
√
d), where f : Rd → R is L-smooth, µ-strongly convex, and has condition number κ = L

µ

(cf. Section 10.2.1 for definitions).2 Choosing η = 1
L and foracle ← f in Theorem 68 yields a sampler

whose mixing time is Õ(κ · TRGO), where TRGO is the cost of sampling from a density proportional

to

exp

(
−L

2
‖x− v‖22 − f(x)

)
,

for some v ∈ Rd. However, observe that this distribution has a negative log-density with constant

condition number L+L
L+µ ≤ 2! By using A as our RGO, we have TRGO = Õ(

√
d), and the overall

mixing time is Õ(κ
√
d). Leveraging Theorem 68 in applications, we obtain the following new results,

improving mixing of various “base samplers” which we bootstrap as RGOs for regularized densities.

Well-conditioned densities. In an earlier version of part of this chapter [344], it was shown

that a variant of Metropolized Hamiltonian Monte Carlo obtains a mixing time of Õ(κd log3 κd
ε) for

sampling a density on Rd with condition number κ. The analysis of [344] was somewhat delicate, and

required reasoning about conditioning on a nonconvex set with desirable concentration properties.

In Section 10.4.1, we prove Corollary 45, improving [344] by roughly a logarithmic factor with a

significantly simpler analysis. For completeness, we include the only technical fact required in its

proof from [344], a concentration bound on the norm of the gradient of a logsmooth density, in

Appendix I.6.

Corollary 45. Let π be a distribution on Rd with dπ
dx (x) ∝ exp (−f(x)) such that f is L-smooth and

µ-strongly convex, and let ε ∈ (0, 1), κ = L
µ . Assume access to x∗ = argminx∈Rdf(x). Algorithm 59

with η = 1
8Ld log(κ) using Algorithm 60 as a restricted Gaussian oracle for f uses O(κd log κ log κd

ε)

gradient queries in expectation, and obtains ε total variation distance to π.

2No sampler with mixing time scaling as poly(κ)
√
d is currently known.

CHAPTER 10. TOWARDS AN ORACLE COMPLEXITY OF SAMPLING 484

We include Corollary 45 as a warmup for our more complicated results, as a way to showcase

the use of our reduction framework in a slightly different way than the one outlined earlier. In

particular, in proving Corollary 45, we will choose a significantly smaller value of η, at which point

a simple rejection sampling scheme implements each RGO with expected constant gradient queries.

We give another algorithm matching Corollary 45 with a deterministic query complexity bound

as Corollary 49. The algorithm of Corollary 49 is interesting in that it is entirely a zeroth-order

algorithm, and does not require access to a gradient oracle. To our knowledge, in the well-conditioned

optimization setting, no zeroth-order query complexities better than roughly
√
κd are known, e.g.

simulating accelerated gradient descent with a value oracle; thus, our sampling algorithm has a

query bound off by only Õ(
√
κ) from the best-known optimization algorithm. We are hopeful this

result may help in the search for query lower bounds for structured logconcave sampling.

Composite densities with a restricted Gaussian oracle. In Section 10.5, we develop a sampler for

densities on Rd proportional to exp(−f(x) − g(x)), where f has condition number κ and g admits

a restricted Gaussian oracle O. We state its guarantees here.

Theorem 69. Let π be a distribution on Rd with dπ
dx (x) ∝ exp (−f(x)− g(x)) such that f is L-

smooth and µ-strongly convex, and let ε ∈ (0, 1). Let η ≤ 1
32Lκd log(κ/ε) (where κ = L

µ), T =

Θ(1
ηµ log(κdε)), and let O be a η-RGO for g. Further, assume access to the minimizer x∗ =

argminx∈Rd{f(x) + g(x)}. There is an algorithm which runs in T iterations in expectation, each

querying a gradient oracle of f and O a constant number of times, and obtains ε total variation

distance to π.

The assumption that the composite component g admits an RGO can be thought of as a measure

of “simplicity” of g. This mirrors the widespread use of a proximal oracle as a measure of simplicity

in the context of composite optimization [66], which we now define.

Definition 45 (Proximal oracle). O(λ, v) is a proximal oracle for convex g : Rd → R if it returns

O(λ, v)← argminx∈Rd

{
1

2λ
‖x− v‖22 + g(x)

}
.

Many regularizers g in defining composite optimization objectives, which are often used to enforce

a quality such as sparsity or “simplicity” in a solution, admit efficient proximal oracles. In particular,

if the proximal oracle subproblem admits a closed form solution (or otherwise is computable in O(d)

time), the regularized objective can be optimized at essentially no asymptotic loss. It is readily

apparent that our RGO (Definition 43) is the extension of Definition 45 to the sampling setting. In

[401], a variety of regularizations arising in practical applications including coordinate-separable g

(such as restrictions to a coordinate-wise box, e.g. for a Bayesian inference task where we have side

information on the ranges of parameters) and `1 or group Lasso regularized densities were shown

to admit RGOs. Our composite sampling results achieve a similar “no loss” phenomenon for such

regularizations, with respect to existing well-conditioned samplers.

CHAPTER 10. TOWARDS AN ORACLE COMPLEXITY OF SAMPLING 485

By choosing the largest possible value of η in Theorem 69, we obtain an iteration bound of

Õ(κ2d). In Section 10.4.2, we prove Corollary 46, which improves Theorem 69 by roughly a κ factor.

Corollary 46. Let π be a distribution on Rd with dπ
dx (x) ∝ exp(−f(x)−g(x)) such that f is L-smooth

and µ-strongly convex, and let ε ∈ (0, 1), κ = L
µ . Assume access to x∗ = argminx∈Rd{f(x)+g(x)} and

let O be a restricted Gaussian oracle for g. There is an algorithm (Algorithm 59 using Theorem 69

as a restricted Gaussian oracle) which runs in O(κd log3 κd
ε) iterations in expectation, each querying

a gradient of f and O a constant number of times, and obtains ε total variation distance to π.

To sketch the proof, choosing η = 1
L in Theorem 68 yields an algorithm running in Õ(1

ηµ) = Õ(κ)

iterations. In each iteration, the RGO subproblem asks to sample from the distribution whose

negative log-density is f(x) + g(x) + L
2 ‖x− v‖

2
2 for some v ∈ Rd, so we can call Theorem 69, where

the “well-conditioned” portion f(x)+ L
2 ‖x− v‖

2
2 has constant condition number. Thus, Theorem 69

runs in Õ(d) iterations to solve the subproblem, yielding the result. In fact, Corollary 46 nearly

matches Corollary 45 in the case g = 0 uniformly. Surprisingly, this recovers the runtime of [344]

without appealing to strong gradient concentration bounds (e.g. [344], Theorem 3.2).

Logconcave finite sums. In Section 10.6, we initiate the study of mixing times for sampling

logconcave finite sums with polylogarithmic dependence on accuracy. We give the following result.

Theorem 70. Let π be a distribution on Rd with dπ
dx (x) ∝ exp(−F (x)), where F (x) = 1

n

∑n
i=1 fi(x)

is µ-strongly convex, fi is L-smooth and convex ∀i ∈ [n], κ = L
µ , and ε ∈ (0, 1). Assume access

to x∗ = argminx∈RdF (x). Algorithm 64 uses O
(
κ2d log4 nκd

ε

)
value queries to summands {fi}i∈[n],

and obtains ε total variation distance to π.

For a zeroth-order algorithm, Theorem 70 serves as a surprisingly strong baseline as it nearly

matches the previously best-known bound for zeroth-order well-conditioned sampling when n = 1;

however, when e.g. κ ≈ d, the complexity bound is at least cubic. By using Theorem 70 within the

framework of Theorem 68, we obtain the following improved result.

Corollary 47 (Improved first-order logconcave finite sum sampling). In the setting of Theorem 70,

Algorithm 59 using Algorithm 64 and SVRG [300] as a restricted Gaussian oracle for F uses

O

(
n log

(
nκd

ε

)
+ κ
√
nd log3.5

(
nκd

ε

)
+ κd log5

(
nκd

ε

))
= Õ

(
n+ κmax

(
d,
√
nd
))

queries to first-order oracles for summands {fi}i∈[n], and obtains ε total variation distance to π.

Corollary 47 has several surprising properties. First, its bound when n = 1 gives yet another way

of (up to polylogarithmic factors) recovering the runtime of [344] without gradient concentration.

Second, up to a Õ(max(1,
√

n
d)) factor, it is essentially the best runtime one could hope for without an

improvement when n = 1. This is in the sense that Õ(κd) is the best known runtime for n = 1 (with

near-matching lower bounds, developed later in this chapter), and to our knowledge every efficient

CHAPTER 10. TOWARDS AN ORACLE COMPLEXITY OF SAMPLING 486

well-conditioned sampler requires minimizer access, i.e. Õ(n) gradient queries [539]. Interestingly,

when n = 1, Algorithm 64 can be significantly simplified, and becomes the standard Metropolized

random walk [210]; this yields Corollary 49, an algorithm attaining the iteration complexity of

Corollary 45 while only querying a value oracle for f .

10.1.2 Our results: lower bounds

The restricted problem of sampling from a particular family of distributions, which we call “well-

conditioned distributions,” has garnered a substantial amount of recent research effort from the

algorithmic learning and statistics communities. This specific family is interesting for a number

of reasons. First of all, it is practically relevant : Bayesian methods have found increasing use in

machine learning applications [60], and many distributions arising from these methods are well-

conditioned, such as multivariate Gaussians, mixture models with small separation, and densities

arising from Bayesian logistic regression with a Gaussian prior [210]. Moreover, for several of the most

widely-used sampler implementations in popular packages [1, 113], such as the Metropolis-adjusted

Langevin algorithm (MALA) and Hamiltonian Monte Carlo (HMC), the target density having a

small condition number is in some sense a minimal assumption for known provable guarantees.

Finally, the highly-documented success of first-order (gradient-based) methods in optimization

[65], which are particularly favorable in the well-conditioned setting, has driven a recent interest in

connections between optimization and sampling. Exploring this connection has been highly fruitful:

since seminal work of [301], which demonstrated that the continuous-time Langevin dynamics which

MALA and HMC discretize has an interpretation as gradient descent on density space, a flurry of

work including [153, 130, 210, 156, 206, 205, 128, 129, 480, 402, 137], as well as upper bound results

in this chapter (see Section 10.1.1), have obtained improved upper bounds for the mixing of various

discretizations of the Langevin dynamics for sampling from well-conditioned densities. Many of

these works have drawn inspiration from techniques from first-order optimization.

On the other hand, demonstrating lower bounds on the complexity of sampling tasks (in the

well-conditioned regime or otherwise) has proven to be a remarkably challenging problem. To our

knowledge, there are very few unconditional lower bounds for sampling tasks (i.e. the complexity

of sampling from a family of distributions under some query model). This is in stark contrast

to the theory of optimization, where there are matching upper and lower bounds for a variety of

fundamental tasks and query models, such as optimization of a convex function under first-order

oracle access [418]. This gap in the development of the algorithmic theory of sampling is the primary

motivation for our work, wherein we aim to answer the following more restricted question.

What is the complexity of the popular sampling methods, MALA and HMC,

for sampling well-conditioned distributions?

CHAPTER 10. TOWARDS AN ORACLE COMPLEXITY OF SAMPLING 487

The problem we study is still less general than unconditional query lower bounds for sampling, in that

our lower bounds are algorithm-specific; we characterize the performance of particular algorithms

for sampling a distribution family. However, we believe asking this question, and developing an

understanding of it, is an important first step towards a theory of complexity for sampling. On the

one hand, lower bounds for specific algorithms highlight weaknesses in their performance, pinpointing

their shortcomings in attaining faster rates. This is useful from an algorithm design perspective, as

it clarifies what the key technical barriers are to overcome. On the other hand, the hard instances

which arise in designing lower bounds may have important structural properties which pave the way

to stronger and more general (i.e. algorithm-agnostic) lower bounds.

For these reasons, in this work we focus on characterizing the complexity of the MALA and HMC

algorithms (see Sections 10.2.3 and 10.2.4 for algorithm definitions), which are often the samplers of

choice in practice, by lower bounding their performance when they are used to sample from densities

proportional to exp(−f(x)), where f : Rd → R has a finite condition number. In particular, f is said

to have a condition number of κ <∞ if it is L-smooth and µ-strongly convex (has second derivatives

in all directions in the range [µ,L]), where κ = L
µ . We will also overload this terminology and say

the density itself has condition number κ. We call such a density (with finite κ) “well-conditioned.”

Finally, we explicitly assume throughout that κ = O(d4), as otherwise in light of our lower bounds

the general-purpose logconcave samplers of [373, 295, 127] are preferable.

Our primary contribution is a nearly-tight characterization of the performance of MALA for

sampling from two high-dimensional distribution families without a warm start assumption: well-

conditioned Gaussians, and the more general family of well-conditioned densities. In Sections 10.7

and 10.8, we prove the following two lower bounds on MALA’s complexity, which is a one-parameter

algorithm (for a given target distribution) depending only on step size. We also note that we fix

a scale [1, κ] on the eigenvalues of the function Hessian up front, because otherwise the non-scale-

invariance of the step size can be exploited to give much more trivial lower bounds (cf. Appendix I.7).

Theorem 71. For every step size, there is a target Gaussian on Rd whose negative log-density

always has Hessian eigenvalues in [1, κ], such that the relaxation time of MALA is Ω(κ
√
d√

log d
).

Theorem 72. For every step size, there is a target density on Rd whose negative log-density always

has Hessian eigenvalues in [1, κ], such that the relaxation time of MALA is Ω(κd
log d).

To give more context on Theorems 71 and 72, MALA is an example of a Metropolis-adjusted

Markov chain, which in every step performs updates which preserve the stationary distribution.

Indeed, it can be derived by applying a Metropolis filter on the standard forward Euler discretization

of the Langevin dynamics, a stochastic differential equation with stationary density ∝ exp(−f(x)):

dxt = −∇f(xt)dt+
√

2dWt,

CHAPTER 10. TOWARDS AN ORACLE COMPLEXITY OF SAMPLING 488

where Wt is Brownian motion. Such Metropolis-adjusted methods typically provide total variation

distance guarantees, and attain logarithmic dependence on the target accuracy.3 The mixing of such

chains is governed by their relaxation time, also known as the inverse spectral gap (the difference

between 1 and the second-largest eigenvalue of the Markov chain transition operator).

However, in the continuous-space setting, it is not always clear how to relate the relaxation time

to the mixing time, which we define as the number of iterations it takes to reach total variation

distance 1
e from the stationary distribution from a given warm start (we choose 1

e for consistency

with the literature, but indeed any constant bounded away from 1 will do). There is an extensive

line of research on when it is possible to relate these two quantities (see e.g. [52]), but typically these

arguments are tailored to properties of the specific Markov chain, causing relaxation time lower

bounds to not be entirely satisfactory in some cases. We thus complement Theorems 71 and 72 with

a mixing time lower bound from an exponentially warm start, as follows.

Theorem 73. For every step size, there is a target density on Rd whose negative log-density al-

ways has Hessian eigenvalues in [1, κ], such that MALA initialized at an exp(d)-warm start requires

Ω(κd
log2 d

) iterations to reach e−1 total variation distance to the stationary distribution.

We remark that Theorem 73 is the first mixing time lower bound for discretizations of the

Langevin dynamics we are aware of, as other related lower bounds have primarily been on relaxation

times [129, 344, 137]. Up to now, it is unknown how to obtain a starting distribution for a general

distribution with condition number κ with warmness better than κd (which is obtained by the

starting distribution N (x∗, 1
LI) where L is the smoothness parameter and x∗ is the mode).4 A line

of work [210, 128, 344] analyzed the performance of MALA under this warm start, culminating

in a mixing time of Õ(κd), where Õ hides logarithmic factors in κ, d, and the target accuracy.

On the other hand, a recent work [137] demonstrated that MALA obtains a mixing time scaling

as Õ(poly(κ)
√
d), when initialized at a polynomially warm start,5 and further showed that such

a mixing time is tight (in its dependence on d). They posed as an open question whether it was

possible to obtain Õ(poly(κ)d1−Ω(1)) mixing from an explicit starting distribution.

We address this question by proving Theorem 73, showing that the Õ(κd) rate of [344] for

MALA (recovered by the upper bound developments of this chapter) applied to a κ-conditioned

density is tight up to logarithmic factors from an explicit “bad” warm start. Concretely, to prove

Theorems 71-73, in each case we exhibit an exp(−d)-sized set according to the stationary measure

where either the chain cannot move in poly(d) steps with high probability, or must choose a very

small step size. Beyond exhibiting a mixing bound, this demonstrates the subexponential warmness

assumption in [137] is truly necessary for their improved bound. To our knowledge, this is the first

3We note this is in contrast with a different family of unadjusted discretizations, which are analyzed by coupling
them with the stochastic differential equation they simulate (see e.g. [153, 130] for examples), at the expense of a
polynomial dependence on the target accuracy; we focus on Metropolis-adjusted discretizations in this work.

4The warmness of a distribution is the worst-case ratio between the measures it and the stationary assign to a set.
5As discussed, it is currently unknown how to obtain such a warm start generically.

CHAPTER 10. TOWARDS AN ORACLE COMPLEXITY OF SAMPLING 489

nearly-tight characterization of a specific sampling algorithm’s performance in all parameters, and

improves lower bounds of [137, 344]. It also implies that to go beyond Õ(κd) mixing requires a

subexponential warm start.

The lower bound statement of Theorem 73 is warmness-sensitive, and is of the following (some-

what non-standard) form: for β = exp(d), we provide a lower bound on the quantity

inf
algorithm parameters

sup
starts of warmness ≤β

densities in target family

mixing time of algorithm.

In other words, we are allowed to choose both the hard density and starting distribution adaptively

based on the algorithm parameters (in the case of MALA, our choices respond to the step size).

We note that this type of lower bound is compatible with standard conductance-based upper bound

analyses, which typically only depend on the starting distribution through the warmness parameter.

In Section 10.10, we further study the multi-step generalization of MALA, known in the literature

as Hamiltonian Monte Carlo with a leapfrog integrator (which we refer to in this paper as HMC). In

addition to a step size η, HMC is parameterized by a number of steps per iteration K; in particular,

HMC makes K gradient queries in every step to perform a K-step discretization of the Langevin

dynamics, before applying a Metropolis filter. It was recently shown in [128] that under higher

derivative bounds, balancing η and K more carefully depending on problem parameters could break

the apparent κd barrier of MALA, even from an exponentially warm start.

It is natural to ask if there is a stopping point for improving HMC. We demonstrate that HMC

cannot obtain a better relaxation time than Õ(κ
√
dK−1) for any K, even when the target is a

Gaussian. Since every HMC step requires K gradients, this suggests Ω̃(κ
√
d) queries are necessary.

Theorem 74. For every step size and count, there is a target Gaussian on Rd whose negative log-

density always has Hessian eigenvalues in [1, κ], such that the relaxation time of HMC is Ω(κ
√
d

K
√

log d
).

In Appendix I.8, we also give some lower bounds on how much increasing K can help the

performance of HMC in the in-between range κ
√
d to κd. In particular, we demonstrate that

if K ≤ dc for some constant c ≈ 0.1, then the K-step HMC Markov chain can only improve

the relaxation time of Theorem 74 by roughly a factor K2, showing that to truly go beyond a

κd relaxation time by more than a do(1) factor, the step size must scale polynomially with the

dimension (Proposition 84). We further demonstrate how to extend the mixing time lower bound of

Theorem 73 in a similar manner, demonstrating formally for small K that (up to logarithmic factors)

the gradient query complexity of HMC cannot be improved beyond κd by more than roughly a K

factor (Proposition 85).

Our mixing lower bound technique in Theorem 73 does not directly extend to give a complemen-

tary mixing lower bound for Theorem 74 for all K, but we defer this to interesting future work.

CHAPTER 10. TOWARDS AN ORACLE COMPLEXITY OF SAMPLING 490

10.1.3 Previous work

Logconcave sampling is a problem that, within the theoretical computer science field, has its origins

in convex body sampling (a problem it generalizes). A long sequence of developments have made

significant advances in the general model, where only convexity is assumed about the negative log-

density, and only value oracle access is given. In this prior work discussion, we focus on more

structured cases where all or part of the negative log-density has finite condition number, and refer

the reader to [519, 370, 150] for an account on progress in the general case.

Well-conditioned densities. Significant recent efforts in the machine learning and statistics com-

munities focused on obtaining provable guarantees for well-conditioned distributions, starting from

pioneering work of [153], and continued in e.g. [130, 156, 129, 128, 210, 206, 205, 351, 402, 480, 344].

In this setting, many methods based on discretizations of continuous-time first-order processes (such

as the Langevin dynamics) have been proposed. Typically, error guarantees come in two forms:

either in the 2-Wasserstein (W2) distance, or in total variation (TV). The line [210, 128, 344] has

brought the gradient complexity for obtaining ε TV distance to Õ(κd) where d is the dimension, by

exploiting gradient concentration properties. For progress in complexities depending polynomially

on ε−1, attaining W2 guarantees (typically incomparable to TV bounds), we defer to [480], the state-

of-the-art using Õ(κ
7
6 ε−

1
3 +κε−

2
3) queries to obtain W2 distance ε

√
dµ−1 from the target.6 We note

incomparable guarantees can be obtained by assuming higher derivative bounds (e.g. a Lipschitz

Hessian); our work uses only the minimal assumption of bounded second derivatives.

Composite densities. Recent works have studied sampling from densities of the form (10.1), or its

specializations (e.g. restrictions to a convex set). Several [443, 96, 74] are based on Moreau envelope

or proximal regularization strategies, and demonstrate efficiency under more stringent assumptions

on the structure of the composite function g, but under minimal assumptions obtain fairly large

provable mixing times Ω(d5). Proximal regularization algorithms have also been considered for

non-composite sampling [537]. Another discretization strategy based on projections was studied by

[101], but obtained mixing time Ω(d7). Finally, improved algorithms for special constrained sampling

problems have been proposed, such as simplex restrictions [276].

Of particular relevance and inspiration to this work is [401]. By generalizing and adapting

Metropolized HMC algorithms of [210, 128], adopting a Moreau envelope strategy, and using (a

stronger version of) the RGO access model, [401] obtained a runtime which in the best case scales as

Õ
(
κ2d
)
, similar to the guarantee of our base sampler in Theorem 69. However, this result required a

variety of additional assumptions, such as access to the normalization factor of restricted Gaussians,

Lipschitzness of g, warmness of the start, and various problem parameter tradeoffs. The general

problem of sampling from (10.1) under minimal assumptions more efficiently than general-purpose

logconcave algorithms is to the best of our knowledge unresolved (even under restricted Gaussian

oracle access), a novel contribution of our mixing time bound. Our results also suggest that the

6Here,
√
dµ−1 is the effective diameter; this accuracy measure allows for scale-invariant W2 guarantees.

CHAPTER 10. TOWARDS AN ORACLE COMPLEXITY OF SAMPLING 491

Method
Gradient oracle complexity

W2 ≤ ε, µ = 1 W2 ≤ ε
√
dµ−1

SAGA-LD [119] n+ κ1.5
√
d+κd+Md
ε + κd4/3

ε2/3 n+ κ1.5+κ
√
d+M

√
d

ε + κd2/3

ε2/3

SVRG-LD [119] n+ κ1.5
√
d+κd+Md
ε + κd4/3

ε2/3 n+ κ3

ε2 + κ1.5+M
√
d

ε

CV-ULD [119] n+ κ4d1.5

ε3 n+ κ4

ε3

SVRG-LD [554] n+ κ1.5
√
d+Md
ε + κ

√
nd
ε n+ κ1.5+M

√
d

ε + κ
√
n
ε

State-of-the-art, n = 1 [480] κ7/6d1/6

ε1/3 + κd1/3

ε2/3
κ7/6

ε1/3 + κ
ε2/3

Method Gradient oracle complexity (TV ≤ ε)
Corollary 47 n+ κd+ κ

√
nd

State-of-the-art, n = 1 [344] κd

Table 10.1: Complexity of sampling from e−F (x) where F (x) = 1
n

∑
i∈[n] fi(x) on Rd is µ-strongly

convex, each fi is convex and L-smooth, and κ = L
µ . For relevant lines, M is the Lipschitz constant

of the Hessian ∇2F , which our algorithm has no dependence on. Complexity is measured in terms of
the number of calls to fi or ∇fi for summands {fi}i∈[n]. We hide polylog(nκdε) factors for simplicity.

RGO is a natural notion of tractability for the composite sampling problem.

Logconcave finite sums. Since [536] proposed the stochastic gradient Langevin dynamics, which

at each step stochastically estimates the full gradient of the function, there has been a long line of

work giving bounds for this method and other similar algorithms [155, 229, 467, 61, 413]. These

convergence rates depend heavily on the variance of the stochastic estimates. Inspired by variance-

reduced methods in convex optimization, samplers based on low-variance estimators have also been

proposed [202, 207, 80, 51, 406, 123, 554, 119]. Although our reduction-based approach is not

designed specifically for solving problems of finite sum structure, our speedup can be viewed as due

to a lower variance estimator implicitly defined through the oracle subproblems of Theorem 68 via

repeated re-centering.

In Table 10.1, we list prior runtimes [554, 119] for sampling logconcave finite sums; note these

results additionally require bounded higher derivatives (with the exception of the κ4 dependence),

obtain guarantees only in Wasserstein distance, and have polynomial dependences on ε−1. On the

other hand, our reduction-based approach obtains total variation bounds with linear dependence on

κ and polylogarithmic dependence on ε−1. Our bound also simultaneously matches the state-of-the-

art bound when n = 1, a feature not shared by prior stochastic algorithms. To our knowledge, no

previous nontrivial7 bounds were known in the high-accuracy regime before our work.

Theoretical analyses of MALA and HMC. MALA was originally proposed in [76], and subse-

quently its practical and theoretical performance in different settings has received extensive treat-

ment in the literature (cf. the survey [444]). A number of theoretical analyses related to the well-

conditioned setting we study predate the work of [210], such as [457, 94], but they typically consider

7As mentioned previously, one can always compute the full ∇F in every iteration in a well-conditioned sampler.

CHAPTER 10. TOWARDS AN ORACLE COMPLEXITY OF SAMPLING 492

more restricted settings or do not state explicit dependences on κ and d.

Recently, a line of work has obtained a sequence of stronger upper bounds on the mixing of

MALA. First, [210] demonstrated that MALA achieves a mixing time of Õ(κd + κ1.5
√
d) from a

polynomially warm start, and the same set of authors later proved the same mixing time under an

exponentially warm start (which can be explicitly constructed) in [128]. It was later demonstrated

in [344] that under an appropriate averaging scheme, the mixing time could be improved to Õ(κd)

from an exponentially warm start with no low-order dependence. Finally, a recent work [137]

demonstrated that from a polynomially warm start, MALA mixes in time Õ(poly(κ)
√
d) for general

κ-conditioned distributions and in time Õ(poly(κ) 3
√
d) for κ-conditioned Gaussians, and posed the

open question of attaining similar bounds from an explicit (exponentially) warm start. This latter

work was a primary motivation for our exploration.

The HMC algorithm with a leapfrog integrator (which we refer to as HMC for simplicity) can be

viewed as a multi-step generalization of MALA, as it has two parameters (a step size η and a step

count K), and when K = 1 the implementation matches MALA exactly. For larger K, the algorithm

simulates the (continuous-time) Hamiltonian dynamics with respect to the potential f(x) + 1
2 ‖v‖

2
2

where f is the target’s negative log-density and v is an auxiliary “velocity” variable. The intuition

is that larger K leads to more faithful discretizations of the true dynamics.

However, there are few explicit analyses of the (Metropolis-adjusted) HMC algorithm, applied

to well-conditioned distributions.8 To our knowledge, the only theoretical upper bound for the

mixing of (multi-step) HMC stronger than known analyses of its one-step specialization MALA is

by [128], which gave a suite of bounds trading off three problem parameters: the conditioning κ,

the dimension d, and the Hessian Lipschitz parameter LH , under the additional assumption that

the log-density has bounded third derivatives. Assuming that LH is polynomially bounded by the

problem smoothness L, they demonstrate that HMC with an appropriate K can sometimes achieve

sublinear dependence on d in number of gradient queries, where the quality of this improvement

depends on κ and d (e.g. if κ ∈ [d
1
3 , d

2
3] and LH ≤ L1.5, κd

11
12 gradients suffice). This prompts the

question: can HMC attain query complexity independent of d, assuming higher derivative bounds,

from an explicit warm start? Theorem 74 answers this negatively (at least in terms of relaxation

time) using an exponentially-sized bad set; moreover, our hard distribution is a Gaussian, with all

derivatives of order at least 3 vanishing.

Lower bounds for sampling. The bounds most closely relevant to those in this paper are given

by [344], who showed that the step size of MALA must scale inversely in κ for the chain to have

a constant chance of moving, and [137], who showed that the step size must scale as d−
1
2 . Theo-

rem 72 matches or improves both bounds simultaneously, proving that up to logarithmic factors the

relaxation time of MALA scales linearly in both κ and d, while giving an explicit hard distribution

and exp(−d)-sized bad set. Moreover, both [344, 137] gave strictly spectral lower bounds, which are

8There has been considerably more exploration of the unadjusted variant [384, 383, 93], which typically obtain
mixing guarantees scaling polynomially in the inverse accuracy (as opposed to polylogarithmic).

CHAPTER 10. TOWARDS AN ORACLE COMPLEXITY OF SAMPLING 493

complemented by our Theorem 73, a mixing time lower bound.

We briefly mention several additional lower bound results in the sampling and sampling-adjacent

literature, which are related to this work. Recently, [107] exhibited an information-theoretic lower

bound on unadjusted discretizations simulating the underdamped Langevin dynamics, whose dimen-

sion dependence matches the upper bound of [480] (while leaving the precise dependence on κ open).

Finally, [235] and [120] give information-theoretic lower bounds for estimating normalizing constants

of well-conditioned distributions and the number of stochastic gradient queries required by first-order

sampling methods under noisy gradient access respectively.

10.1.4 Technical overview: upper bounds

Composite logconcave sampling

We study the problem of approximately sampling from a distribution π on Rd, with density

dπ(x)

dx
∝ exp (−f(x)− g(x)) . (10.1)

Here, f : Rd → R is assumed to be “well-behaved” (i.e. has finite condition number), and g : Rd → R
is a convex, but possibly non-smooth function. This problem generalizes the special case of sampling

from exp(−f(x)) for well-conditioned f , simply by letting g vanish. Even the specialization of (10.1)

where g indicates a convex set (i.e. is 0 inside the set, and∞ outside) is not well-understood; existing

mixing time bounds for this restricted setting are large polynomials in d [96, 101], and are typically

weaker than guarantees in the general logconcave setting [372, 371]. This is in contrast to the convex

optimization setting, where first-order methods readily generalize to solve problem families such as

minx∈X f(x), where X ⊆ Rd is a convex set, as well as its generalization

min
x∈Rd

f(x) + g(x), where g : Rd → R is convex and admits a proximal oracle. (10.2)

We defined proximal oracles in Definition 45; in short, they are prodecures which minimize the sum

of a quadratic and g. Definition 45 is desirable as many natural non-smooth composite objectives

arising in learning settings, such as the Lasso [505] and elastic net [555], admit efficient proximal

oracles. It is clear that the definition of a proximal oracle implies it can also handle arbitrary sums of

linear functions and quadratics, as the resulting function can be rewritten as the sum of a constant

and a single quadratic. The seminal work [66] extends fast gradient methods to solve (10.2) via

proximal oracles, and has prompted many follow-up studies.

Motivated by the success of the proximal oracle framework in convex optimization, we study

sampling from the family (10.1) through the lens of RGOs, a natural extension of Definition 45. The

main result of Section 10.5 is a “base” algorithm efficiently sampling from (10.1), assuming access

to an RGO for g. We now survey the main components of this algorithm.

CHAPTER 10. TOWARDS AN ORACLE COMPLEXITY OF SAMPLING 494

Reduction to shared minimizers. We first observe that without loss of generality, f and g share

a minimizer: by shifting f and g by linear terms, i.e. f̃(x) := f(x) − 〈∇f(x∗), x〉, g̃(x) := g(x) +

〈∇f(x∗), x〉, where x∗ minimizes f +g, first-order optimality implies both f̃ and g̃ are minimized by

x∗. Moreover, implementation of a first-order oracle for f̃ and an RGO for g̃ are immediate without

additional assumptions. This modification becomes crucial for our later developments, and we hope

this simple observation, reminiscent of “variance reduction” techniques in stochastic optimization

[300], is broadly applicable to improving algorithms for the sampling problem induced by (10.1).

Beyond Moreau envelopes: expanding the space. A typical approach in convex optimization in

handling non-smooth objectives g is to instead optimize its Moreau envelope, defined by

gη(y) := min
x∈Rd

{
g(x) +

1

2η
‖x− y‖22

}
. (10.3)

Intuitively, the envelope gη trades off function value with proximity to y; a standard exercise shows

that gη is smooth (has a Lipschitz gradient), with smoothness depending on η, and moreover that

computing gradients of gη reduces to calling a proximal oracle (Definition 45). It is natural to extend

this idea to the composite sampling setting, e.g. via sampling from the density

exp (−f(x)− gη(x)) .

However, a variety of complications prevent such strategies from obtaining rates comparable to

their non-composite, well-conditioned counterparts, including difficulty in bounding closeness of the

resulting distribution, as well as biased drifts of the sampling process due to error in gradients.

Our approach departs from this smoothing strategy in a crucial way, inspired by Hamiltonian

Monte Carlo (HMC) methods [334, 409]. HMC can be seen as a discretization of the ubiquitous

Langevin dynamics, on an expanded space. In particular, discretizations of Langevin dynamics

simulate the stochastic differential equation dxt
dt = −∇f(xt)+

√
2dWt

dt , where Wt is Brownian motion.

HMC methods instead simulate dynamics on an extended space Rd×Rd, via an auxiliary “velocity”

variable which accumulates gradient information. This is sometimes interpreted as a discretization

of the underdamped Langevin dynamics [130]. HMC often has desirable stability properties, and

expanding the dimension via an auxiliary variable has been used in algorithms obtaining the fastest

rates in the well-conditioned logconcave sampling regime [480, 344]. Inspired by this phenomenon,

we consider the density on Rd × Rd

dπ̂

dz
(z) := exp

(
−f(y)− g(x)− 1

2η
‖x− y‖22

)
where z = (x, y). (10.4)

Due to technical reasons, the family of distributions we use in our final algorithms are of slightly

different form than (10.4), but this simplification is useful to build intuition. Note in particular that

the form of (10.4) is directly inspired by (10.3), where rather than maximizing over x, we directly

CHAPTER 10. TOWARDS AN ORACLE COMPLEXITY OF SAMPLING 495

expand the space. The idea is that for small enough η and a set on x of large measure, smoothness of

f will guarantee that the marginal of (10.4) on x will concentrate y near x, a fact we make rigorous.

To sample from (10.1), we then show that a rejection filter applied to a sample x from the marginal

of (10.4) will terminate in constant steps. Consequently, it suffices to develop a fast sampler for

(10.4).

Alternating sampling with an oracle. The form of the distribution (10.4) suggests a natural

strategy for sampling from it: starting from a current state (xk, yk), we iterate

1. Sample yk+1 ∼ exp
(
−f(y)− 1

2η ‖xk − y‖
2
2

)
.

2. Sample xk+1 ∼ exp
(
−g(x)− 1

2η ‖x− yk+1‖22
)

, via a restricted Gaussian oracle.

When f and g share a minimizer, taking a first-order approximation in the first step, i.e. sampling

yk+1 ∼ exp(−f(xk) − 〈∇f(xk), y − xk〉 − 1
2η ‖y − xk‖

2
2), can be shown to generalize the Leapfrog

step of HMC updates. However, for η very small (as in our setting), we observe the first step itself

reduces to the case of sampling from a distribution with constant condition number, performable

in Õ(d) gradient calls by e.g. Metropolized HMC [210, 128, 344]. Moreover, it is not hard to see

that this “alternating marginal” sampling strategy preserves the stationary distribution exactly, so

no filtering is necessary. Directly bounding the conductance of this random walk, for small enough

η, leads to an algorithm running in Õ
(
κ2d2

)
iterations, each calling an RGO once, and a gradient

oracle for f roughly Õ (d) times. This latter guarantee is by an appeal to known bounds [128, 344]

on the mixing time in high dimensions of Metropolized HMC for a well-conditioned distribution, a

property satisfied by the y-marginal of (10.4) for small η.

Stability of Gaussians under bounded perturbations. To obtain our tightest runtime result, we

use that η is chosen to be much smaller than L−1 to show structural results about distributions

of the form (10.4), yielding tighter concentration for bounded perturbations of a Gaussian (i.e. the

Gaussian has covariance 1
η I, and is restricted by L-smooth f for η � L−1). To illustrate, let

dPx(y)

dy
∝ exp

(
−f(y)− 1

2η
‖y − x‖22

)
and let its mean and mode be ȳx, y∗x. It is standard that ‖ȳx − y∗x‖2 ≤

√
dη, by η−1-strong logcon-

cavity of Px. Informally, we show that for η � L−1 and x not too far from the minimizer of f , we

can improve this to ‖ȳx − y∗x‖2 = O(
√
η); see Proposition 83 for a precise statement.

Using our structural results, we sharpen conductance bounds, improve the warmness of a starting

distribution, and develop a simple rejection sampling scheme for sampling the y variable in expected

constant gradient queries. Our proofs are continuous in flavor and based on gradually perturbing the

Gaussian and solving a differential inequality; we believe they may of independent interest. These

improvements lead to an algorithm running in Õ
(
κ2d
)

iterations; ultimately, we use our reduction

framework, stated in Theorem 68, to improve this dependence to Õ (κd).

CHAPTER 10. TOWARDS AN ORACLE COMPLEXITY OF SAMPLING 496

Logconcave finite sums

We initiate the algorithmic study of the following task in the high-accuracy regime: sample x ∼ π

within total variation distance ε, where dπ
dx (x) ∝ exp(−F (x)) and

F (x) =
1

n

∑
i∈[n]

fi(x), (10.5)

all fi : Rd → R are convex and L-smooth, and F is µ-strongly convex. We call such a distribution

π a (well-conditioned) logconcave finite sum.

In applications (where summands correspond to points in a dataset, e.g. in Bayesian linear and

logistic regression tasks [210]), querying ∇F may be prohibitively expensive, so a natural goal is to

obtain bounds on the number of required queries to summands ∇fi for i ∈ [n]. This motivation

also underlies the development of stochastic gradient methods in optimization, a foundational tool

in modern statistics and data processing. Näıvely, one can complete the task by using existing

samplers for well-conditioned distributions and querying the full gradient ∇F in each iteration, re-

sulting in a summand gradient query complexity of Õ(nκd) [344]. Many recent works, inspired from

recent developments in the complexity of optimizing a well-conditioned finite sum, have developed

subsampled gradient methods for the sampling problem. However, to our knowledge, all such guar-

antees depend polynomially on the accuracy ε and are measured in the 2-Wasserstein distance; in

the high-accuracy, total variation case no nontrivial query complexity is currently known.

We show in Section 10.6 that given access to the minimizer of F , a simple zeroth-order algorithm

which queries Õ(κ2d) values of summands {fi}i∈[n] succeeds (i.e. it never requires a full value or

gradient query of F). The algorithm is essentially the Metropolized random walk proposed in

[210] for the n = 1 case with a cheaper subsampled filter step. Notably, because the random walk is

conducted with respect to F , we cannot efficiently query the function value at any point; nonetheless,

by randomly sampling to compute a nearly-unbiased estimator of the rejection probability, we do

not incur too much error. This random walk was shown in [128] to mix in Õ(κ2d) iterations; we

implement each step to sufficient accuracy using Õ(1) function evaluations.

It is natural to ask if first-order information can be used to improve this query complexity, perhaps

through “variance reduction” techniques (e.g. [300]) developed for stochastic optimization. The idea

behind variance reduction is to recenter gradient estimates in phases, occasionally computing full

gradients to improve the estimate quality. One fundamental difficulty which arises from using

variance reduction in high-accuracy sampling is that the resulting algorithms are not stateless. By

this, we mean that the variance-reduced estimates depend on the history of the algorithm, and thus

it is difficult to ascertain correctness of the stationary distribution. We take a different approach to

achieve a linear query dependence on the conditioning κ, described in the following section.

CHAPTER 10. TOWARDS AN ORACLE COMPLEXITY OF SAMPLING 497

Proximal point reduction framework

To motivate Theorem 68, we first recast existing “proximal point” reduction-based optimization

methods through the lens of composite optimization, and subsequently show that similar ideas

underlying our composite sampler in Section 10.1.4 yield an analagous “proximal point reduction

framework” for sampling. Chronologically, our composite sampler (originally announced in [481])

predates our reduction framework, which was then inspired by the perspective given here. We hope

these insights prove fruitful for further development of proximal approaches to sampling.

Proximal point methods as composite optimization. Proximal point methods are a well-studied

primitive in optimization, developed by [459]; cf. [435] for a modern survey. The principal idea is

that to minimize convex F : Rd → R, it suffices to solve a sequence of subproblems

xk+1 ← argminx∈Rd

{
F (x) +

1

2λ
‖x− xk‖22

}
. (10.6)

Intuitively, by tuning the parameter λ ≥ 0, we trade off how regularized the subproblems (10.6) are

with how rapidly the overall method converges. Smaller values of λ result in larger regularization

amounts which are amenable to algorithms for minimizing well-conditioned objectives.

For optimizing functions of the form (10.5) via stochastic gradient estimates to ε error, [300, 168,

472] developed variance-reduced methods obtaining a query complexity of Õ(n + κ). To match a

known lower bound of Õ(n+
√
nκ) due to [539], two works [364, 227] appropriately applied instances

of accelerated proximal point methods [257] with careful analyses of how accurately subproblems

(10.6) needed to be solved. These algorithms black-box called the Õ(n + κ) runtime as an oracle

to solve the subproblems (10.6) for an appropriate choice of λ, obtaining an accelerated rate.9 To

shed some light on this acceleration procedure, we adopt an alternative view on proximal point

methods.10 Consider the following known composite optimization result.

Proposition 42 (Informal statement of [66]). Let f : Rd → R be L-smooth and µ-strongly convex,

and g : Rd → R admit a proximal oracle O(λ, v) (cf. Definition 45). There is an algorithm taking

Õ(
√
κ) iterations for κ = L

µ to find an ε-approximate minimizer to f + g, each querying ∇f and O
a constant number of times. Further, λ = 1

L in all calls to O.

Ignoring subtleties of the error tolerance ofO, we show how to use an instance of Proposition 42 to

recover the Õ(n+
√
nκ) query complexity for optimizing (10.5). Let f(x) = µ

2 ‖x‖
2
2, and g = F − f .

For any Λ ≥ µ, f is both µ-strongly convex and Λ-smooth. Moreover, note that all calls to the

proximal oracle O for g require solving subproblems of the form

argminx∈Rd

{
F (x)− µ

2
‖x‖22 +

Λ

2
‖x− v‖22

}
. (10.7)

9We note that an improved runtime without extraneous logarithmic factors was later obtained by [17].
10This perspective can also be found in the lecture notes [342].

CHAPTER 10. TOWARDS AN ORACLE COMPLEXITY OF SAMPLING 498

The upshot of choosing a smoothness bound Λ ≥ µ is that the regularization amount in (10.7)

increases, improving the conditioning of the subproblem, which is Λ-strongly convex and L + Λ-

smooth. The algorithm of e.g. [300] solves each subproblem (10.7) in Õ(n+ L+Λ
Λ) gradient queries,

leading to an overall query complexity (for Proposition 42) of

Õ

(√
Λ

µ
·
(
n+

L

Λ

))
.

Optimizing over Λ ≥ µ, i.e. taking Λ = max(µ, Ln), yields the desired bound of Õ(n+
√
nκ).

Applications to sampling. In Sections 10.5 and 10.6, we develop samplers for structured families

with quadratic dependence on the conditioning κ. The proximal point approach suggests a strategy

for accelerating these runtimes. Namely, if there is a framework which repeatedly calls a sampler for

a regularized density (analogous to calls to (10.6)), one could trade off the regularization with the

rate of the outer loop. Fortunately, in the spirit of interpreting proximal point methods as composite

optimization, the composite sampler of Section 10.5 itself meets these reduction framework criteria.

We briefly recall properties of our composite sampler here. Let π be a distribution on Rd with
dπ
dx (x) ∝ exp(−fwc(x)− foracle(x)),11 where fwc is well-conditioned (has finite condition number κ)

and foracle admits an RGO, which solves subproblems of the form

O(η, v) ∼ the density proportional to exp

(
− 1

2η
‖x− v‖22 − foracle(x)

)
. (10.8)

The algorithm of Section 10.5 only calls O with a fixed η; note the strong parallel between the RGO

subproblem and the proximal oracle of Proposition 42. For a given value of η ≥ 0, our composite

sampler runs in Õ(1
ηµ) iterations, each requiring a call to O. Smaller η improve the conditioning

of the negative log-density of subproblem (10.8), but increase the overall iteration count, yielding

a range of trade-offs. The algorithm of Section 10.5 has an upper bound requirement on η (cf.

Theorem 69); in Section 10.3, we observe that this may be lifted when fwc = 0 uniformly, allowing

for a full range of choices. Moreover, the analysis of the composite sampler becomes much simpler

when fwc = 0, as in Theorem 68. We give the framework as Algorithm 59, as well as a full (fairly

short) convergence analysis. By trading off the regularization amount with the cost of implementing

(10.8) via bootstrapping base samplers, we obtain a host of improved runtimes.

Beyond our specific applications, the framework we provide has strong implications as a generic

reduction from mixing times scaling polynomially in κ to improved methods scaling linearly in κ.

This is akin to the observation in [364] that accelerated proximal point methods generically improve

poly(κ) dependences to
√
κ dependences for optimization. We are optimistic this insight will find

further implications in the logconcave sampling literature.

11To disambiguate, we sometimes also use the notation fwc + foracle rather than f + g in defining instances of our
reduction framework or composite samplers, when convenient in the context.

CHAPTER 10. TOWARDS AN ORACLE COMPLEXITY OF SAMPLING 499

10.1.5 Technical overview: lower bounds

In this section, we give an overview of the techniques we use to show our lower bounds. Throughout

for the sake of fixing a scale, we assume the negative log-density has Hessian between I and κI.

MALA. Our starting point is the observation made in [137] that for a MALA step size h, the

spectral gap of the MALA Markov chain scales no better than O(h+h2), witnessed by a simple one-

dimensional Gaussian. Thus, our strategy for proving Theorems 71 and 72 is to show a dichotomy

on the choice of step size: either h is so large such that we can construct an exp(d)-warm start where

the chain is extremely unlikely to move (e.g. the step almost always is filtered), or it is small enough

to imply a poor spectral gap. In the Gaussian case, we achieve this by explicitly characterizing the

rejection probability and demonstrating that choosing the “small ball” warm start where ‖x‖22 is

smaller than its expectation by a constant ratio suffices to upper bound h.

Given the result of Theorem 71, we see that if MALA is to move at all with decent probability

from an exponentially warm start, we must take h� 1, so the spectral gap in this regime is simply

O(h). We now move onto the more general well-conditioned setting. As a thought experiment, we

note that the upper bound analyses of [210, 128, 344] for MALA have a dimension dependence which

is bottlenecked by the noise term only. In particular, the MALA iterates apply a filter to the move

x′ ← x− h∇f(x) +
√

2hg, where g ∼ N (0, I) is a standard Gaussian vector. However, even for the

more basic “Metropolized random walk” where the proposal is simply x′ ← x+
√

2hg, the dimension

dependence of upper bound analyses scales linearly in d. Thus, it is natural to study the effect of

the noise, and construct a hard distribution based around it.

We first formalize this intuition, and demonstrate that for step sizes not ruled out by Theorem 71,

all terms in the rejection probability calculation other than those due to the effect of the noise g

are low-order. Moreover, because the effect of the noise is coordinatewise separable (since N (0, I)

is a product distribution), to demonstrate a Õ(1
κd) upper bound on h it suffices to show a hard

one-dimensional distribution where the log-rejection probability has expectation −Ω(hκ), and apply

sub-Gaussian concentration to show a product distribution has expectation −Ω(hκd).

At this point, we reduce to the following self-contained problem: let x ∈ R, let π∗ ∝ exp(−f1d)

be one-dimensional with second derivative ≤ κ, and let xg = x+
√

2hg for g ∼ N (0, 1). We wish to

construct f1d such that for x in a constant probability region over exp(−f1d) (the “bad set”),

Eg∼N (0,1)

[
−f1d(xg) + f1d(x)− 1

2
〈x− xg, f ′1d(x) + f ′1d(xg)〉

]
= −Ω(hκ), (10.9)

where the contents of the expectation in (10.9) are the log-rejection probability along one coordinate

by a straightforward calculation. By forming a product distribution using f1d as a building block,

and combining with the remaining low-order terms due to the drift ∇f(x), we attain an exp(−d)-

sized region where the rejection probability is exp(−Ω(hκd)), completing Theorem 72.

CHAPTER 10. TOWARDS AN ORACLE COMPLEXITY OF SAMPLING 500

It remains to construct such a hard f1d. The calculation

−f1d(xg) + f1d(x)− 1

2
〈x− xg, f ′1d(x) + f ′1d(xg)〉 = −2h

∫ 1

0

(
1

2
− s
)
g2f ′′1d(x+ s(xg − s))ds

suggests the following approach: because the above integral places more mass closer to the starting

point, we wish to make sure our bad set has large second derivative, but most moves g result in a

much smaller second derivative. Our construction patterns this intuition: we choose12

f1d(x) =
κ

3
x2 − κh

3
cos

x√
h

=⇒ f ′′1d(x) =
2κ

3
+
κ

3
cos

x√
h
,

such that our bad set is when cos x√
h

is relatively large (which occurs with probability→ 1
2 for small

h in one dimension). The period of our construction scales with
√
h, so that most moves

√
2hg

of size O(
√
h) will “skip a period” and hence hit a region with small second derivative, satisfying

(10.9).

Figure 10.1: Second derivative of our hard function f1d, κ = 10, h = 0.01. Starting from inside the
hard region, on average over g ∼ N (0, I), a move by

√
2hg decreases the second derivative.

HMC. We further demonstrate that similar hard Gaussians as the one we use for MALA also

place an upper bound on the step size of HMC for any number of steps K. Our starting point is

a novel characterization of HMC iterates on Gaussians: namely, when the negative log-density is

quadratic, we show that the HMC iterates implement a linear combination between the starting

position and velocity, where the coefficients are given by Chebyshev polynomials. For step size η of

size Ω(1
K
√
κ

) for specific constants, we show the HMC chain begins to cycle because of the locations

of the Chebyshev polynomials’ zeroes, and cannot move. Moreover, for sufficiently small step size η

outside of this range, it is straightforward by examining the coefficients of Chebyshev polynomials

to show that they are the same (up to constant factors) as in the MALA case, at which point our

previous lower bound holds. It takes some care to modify our hard Gaussian construction to rule

out all constant ranges in the η ≈ 1
K
√
κ

region, but by doing so we obtain Theorem 74.

We remark that the observation that HMC iterates are implicitly implementing a Chebyshev

polynomial approximation appears to be unknown in the literature, and is a novel contribution of

12We note [137] also used a (different, but similar) cosine-based construction for their lower bound.

CHAPTER 10. TOWARDS AN ORACLE COMPLEXITY OF SAMPLING 501

our work. We believe understanding this connection is a worthwhile endeavor, as a similar connection

between polynomial approximation and first-order convex optimization has led to various interesting

interpretations of Nesterov’s accelerated gradient descent method [266, 49].

10.1.6 Roadmap

We give notations and preliminaries in Section 10.2. In Section 10.3 we give our framework for

bootstrapping fast regularized samplers, and prove its correctness (Theorem 68). Assuming the

“base samplers” of Theorems 69 and 70, in Section 10.4 we apply our reduction to obtain all of

our strongest guarantees, namely Corollaries 45, 46, and 47. We then prove Theorems 69 and 70 in

Sections 10.5 and 10.6. We present our lower bound constructions (proofs of Theorems 71, 72, 73,

and 74 respectively) in Sections 10.7, 10.8, 10.9, and 10.10. Finally, we give concluding thoughts on

our lower bound results in Section 10.11.

10.2 Preliminaries

10.2.1 Notation

General notation. For d ∈ N, [d] refers to the set of naturals 1 ≤ i ≤ d; ‖·‖2 is the Euclidean norm

on Rd when d is clear from context. N (µ,Σ) is the multivariate Gaussian of specified mean and

variance, I is the identity of appropriate dimension when clear from context, and � is the Loewner

order on symmetric matrices. For any positive semidefinite matrix A, we let ‖·‖A be its induced

seminorm ‖x‖A =
√
x>Ax. We let {Wt}t≥0 ⊂ Rd denote the standard Brownian motion when

dimensions are clear from context.

Functions. We say twice-differentiable function f : Rd → R is L-smooth and µ-strongly convex

if µI � ∇2f(x) � LI for all x ∈ Rd; it is well-known that L-smoothness implies that f has an

L-Lipschitz gradient, and that for any x, y ∈ Rd,

f(x) + 〈∇f(x), y − x〉+
µ

2
‖y − x‖22 ≤ f(y) ≤ f(x) + 〈∇f(x), y − x〉+

L

2
‖y − x‖22 .

If f is L-smooth and µ-strongly convex, we say it has a condition number κ := L
µ . We call a zeroth-

order oracle, or “value oracle”, an oracle which returns f(x) on any input point x ∈ Rd; similarly, a

first-order oracle, or “gradient oracle”, returns both the value and gradient (f(x),∇f(x)).

For our lower bound results, we explicitly assume that κ is at least a constant for convenience of

stating bounds; a lower bound of 10 suffices for all our results.

Distributions. We call distribution π on Rd logconcave if dπ
dx (x) = exp(−f(x)) for convex f ; π

is µ-strongly logconcave if f is µ-strongly convex. For A ⊆ Rd, Ac is its complement, and we let

π(A) :=
∫
x∈A dπ(x). We say distribution ρ is β-warm with respect to π if dπ

dρ (x) ≤ β everywhere,

and define the total variation ‖π − ρ‖TV := supA⊆Rd π(A) − ρ(A). We will frequently use the fact

CHAPTER 10. TOWARDS AN ORACLE COMPLEXITY OF SAMPLING 502

that ‖π − ρ‖TV is also the probability that x ∼ π and x′ ∼ ρ are unequal under the best coupling of

(π, ρ); this allows us to “locally share randomness” when comparing two random walk procedures.

We define the expectation Eπ and variance Varπ with respect to distribution π in the standard way,

Eπ[h(x)] :=

∫
h(x)dπ(x), Varπ[h(x)] := Eπ

[
(h(x))2

]
− (Eπ[h(x)])

2
.

Structured distributions. This work considers two types of distributions with additional structure,

which we call composite logconcave densities and logconcave finite sums. A composite logconcave

density has the form exp(−f(x)−g(x)), where both f and g are convex. In this context throughout,

f will either be uniformly 0 or have a finite condition number (be “well-conditioned”), and g will

represent a “simple” but possibly non-smooth function, as measured by admitting an RGO (cf.

Definition 43). We will sometimes refer to the components as f and g as fwc and foracle respectively,

to disambiguate when the functions f and g are already defined in context. In our reduction-based

approaches, we have additional structure on the parameter λ which an RGO is called with (cf.

Definition 44). Specifically, in our instances typically λ−1 � L (or some other “niceness” parameter

associated with the negative log-density); this can be seen as heavily regularizing the negative log-

density, and often makes the implementation simpler.

Finally, a logconcave finite sum has density of the form exp(−F (x)) where F (x) = 1
n

∑
i∈[n] fi(x).

When treating such densities, we make the assumption that each constituent summand fi is L-

smooth and convex, and the overall function F is µ-strongly convex. We measure complexity of

algorithms for logconcave finite sums by gradient queries to summands, i.e. ∇fi(x) for some i ∈ [n].

Optimization. Throughout this work, we are somewhat liberal with assuming access to minimizers

to various functions (namely, the negative log-densities of target distributions). We give a more

thorough discussion of this assumption in Appendix I.1, but note here that for all function families

we consider (well-conditioned, composite, and finite sum), efficient first-order methods exist for

obtaining high accuracy minimizers, and this optimization query complexity is never the leading-

order term in any of our algorithms assuming polynomially bounded initial error.

Sampling. Consider a Markov chain defined on Rd with transition kernel {Tx}x∈Rd , so that∫
Tx(y)dy = 1 for all x. Further, denote the stationary distribution of the Markov chain by π∗.

Define the Dirichlet form of functions g, h : Rd → R with respect to the Markov chain by

E(g, h) :=

∫
g(x)h(x)dπ∗(x)−

∫∫
g(y)h(x)Tx(y)dπ∗(x)dy.

A standard calculation demonstrates that

E(g, g) =
1

2

∫∫
(g(x)− g(y))2Tx(y)dπ∗(x)dy.

CHAPTER 10. TOWARDS AN ORACLE COMPLEXITY OF SAMPLING 503

The mixing of the chain is governed by its spectral gap, a classical quantity we now define:

λ ({Tx}x∈Rd) := inf
g

{
E(g, g)

Varπ∗ [g]

}
. (10.10)

The relaxation time is the inverse spectral gap. We also recall a result of Cheeger [122], showing the

spectral gap is O(Φ), where Φ is the conductance of the chain:

Φ ({Tx}x∈Rd) := inf
A⊂Rd|π∗(A)≤ 1

2

∫
x∈A Tx(Ac)dπ∗(x)

π∗(A)
(10.11)

Finally, we recall the definition of a Metropolis filter. A Markov chain with transitions {Tx}x∈Rd
and stationary distribution π∗ is said to be reversible if for all x, y ∈ Rd,

dπ∗(x)Tx(y) = dπ∗(y)Ty(x).

The Metropolis filter is a way of taking an arbitrary set of proposal distributions {Px}x∈Rd and

defining a reversible Markov chain with stationary distribution π∗. In particular, the Markov chain

induced by the Metropolis filter has transition distributions {Tx}x∈Rd defined by

Tx(y) := Px(y) min

(
1,
dπ∗(y)Py(x)

dπ∗(x)Px(y)

)
for all y 6= x. (10.12)

Whenever the proposal is rejected by the modified distributions above, the chain does not move.

10.2.2 Technical facts

We will repeatedly use the following results.

Fact 27 (Gaussian integral). For any λ ≥ 0 and v ∈ Rd,∫
exp

(
− 1

2λ
‖x− v‖22

)
dx = (2πλ)

d
2 .

Fact 28 ([210], Lemma 1). Let π be a µ-strongly logconcave distribution, and let x∗ minimize its

negative log-density. Then, for x ∼ π and any δ ∈ [0, 1], with probability at least 1− δ,

‖x− x∗‖2 ≤

√
d

µ

(
2 + 2 max

(
4

√
log(1/δ)

d
,

√
log(1/δ)

d

))
.

Fact 29 ([267], Theorem 1.1). Let π be a µ-strongly logconcave density. Let dγµ(x) be the Gaussian

density with covariance matrix µ−1I. For any convex function h,

Eπ[h(x− Eπ[x])] ≤ Eγµ [h(x− Eγµ [x])].

CHAPTER 10. TOWARDS AN ORACLE COMPLEXITY OF SAMPLING 504

Fact 30 ([206], Theorem 1). Let π be a µ-strongly logconcave distribution, and let x∗ minimize its

negative log-density. Then, Eπ[‖x− x∗‖22] ≤ d
µ .

Fact 31 (Mill’s inequality). For one-dimensional Gaussian random variable Z ∼ N (0, σ2),

Pr [Z > t] ≤
√

2

π

σ

t
exp

(
− t2

2σ2

)
.

Fact 32 (χ2 tail bounds, Lemma 1 [340]). Let {Zi}i∈[n] ∼i.i.d. N (0, 1) and a ∈ Rn≥0. Then

Pr

∑
i∈[n]

aiZ
2
i − ‖a‖

2
2 ≥ 2 ‖a‖2

√
t+ 2 ‖a‖∞ t

 ≤ exp(−t),

Pr

∑
i∈[n]

aiZ
2
i − ‖a‖

2
2 ≤ −2 ‖a‖2

√
t

 ≤ exp(−t).

Fact 33 (Bernstein’s inequality). Let {Zi}i∈[n] be independent mean-zero random variables with

sub-exponential parameter λ. Then

Pr

∣∣∣∣∣∣
∑
i∈[n]

Zi

∣∣∣∣∣∣ > t

 ≤ exp

(
−1

2
min

(
t2

nλ2
,
t

λ

))
.

10.2.3 Metropolis-adjusted Langevin algorithm

In this section, we formally define the Metropolis-adjusted Langevin algorithm (MALA) which we

study in Sections 10.7 and 10.8. Throughout this discussion, fix a distribution π on Rd, with density
dπ
dx (x) = exp(−f(x)), and suppose that f is twice-differentiable for simplicity.

The MALA Markov chain is given by a discretization of the (continuous-time) Langevin dynamics

dxt = −∇f(xt)dt+
√

2dWt,

which is well-known to have stationary density exp(−f(x)). MALA is defined by performing a simple

Euler discretization of the Langevin dynamics up to time h > 0, and then applying a Metropolis

filter. In particular, define the proposal distribution at a point x by

Px := N (x− h∇f(x), 2hI) .

We obtain the MALA transition distribution by applying the definition (10.12), which yields

Tx(y) ∝ exp

(
−
‖y − (x− h∇f(x))‖22

4h

)
min

1,
exp

(
−f(y)− ‖x−(y−h∇f(y))‖22

4h

)
exp

(
−f(x)− ‖y−(x−h∇f(x))‖22

4h

)
 . (10.13)

CHAPTER 10. TOWARDS AN ORACLE COMPLEXITY OF SAMPLING 505

The normalization constant above is that of the multivariate Gaussian with covariance 2hI.

10.2.4 Hamiltonian Monte Carlo

In this section, we formally define the (Metropolized) Hamiltonian Monte Carlo (HMC) method

which we study in Section 10.10. We assume the same setting as Section 10.2.3.

The Metropolized HMC algorithm is governed by two parameters, a step size η > 0 and a step

count K ∈ N, and can be viewed as a multi-step generalization of MALA. In particular, when K = 1

it is straightforward to show that HMC is a reparameterization of MALA, see e.g. Appendix I.5.

More generally, from an iterate x, HMC performs the following updates.

1. x0 ← x, v0 ∼ N (0, I)

2. For 0 ≤ k < K:

(a) vk+ 1
2
← vk − η

2∇f(xk)

(b) xk+1 ← xk + ηvk+ 1
2

(c) vk+1 ← vk − η
2∇f(xk+1)

3. Return xK

Each loop of step 2 is known in the literature as a “leapfrog” step, and is a discretization of

Hamilton’s equations for the Hamiltonian function H(x, v) := f(x) + 1
2 ‖v‖

2
2; for additional back-

ground, we refer the reader to [128]. This discretization is well-known to have reversible transition

probabilities (i.e. the transition density is the same if the endpoints are swapped) because it satis-

fies a property known as symplecticity. Moreover, the Markov chain has stationary density on the

expanded space (x, v) ∈ Rd×Rd proportional to exp(−H(x, v)). Correspondingly, the Metropolized

HMC Markov chain performs the above algorithm from a point x, and accepts with probability

min

{
1,

exp (−H(xK , vK))

exp (−H(x0, v0))

}
. (10.14)

10.3 Proximal reduction framework

The reduction framework of Theorem 68 can be thought of as a specialization of a more general

composite sampler which we develop in Section 10.5, whose guarantees are reproduced here.

Theorem 69. Let π be a distribution on Rd with dπ
dx (x) ∝ exp (−f(x)− g(x)) such that f is L-

smooth and µ-strongly convex, and let ε ∈ (0, 1). Let η ≤ 1
32Lκd log(κ/ε) (where κ = L

µ), T =

Θ(1
ηµ log(κdε)), and let O be a η-RGO for g. Further, assume access to the minimizer x∗ =

argminx∈Rd{f(x) + g(x)}. There is an algorithm which runs in T iterations in expectation, each

querying a gradient oracle of f and O a constant number of times, and obtains ε total variation

distance to π.

CHAPTER 10. TOWARDS AN ORACLE COMPLEXITY OF SAMPLING 506

Our main observation, elaborated on more formally for specific applications in Section 10.4, is

that a variety of structured logconcave densities have negative log-densities foracle, where we can

implement an efficient restricted Gaussian oracle for foracle via calling an existing sampling method.

Crucially, in these instantiations we use the fact that the distributions which O is required to sampled

from are heavily regularized (restricted by a quadratic with large leading coefficient) to obtain fast

samplers. We further note that the upper bound requirement on η in Theorem 69 can be lifted

when the “well-conditioned” component is uniformly 0. Instead of setting f = 0 and g = foracle

in Theorem 69, and refining the analysis for this special case to tolerate arbitrary η, we provide a

self-contained proof here. This particular structure (the composite setting where fwc is uniformly

zero and foracle is strongly convex) admits significant simplifications from the more general case, so

using slightly different proof techniques, we are able to obtain stronger convergence guarantees for

this particular problem allowing for mixing in fewer than d iterations from a feasible start.

Theorem 68. Let π be a distribution on Rd with dπ
dx (x) ∝ exp(−foracle(x)) such that foracle is

µ-strongly convex, and let ε ∈ (0, 1). Let η ≤ 1
µ , T = Θ(1

ηµ log d
ηµε) for some β ≥ 1, and O be a

η-RGO for foracle. Algorithm 59, initialized at the minimizer of foracle, runs in T iterations, each

querying O a constant number of times, and obtains ε total variation distance to π.

For simplicity of notation, we replace foracle in the statement of Theorem 68 with g throughout

just this section. Let π be a density on Rd with dπ
dx (x) ∝ exp(−g(x)) where g is µ-strongly convex

(but possibly non-smooth), and let O be a restricted Gaussian oracle for g. Consider the joint

distribution π̂ supported on an expanded space z = (x, y) ∈ Rd × Rd with density, for some η > 0,

dπ̂

dz
(z) ∝ exp

(
−g(x)− 1

2η
‖x− y‖22

)
.

Note that the x-marginal of π̂ is precisely π, so it suffices to sample from the x-marginal. We consider

a simple alternating Markov chain for sampling from π̂, described in the following Algorithm 59.

Algorithm 59: AlternateSample(g, η, T)

1 Input: µ-strongly convex g : Rd → R, η > 0, T ∈ N, x0 = minx g(x);
2 for k ∈ [T] do

3 Sample yk ∼ πxk−1
, where for all x ∈ Rd, dπx

dy (y) ∝ exp
(
− 1

2η ‖x− y‖
2
2

)
;

4 Sample xk ∼ πyk , where for all y ∈ Rd, dπy
dx (x) ∝ exp

(
−g(x)− 1

2η ‖x− y‖
2
2

)
;

5 Return: xT ;

By observing that the distributions πx and πy in the above method are precisely the marginal

distributions of π̂ with one variable fixed, it is straightforward to see that π̂ is a stationary distribution

of the process. We make this formal in the following lemma.

CHAPTER 10. TOWARDS AN ORACLE COMPLEXITY OF SAMPLING 507

Lemma 181 (Alternating marginal sampling). Let π̂ be a density on two blocks (x, y). Sample

(x, y) ∼ π̂, and then sample x̃ ∼ π̂(·, y), ỹ ∼ π̂(x̃, ·). Then, the distribution of (x̃, ỹ) is π̂. Moreover,

the alternating marginal sampling Markov chain on either marginal is reversible.

Proof. The density of the resulting distribution at (x̃, y) is proportional to the product of the

(marginal) density at y and the conditional distribution of x̃ | y, which by definition is π̂. Therefore,

(x̃, y) is distributed as π̂, and the argument for ỹ follows symmetrically. To see reversibility on the

x marginal, it suffices to note that the probability we move from x to x′ is proportional to∫
y

π̂(x, y)π̂(x′, y)dy,

which is a symmetric function of x and x′. A similar argument holds for the y marginals.

We also state a simple observation about alternating schemes such as Algorithm 59, which will

be useful later. Let Px be the density of yk after one step of the above procedure starting from

xk−1 = x, and let Tx be the resulting density of xk.

Observation 1. For any two points x, x′ ∈ Rd, ‖Tx − Tx′‖TV ≤ ‖Px − Px′‖TV.

Proof. This follows by the coupling characterization of total variation (see e.g. Chapter 5 of [354]).

Per the optimal coupling of y ∼ Px and y′ ∼ Px′ , whenever the total variation sets y = y′ in Line 2

of AlternateSample, we can couple the resulting distributions in Line 3 as well.

In order to prove Theorem 45, we first show that the random walk in Algorithm 59 converges

rapidly in the 2-Wasserstein distance (denoted W2 in this section).

Lemma 182. Let π0 be the starting distribution of x in Algorithm 59. Let πk be the distribution of

xk and π be the x-marginal of π̂. For all k ≥ 0,

W 2
2 (πk+1, π) ≤ 1

(1 + ηµ)2
W 2

2 (πk, π).

Hence, for any η ≤ 1
µ , in T ′ = O

(
1
ηµ log d

µ∆

)
iterations, the random walk mixes to

W2(πT ′ , π) ≤ ∆.

Proof. Let Γxk be the optimal coupling between xk ∼ πk and x̂ ∼ π according to the W2 distance.

Coupling the Gaussian random variable generating yk+1 ∼ πxk and ŷ ∼ πx̂ gives a coupling Γyk+1

between yk+1 and ŷ such that

EΓyk+1

[
‖yk+1 − ŷ‖22

]
= EΓxk

[
‖xk − x̂‖22

]
. (10.15)

CHAPTER 10. TOWARDS AN ORACLE COMPLEXITY OF SAMPLING 508

Then, let πy be the distribution of xk+1 in a run of Line 3 of Algorithm 59 starting from yk+1 = y,

and πŷ be the distribution of x̂ in Line 3 starting from ŷ, respectively. Since πŷ is µ + 1
η strongly

log-concave, πŷ satisfies a log-Sobolev inequality with constant µ+ 1
η (Theorem 2 of [430]). Hence,

W 2
2 (πy, πŷ) ≤ 2

µ+ 1
η

dKL(πy‖πŷ)

≤ 1(
µ+ 1

η

)2Eπy

[∥∥∥∥∇ log
πy
πŷ

∥∥∥∥2

2

]

≤ 1

(1 + ηµ)2
‖y − ŷ‖22 .

The first step used the Talagrand transportation inequality (Theorem 1 of [430]). The second step

used the log-Sobolev inequality. The third step used

∇ log
πy(x)

πŷ(x)
= ∇ log

exp(−g(x)− 1
2η ‖x− y‖

2
2)
∫
x′

exp(−g(x)− 1
2η ‖x− ŷ‖

2
2)dx′

exp(−g(x)− 1
2η ‖x− ŷ‖

2
2)
∫
x′

exp(−g(x)− 1
2η ‖x− y‖

2
2)dx′

=
1

2η
∇
(
‖x− ŷ‖22 − ‖x− y‖

2
2

)
=

1

η
(y − ŷ). (10.16)

Taking expectation over Γyk+1
and using (10.15) shows that

W 2
2 (πk+1, π) ≤ 1

(1 + ηµ)2
W 2

2 (πk, π).

Algorithm 59 starts from the distribution π0 = δx∗ , where x∗ = minx g(x). Since π is µ-strongly

logconcave, we have (see e.g. Proposition 1 of [206])

W 2
2 (π0, π) = Eπ̂

[
‖x∗ − x‖2

]
≤ d

µ
.

Then, for η < 1
µ , 1

1+ηµ ≤ 1− ηµ
2 , so after T ′ = O(1

ηµ log d
µ∆) iterations, W2(πT ′ , π) ≤ ∆.

Next, we bound the KL divergence between the output of Algorithm 59 and the target distribution

π. We need the following standard lemma regarding KL divergences of marginal distributions.

Lemma 183. Let Pz and Qz be distributions supported on X indexed by z, a random variable

distributed as πz. Let P̃ be the joint distribution of (x, z) for x ∼ Pz and z ∼ πz, and Q̃ be the joint

distribution of (x, z) as x ∼ Qz and z ∼ πz. Let P and Q be the marginal distribution of P̃ and Q̃

on x, averaged over z. Then,

dKL(P‖Q) ≤ Ez∼πz [dKL(Pz‖Qz)] .

CHAPTER 10. TOWARDS AN ORACLE COMPLEXITY OF SAMPLING 509

Proof. By the definition of dKL,

dKL(P̃‖Q̃) = E(x,z)∼P̃

[
log

P̃ (x, z)

Q̃(x, z)

]

= Ez∼πz

[
Ex∼Pz

[
log

P̃ (x, z)

Q̃(x, z)

]]

= Ez∼πz
[
Ex∼Pz

[
log

Pz(x)

Qz(x)

]]
= Ez∼πz [dKL(Pz‖Qz)] .

Finally, by the data processing inequality,

dKL(P‖Q) ≤ dKL(P̃‖Q̃) = Ez∼πz [dKL(Pz‖Qz)] .

The following lemma shows that a 2-Wasserstein distance bound on the distribution at iteration

k implies a KL divergence bound on iteration k + 1.

Lemma 184. Let πk be the distribution of xk for some k such that W2(πk, π) ≤ ∆ and π be the

x-marginal of π̂. Then,

dKL(πk+1‖π) ≤ ∆2

2η
.

Proof. As in Lemma 182, let Γxk be the optimal coupling between xk ∼ πk and x̂ ∼ π, which yields

a coupling Γyk+1
between yk+1 and ŷ such that

EΓyk+1

[
‖yk+1 − ŷ‖22

]
= EΓxk

[
‖xk − x̂‖22

]
≤ ∆2. (10.17)

Then,

dKL(πk+1‖π) ≤ E(yk+1,ŷ)∼Γyk

[
dKL(πyk+1

‖πŷ)
]

≤ 1

2η2
(
µ+ 1

η

)E(yk+1,ŷ)∼Γyk+1

[
‖yk+1 − ŷ‖22

]
≤ ∆2

2η
.

The first inequality followed from Lemma 184 by taking P = πk+1, Q = π and z = (yk+1, y). The

second inequality used the log-Sobolev inequality and (10.16). The last inequality used (10.17).

Finally, putting the pieces together, Theorem 68 follows from Lemma 182 and Lemma 184.

CHAPTER 10. TOWARDS AN ORACLE COMPLEXITY OF SAMPLING 510

Proof of Theorem 68. By Lemma 182 and Lemma 184, there is T = O
(

1
ηµ log d

ηµε

)
so that dKL(πT ‖π) ≤

2ε2. By Pinsker’s inequality,

‖πT − π‖TV ≤
√

1

2
dKL(πT ‖π) = ε.

We note that Theorem 68 is robust to a small amount of error tolerance in the sampler O.

Specifically, if O has tolerance ε
2T , then by calling Theorem 68 with desired accuracy ε

2 and ad-

justing constants appropriately, the cumulative error incurred by all calls to O is within the total

requisite bound (formally, this can be shown via the coupling characterization of total variation).

We defer a more formal elaboration on this inexactness argument to Appendix I.1 and the proof of

Proposition 46.

10.4 Tighter runtimes for structured densities

In this section, we use applications of Theorem 68 to obtain simple analyses of novel state-of-the-

art high-accuracy runtimes for the well-conditioned densities studied in [210, 128, 344], as well as

the composite and finite sum densities studied in this work. We will assume the conclusions of

Theorems 69 and 70 respectively in deriving the results of Sections 10.4.2 and 10.4.3.

10.4.1 Well-conditioned logconcave sampling: proof of Corollary 45

In this section, let π be a distribution on Rd with density proportional to exp(−f(x)), where f is L-

smooth and µ-strongly convex (and κ = L
µ) and has pre-computed minimizer x∗. We will instantiate

Theorem 68 with foracle(x) = f(x), and choose η = 1
8Ld log(κ) . We now require an η-RGO O for

foracle = f to use in Theorem 68.

Our implementation of O is a rejection sampling scheme. We use the following helpful guarantee.

Lemma 185 (Rejection sampling). Let π, π̂ be distributions on Rd with dπ
dx (x) ∝ p(x), dπ̂dx (x) ∝ p̂(x).

Suppose for some C ≥ 1 and all x ∈ Rd, p(x)
p̂(x) ≤ C. The following is termed “rejection sampling”:

repeat independent runs of the following procedure until a point is outputted.

1. Draw x ∼ π̂.

2. With probability p(x)
Cp̂(x) , output x.

Rejection sampling terminates in
C
∫
p̂(x)dx∫
p(x)dx

runs in expectation, and the output distribution is π.

Proof. The second claim follows from Bayes’ rule which implies the conditional density of the output

point is proportional to p̂(x) · p(x)

C ˆp(x)
∝ p(x), so the distribution is π. To see the first claim, the

CHAPTER 10. TOWARDS AN ORACLE COMPLEXITY OF SAMPLING 511

probability any sample outputs is∫
x

p(x)

Cp̂(x)
dπ̂(x) =

1

C

∫
x

∫
x
p(x)dx∫

x
p̂(x)dx

dπ(x) =

∫
x
p(x)dx

C
∫
x
p̂(x)dx

.

The conclusion follows by independence and linearity of expectation.

We further state a concentration bound shown first in [344] regarding the norm of the gradient of a

point drawn from a logsmooth distribution. For completeness, a proof can be found in Appendix I.6;

see a formal statement in slightly more generality in Theorem 95.

Proposition 43 (Logsmooth gradient concentration, Corollary 3.3, [344]). Let π be a distribution

on Rd with dπ
dx (x) ∝ exp(−f(x)) where f is convex and L-smooth. With probability at least 1− κ−d,

‖∇f(x)‖2 ≤ 3
√
Ld log κ for x ∼ π. (10.18)

By the requirements of Theorem 68, the restricted Gaussian oracle O only must be able to draw

samples from densities of the form, for some y ∈ Rd,

exp

(
−foracle(x)− 1

2η
‖x− y‖22

)
= exp

(
−f(x)− 4Ld log κ ‖x− y‖22

)
. (10.19)

We will use the following Algorithm 60 to implement O.

Algorithm 60: XSample(f, y, η)

1 Input: L-smooth, µ-strongly convex f : Rd → R, y ∈ Rd, η > 0;

2 if ‖∇f(y)‖2 ≤ 3
√
Ld log κ then

3 while true do
4 Draw x ∼ N (y −∇f(y), ηI);
5 τ ∼ Unif[0, 1];
6 if τ ≤ exp(f(y) + 〈∇f(y), x− y〉 − f(x)) then
7 Return: x;

8 Use [128] to sample x from (10.19) to total variation distance ε
Θ(κd2 log3(κdε))

using

O(d log κd
ε) queries to ∇f (Theorem 1, [128], where (10.19) has constant condition

number);
9 Return: x;

Lemma 186. Let η = 1
8Ld log(κ) , and suppose y satisfies the bound in (10.18), i.e. ‖∇f(y)‖2 ≤

3
√
Ld log κ. Then, Line 3 of Algorithm 60 runs an expected 2 times, and Algorithm 60 samples

exactly from (10.19), whenever the condition of Line 1 is met.

Proof. Note that when the assumption of Line 1 is met, Algorithm 60 is an instantiation of rejection

CHAPTER 10. TOWARDS AN ORACLE COMPLEXITY OF SAMPLING 512

sampling (Lemma 185) with

p(x) = exp

(
−f(x)− 1

2η
‖x− y‖22

)
,

p̂(x) = exp

(
−f(y)− 〈∇f(y), x− y〉 − 1

2η
‖x− y‖22

)
.

By convexity, we may take C = 1. Next, by applying Fact 27 twice and L-smoothness of foracle,∫
x

p(x)dx ≥
∫
x

exp

(
−f(y)− 〈∇f(y), x− y〉 − 1 + ηL

2η
‖x− y‖22

)
dx

= exp

(
−f(y) +

η

2(1 + ηL)
‖∇f(y)‖22

)∫
x

exp

(
−1 + ηL

2η

∥∥∥∥x− y +
η

1 + ηL
∇f(y)

∥∥∥∥2

2

)
dx

= exp

(
−f(y) +

η

2(1 + ηL)
‖∇f(y)‖22

)(
2πη

1 + ηL

) d
2

,∫
x

p̂(x)dx = exp
(
−f(y) +

η

2
‖∇f(y)‖22

)
(2πη)

d
2 ,

which implies the desired bound (recalling Lemma 185 and our assumed bound on ‖∇f(y)‖2)∫
p̂(x)dx∫
p(x)dx

≤ exp

((
η

2
− η

2(1 + ηL)

)
‖∇f(y)‖22

)
(1 + ηL)

d
2

≤ 1.5 exp

(
η2L

2(1 + ηL)
‖∇f(y)‖22

)
≤ 2.

We are now equipped to prove our main result concerning well-conditioned densities.

Corollary 45. Let π be a distribution on Rd with dπ
dx (x) ∝ exp (−f(x)) such that f is L-smooth and

µ-strongly convex, and let ε ∈ (0, 1), κ = L
µ . Assume access to x∗ = argminx∈Rdf(x). Algorithm 59

with η = 1
8Ld log(κ) using Algorithm 60 as a restricted Gaussian oracle for f uses O(κd log κ log κd

ε)

gradient queries in expectation, and obtains ε total variation distance to π.

Proof. By applying Theorem 68 with the chosen η, and noting that the cumulative error due to all

calls to Line 10 cannot amount to more than ε
2 total variation error throughout the algorithm, it

suffices to show that Algorithm 60 uses O(1) gradient queries each iteration in expectation. This

happens whenever the condition in Line 1 is met via Lemma 186, so we must show Line 10 is executed

with probability O((d log κd
ε)−1).

To show this, note that combining Proposition 43 with the warmness of the start x0 in Algo-

rithm 60, this event occurs with probability at most κ−
d
2 in the first iteration.13 Since warmness

13Formally, Line 2 of Algorithm 59 has y1 ∼ N (x0, ηI), but by smoothness ‖∇f(y1)‖2 ≤ ‖∇f(x0)‖2 + L ‖x− y‖2
and L ‖x− y‖2 ≤ Õ(L

√
η) with high probability, adding a negligible constant to the bound of Proposition 43.

CHAPTER 10. TOWARDS AN ORACLE COMPLEXITY OF SAMPLING 513

is monotonically decreasing14 throughout using an exact oracle in Algorithm 59, and the total er-

ror accumulated due to Line 10 throughout the algorithm is O((d log κd
ε)−1), we have the desired

conclusion.

We show a bound nearly-matching Corollary 45 using only value access to f , and with a deter-

ministic iteration complexity (rather than an expected one), as Corollary 49 in Section 10.4.3.

10.4.2 Composite logconcave sampling: proof of Corollary 46

In this section, let π be a distribution on Rd with density proportional to exp(−f(x) − g(x)),

where f is L-smooth and µ-strongly convex (and κ = L
µ), and g is convex and admits a restricted

Gaussian oracle O. Without loss of generality, we assume that f and g share a minimizer x∗ which

we have pre-computed; if this is not the case, we can redefine f(x) ← f(x) − 〈∇f(x∗), x〉 and

g(x)← g(x) + 〈∇f(x∗), x〉; see Section 10.5.1 for this reduction.

We will instantiate Theorem 68 with foracle = f + g, which is a µ-strongly convex function. Our

main result of this section follows directly from Theorem 68 and using Theorem 69 as the required

oracle O, stated more precisely in the following.

Corollary 46. Let π be a distribution on Rd with dπ
dx (x) ∝ exp(−f(x)−g(x)) such that f is L-smooth

and µ-strongly convex, and let ε ∈ (0, 1), κ = L
µ . Assume access to x∗ = argminx∈Rd{f(x)+g(x)} and

let O be a restricted Gaussian oracle for g. There is an algorithm (Algorithm 59 using Theorem 69

as a restricted Gaussian oracle) which runs in O(κd log3 κd
ε) iterations in expectation, each querying

a gradient of f and O a constant number of times, and obtains ε total variation distance to π.

Proof. As discussed at the beginning of this section, assume without loss that f and g both are

minimized by x∗. We apply the algorithm of Theorem 68 with η = 1
L to the µ-strongly convex

function f + g, which requires one call to O to implement. Thus, the iteration count parameter in

Theorem 68 is T = O(κ log κd
ε).

Recall that we chose η = 1
L . To bound the total complexity of this algorithm, it suffices to give

an η-RGO O+ for sampling from distributions with densities of the form, for some y ∈ Rd,

exp

(
−f(x)− g(x)− 1

2η
‖x− y‖22

)
= exp

(
−f(x)− g(x)− L

2
‖x− y‖22

)
to total variation distance ε

Θ(T) (see discussion at the end of Section 10.3). To this end, we apply

Theorem 69 with the well-conditioned component f(x) + L
2 ‖x− y‖

2
2, the composite component

g(x), and the largest possible choice of η. Note that we indeed have access to a restricted Gaussian

oracle for g (namely, O), and this choice of well-conditioned component is 2L-smooth and L-strongly

convex, so its condition number is a constant. Thus, Theorem 69 requires O(d log2 κd
ε) calls to O

14This is a standard fact in the literature, and can be seen as follows: each transition step in the chain is a convex
combination of warm point masses, preserving warmness.

CHAPTER 10. TOWARDS AN ORACLE COMPLEXITY OF SAMPLING 514

and gradients of f to implement the desired O+ on any query y (where we note ε
Θ(T) = 1

poly(κ,d,ε−1)).

Combining these complexity bounds yields the desired conclusion.

10.4.3 Sampling logconcave finite sums: proof of Corollary 47

In this section, let π be a distribution on Rd with density proportional to exp(−F (x)), where

F (x) = 1
n

∑
i∈[n] fi(x) is µ-strongly convex, and for all i ∈ [n], fi is L-smooth (and κ = L

µ). We will

instantiate Theorem 68 with foracle(x) = F (x), and Theorem 70 as an η-RGO for some choice of η.

More precisely, Theorem 70 shows that given access to the minimizer x∗, only zeroth-order access

to the summands of F is necessary to obtain the iteration bound. In order to obtain the minimizer

to high accuracy however, variance reduced stochastic gradient methods (e.g. [300]) require Ω(n+κ)

gradient queries, which amounts to Ω((n+κ)d) function evaluations. We state a convenient corollary

of Theorem 70 which removes the requirement of accessing x∗, via an optimization pre-processing

step using the method of [300] (see further discussion in Appendix I.1). This is useful to us in

proving Theorem 47 because in the sampling tasks required by the RGO, the minimizer changes

(and thus must be recomputed every time).

Corollary 48 (First-order logconcave finite sum sampling). In the setting of Theorem 70, using

[300] to precompute the minimizer x∗ and running Algorithm 64 uses O(n log κd
ε + κ2d log4 nκd

ε)

first-order oracle queries to summands {fi}i∈[n] and obtains ε total variation distance to π.

We now apply the reduction framework developed in Section 10.3 to our Algorithm 64 to obtain

an improved query complexity for sampling from logconcave finite sums.

Corollary 47 (Improved first-order logconcave finite sum sampling). In the setting of Theorem 70,

Algorithm 59 using Algorithm 64 and SVRG [300] as a restricted Gaussian oracle for F uses

O

(
n log

(
nκd

ε

)
+ κ
√
nd log3.5

(
nκd

ε

)
+ κd log5

(
nκd

ε

))
= Õ

(
n+ κmax

(
d,
√
nd
))

queries to first-order oracles for summands {fi}i∈[n], and obtains ε total variation distance to π.

Proof. We apply Theorem 68 with µ-strongly convex foracle = F (x), using Algorithm 64 as the

required η-RGO O for sampling from distributions with densities of the form

exp

(
−F (x)− 1

η
‖x− y‖22

)
for some y ∈ Rd, to total variation ε

Θ(T) (see Section 10.3) for T the iteration bound of Algorithm 59.

We apply Theorem 70 to the function F̃ (x) = F (x) + 1
η ‖x− y‖

2
2; we can express this in finite sum

form by adding 1
η ‖x− y‖

2
2 to every constituent function, and the effect on gradient oracles is 1

η (x−y).

CHAPTER 10. TOWARDS AN ORACLE COMPLEXITY OF SAMPLING 515

Note F̃ has condition number O(1 + ηL). For a given η, the overall complexity is

log κd
ε

ηµ

(
n log

(
nκd

ε

)
+ d log4

(
nκd

ε

)
+ (ηL)2d log4

(
nκd

ε

))
Here, the inner loop complexity uses Corollary 48 to also find the minimizer (for warm starts), and

the outer loop complexity is by Theorem 68. The result follows by optimizing over η, namely picking

η = max(1
L ,
√

n
L2d log3(nκd/ε)

), and that Algorithm 59 always must have at least one iteration.

Note the only place that Corollary 47 used gradient evaluations was in determining minimizers

of subproblems, via the first step of Corollary 48. Consider now the n = 1 case. By running e.g.

accelerated gradient descent for smooth and strongly convex functions, it is well-known [417] that we

can obtain a minimizer in Õ(
√
κ) iterations, each querying a gradient oracle, where κ is the condition

number. By smoothness, we can approximate every coordinate of the gradient to arbitrary precision

using 2 function evaluations, so this is a Õ(
√
κd) value oracle complexity.

Finally, for every optimization subproblem in Corollary 47 where η = (L · polylogκdε)−1, the

condition number is a constant, which amounts to a Õ(d) value oracle complexity for computing

a minimizer. This is never the dominant term compared to Theorem 70, yielding the following

conclusion.

Corollary 49. In the setting of Corollary 45, Algorithm 59 using Algorithm 64 as a restricted

Gaussian oracle uses O(κd log2 κd
ε) value queries and obtains ε total variation distance to π.

We note that the polylogarithmic factor is significantly improved when compared to Corollary 47

by removing the random sampling steps in Algorithm 64. A precise complexity bound of the result-

ing Metropolized random walk, a zeroth-order algorithm mixing in O(κ2d log κd
ε) for a logconcave

distribution with condition number κ, is given as Theorem 2 of [128].

Finally, in the case n ≥ 1, we also exhibit an improved query complexity in terms of an entirely

zeroth-order sampling algorithm which interpolates with Corollary 49 (up to logarithmic factors).

By trading off the Õ(nd + κd) zeroth-order complexity of minimizing a finite sum function [300],

and the Õ(κ2d) zeroth-order complexity of sampling, we can run Theorem 68 for the optimal choice

of η = Õ(
√
n
L). The overall zeroth-order complexity can be seen to be Õ(nd+

√
nκd).

CHAPTER 10. TOWARDS AN ORACLE COMPLEXITY OF SAMPLING 516

10.5 Composite logconcave sampling with a restricted Gaus-

sian oracle

In this section, we provide our “base sampler” for composite logconcave densities as Algorithm 61,

and give its guarantees by proving Theorem 69. Throughout, fix distribution π with density

dπ

dx
(x) ∝ exp (−f(x)− g(x)) ,where f : Rd → R is L-smooth, µ-strongly convex,

and g : Rd → R admits a restricted Gaussian oracle O.
(10.20)

We will define κ := L
µ , and assume that we have precomputed x∗ := argminx∈Rd {f(x) + g(x)}. Our

algorithm proceeds in stages following the outline in Section 10.1.4.

1. Composite-Sample is reduced to Composite-Sample-Shared-Min, which takes as input a dis-

tribution with negative log-density f + g, where f and g share a minimizer; this reduction is

given in Section 10.5.1, and the remainder of the section handles the shared-minimizer case.

2. The algorithm Composite-Sample-Shared-Min is a rejection sampling scheme built on top of

sampling from a joint distribution π̂ on (x, y) ∈ Rd × Rd whose x-marginal approximates π.

We give this reduction in Section 10.5.2.

3. The bulk of our analysis is for Sample-Joint-Dist, an alternating marginal sampling algo-

rithm for sampling from π̂. To implement marginal sampling, it alternates calls to O and a

rejection sampling algorithm YSample. We prove its correctness in Section 10.5.3.

We put these pieces together in Section 10.5.4 to prove Theorem 69. We remark that for sim-

plicity, we will give the algorithms corresponding to the largest value of step size η in the theorem

statement; it is straightforward to modify the bounds to tolerate smaller values of η, which will cause

the mixing time to become correspondingly larger (in particular, the value of K in Algorithm 63).

Algorithm 61: Composite-Sample(π, x∗, ε)

1 Input: Distribution π of form (10.20), x∗ minimizing negative log-density of π, ε ∈ [0, 1];
2 Output: Sample x from a distribution π′ with ‖π′ − π‖TV ≤ ε;
3 f̃(x)← f(x)− 〈∇f(x∗), x〉, g̃(x)← g(x) + 〈∇f(x∗), x〉;
4 Return: Composite-Sample-Shared-Min(π, f̃ , g̃, x∗, ε);

10.5.1 Reduction from Composite-Sample to Composite-Sample-Shared-Min

Correctness of Composite-Sample is via the following properties.

Proposition 44. Let f̃ and g̃ be defined as in Composite-Sample.

CHAPTER 10. TOWARDS AN ORACLE COMPLEXITY OF SAMPLING 517

Algorithm 62: Composite-Sample-Shared-Min(π, f, g, x∗, ε)

1 Input: Distribution π of form (10.20), where f and g are both minimized by x∗, ε ∈ [0, 1];
2 Output: Sample x from a distribution π′ with ‖π′ − π‖TV ≤ ε;
3 while true do
4 Define the set

Ω :=

{
x | ‖x− x∗‖2 ≤ 4

√
d log(288κ/ε)

µ

}
(10.21)

;
5 x← Sample-Joint-Dist(f, g, x∗,O, ε18);
6 if x ∈ Ω then
7 τ ∼ Unif[0, 1];
8 y ← YSample(f, x, η);

9 α← exp
(
f(y)− 〈∇f(x), y − x〉 − L

2 ‖y − x‖
2
2 + g(x) + ηL2

2 ‖x− x
∗‖22
)

;

10 θ̂ ← exp
(
−f(x)− g(x) + η

2(1+ηL) ‖∇f(x)‖22
)

(1 + ηL)
d
2α;

11 if τ ≤ θ̂
4 then

12 Return: x;

1. The density ∝ exp(−f(x)− g(x)) is the same as the density ∝ exp(−f̃(x)− g̃(x)).

2. Assuming first-order (function and gradient evaluation) access to f , and restricted Gaussian

oracle access to g, we can implement the same accesses to f̃ , g̃ with constant overhead.

3. f̃ and g̃ are both minimized by x∗.

Proof. For f and g with properties as in (10.20), with x∗ minimizing f + g, define the functions

f̃(x) := f(x)− 〈∇f(x∗), x〉 , g̃(x) := g(x) + 〈∇f(x∗), x〉 ,

and observe that f̃ + g̃ = f + g everywhere. This proves the first claim. Further, implementation of

a first-order oracle for f̃ and a restricted Gaussian oracle for g̃ are immediate assuming a first-order

oracle for f and a restricted Gaussian oracle for g, showing the second claim; any quadratic shifted

by a linear term is the sum of a quadratic and a constant. We now show f̃ and g̃ have the same

minimizer. By strong convexity, f̃ has a unique minimizer; first-order optimality shows that

∇f̃(x∗) = ∇f(x∗)−∇f(x∗) = 0,

so this unique minimizer is x∗. Moreover, optimality of x∗ for f + g implies that for all x ∈ Rd,

〈∂g(x∗) +∇f(x∗), x∗ − x〉 ≤ 0.

CHAPTER 10. TOWARDS AN ORACLE COMPLEXITY OF SAMPLING 518

Algorithm 63: Sample-Joint-Dist(f, g, x∗, η,O, δ)
1 Input: f , g of form (10.20) both minimized by x∗, δ ∈ [0, 1], η > 0, O restricted Gaussian

oracle for g;
2 Output: Sample x from a distribution π̂′ with ‖π̂′ − π̂‖TV ≤ δ, where we overload π̂ to

mean the marginal of (10.22) on the x variable;

3 η ← 1
32Lκd log(16κ/δ) ;

4 Let π̂ be the density with

dπ̂

dx
(z) ∝ exp

(
−f(y)− g(x)− 1

2η
‖y − x‖22 −

ηL2

2
‖x− x∗‖22

)
(10.22)

;
5 Call O to sample x0 ∼ πstart, for

dπstart(x)

dx
∝ exp

(
−L+ ηL2

2
‖x− x∗‖22 − g(x)

)
(10.23)

;

6 K ← 226·100
ηµ log

(
d log(16κ)

4δ

)
(see Remark 10);

7 for k ∈ [K] do

8 Call YSample
(
f, xk−1, η,

δ
2Kd log(dκδ)

)
to sample yk ∼ πxk−1

(Algorithm 3), for

dπx
dy

(y) ∝ exp

(
−f(y)− 1

2η
‖y − x‖22

)
(10.24)

;
9 Call O to sample xk ∼ πyk , for

dπy
dx

(x) ∝ exp

(
−g(x)− 1

2η
‖y − x‖22 −

ηL2

2
‖x− x∗‖22

)
(10.25)

;

10 Return: xK ;

CHAPTER 10. TOWARDS AN ORACLE COMPLEXITY OF SAMPLING 519

Here, ∂g is a subgradient. This shows first-order optimality of x∗ for g̃ also, so x∗ minimizes g̃.

10.5.2 Reduction from Composite-Sample-Shared-Min to Sample-Joint-Dist

Composite-Sample-Shared-Min is a rejection sampling scheme, which accepts samples from sub-

routine Sample-Joint-Dist in the high-probability region Ω defined in (10.21). We give a general

analysis for approximate rejection sampling in Appendix I.2.1, and Appendix I.2.1 bounds relation-

ships between distributions π and π̂, defined in (10.20) and (10.22) respectively (i.e. relative densities

and normalization constant ratios). Combining these pieces proves the following main claim.

Proposition 45. Let η = 1
32Lκd log(288κ/ε) , and assume Sample-Joint-Dist(f, g, x∗,O, δ) samples

within δ total variation of the x-marginal on (10.22). Composite-Sample-Shared-Min outputs a

sample within total variation ε of (10.20) in an expected O(1) calls to Sample-Joint-Dist.

10.5.3 Implementing Sample-Joint-Dist

Sample-Joint-Dist alternates between sampling marginals in the joint distribution π̂, as seen

by definitions (10.24), (10.25). We showed that marginal sampling attains the correct stationary

distribution as Lemma 181. We bound the conductance of the induced walk on iterates {xk} by

combining an isoperimetry bound with a total variation guarantee between transitions of nearby

points in Appendix I.2.2. Finally, we give a simple rejection sampling scheme YSample as Algorithm 3

for implementing the step (10.24). Since the y-marginal of π̂ is a bounded perturbation of a Gaussian

(intuitively, f is L-smooth and η−1 � L), we show in a high probability region that rejecting from

the sum of a first-order approximation to f and the Gaussian succeeds in 2 iterations.

Remark 10. For simplicity of presentation, we were conservative in bounding constants throughout;

in practice, we found that the constant in Line 4 is orders of magnitude too large (a constant < 10

sufficed), which can be found as Section 4 of [481]. Several constants were inherited from prior

analyses, which we do not rederive to save on redundancy.

We now give a complete guarantee on the complexity of Sample-Joint-Dist.

Proposition 46. Sample-Joint-Dist outputs a point with distribution within δ total variation

distance from the x-marginal of π̂. The expected number of gradient queries per iteration is constant.

10.5.4 Putting it all together: proof of Theorem 69

We show Theorem 69 follows from the guarantees of Propositions 44, 45, and 46. Formally, The-

orem 69 is stated for an arbitrary value of η which is upper bounded by the value in Line 1 of

Algorithm 63; however, it is straightforward to see that all our proofs go through for any smaller

value. By observing the value of K in Sample-Joint-Dist, we see that the number of total it-

erations in each call to Sample-Joint-Dist O
(

1
ηµ log(κdε)

)
= O

(
κ2d log2

(
κd
δ

))
. Proposition 46

CHAPTER 10. TOWARDS AN ORACLE COMPLEXITY OF SAMPLING 520

also shows that every iteration, we require an expected constant number of gradient queries and

calls to O, the restricted Gaussian oracle for g, and that the resulting distribution has δ total

variation from the desired marginal of π̂. Next, Proposition 45 implies that the number of calls

to Sample-Joint-Dist in a run of Composite-Sample-Shared-Min is bounded by a constant, the

choice of δ is Θ(ε), and the resulting point has total variation ε from the original distribution π.

Finally, Proposition 44 shows sampling from a general distribution of the form (10.1) is reducible to

one call of Composite-Sample-Shared-Min, and the requisite oracles are implementable.

10.6 Logconcave finite sums

In this section, we provide our “base sampler” for logconcave finite sums as Algorithm 64, and give

its guarantees by proving Theorem 70. Throughout, fix distribution π with density

dπ

dx
(x) ∝ exp(−F (x)), where F (x) =

1

n

∑
i∈[n]

fi(x) is µ-strongly convex,

and for all i ∈ [n], fi is L-smooth.

We will define κ := L
µ , and assume that we have precomputed x∗ := argminx∈Rd{F (x)}. We will also

assume explicitly that ∇fi(x∗) = 0 for all i ∈ [n] throughout this section (i.e. all fi are minimized

at the same point); this is without loss of generality, by a similar argument as in Proposition 44.

Algorithm 64: FiniteSum-MRW(F, h, x0, p,K)

1 Input: F (x) = 1
n

∑
i∈[n] fi(x), step size h > 0, initial x0, p ∈ [0, 1], iteration count K ∈ N;

2 for 0 ≤ k < K do
3 Draw ξk ∼ N (0, I);

4 yk+1 ← xk +
√

2hξk;
5 Draw Sk ⊆ [n] by including each i ∈ Sk independently with probability p;
6 For each i ∈ [n],

γ
(i)
k ←

{
1
p

(√
exp

(
− 1
nfi(yk+1) + 1

nfi(xk)
)
− 1
)

+ 1 i ∈ Sk
1 i 6∈ Sk

;

7 γk ←
∏n
i=1 γ

(i)
k , τ ∼ Unif[0, 1];

8 if τ ≤ 3
4γk and |Sk| ≤ 2pn then

9 xk+1 ← yk+1;
10 else
11 xk+1 ← xk;

12 Return: xK ;

CHAPTER 10. TOWARDS AN ORACLE COMPLEXITY OF SAMPLING 521

Algorithm 64 is the zeroth-order Metropolized random walk of [210] with an efficient, but biased,

filter step; the goal of our analysis is to show this bias does not incur significant error.

10.6.1 Approximate Metropolis-Hastings

We first recall the following well-known fact underlying Metropolis-Hastings (MH) filters.

Proposition 47. Consider a random walk on Rd with proposal distributions {Px}x∈Rd and accep-

tance probabilities {α(x, x′)}x,x′∈Rd conducted as follows: at a current point x,

1. Draw a point x′ ∼ Px.

2. Move the random walk to x′ with probability α(x, x′), else stay at x.

Suppose Px(x′) = Px′(x) for all pairs x, x′ ∈ Rd, and further dπ
dx (x)α(x, x′) = dπ

dx (x′)α(x′, x). Then,

π is a stationary distribution for the random walk.

Proof. This follows because the walk satisfies detailed balance (reversibility) with respect to π.

We propose an algorithm that applies a variant of the Metropolis-Hastings filter to a Gaussian

random walk. Specifically, we define the following algorithm, which we call Inefficient-MRW.

Definition 46 (Inefficient-MRW). Consider the following random walk for some step size h > 0:

for each iteration k at a current point xk ∈ Rd,

1. Set yk+1 ← xk +
√

2hξ, where ξ ∼ N (0, I).

2. xk+1 ← yk+1 with probability α(xk, yk+1) (otherwise, xk+1 ← xk), where

α(x, y) =

1

√
exp(−F (y))
exp(−F (x)) >

4
3 ,

3
4

√
exp(−F (y))
exp(−F (x))

3
4 ≤

√
exp(−F (y))
exp(−F (x)) ≤

4
3 ,

exp(−F (y))
exp(−F (x))

√
exp(−F (y))
exp(−F (x)) <

3
4 .

(10.26)

Lemma 187. Distribution π with dπ
dx (x) ∝ exp(−F (x)) is stationary for Inefficient-MRW.

Proof. Without loss of generality, assume that π has been normalized so that dπ
dx (x) = exp(−F (x)).

We apply Proposition 47, dropping subscripts in the following. It is clear that Px(y) = Py(x) for

any x, y, so it suffices to check the second condition. When 3
4 ≤

√
exp(−F (y))
exp(−F (x)) ≤

4
3 , this follows from

dπ

dx
(x)α(x, x′) =

3

4

√
exp(−F (x)− F (y)) =

dπ

dx
(x′)α(x′, x).

The other case is similar (as it is a standard Metropolis-Hastings filter).

CHAPTER 10. TOWARDS AN ORACLE COMPLEXITY OF SAMPLING 522

In Algorithm 64, we implement an approximate version of the modified MH filter in Definition 46,

where we always assume the pair x, y are in the second case of (10.26). In Lemma 188, we show

that if a certain boundedness condition holds, then Algorithm 64 approximates Inefficient-MRW

well. We then show that the output distributions of Inefficient-MRW and our Algorithm 64 have

small total variation distance in Lemma 189.

Lemma 188. Suppose that in an iteration 0 ≤ k < K of Algorithm 64, the following three conditions

hold for some parameters Rx, Cξ, Cx ∈ R≥0:

1. ‖xk − x∗‖2 ≤ Rx.

2. ‖ξk‖2 ≤ Cξ
√
d.

3. For all i ∈ [n], |∇fi(xk)>ξk| ≤ Cx ‖∇fi(xk)‖2.

Then, for any

h ≤ 1

98C2
xL

2R2
x + 7LC2

ξ d
, (10.27)

3
4 ≤

√
exp(−F (yk+1))
exp(−F (xk)) ≤

4
3 . Moreover, we have E [γk] =

√
exp(−F (yk+1))
exp(−F (xk)) , and when |Sk| ≤ 2pn, γk ≤ 4

3 .

Proof. We first show E [γk] =
√

exp(−F (yk+1))
exp(−F (xk)) . Since each i ∈ Sk is generated independently,

E [γk] =
∏
i∈[n]

E
[
γ

(i)
k

]

=
∏
i∈[n]

[
(1− p) + p

(
1

p

(√
exp

(
− 1

n
fi(yk+1) +

1

n
fi(xk)

)
− 1

)
+ 1

)]

=
∏
i∈[n]

√
exp

(
− 1

n
fi(yk+1) +

1

n
fi(xk)

)
=

√
exp(−F (yk+1))

exp(−F (xk))
.

Next, for any i ∈ [n], we lower and upper bound −fi(yk+1) + fi(xk). First,

−fi(yk+1) + fi(xk) ≤ ∇fi(xk)> (xk − yk+1)

≤
√

2hCx ‖∇fi(xk)‖2 ≤
√

2hCxLRx.

The first inequality followed from convexity of fi, the second from yk+1 − xk =
√

2hξk and our

assumed bound, and the third from smoothness and ∇f(x∗) = 0. To show a lower bound,

fi(yk+1)− fi(xk) ≤ ∇fi(xk)> (yk+1 − xk) +
L

2
‖yk+1 − xk‖22

≤
√

2hCxLRx + hLC2
ξ d.

CHAPTER 10. TOWARDS AN ORACLE COMPLEXITY OF SAMPLING 523

The first inequality was smoothness. Repeating this argument for each i ∈ [n] and averaging,

−
√

2hCxLRx − hLC2
ξ d ≤ −F (yk+1) + F (xk) ≤

√
2hCxLRx. (10.28)

Then, when h ≤ 1
98C2

xL
2R2

x+7LC2
ξd

,

3

4
≤

√
exp(−F (yk+1))

exp(−F (xk))
≤ 4

3
, and for all i ∈ [n], −fi(yk+1) + fi(xk) ≤ 1

4
.

Thus, we can bound each γ
(i)
k :

γ
(i)
k ≤

1

p

(
exp

(
1

8n

)
− 1

)
+ 1 ≤ 1 +

1

7pn
.

Finally, when |Sk| ≤ 2pn, γk ≤ (1 + 1
7pn)2pn ≤ 4

3 as desired.

Lemma 189. Draw x0 ∼ N (x∗, 1
LI). Let π̂K be the output distribution of the algorithm of Defini-

tion 46 for K steps starting from x0, and let πK be the output distribution of Algorithm 64 starting

from x0. For any δ ∈ [0, 1], let p =
5 log 12K

δ

n in Algorithm 64. There exist

Cξ = O

1 +

√
log K

δ

d

 , Cx = O

(√
log

nK

δ

)
, and Rx = O

√d log κK
δ

µ

 ,

so that when h ≤ 1
98C2

xL
2R2

x+7LC2
ξd

, we have ‖πK − π̂K‖TV ≤ δ.

Proof. By the coupling definition of total variation, it suffices to upper bound the probability that

the algorithms’ trajectories, sharing all randomness in proposing points yk+1, differ. This can happen

for two reasons: either we used an incorrect filtering step (i.e. the pair (xk, yk+1) did not lie in the

second case of (10.26)), or we incorrectly rejected in Line 7 of Algorithm 64 because |Sk| ≥ 2pn. We

bound the error due to either happening over any iteration by δ, yielding the conclusion.

Incorrect filtering. Consider some iteration k. Lemma 188 shows that as long as its three

conditions hold in iteration k, we are in the second case of (10.26), so it suffices to show all conditions

hold. By Fact 28 and as ξk is independent of all {∇fi(xk)}i∈[n], with probability at least 1 − δ
2K ,

both of the conditions ‖ξk‖2 ≤ Cξ
√
d and15 |∇fi(xk)>ξk| ≤ Cx ‖∇fi(xk)‖2 for all i ∈ [n] hold for

some

Cξ = O

1 +

√
log K

δ

d

 , Cx = O

(√
log

nK

δ

)
.

15We recall that the distribution of v>ξ for ξ ∼ N (0, I) is the one-dimensional N (0, ‖v‖22).

CHAPTER 10. TOWARDS AN ORACLE COMPLEXITY OF SAMPLING 524

Next, x0 ∼ N (x∗, 1
LI) is drawn from a κ

d
2 warm start for π. By Fact 28, we have ‖x0 − x∗‖2 ≤ Rx

for x0 drawn from π with probability at least 1− δ
4K · κ

− d2 , for some

Rx = O

√d log κK
δ

µ

 .

Since warmness of the exact algorithm of Definition 46 is monotonic, as long as the trajectories have

not differed up to iteration k, ‖xk − x∗‖2 ≤ Rx also holds with probability ≥ 1 − δ
4K . Inductively,

the total variation error caused by incorrect filtering over K steps is at most 3δ
4 .

Error due to large |Sk|. Supposing all the conditions of Lemma 188 are satisfied in iteration k, we

show that with high probability, Inefficient-MRW and Algorithm 64 make the same accept or reject

decision. By Lemma 188, Inefficient-MRW (10.26) accepts with probability α′k = 3
4

√
exp(−F (yk+1))
exp(−F (xk)) .

On the other hand, Algorithm 64 accepts with probability

αk =
3

4
E [γk | |Sk| ≤ 2pn] · Pr[|Sk| ≤ 2pn].

The total variation between the output distributions is |αk − α′k|. Further, since by Lemma 188,

α′k =
3

4
E [γk]

=
3

4
(E [γk | |Sk| ≤ 2pn] · Pr[|Sk| ≤ 2pn] + E [γk | |Sk| > 2pn] · Pr[|Sk| > 2pn])

= αk +
3

4
E [γk | |Sk| > 2pn] · Pr[|Sk| > 2pn],

it suffices to upper bound this latter quantity. First, by Lemma 190, when p =
5 log 12K

δ

n , we have

Pr[|Sk| > 2pn] ≤ δ
12K . Finally, since each i ∈ Sk is generated independently,

E [γk | |Sk| > 2pn] ≤ max
S′:|S′|=2pn

E

∏
i∈[n]

γ
(i)
k | S

′ ⊆ Sk

≤ 2E

 ∏
i∈[n]\S′

γ
(i)
k

 = 2

√√√√ ∏
[n]\S′

exp

(
− 1

n
fi(yk+1) +

1

n
fi(xk))

)
≤ 4.

Here, we used Lemma 188 applied to the set S′, and the upper bound (10.28) we derived earlier.

Combining these calculations shows that the total variation distance incurred in any iteration k due

to |Sk| being too large is at most δ
4K , so the overall contribution over K steps is at most δ

4 .

We used the following helper lemma in our analysis.

CHAPTER 10. TOWARDS AN ORACLE COMPLEXITY OF SAMPLING 525

Lemma 190. Let S ⊆ [n] be formed by independently including each i ∈ [n] with probability p.

Then,

Pr [|S| > 2pn] ≤ exp

(
−3pn

14

)
.

Proof. For i ∈ [n], let 1i∈S be the indicator random variable of the event i ∈ S, so E [1i∈S] = p and

Var [1i∈S − p] = p(1− p)2 + (1− p)p2 ≤ 2p.

By Bernstein’s inequality,

Pr

∑
i∈[n]

1i∈S ≥ np+ r

 ≤ exp

(
−

1
2r

2

2np+ 1
3r

)
.

In particular, when r = pn, we have the desired conclusion.

10.6.2 Conductance analysis

We next bound the mixing time of Inefficient-MRW, using the following result from prior work.

We remark that in our application, the log β term is non-dominant.

Proposition 48 (Lemma 1, Lemma 2, [128]). Let a random walk with a µ-strongly logconcave

stationary distribution π on x ∈ Rd have transition distributions {Tx}x∈Rd . For some ε ∈ [0, 1], let

convex set Ω ⊆ Rd have π(Ω) ≥ 1 − ε2

2β2 . Let πstart be a β-warm start for π, and let the algorithm

be initialized at x0 ∼ πstart. Suppose for any x, x′ ∈ Ω with ‖x− x′‖2 ≤ ∆,

‖Tx − Tx′‖TV ≤
7

8
. (10.29)

Then, the random walk mixes to total variation distance within ε of π in O(log β + 1
∆2µ log log β

ε)

iterations.

Consider an iteration of Inefficient-MRW from xk = x. Let Px be the density of yk+1, and let

Tx be the density of xk+1 after filtering. Define a convex set Ω ⊆ Rd parameterized by RΩ ∈ R≥0:

Ω = {x ∈ Rd : ‖x− x∗‖2 ≤ RΩ}.

We show that for two close points x, x′ ⊆ Ω, the total variation between Tx and Tx′ is small.

Lemma 191. For some h = O(1
L2R2

Ω+Ld
) and x, x′ ⊆ Ω with ‖x− x′‖2 ≤

1
8

√
h, ‖Tx − Tx′‖TV ≤

7
8 .

Proof. By the triangle inequality of total variation distance,

‖Tx − Tx′‖TV ≤ ‖Tx − Px‖TV + ‖Px − Px′‖TV + ‖Tx′ − Px′‖TV .

CHAPTER 10. TOWARDS AN ORACLE COMPLEXITY OF SAMPLING 526

First, by Pinsker’s inequality and the KL divergence between Gaussian distributions,

‖Px − Px′‖TV ≤
√

2KL(Px||Px′) =
‖x− x′‖2√

2h
.

When ‖x− x′‖2 ≤
1
8

√
h, ‖Px − Px′‖TV ≤

1
8 . Next, we bound ‖Tx − Px‖TV: by a standard calcula-

tion (e.g. Lemma D.1 of [344]), we have

‖Tx − Px‖TV = 1− 3

4
Eξk+1

[√
exp (−F (yk+1))

exp (−F (xk))

]
.

We show that ‖Tx − Px‖TV ≤
3
8 . It suffices to show that Eξk+1

[√
exp (−F (yk+1) + F (xk))

]
≥ 5

6 .

Since 15
16

√
exp

(
− 1

16

)
≥ 5

6 , it suffices to show that with probability at least 15
16 over the randomness

of ξk+1, −F (yk+1) + F (xk) ≥ − 1
16 . As ξk+1 ∼ N (0, Id), by applying Fact 28 twice,

Pr
[
‖ξk+1‖22 > 36d

]
≤ exp(−4) ≤ 1

32
,

Pr
[∣∣∇F (xk)>ξk+1

∣∣2 ≥ 36 ‖∇F (xk)‖22
]
≤ 1

32
.

(10.30)

We upper bound the term F (yk+1)− F (xk) by smoothness and Cauchy-Schwarz:

F (yk+1)− F (xk) ≤ ∇F (xk)> (yk+1 − xk) +
L

2
‖yk+1 − xk‖22

≤
√

2h
∣∣∇F (xk)>ξk+1

∣∣+ hL‖ξk+1‖22.

Then, since ‖∇F (xk)‖ ≤ LRΩ when x ∈ Ω, it is enough to choose h = O(1
L2R2

Ω+Ld
) so that

−F (yk+1) + F (xk) ≥ − 1

16
,

as long as the events of (10.30) hold, which occurs with probability at least 15
16 . Similarly, we can

show that ‖Tx′ − Px′‖TV ≤
3
8 . Combining the three bounds, we have the desired conclusion.

Theorem 70. Let π be a distribution on Rd with dπ
dx (x) ∝ exp(−F (x)), where F (x) = 1

n

∑n
i=1 fi(x)

is µ-strongly convex, fi is L-smooth and convex ∀i ∈ [n], κ = L
µ , and ε ∈ (0, 1). Assume access

to x∗ = argminx∈RdF (x). Algorithm 64 uses O
(
κ2d log4 nκd

ε

)
value queries to summands {fi}i∈[n],

and obtains ε total variation distance to π.

Proof. First, N (x∗, 1
LI) yields a β = κ

d
2 -warm start for π (see e.g. [210]). For this value of β, by

CHAPTER 10. TOWARDS AN ORACLE COMPLEXITY OF SAMPLING 527

Fact 28 it suffices to choose

RΩ = Θ

(√
d log κ

ε

µ

)

for π(Ω) ≥ 1− ε2

2β2 . Letting δ = ε
2 , we will choose the step size h and iteration count K so that

1

h
= Θ

(
Lκd log2 nκd

ε

)
, K = Θ

(
κ2d log3 nκd

ε

)
have constants compatible with Lemma 189. Note that this choice of h is also sufficiently small to

apply Lemma 191 for our choice of RΩ. By applying Proposition 48 to the algorithm of Definition 46,

and using the bound from Lemma 191, in K iterations Inefficient-MRW will mix to total variation

distance δ to π. Furthermore, applying Lemma 189, we conclude that Algorithm 64 has total

variation distance at most 2δ = ε from π.

It remains to bound the oracle complexity of Algorithm 64. Note in every iteration, we never

compute more than 4pn values of {fi}i∈[n], since we always reject if |Sk| ≥ 2pn, and we only

compute values for indices in Sk. For the value of p in Lemma 189, this amounts to O(log nκd
ε) value

queries.

10.7 Lower bound for MALA on Gaussians

In this section, we derive a upper bound on the spectral gap of MALA when the target distribution

is restricted to being a multivariate Gaussian (i.e. its negative log-density is a quadratic in some well-

conditioned matrix A). Throughout this section we will let f(x) = 1
2x
>Ax for some I � A � κI.

We remark here that without loss of generality, we have assumed that the minimizer of f is the all-

zeros vector and the strong convexity parameter is µ = 1. These follow from invariance of condition

number under linear translations and scalings of the variable.

Next, we define a specific hard quadratic function we will consider in this section, fhq : Rd → R.

Specifically, fhq will be a quadratic in a diagonal matrix A which has A11 = 1 and Aii = κ for

2 ≤ i ≤ d. We can rewrite this as

fhq(x) :=
∑
i∈[d]

fi(xi), where fi(c) =

 1
2c

2 i = 1

κ
2 c

2 2 ≤ i ≤ d
. (10.31)

Notice that fhq is coordinate-wise separable, and behaves identically on coordinates 2 ≤ i ≤ d (and

differently on coordinate 1). To this end for a vector v ∈ Rd, we will denote its first coordinate by

v1 ∈ R, and its remaining coordinates by v−1 ∈ Rd−1. This will help us analyze the behavior of

these components separately, and simplify notation.

We next show that for coordinate-separable functions with well-behaved first coordinate, such

CHAPTER 10. TOWARDS AN ORACLE COMPLEXITY OF SAMPLING 528

as our fhq, the spectral gap (defined in (10.10)) of the MALA Markov chain is governed by the step

size h. The following is an extension of an analogous proof in [137].

Lemma 192. Consider the MALA Markov chain (10.13), with stationary distribution π∗ with

negative log-density f . Suppose f is coordinate-wise separable (i.e. f(x) =
∑
i∈[d] fi(xi)). If f(x) =

f(−x) for all x ∈ Rd, f1 is O(1)-smooth, and Ex1∼exp(−f1)[x
2
1] = Θ(1), the spectral gap (10.10) is

O(h+ h2).

Proof. Recalling the definition (10.10), we choose g(x) = x1; note that by symmetry of f around

the origin, we have Eπ∗ [g] = 0, and thus by our assumption,

Varπ∗ [g] = Ex∼π∗ [x2
1] = Θ(1).

Here we used that π∗ is a product distribution. Thus it suffices to upper bound E(g, g):

E(g, g) =
1

2

∫∫
(x1 − y1)2Tx(y)dπ∗(x)dy

≤ 1

2

∫∫
(x1 − y1)2Px(y)dπ∗(x)dy

=
1

2
Ex∼π∗,ξ∼N (0,1)

[(
hf ′1(x1)−

√
2hξ
)2
]

≤ Ex∼π∗
[
h2 (f ′1(x1))

2
]

+ 2Eξ∼N (0,1)

[
hξ2
]

≤ O(h2)Ex∼π∗
[
x2

1

]
+ 2h = O

(
h+ h2

)
.

In the second line, we used that whenever the Markov chain rejects the distribution both terms are

zero; in the third, we used the definition of the MALA proposals; in the fourth, we used (a+ b)2 ≤
2a2 + 2b2 for a, b ∈ R. Finally, the last line used that symmetry implies that the minimizer of f is

the origin, so applying Lipschitzness and f ′1(0) = 0 yields the desired bound.

This immediately implies a spectral gap bound on our hard function fhq.

Corollary 50. The spectral gap of the MALA Markov chain for sampling from the density propor-

tional to exp(−fhq), where fhq is defined in (10.31), is O(h+ h2).

It remains to give a lower bound on the step size h, which we accomplish by upper bounding the

acceptance probability of MALA. We will give a step size analysis for a fairly general characterization

of Markov chains, where the proposal distribution from a point x is

y =

 y1

y−1

 , where y1 = (1− α1)x1 + β1g1

and y−1 = (1− α−1)x−1 + β−1g−1, for g ∼ N (0, I).

(10.32)

CHAPTER 10. TOWARDS AN ORACLE COMPLEXITY OF SAMPLING 529

To be concrete, recall that the proposal distribution for MALA (10.13) is given by y = x− hAx+
√

2hg. For the A used in defining fhq, this is of the form (10.32) with the specific parameters

α1 = h, α−1 = hκ, β1 = β−1 =
√

2h.

However, this more general characterization will save significant amounts of recalculation when

analyzing updates of the HMC Markov chain in Section 10.10. Recalling the formula (10.13), we

first give a closed form for the acceptance probability.

Lemma 193. For f(x) = 1
2x
>Ax, we have

f(x)− f(y) +
1

4h

(
‖y − (x− h∇f(x))‖22 − ‖x− (y − h∇f(y))‖22

)
=
h

4
‖x‖2A2 −

h

4
‖y‖2A2 .

Supposing y is of the form in (10.32) and A is as in (10.31), we have

h

4
‖x‖2A2 −

h

4
‖y‖2A2 =

h

4

((
2α1 − α2

1

)
x2

1 − β2
1g

2
1 − 2(1− α1)β1x1g1

)
+
hκ2

4

((
2α−1 − α2

−1

)
‖x−1‖22 − β

2
−1 ‖g−1‖22 − 2(1− α−1)β−1 〈x−1, g−1〉

)
.

Proof. This is a direct computation which we perform here for completeness: the given quantity is

1

2
‖x‖2A −

1

2
‖y‖2A +

1

4h

(
‖y − x+ hAx‖22 − ‖x− y + hAy‖22

)
=

1

2
‖x‖2A −

1

2
‖y‖2A +

1

2
〈y − x,Ax〉+

h

4
‖x‖2A2 −

1

2
〈x− y,Ay〉 − h

4
‖y‖2A2 =

h

4
‖x‖2A2 −

h

4
‖y‖2A2 .

The second equality follows from expanding the definition of y:

‖x‖2A2 − ‖y‖2A2 = x2
1 − ((1− α1)x1 + β1g1)

2
+ κ2

(
‖x−1‖22 − ‖(1− α−1)x−1 + β−1g−1‖22

)
=
(
2α1 − α2

1

)
x2

1 − β2
1g

2
1 − 2(1− α1)β1x1g1

+ κ2
((

2α−1 − α2
−1

)
‖x−1‖22 − β

2
−1 ‖g−1‖22 − 2(1− α−1)β−1 〈x−1, g−1〉

)
.

Corollary 51. For any fixed x ∈ Rd, and supposing y is of the form in (10.32) and A is as in

(10.31),

Eg∼N (0,I)

[
f(x)− f(y) +

1

4h

(
‖y − (x− h∇f(x))‖22 − ‖x− (y − h∇f(y))‖22

)]
=
h

4

((
2α1 − α2

1

)
x2

1 − β2
1

)
+
hκ2

4

((
2α−1 − α2

−1

)
‖x−1‖22 − β

2
−1(d− 1)

)
.

CHAPTER 10. TOWARDS AN ORACLE COMPLEXITY OF SAMPLING 530

Proof. This follows from Lemma 193, independence of g and x, and linearity of trace and expectation

applied on squared coordinates of g, where we recognize Eg∼N (0,I)[gg
>] = I.

Next, for a fixed x, consider the random variables Rxi :

Rxi =

h
4

((
2α1 − α2

1

)
x2

1 − β2
1g

2
1 − 2(1− α1)β1x1g1

)
i = 1

hκ2

4

((
2α−1 − α2

−1

)
x2
i − β2

−1g
2
i − 2(1− α−1)β−1xigi

)
2 ≤ i ≤ d

where g ∼ N (0, I) is a standard Gaussian random vector. Notice that for a given realization of g,

we have by Lemma 193 that ∑
i∈[d]

Rxi =
h

4
‖x‖A2 −

h

4
‖y‖A2 . (10.33)

We computed the expectation of
∑
i∈[d]R

x
i in Corollary 51. We next give a high-probability bound

on the deviation of
∑
i∈[d]R

x
i from its expectation.

Lemma 194. With probability at least 1− δ over the randomness of g ∼ N (0, I),

∑
i∈[d]

Rxi − Eg∼N (0,I)

∑
i∈[d]

Rxi

 ≤ 2h|α1 − 1|β1|x1|

√
log

(
4

δ

)
+ hβ2

1

√
log

(
4

δ

)

+ 2hκ2|α−1 − 1|β−1 ‖x−1‖2

√
log

(
4

δ

)
+ hκ2β2

−1

√
d log

(
4

δ

)
.

Proof. In defining {Rxi }i∈[d], the terms involving {x2
i }i∈[d] are deterministic. Thus, we need to upper

bound the deviations of the remaining terms, namely

S
(1)
1 :=

h

2
(α1 − 1)β1x1g1, S

(2)
1 :=

hβ2
1

4

(
1− g2

1

)
,

S
(1)
−1 :=

hκ2

2
(α−1 − 1)β−1

∑
2≤i≤d

xigi, S
(2)
−1 :=

hκ2β2
−1

4

∑
2≤i≤d

(
1− g2

i

)
.

To motivate these definitions, S
(1)
1 +S

(2)
1 +S

(1)
−1 +S

(2)
−1 is the left hand side of the display in the lemma

statement. We begin with S
(1)
−1 . Notice that this is a one-dimensional Gaussian random variable

distributed as

N
(
0, σ2

1

)
where σ1 :=

hκ2

2
|α−1 − 1|β−1 ‖x−1‖2 .

Thus, applying Mill’s inequality yields

Pr
[
S

(1)
−1 > t

]
≤
√

2

π

σ1

t
exp

(
− t2

2σ2
1

)
≤ δ

4
, for t = 4σ1

√
log

(
4

δ

)
.

CHAPTER 10. TOWARDS AN ORACLE COMPLEXITY OF SAMPLING 531

Next, to bound the term S
(2)
−1 , define

σ2 :=
hκ2β2

−1

4

√
d− 1.

Standard χ2 concentration results (Fact 32) then yield

Pr
[
S

(2)
−1 > t

]
≤ exp

(
− t2

4σ2
2

)
≤ δ

4
, for t = 2σ2

√
log

(
4

δ

)
.

Similar bounds follow for S
(1)
1 and S

(2)
1 , whose computations we omit for brevity. Taking a union

bound over these four terms yields the desired claim.

Finally, we have a complete characterization of a bad set Ω ⊂ Rd where, with high probability

over the proposal distribution, the acceptance probability is extremely small.

Proposition 49. Let x ∈ Rd satisfy ‖x−1‖2 ≤
√

2d
3κ and |x1| ≤ 5

√
log d, and suppose y is of the

form in (10.32) and A is as in (10.31). Also suppose that

|α−1| ≤
3

5
β2
−1κ, β−1 = ω

(√
log d

κd

)
, |α1| = O(|α−1|), β1 = O(β−1).

Then with probability at least 1− d−5 over the randomness of g ∼ N (0, I), we have

h

4
‖x‖A2 −

h

4
‖y‖A2 = −Ω

(
hκ2β2

−1d
)
.

Proof. We first handle terms involving x−1 and g−1. Combining (10.33), Corollary 51, and Lemma 194,

we have with probability at least 1 − 1
2d
−5 over the randomness of g ∼ N (0, I) that ‖x−1‖2A2

−1
−

‖y−1‖2A2
−1

(where A−1 is the Hessian of fhq on the last d− 1 coordinates) is upper bounded by

hκ2

4

((
2α−1 − α2

−1

)
‖x−1‖22 − β

2
−1(d− 1)

)
+ 5hκ2|α−1 − 1|β−1 ‖x−1‖2

√
log d+ 3hκ2β2

−1

√
d log d

≤ −hκ
2

4.5
β2
−1d+

hκ2

4
(2α−1 − α2

−1) ‖x−1‖22 + 5hκ2|α−1 − 1|β−1 ‖x−1‖2
√

log d.

(10.34)

Here we dropped the last term in the first line by adjusting a constant since it is dominated for

sufficiently large d. It remains to show that all the terms in the second line other than −hκ
2

4.5 β
2
−1d

are bounded by O(hκ2β2
−1d). We will perform casework on the size of α−1.

CHAPTER 10. TOWARDS AN ORACLE COMPLEXITY OF SAMPLING 532

Case 1: |α−1| > 3. In this case, we have for sufficiently large d, by Young’s inequality

5hκ2|α−1 − 1|β−1 ‖x−1‖2
√

log d ≤ 1

40
hκ2|α−1|β−1 ‖x−1‖2

√
d

≤ 1

80
hκ2β2

−1d+
1

80
hκ2α2

−1 ‖x−1‖22 .

Plugging this bound into (10.34), we have the desired

‖x−1‖2A2
−1
− ‖y−1‖2A2

−1
≤ −hκ

2

5
β2
−1d+

hκ2

4

(
2α−1 − 0.9α2

−1

)
‖x−1‖22 ≤ −

hκ2

5
β2
−1d.

In the last inequality we used 2α−1 − 0.9α2
−1 ≤ 0 for |α−1| > 3.

Case 2: |α−1| ≤ 3. In this case, we first observe by our assumed bounds on ‖x−1‖2 and β−1,

5hκ2|α−1 − 1|β−1 ‖x−1‖2
√

log d ≤ 20hκ1.5β−1

√
d log d = o

(
hκ2β2

−1d
)
.

Thus, substituting into (10.34) and dropping the (nonpositive) term corresponding to α2
−1,

‖x−1‖2A2
−1
− ‖y−1‖2A2

−1
≤ −hκ

2

4.8
β2
−1d+

hκ2

2
α−1 ‖x−1‖22

≤ −hκ
2

4.8
β2
−1d+

hκα−1d

3
= −Ω

(
hκ2β2

−1d
)
.

In the second inequality, we used the assumed bound on ‖x−1‖22, and in the last we used the bound

|α−1| ≤ 3
5β

2
−1κ to reach the conclusion.

To complete the proof we need to show terms involving x1 and g1 are small. In particular,

combining (10.33), Corollary 51, and Lemma 194 and dropping nonnegative terms, it suffices to

argue
h

2
α1x

2
1 + 5h|α1 − 1|β1|x1|

√
log d+ 3hβ2

1

√
log d = o

(
hκ2β2

−1d
)
.

This bound clearly holds for the last term hβ2
1

√
log d using β1 = O(β−1). For the first term, it

suffices to use our assumed bounds on |α1| and x1. Finally, the middle term 5h|α1 − 1|β1|x1|
√

log d

is low-order compared to the term 5hκ2|α−1 − 1|β−1 ‖x−1‖2
√

log d which we argued about earlier,

and hence does not affect any of our earlier bounds by more than a constant. The left-hand side of

the above display is an upper bound of the first coordinate’s contribution with probability at least

1− 1
2d
−5, so a union bound shows the proof succeeds with probability ≥ 1− d−5.

Finally, we are ready to give the main lower bound of this section.

Theorem 71. For every step size, there is a target Gaussian on Rd whose negative log-density

always has Hessian eigenvalues in [1, κ], such that the relaxation time of MALA is Ω(κ
√
d√

log d
).

Proof. Let π∗ be the Gaussian with log-density−fhq (10.31) throughout this proof. If h = O
(√

log d

κ
√
d

)
,

CHAPTER 10. TOWARDS AN ORACLE COMPLEXITY OF SAMPLING 533

then Corollary 50 immediately implies the result, so for the remainder of the proof suppose

h = ω

(√
log d

κ
√
d

)
. (10.35)

We first recall that MALA Markov chains are an instance of (10.32) with

α1 = h, α−1 = hκ, β1 = β−1 =
√

2h.

It is easy to see that these parameters satisfy the assumptions in Proposition 49, for the given range

of h. We define a “bad starting set” as follows:

Ω :=

{
x

∣∣∣∣ ‖x−1‖22 ≤
2d

3κ
, x2

1 ≤ 25 log d

}
. (10.36)

For any x ∈ Ω, and h satisfying (10.35), Proposition 49 is applicable, and by our definition of Ω,

any x ∈ Ω has proposals which will be accepted with probability

exp
(
−Ω

(
hκ2β2

−1d
))

= exp
(
−Ω(h2κ2d)

)
≤ 1

d10
.

The conductance of the Markov chain (10.11) is then at most 2
d5 by the witness set Ω and the failure

probability of Proposition 49, which concludes the proof by Cheeger’s inequality [122], where we use

the assumption that κ = O(d4).

Finally, as it clarifies the required warmness to escape the bad set in the proof of Theorem 71

(and is used in our mixing time bounds in Section 10.9), we lower bound the measure of Ω according

to π∗. Applying Lemma 195 shows with probability at least exp(− 1
12d), ‖x−1‖22 ≤

d
2κ , and Fact 31

shows that x2
1 ≤ 25 log d with probability at least 1

2 ; combining shows that the measure is at least

exp(−d). We required one helper technical fact, a small-ball probability bound for Gaussians.

Lemma 195. Let v ∼ N (0, I) be a random Gaussian vector in n dimensions. For large enough n,

Pr
[
‖v‖22 ≤

n

2

]
≥ exp

(
− n

12

)
.

Proof. Observe that ‖v‖22 follows a χ2 distribution with n degrees of freedom. Thus this probability

is governed by the χ2 cumulative density function, and is

1

Γ(k)
γ (k, ck)

where we define k := n
2 and c := 1

2 ; here Γ is the standard gamma function, and γ is the lower

CHAPTER 10. TOWARDS AN ORACLE COMPLEXITY OF SAMPLING 534

incomplete gamma function. Next, we have the bound from [428]

1

Γ(k)
γ (k, ck) ≥ (1− exp (−`ck))

k
, ` := (Γ(k + 1))

− 1
k−1 .

A direct calculation yields ` ≥ 2.5
k =⇒ 1− exp(−`ck) ≥ exp(− 1

6) for large enough k. Recalling we

defined k = n
2 yields the conclusion.

10.8 Lower bound for MALA on well-conditioned distribu-

tions

In this section, we derive a lower bound on the relaxation time of MALA for sampling from a

distribution with density proportional to exp(−f(x)), where f : Rd → R is a (non-quadratic) target

function with condition number κ. In particular, by exploiting the structure of non-cancellations

which do not occur for quadratics, we will attain a stronger lower bound.

Our first step is to derive an upper bound on the acceptance probability for a general target

function f according to the MALA updates (10.13), analogously to Lemma 193 in the Gaussian

case.

Lemma 196. For any function f : Rd → R, we have

f(x)− f(y) +
1

4h

(
‖y − (x− h∇f(x))‖22 − ‖x− (y − h∇f(y))‖22

)
= −f(y) + f(x)− 1

2
〈x− y,∇f(x) +∇f(y)〉+

h

4
‖∇f(x)‖22 −

h

4
‖∇f(y)‖22 .

Proof. This is a direct computation which we perform here for completeness:

f(x)− f(y) +
1

4h

(
‖y − (x− h∇f(x))‖22 − ‖x− (y − h∇f(y))‖22

)
= f(x)− f(y) +

1

2h
〈y − x, h∇f(x)〉 − 1

2h
〈x− y, h∇f(y)〉+

h

4
‖∇f(x)‖22 −

h

4
‖∇f(y)‖22

= −f(y) + f(x)− 1

2
〈x− y,∇f(x) +∇f(y)〉+

h

4
‖∇f(x)‖22 −

h

4
‖∇f(y)‖22 .

Next, recall the proposal distribution of the MALA updates (10.13) sets y = x−h∇f(x) +
√

2hg

where g ∼ N (0, I). We further split this update into a random step and a deterministic step, by

defining

xg := x+
√

2hg, where g ∼ N (0, I) and y = xg − h∇f(x). (10.37)

This will allow us to reason about the effects of the stochastic and drift terms separately. We

CHAPTER 10. TOWARDS AN ORACLE COMPLEXITY OF SAMPLING 535

crucially will use the following decomposition of the equation in Lemma 196:

−f(y) + f(x)− 1

2
〈x− y,∇f(x) +∇f(y)〉+

h

4
‖∇f(x)‖22 −

h

4
‖∇f(y)‖22

= −f(xg) + f(x)− 1

2
〈x− xg,∇f(x) +∇f(xg)〉

+f(xg)− f(y)− 1

2
〈x− xg,∇f(y)−∇f(xg)〉

−1

2
〈xg − y,∇f(x) +∇f(y)〉+

h

4
‖∇f(x)‖22 −

h

4
‖∇f(y)‖22 .

(10.38)

We will use the following observation, which gives an alternate characterization of the second line

of (10.38), as well as a bound on the third and fourth lines for smooth functions.

Lemma 197. For twice-differentiable f : Rd → R, letting xs := x+ s(xg −x) for s ∈ [0, 1], we have

−f(xg) + f(x)− 1

2
〈x− xg,∇f(x) +∇f(xg)〉 = −2h

∫ 1

0

(
1

2
− s
)
g>∇2f(xs)gds.

Moreover, assuming f is κ-smooth,

f(xg)− f(y)− 1

2
〈x− xg,∇f(y)−∇f(xg)〉

−1

2
〈xg − y,∇f(x) +∇f(y)〉+

h

4
‖∇f(x)‖22 +

h

4
‖∇f(y)‖22

≤ 2
(
h2κ+ h3κ2

)
‖∇f(x)‖22 + 3

(
h1.5κ+ h2.5κ2

)
‖g‖2 ‖∇f(x)‖2 + h2κ2 ‖g‖22 .

Proof. By integrating twice and using the definition xg = x+
√

2hg,

f(xg) = f(x) +

∫ 1

0

〈∇f(xs), xg − x〉 ds

= f(x) + 〈∇f(x), xg − x〉+

∫ 1

0

〈∫ s

0

∇2f(xt) (xg − x) dt, xg − x
〉
ds

= f(x) + 〈∇f(x), xg − x〉+ 2h

∫ 1

0

(1− s) g>∇2f(xs)gds.

(10.39)

Similarly,

f(x) = f(xg) + 〈∇f(xg), x− xg〉+ 2h

∫ 1

0

sg>∇2f(xs)gds. (10.40)

CHAPTER 10. TOWARDS AN ORACLE COMPLEXITY OF SAMPLING 536

The first conclusion follows from combining (10.39) and (10.40). Next, assuming f is κ-smooth,

f(xg)− f(y)− 1

2
〈x− xg,∇f(y)−∇f(xg)〉 −

1

2
〈xg − y,∇f(x) +∇f(y)〉

= f(xg)− f(y) +

√
2h

2
〈g,∇f(y)−∇f(xg)〉 − 〈xg − y,∇f(y)〉 − h

2
〈∇f(x),∇f(x)−∇f(y)〉

≤ f(xg)− f(y)− 〈xg − y,∇f(y)〉+

√
2h

2
‖g‖2 ‖∇f(xg)−∇f(y)‖2 +

h

2
‖∇f(x)‖2 ‖∇f(x)−∇f(y)‖2

≤ κ

2
‖xg − y‖22 +

√
2hκ

2
‖g‖2 ‖xg − y‖2 +

hκ

2
‖∇f(x)‖2 ‖x− y‖2

≤ h2κ

2
‖∇f(x)‖22 +

√
2

2
h1.5κ ‖g‖2 ‖∇f(x)‖2 +

hκ

2
‖∇f(x)‖2

(√
2h ‖g‖2 + h ‖∇f(x)‖2

)
= h2κ ‖∇f(x)‖22 +

√
2h1.5κ ‖g‖2 ‖∇f(x)‖2 .

(10.41)

The second line used the definitions of xg and y in (10.37), and the third used Cauchy-Schwarz. The

fourth used smoothness (which implies gradient Lipschitzness), and the fifth again used (10.37) and

the triangle inequality. Next, we bound the remaining terms h
4 ‖∇f(x)‖22 −

h
4 ‖∇f(y)‖22:

h

4
‖∇f(x)‖22 −

h

4
‖∇f(y)‖22 =

h

4
〈∇f(x) +∇f(y),∇f(x)−∇f(y)〉

≤ hκ

4
(2 ‖∇f(x)‖2 + κ ‖x− y‖2) ‖x− y‖2

≤ hκ

4

(
2 ‖∇f(x)‖2 + hκ ‖∇f(x)‖2 +

√
2hκ ‖g‖2

)(
h ‖∇f(x)‖2 +

√
2h ‖g‖2

)
≤ 1

2

(
h2κ+ h3κ2

)
‖∇f(x)‖22 +

√
2

2

(
h1.5κ+ h2.5κ2

)
‖g‖2 ‖∇f(x)‖2 + h2κ2 ‖g‖22 .

(10.42)

Combining (10.41) and (10.42) yields the conclusion.

We will ultimately use the second bound in Lemma 197 to argue that the third and fourth lines

in (10.38) are low-order, so it remains to concentrate on the remaining term,

−f(xg) + f(x)− 1

2
〈x− xg,∇f(x) +∇f(xg)〉 = −2h

∫ 1

0

(
1

2
− s
)
g>∇2f(xs)gds. (10.43)

Our goal is to demonstrate this term is −Ω(hκd) over an inverse-exponentially sized region, for

a particular hard distribution. As it is coordinate-wise separable, our proof strategy will be to

construct a hard one-dimensional function, and replicate it to obtain a linear dependence on d.

We now define the specific hard function fhard : Rd → R we work with for the remainder of the

section; it is straightforward to see fhard is κ-smooth and 1-strongly convex.

fhard(x) :=
∑
i∈[d]

fi(xi), where fi(c) =

 1
2c

2 i = 1

κ
3 c

2 − κh
3 cos c√

h
2 ≤ i ≤ d

. (10.44)

CHAPTER 10. TOWARDS AN ORACLE COMPLEXITY OF SAMPLING 537

We will now show that sampling from the distribution with density proportional to exp(−fhard) is

hard. First, notice that the function fhard has condition number κ and is coordinate-wise separable.

It immediately follows from Lemma 192 that the spectral gap (defined in (10.10)) of the MALA

Markov chain is governed by the step size h as follows.

Corollary 52. The spectral gap of the MALA Markov chain for sampling from the density propor-

tional to exp(−fhard), where fhard is defined in (10.44), is O(h+ h2).

For the remainder of the section, we focus on upper bounding (10.43) over a large region according

to the density proportional to exp(−fhard). Recall {fi}i∈[d] are the summands of fhard. For a fixed

x, consider the random variables Sxi :

Sxi = −fi([xg]i) + fi(xi)−
1

2
(xi − [xg]i)(f

′
i(xi) + f ′i([xg]i)).

It is easy to check that for a given realization of g, we have

∑
i∈[d]

Sxi = −f(xg) + f(x)− 1

2
〈x− xg,∇f(x) +∇f(xg)〉 ,

where the right-hand side of the above display is the left-hand side of (10.43). We bound the

expectation of
∑
i∈[d] S

x
i , and its deviation from its expectation, in Lemma 198 and Lemma 199

respectively.

Lemma 198. For any fixed x ∈
{
x
∣∣∣ − 1

2π
√
h+ 2πki

√
h ≤ xi ≤ 1

2π
√
h+ 2πki

√
h, ki ∈ N,∀2 ≤ i ≤ d

}
and h ≤ 1, the random variables Sxi , 1 ≤ i ≤ d satisfy

Eg∼N (0,I) [Sxi] ≤

0 i = 1

−0.08hκ cos xi√
h

2 ≤ i ≤ d
.

Proof. We remark that the condition on x simply enforces coordinatewise in 2 ≤ i ≤ d, cos xi√
h
> 0.

Consider some coordinate 2 ≤ i ≤ d: since [xg]i = xi +
√

2hgi,

Sxi = −fi
(
xi +

√
2hgi

)
+ fi(xi) +

√
2h

2
gi

(
f ′i(xi) + f ′i

(
xi +

√
2hgi

))
= −κ

3

(
xi +

√
2hgi

)2

+
κh

3
cos

(
xi√
h

+
√

2gi

)
+
κ

3
x2
i −

κh

3
cos

(
xi√
h

)
+

√
2h

2
gi

(
4κ

3
xi +

2
√

2hκ

3
gi +

κ
√
h

3
sin

(
xi√
h

+
√

2gi

)
+
κ
√
h

3
sin

(
xi√
h

))

=
κh

3

(
cos

(
xi√
h

+
√

2gi

)
− cos

(
xi√
h

))
+

√
2hκ

6
gi

(
sin

(
xi√
h

+
√

2gi

)
+ sin

(
xi√
h

))
Here, we used that the quadratic terms in the second and third lines cancel (this also follows from

CHAPTER 10. TOWARDS AN ORACLE COMPLEXITY OF SAMPLING 538

examining the proof of Lemma 193):

−κ
3

(
xi +

√
2hgi

)2

+
κ

3
x2
i +

√
2h

2
gi

(
4κ

3
xi +

2
√

2hκ

3
gi

)
= 0.

By a direct computation, taking an expectation over gi ∼ N (0, 1) yields

Egi∼N (0,1)

[
cos

(
xi√
h

+
√

2gi

)]
=

cos
(
xi√
h

)
exp (1)

,

Egi∼N (0,1)

[
sin

(
xi√
h

+
√

2gi

)
gi

]
=

√
2 cos

(
xi√
h

)
exp (1)

.

Putting these pieces together,

Egi∼N (0,1) [Sxi] =
κh

3

(
2

exp(1)
− 1

)
cos

(
xi√
h

)
≤ −0.08κh cos

(
xi√
h

)
.

Here, we used cos xi√
h
> 0. For i = 1, Lemma 193 shows Eg1∼N (0,1) [Sx1] = 0.

Lemma 199. With probability at least 1− 1
d5 over the randomness of g ∼ N (0, I),

∑
i∈[d]

Sxi − Eg∼N (0,I)

∑
i∈[d]

Sxi

 ≤ 10hκ
√
d log d.

Proof. By Lemma 197, for coordinate 1 ≤ i ≤ d,

Sxi = −2h

∫ 1

0

(
1

2
− s
)
f ′′i ([xs]i)dsg

2
i , where

∣∣∣∣2h∫ 1

0

(
1

2
− s
)
f ′′i ([xs]i)ds

∣∣∣∣ ≤ hκ

2
.

We attained the latter bound by smoothness. Now, each random variable Sxi − E[Sxi] is sub-

exponential with parameter hκ
2 (for coordinates where the coefficient is negative, note the negation

of a sub-exponential random variable is still sub-exponential). Hence, by Fact 33,

Pr

∑
i∈[d]

Sxi − Eg∼N (0,I)

∑
i∈[d]

Sxi

 ≥ 10hκ
√
d log d

 ≤ 1

d5
.

Now, we build a bad set Ωhard with lower bounded measure that starting from a point x ∈ Ωhard,

CHAPTER 10. TOWARDS AN ORACLE COMPLEXITY OF SAMPLING 539

with high probability, −Eg∼N (0,I)

[∑
i∈[d] S

x
i

]
is negative:

Ωhard =

{
x
∣∣∣ |x1| ≤ 2,∀2 ≤ i ≤ d,∃ki ∈ Z, |ki| ≤ b

5

π
√
hκ
c, such that

− 9

20
π
√
h+ 2πki

√
h ≤ xi ≤

9

20
π
√
h+ 2πki

√
h

}
.

(10.45)

In other words, Ωhard is the set of points where cosxi is large for 2 ≤ i ≤ d, and coordinates are

bounded. We first lower bound the measure of Ωhard, and show ‖∇f(x)‖2 is small within Ωhard.

Our measure lower bound will not be used in this section, but will become relevant in Section 10.9.

Lemma 200. Let h ≤ 1
10000π2κ . Let π∗ have log-density −fhard (10.44). Then, π∗(Ωhard) ≥

exp(−d). Moreover, for all x ∈ Ωhard, ‖∇f(x)‖2 ≤ 10
√
κd.

Proof. We first consider a superset of Ωhard. We define the set, for K := b 5
π
√
hκ
c,

Ω′ =

{
x
∣∣∣ |x1| ≤ 2,∀2 ≤ i ≤ d,− 9

20
π
√
h− 2πK

√
h ≤ xi ≤

9

20
π
√
h+ 2πK

√
h

}
.

It is easy to verify that Ω′ ⊇ Ωhard. We first show π∗(Ω′) is lower bounded by 1.1−d. Since fhard is

separable, the coordinates are independent, so it suffices to show each one-dimensional measure is

lower bounded by 1
1.1 . This is a standard computation of Gaussian measure for the first coordinate,

which we omit. For 2 ≤ i ≤ d, since the marginal distribution is κ
3 -strongly logconcave, it is sub-

Gaussian with parameter 3
κ (see Lemma 1, [210]). It follows from a standard sub-Gaussian tail

bound that the measure of the set |xi| ≤ 9√
κ

is at least 1
1.1 . For our choice of K, by assumption on

h, 2π
√
hK ≥ 10√

κ
− 2π

√
h ≥ 9√

κ
. Combining across coordinates gives π∗ (Ω′) ≥ 1.1−d.

Next, we lower bound π∗(Ωhard)
π∗(Ω′) . We divide the support of the set Ωhard and Ω′ into small disjoint

regions and bound π∗(Ωhard)
π∗(Ω′) for each small region and each coordinate separately. For 2 ≤ i ≤ d,

k ∈
[
−b 5

π
√
hκ
c − 1, b 5

π
√
hκ
c
]
, k ∈ Z, let

Ω′(i,k) =
(

2πk
√
h, 2π(k + 1)

√
h
]
,

and

Ω
(i,k)
hard =

(
2πk
√
h, 2πk

√
h+

9

20
π
√
h

]
∪
[
2π(k + 1)

√
h− 9

20
π
√
h, 2π(k + 1)

√
h

]
.

CHAPTER 10. TOWARDS AN ORACLE COMPLEXITY OF SAMPLING 540

Then, letting π∗i be the marginal of π∗ on coordinate i, we have

π∗i

(
Ω

(i,k)
hard

)
π∗i
(
Ω′(i,k)

) =

∫ 2πk
√
h+ 9

20π
√
h

2πk
√
h

exp
(
−κ3x

2
i + κh

3 cos xi√
h

)
dxi +

∫ 2π(k+1)
√
h

2π(k+1)
√
h− 9

20π
√
h

exp
(
−κ3x

2
i + κh

3 cos xi√
h

)
dxi∫ 2π(k+1)

√
h

2πk
√
h

exp
(
−κ3x

2
i + κh

3 cos xi√
h

)
dxi

≥

∫ 2πk
√
h+ 9

20π
√
h

2πk
√
h

exp
(
−κ3x

2
i

)
dxi +

∫ 2π(k+1)
√
h

2π(k+1)
√
h− 9

20π
√
h

exp
(
−κ3x

2
i

)
dxi∫ 2π(k+1)

√
h

2πk
√
h

exp
(
−κ3x

2
i

)
dxi exp

(
κh
3

)
≥ exp

(
−κh

3

)
·

9
10π
√
h

2π
√
h
·

exp

(
−κ3

(
2π(k + 1)

√
h
)2
)

exp

(
−κ3

(
2πk
√
h
)2
) ≥ 0.42.

The second step used cos xi√
h
≥ 0 for xi ∈ Ω

(i,k)
hard. The fourth step used the assumption κh ≤ 1

10000π2 .

Finally, letting Ω′(i) and Ω
(i)
hard be the projections of Ω′ and Ωhard on the ith coordinate. For any

xi ∈ Ω′i with x /∈ Ω′(i,k), and for all integers k ∈ [−K − 1,K], xi ∈ Ω
(i)
hard, so

π∗
(

Ω
(i)
hard

)
π∗(Ω′(i))

≥ 0.42. Since

the coordinates are independent under π∗, π∗(Ωhard)
π∗(Ω′) ≥ 0.42d. Combining our lower bounds,

π∗ (Ωhard) = π∗(Ω′)
π∗(Ωhard)

π∗(Ω′)
≥
(

1.1

0.42

)−d
≥ exp (−d) .

Finally, we bound ‖∇fhard(x)‖2 for x ∈ Ω′, from the definition of fhard (10.44),

‖∇fhard(x)‖2 =

√√√√f ′1(x)2 +

d∑
i=2

f ′i(x)2 =

√√√√x2
1 +

d∑
i=2

(
2κ

3
xi +

κ
√
h

3
sin

xi√
h

)2

.

Then directly plugging in the definition of Ωhard and using | sin c| ≤ |c| for all c,

‖∇fhard(x)‖2 ≤
√

1.52 + (d− 1)
(
9
√
κ
)2 ≤ 10

√
κd.

Finally, we combine the bounds we derived to show the acceptance probability is small within

Ωhard.

Lemma 201. Let h = o
(

1
κ log d

)
. For any x ∈ Ωhard, let y = x−h∇fhard(x)+

√
2hg for g ∼ N (0, I).

With probability at least 1− 2
d5 , we have

fhard(x)− fhard(y) +
1

4h

(
‖y − (x− h∇fhard(x))‖22 − ‖x− (y − h∇fhard(y))‖22

)
= −Ω (hκd) .

Proof. By combining Lemma 196 and the decomposition (10.38), the conclusion is equivalent to

CHAPTER 10. TOWARDS AN ORACLE COMPLEXITY OF SAMPLING 541

showing that the following quantity is −Ω(hκd):

−fhard(xg) + fhard(x)− 1

2
〈x− xg,∇fhard(x) +∇fhard(xg)〉

+fhard(xg)− fhard(y)− 1

2
〈x− xg,∇fhard(y)−∇fhard(xg)〉

−1

2
〈xg − y,∇fhard(x) +∇fhard(y)〉+

h

4
‖∇fhard(x)‖22 −

h

4
‖∇fhard(y)‖22 .

For x ∈ Ωhard, every xi for 2 ≤ i ≤ d has cos xi√
h

bounded away from 0 by a constant and hence

combining Lemmas 198 and 199 implies the first line is −Ω(hκd) with probability at least 1
d5 .

Regarding the second and third lines, Lemma 197 shows that it suffices to bound (over the set

Ωhard)

(h2κ+ h3κ2) ‖∇fhard(x)‖22 +
(
h1.5κ+ h2.5κ2

)
‖g‖2 ‖∇fhard(x)‖2 + h2κ2 ‖g‖22 = o(hκd).

Fact 32 implies ‖g‖2 ≤
√

2d with probability at least 1− 1
d5 . Combining this bound, the bound on

‖∇fhard(x)‖2 from Lemma 200, and the upper bound on h yields the conclusion.

We conclude by giving the main result of this section.

Proposition 50. For h = o(1
κ log d), there is a target density on Rd whose negative log-density

always has Hessian eigenvalues in [1, κ], such that the relaxation time of MALA is Ω(κd
log d).

Proof. The proof is identical to that of Theorem 71, where we use Lemma 201 in place of Proposi-

tion 49.

Theorem 72. For every step size, there is a target density on Rd whose negative log-density always

has Hessian eigenvalues in [1, κ], such that the relaxation time of MALA is Ω(κd
log d).

Proof. This is immediate from combining Theorem 71 (with the hard function fhq in the range

h = Ω(1
κ log d)) and Proposition 50 (with the hard function fhard in the range h = o(1

κ log d)).

10.9 Mixing time lower bound for MALA

In this section, we derive a mixing time lower bound for MALA. Concretely, we show that for any

step size h, there is a hard distribution π∗ ∝ exp(−f) such that ∇2f always has eigenvalues in [1, κ],

yet there is a exp(d)-warm start π0 such that the chain cannot mix in o(κd
log2 d

) iterations, starting

from π0. We begin by giving such a result for h = O(log d
κd) in Section 10.9.1, and combine it with

our developments in Sections 10.7 and 10.8 to prove our main mixing time result.

CHAPTER 10. TOWARDS AN ORACLE COMPLEXITY OF SAMPLING 542

10.9.1 Mixing time lower bound for small h

Throughout this section, let h = O
(

log d
κd

)
, and let π∗ = N (0, I) be the standard d-dimensional

multivariate Gaussian. We will let π0 be the marginal distribution of π∗ on the set

Ω :=

{
x | ‖x‖22 ≤

1

2
d

}
.

Recall from Lemma 195 that π0 is a exp(d)-warm start. Our main proof strategy will be to show

that for such a small value of h, after T = O(κd
log2 d

) iterations, with constant probability both of the

following events happen: no rejections occur throughout the Markov chain, and ‖xt‖22 ≤
9
10d holds

for all t ∈ [T]. Combining these two facts will demonstrate our total variation lower bound.

Lemma 202. Let {xt}0≤t<T be the iterates of the MALA Markov chain with step size h = O
(

log d
κd

)
,

for T = o(κd
log2 d

) and x0 ∼ π0. With probability at least 99
100 , both of the following events occur:

1. Throughout the Markov chain, ‖xt‖2 ≤ 0.9
√
d.

2. Throughout the Markov chain, the Metropolis filter never rejected.

Proof. We inductively bound the failure probability of the above events in every iteration by 0.01
T ,

which will yield the claim via a union bound. Take some iteration t + 1, and note that by triangle

inequality, and assuming all prior iterations did not reject,

‖xt+1‖2 ≤ ‖x0‖2+h

t∑
s=0

‖xs‖2+
√

2h

∥∥∥∥∥
t∑

s=0

gs

∥∥∥∥∥
2

≤ ‖x0‖2+0.9hT
√
d+
√

2h ‖Gt‖2 ≤ 0.8
√
d+
√

2h ‖Gt‖2 .

Here, we applied the inductive hypothesis on all ‖xs‖2, the initial bound ‖x0‖2 ≤
√

1
2d, and that

hT = o(1) by assumption. We also defined Gt =
∑t
s=0 gs, where gs is the random Gaussian used by

MALA in iteration s; note that by independence, Gt ∼ N (0, t+ 1). By Fact 32, with probability at

least 1
200T , ‖Gt‖2 ≤ 2

√
Td, and hence 0.8

√
d+
√

2h ‖Gt‖2 ≤ 0.9
√
d, as desired.

Next, we prove that with probability ≥ 1− 1
200T , step t does not reject. This concludes the proof

by union bounding over both events in iteration t, and then union bounding over all iterations. By

the calculation in Lemma 193, the accept probability is

min

(
1, exp

(
h

4

((
2h− h2

)
‖xt‖22 − 2h ‖g‖22 − 2

√
2h (1− h) 〈xt, g〉

)))
.

We lower bound the argument of the exponential as follows. With probability at least 1 − d−5 ≥
1 − 1

400T , Facts 31 and 32 imply both of the events ‖g‖22 ≤ 2d and 〈xt, g〉 ≤ 10
√

log d ‖x‖2 occur.

Conditional on these bounds, we compute (using 2h ≥ h2 and the assumption ‖xt‖2 ≤ 0.9
√
d)

(
2h− h2

)
‖xt‖22 − 2h ‖g‖22 − 2

√
2h (1− h) 〈xt, g〉 ≥ −4hd− 40

√
hd log d ≥ −44 log d.

CHAPTER 10. TOWARDS AN ORACLE COMPLEXITY OF SAMPLING 543

Hence, the acceptance probability is at least

exp (−11h log d) ≥ 1− 1

400T
,

by our choice of T with Th log d = o(1), concluding the proof.

Proposition 51. The MALA Markov chain with step size h = O
(

log d
κd

)
requires Ω(κd

log2 d
) iterations

to reach total variation distance 1
e to π∗, starting from π0.

Proof. Let π̃ be the distribution of the MALA Markov chain after T = o(κd
log2 d

) steps without

applying a Metropolis filter in any step, and let π̂ be the distribution after applying the actual

MALA chain (including rejections). To show ‖π̂ − π∗‖TV ≥
1
e , it suffices to show the bounds

‖π̃ − π∗‖TV ≥
2

5
, ‖π̃ − π̂‖TV ≤ 0.01,

and then we apply the triangle inequality. By the coupling characterization of total variation, the

second bound follows immediately from the second claim in Lemma 202, wherein we couple the two

distributions whenever a rejection does not occur. To show the first bound, the measure of

Ωlarge :=
{
x | ‖x‖22 ≥ 0.81d

}
according to π∗ is at least 0.99 by Fact 32, and according to π̃ it can be at most 0.01 by the first

conclusion of Lemma 202. This yields the bound via the definition of total variation.

10.9.2 Proof of Theorem 73

Finally, we put together the techniques of Sections 10.7, 10.8, and 10.9.1 to prove Theorem 73.

Theorem 73. For every step size, there is a target density on Rd whose negative log-density al-

ways has Hessian eigenvalues in [1, κ], such that MALA initialized at an exp(d)-warm start requires

Ω(κd
log2 d

) iterations to reach e−1 total variation distance to the stationary distribution.

Proof. We consider three ranges of h. First, if h = Ω
(

1
κ log d

)
, we use the hard function fhq and

the hard set in (10.36), which has measure at least exp(−d) according to the stationary distribution

by Lemma 195. Then, applying Proposition 49 demonstrates that the chance the Markov chain can

move over d5 iterations is o(1
d), and hence it does not reach total variation 1

e in this time. Next,

if h = o
(

1
κ log d

)
∩ ω

(
log d
κd

)
, we use the hard function fhard and the hard set in (10.45), which has

measure at least exp(−d) by Lemma 200. Applying Lemma 201 again implies the chain does not

mix in d5 iterations. Finally, if h = O
(

log d
κd

)
, applying Proposition 51 yields the claim.

CHAPTER 10. TOWARDS AN ORACLE COMPLEXITY OF SAMPLING 544

10.10 Lower bounds for HMC

In this section, we derive a lower bound on the spectral gap of HMC. We first analyze some general

structural properties of HMC in Section 10.10.1, as a prelude to later sections. We then provide a

lower bound for HMC on quadratics in Section 10.10.2, with any number of leapfrog steps K.

10.10.1 Structure of HMC: a detour to Chebyshev polynomials

We begin our development with a bound on the acceptance probability for general HMC Markov

chains. Recall from (10.14) that this probability is (for H(x, v) := f(x) + 1
2 ‖v‖

2
2)

min

{
1,

exp (−H(xK , vK))

exp (−H(x0, v0))

}
. (10.14)

We first state a helper calculation straightforwardly derived from the exposition in Section 10.2.4.

Fact 34. One step of the HMC Markov chain starting from x0 generates iterates {(vk− 1
2
, xk, vk)}0≤k≤K

defined recursively by the closed-form equations:

vk− 1
2

= v0 −
η

2
∇f(x0)− η

∑
j∈[k−1]

∇f(xj),

vk = v0 −
η

2
∇f(x0)− η

∑
j∈[k−1]

∇f(xj)−
η

2
∇f(xk),

xk = x0 + ηkv0 −
η2k

2
∇f(x0)− η2

∑
j∈[k−1]

(k − j)∇f(xj).

When expanding the acceptance probability (10.14) using the equations in Fact 34, many terms

conveniently cancel, which we capture in Lemma 203. This phenomenon underlies the improved

performance of HMC on densities with highly-Lipschitz Hessians [128].

Lemma 203. For the iterates given by Fact 34,

H (x0, v0)−H (xK , vK) =
∑

0≤k≤K−1

(
f(xk)− f(xk+1) +

1

2
〈∇f(xk) +∇f(xk+1), xk+1 − xk〉

)

+
η2

8
‖∇f(x0)‖22 −

η2

8
‖∇f(xK)‖22 .

CHAPTER 10. TOWARDS AN ORACLE COMPLEXITY OF SAMPLING 545

Proof. Recall H(x0, v0)−H(xK , vK) = f(x0)− f(xK) + 1
2 ‖v0‖22−

1
2 ‖vK‖

2
2. We begin by expanding

1

2
‖v0‖22 −

1

2
‖vK‖22 =

1

2
‖v0‖22 −

1

2

∥∥∥∥∥∥v0 −
η

2
∇f(x0)− η

∑
j∈[K−1]

∇f(xj)−
η

2
∇f(xK)

∥∥∥∥∥∥
2

2

= η

〈
v0,

1

2
∇f(x0) +

∑
j∈[K−1]

∇f(xj) +
1

2
∇f(xK)

〉

− η2

2

∥∥∥∥∥∥1

2
∇f(x0) +

∑
j∈[K−1]

∇f(xj) +
1

2
∇f(xK)

∥∥∥∥∥∥
2

2

=
η

2

∑
0≤k≤K−1

〈v0,∇f(xk) +∇f(xk+1)〉

− η2

2

∑
0≤k≤K−1

〈
∇f(xk) +∇f(xk+1),

1

2
∇f(x0) +

∑
j∈[k]

∇f(xj)

〉

+
η2

8
〈∇f(x0)−∇f(xK),∇f(x0) +∇f(xK)〉 .

Here the first equality used Fact 34. Moreover, for each 0 ≤ k ≤ K − 1, by Fact 34

1

2
〈∇f(xk) +∇f(xk+1), xk+1 − xk〉 =

η

2
〈∇f(xk) +∇f(xk+1), v0〉

− η2

2

〈
∇f(xk) +∇f(xk+1),

1

2
∇f(x0) +

∑
j∈[k]

∇f(xj)

〉
.

Combining yields the result.

We state a simple corollary of Lemma 203 in the case of quadratics.

Corollary 53. For f(x) = 1
2x
>Ax, the iterates given by Fact 34 satisfy

H(x0, v0)−H(xK , vK) =
η2

8
‖∇f(x0)‖22 −

η2

8
‖∇f(xK)‖22 .

Proof. It suffices to observe that for any two points x, y ∈ Rd,

f(x)− f(y) +
1

2
〈∇f(x) +∇f(y), y − x〉 =

1

2
x>Ax− 1

2
y>Ay +

1

2
〈A(x+ y), y − x〉 = 0.

Finally, it will be convenient to have a more explicit form of iterates in the case of quadratics,

which follows directly from examining the recursion in Fact 34.

CHAPTER 10. TOWARDS AN ORACLE COMPLEXITY OF SAMPLING 546

Lemma 204. For f(x) = 1
2x
>Ax, the iterates {xk}0≤k≤K given by Fact 34 satisfy

xk =

 ∑
0≤j≤k

Dj,k(η2A)j

x0 +

η ∑
0≤j≤k−1

Ej,k(η2A)j

 v0,

where Dj,k := (−1)j · k

k + j
·
(
k + j

2j

)
, Ej,k := (−1)j ·

(
k + j

2j + 1

)
.

(10.46)

Proof. This formula can be verified to match the recursions of Fact 34 by checking the base cases

D0,k = 1, D1,k = −k
2

2 , E0,k = k, and (where Dj,k := 0 for j > k and Ej,k := 0 for j ≥ k)

Dj,k = −
∑

i∈[k−1]

(k − i)Dj−1,i, Ej,k = −
∑

i∈[k−1]

(k − i)Ej−1,i.

In particular, by using the third displayed line of Fact 34, the coefficient of (η2A)jx0 in xk for

j ≥ 2 is the negated sum of the coefficients of (η2A)j−1 in all (k − i)xi. Similarly, the coefficient of

η(η2A)jv0 in xk for j ≥ 1 is the negated sum of the coefficients of η(η2A)j−1 in all (k − i)xi. The

displayed coefficient identities follow from the binomial coefficient identities

k

k + j

(
k + j

2j

)
=

∑
j−1≤i≤k−1

(k − i)i
i+ j − 1

(
i+ j − 1

2j − 2

)
,

(
k + j

2j + 1

)
=

∑
j≤i≤k−1

(k − i)
(
i+ j − 1

2j − 1

)
.

Lemma 204 motivates the definition of the polynomials

pk(z) :=
∑

0≤j≤k

Dj,kz
j , qk(z) :=

∑
0≤j≤k−1

Ej,kz
j . (10.47)

In this way, at least in the case when A = diag (λ) for a vector of eigenvalues λ ∈ Rd, we can

concisely express the coordinates of iterates in (10.46) by

[xk]i = pk(η2λi)[x0]i + ηqk(η2λi)[v0]i. (10.48)

Interestingly, the polynomial pk turns out to have a close relationship with the kth Chebyshev

polynomial (of the first kind), which we denote by Tk. Similarly, the polynomial qk is closely related

to the (k − 1)th Chebyshev polynomial of the second kind, denoted Uk−1. The relationship between

the Chebyshev polynomials and the phenomenon of acceleration for optimizing quadratics via first-

order methods has been known for some time (see e.g. [266, 49] for discussions), and we find it

interesting to further explore this relationship. Concretely, the following identities hold.

CHAPTER 10. TOWARDS AN ORACLE COMPLEXITY OF SAMPLING 547

Lemma 205. Following definitions (10.46), (10.47),

pk(z) = Tk

(
1− z

2

)
, qk(z) = Uk−1

(
1− z

2

)
.

Proof. It is easy to check p0(z) = 1 and p1(z) = 1− z
2 , so the former conclusion would follow from

pk+1(z) = (2− z)pk(z)− pk−1(z) ⇐⇒ Dj,k+1 = 2Dj,k −Dj−1,k −Dj,k−1,

following well-known recursions defining the Chebyshev polynomials of the first kind. This identity

can be verified by direct expansion. Moreover, for the latter conclusion, recalling the definition of

Morgan-Voyce polynomials of the first kind Bk(z), we can directly match qk(z) = Bk−1(−z). The

conclusion follows from Section 4 of [30], which shows Bk−1(−z) = Uk−1(1 − z
2) as desired (note

that in the work [30], the indexing of Chebyshev polynomials is off by one from ours).

Now for z = η2λi, we have from (10.48) and Lemma 205 that [xk]i = ±[x0]i precisely when

pk(z) = Tk

(
1− z

2

)
= ±1, qk(z) = Uk−1

(
1− z

2

)
= 0.

Hence, this occurs whenever 1− z
2 is both an extremal point of Tk in the range [−1, 1] and a root of

Uk−1. Both of these occur exactly at the points cos(jkπ), for 0 ≤ j ≤ k.

Proposition 52. For κ ≥ π2 and K ≥ 2, no K-step HMC Markov chain with step size 1 ≥ η2 ≥ π2

κK2

can mix in finite time for all densities on Rd whose negative log-density’s Hessian has eigenvalues

between 1 and κ for all points x ∈ Rd, initialized at a constant-warm start.

Proof. Fix a value of 1 ≥ η ≥
√

π2

κK2 . We claim there exists a 1 ≤ j ≤ K − 1 such that for

λ :=
2
(
1− cos

(
jπ
K

))
η2

, 1 ≤ λ ≤ κ.

Since λ is a monotone function of η, it suffices to check the endpoints of the interval [π2

κK2 , 1]. For

η2 = 1, we choose j = K − 1, which using 2x2

π2 ≤ 1− cos(x) ≤ x2

2 for all −π ≤ x ≤ π, yields

1 ≤ 4(K − 1)2

K2
≤ λ ≤ (K − 1)2π2

K2
≤ π2 ≤ κ.

Similarly, for η2 = π2

κK2 , we choose j = 1, which yields

1 ≤ 4

η2K2
≤ λ ≤ π2

η2K2
≤ κ.

Now, consider the quadratic f(x) = 1
2x
>Ax where A ∈ Rd×d is a diagonal matrix, A11 = 1, Aii = κ

for all 3 ≤ i ≤ d, and A22 = λ :=
2(1−cos(jπK))

η2 for the choice of j which makes 1 ≤ λ ≤ κ. For

CHAPTER 10. TOWARDS AN ORACLE COMPLEXITY OF SAMPLING 548

any symmetric starting set capturing a constant amount of measure along the second coordinate, by

Lemma 204 and the following exposition, xK = ±x0 along the second coordinate regardless of the

random choice of velocity and thus the chain cannot leave the starting set.

10.10.2 HMC lower bound for all K

We now give our HMC lower bound, via improving Proposition 52 by a dimension dependence. We

begin by giving a stronger upper bound on η in the range η2 ≤ 1
κK2 . Noting that there is a constant-

sized gap between this range and the bound in Proposition 52, we next rule out this gap. Finally,

we handle the case of extremely large η2 ≥ 1. We put these pieces together to prove Theorem 74.

Upper bounding η = O(K−1κ−
1
2) under a constant gap

For this section, we let A be the d × d diagonal matrix which induces the hard quadratic function

fhq, defined in (10.31) and reproduced here for convenience:

fhq(x) :=
∑
i∈[d]

fi(xi), where fi(c) =

 1
2c

2 i = 1

κ
2 c

2 2 ≤ i ≤ d
.

We also let h := η2

2 , x := x0, g := v0, and y := xK throughout for analogy to Section 10.7, so that

we can apply Proposition 49. Next, note that by the closed-form expression given by Lemma 204,

we can write the iterates of the HMC chain in the form (10.32), reproduced here:

y =

 y1

y−1

 , where y1 = (1− α1)x1 + β1g1

and y−1 = (1− α−1)x−1 + β−1g−1, for g ∼ N (0, I).

Concretely, we have by Lemma 204 that

α1 = −
∑

1≤j≤K

(−1)j (2h)
j

(
K

K + j

)(
K + j

2j

)
,

α−1 = −
∑

1≤j≤K

(−1)j (2hκ)
j

(
K

K + j

)(
K + j

2j

)
,

β1 =
√

2h
∑

0≤j≤K−1

(−1)j(2h)j
(
K + j

2j + 1

)
,

β−1 =
√

2h
∑

0≤j≤K−1

(−1)j(2hκ)j
(
K + j

2j + 1

)
.

(10.49)

By a straightforward computation, the parameters in (10.49) satisfy the conditions of Proposition 49.

CHAPTER 10. TOWARDS AN ORACLE COMPLEXITY OF SAMPLING 549

Lemma 206. Supposing η2 ≤ 1
κK2 , α1, α−1, β1, β−1 defined in (10.49) satisfy

|α−1| ≤
3

5
β2
−1κ, |α1| = O(|α−1|), β1 = O(β−1).

Proof. The proof follows since under η2 ≤ 1
10κK2 , all of the parameters in (10.49) are dominated by

their first summand. We will argue this for α−1 and β−1; the corresponding conclusions for α1 and

β1 follow analogously since κ ≥ 1. Define the summands of α−1 and β−1 by

cj := (−1)j+1(2hκ)j
(

K

K + j

)(
K + j

2j

)
, 1 ≤ j ≤ K,

dj :=
√

2h(−1)j(2hκ)j
(
K + j

2j + 1

)
, 0 ≤ j ≤ K − 1.

Then, we compute that for all 1 ≤ j ≤ K − 1, assuming 2hκK2 ≤ 1,

0 ≥ cj+1

cj
= (−2hκ)

(K + j)(K − j)
(2j + 2)(2j + 1)

≥ −2hκK2

12
≥ −0.1. (10.50)

Similarly, for all 0 ≤ j ≤ K − 2,

0 ≥ dj+1

dj
= (−2hκ)

(K + j + 1)(K − j − 1)

(2j + 3)(2j + 2)
≥ −2hκK2

6
≥ −0.2. (10.51)

By repeating these calculations for α1 and β1, we see that all parameters are given by rapidly

decaying geometric sequences, and thus the conclusion follows by examination from

α1 ∈
[
0.8hK2, hK2

]
, α−1 ∈

[
0.8hκK2, hκK2

]
,

β1 ∈
[
0.8
√

2hK,
√

2hK
]
, β−1 ∈

[
0.8
√

2hK,
√

2hK
]
.

We obtain the following corollary by combining Lemma 206, Corollary 53, and Proposition 49.

Corollary 54. Let x ∈ Rd satisfy ‖x−1‖2 ≤
√

2d
3κ and |x1| ≤ 5

√
log d, let (xK , vK) be the result of

the K-step HMC Markov chain with step size η =
√

2h with η2 ≤ 1
κK2 from x0 = x, and let A be as

in (10.31). Then with probability at least 1− d−5 over the randomness of v0 ∼ N (0, I), we have

H(x0, v0)−H(xK , vK) = −Ω
(
h2κ2K2d

)
.

Proof. It suffices to use the bounds on β−1 = Θ(
√
hK) shown in the proof of Lemma 206 and the

conclusions of Corollary 53 and Proposition 49.

CHAPTER 10. TOWARDS AN ORACLE COMPLEXITY OF SAMPLING 550

Removing the constant gap

We show how to improve the bound in Corollary 54 to only require η2 ≤ π2

κK2 , which removes the

constant gap between the requirement of Corollary 54 and the bound in Proposition 52. First, let

Ac be the D × d diagonal matrix which induces the following hard quadratic function fhqc:

fhqc(x) :=
∑
i∈[d]

fi(xi), where fi(c) =

1
2c

2 i = 1

κ
2π2 c

2 2 ≤ i ≤ d− 1

κ
2 c

2 i = d

. (10.52)

In other words, along the first d− 1 coordinates, fhqc is the same as a d− 1-dimensional variant of

fhq with condition number κ
π2 . We define a coordinate partition of x and g into x1, x−1d, xd, and

g1, g−1d, gd, and we define α1, α−1d, αd, β1, β−1d, βd in analogy with (10.32).

We first note that because of separability of fhqc, and since the assumption of Corollary 54 holds

on the first d − 1 coordinates for η2 ≤ π2

κK2 , we can immediately obtain a bound on the change in

the Hamiltonian along these coordinates.

Corollary 55. Let x ∈ Rd satisfy ‖x−1‖2 ≤
√

2π2d
3κ and |x1| ≤ 5

√
log d, let (xK , vK) be the result of

the K-step HMC Markov chain with step size η =
√

2h where η2 ≤ π2

κK2 from x0 = x, and let Ac be

as in (10.52). Then with probability at least 1− 2d−5 over the randomness of v0 ∼ N (0, I), we have

H
(

[x0][d−1] , [v0][d−1]

)
−H

(
[xK][d−1] , [vK][d−1]

)
= −Ω

(
h2κ2K2d

)
.

We now move to bounding the contribution of the last coordinate.

Lemma 207. Let (y, vK) be the result of the K-step HMC Markov chain with step size η =
√

2h

where η2 ≤ π2

κK2 , and write yd = (1− αd)xd + βdgd, for

αd = −
∑

1≤j≤K

(−1)j(2hκ)j
(

K

K + j

)(
K + j

2j

)
, βd =

√
2h

∑
0≤j≤K−1

(−1)j(2hκ)j
(
K + j

2j + 1

)
.

Then, we have |αd| = O(hκK2), |βd| = O(
√
hK).

Proof. After the index j is a sufficiently large constant, the geometric argument sequence of Lemma 206

applies (since the denominators of the ratios (10.50) and (10.51) grow with the index j); before then,

each coefficient is within a constant factor of the first in absolute value. Thus, the coefficients can

be at most a constant factor larger than the first in absolute value.

Lemma 208. Let |[x0]d| ≤ log d√
κ

, |[v0]d| ≤ log d, and let (xK , vK) be the result of the K-step HMC

Markov chain with step size η =
√

2h where η2 ≤ π2

κK2 . Then with probability at least 1 − d−5 over

CHAPTER 10. TOWARDS AN ORACLE COMPLEXITY OF SAMPLING 551

the randomness of v0 ∼ N (0, I), we have

H ([x0]d , [v0]d)−H ([xK]d , [vK]d) = o
(
h2κ2K2d

)
.

Proof. We can assume abs [v0]d = abs gd ≤ log d, which passes the high probability bound. By

Corollary 53 and Lemma 193, we wish to bound

hκ2

4

((
2αd − α2

d

)
x2
d − β2

dg
2
d − 2(1− αd)βdxdgd

)
= o

(
h2κ2K2d

)
.

Dropping all clearly negative terms, and since |αd| = O(1) by Lemma 207, it is enough to show

abshκ2αdx
2
d = o

(
h2κ2K2d

)
, abshκ2βdxdgd = o

(
h2κ2K2d

)
.

The first bound is immediate from assumptions. The second follows from assumptions as well since
√
hκK2 is at most a constant, so abshκ2βdxdgd = O(h1.5κ1.5K log2 d) = O(h2κ2K2 log2 d).

By combining Lemma 208 and Corollary 55, we obtain the following strengthening of Corol-

lary 54.

Corollary 56. Let x ∈ Rd satisfy ‖x−1d‖2 ≤
√

2d
3κ , |x1| ≤ 5

√
log d, and |xd| ≤ log d√

κ
, let (xK , vK) be

the result of the K-step HMC Markov chain with step size η =
√

2h with η2 ≤ π2

κK2 from x0 = x, and

let Ac be as in (10.52). Then with probability at least 1− d−5 over the randomness of v0 ∼ N (0, I),

we have

H(x0, v0)−H(xK , vK) = −Ω
(
h2κ2K2d

)
.

Ruling out η ≥ 1

Finally, we give a short argument ruling out the case η ≥ 1 not covered by Proposition 52. In this

section, let π∗ = N (0, κ−1I), with negative log-density f(x) = κ
2 ‖x‖

2
2. For η ≥ 1 and κ ≥ 10, (10.48)

and straightforward lower bounds on Chebyshev polynomials outside the range [−1, 1] demonstrate

the proposal distribution is of the form (from starting point x0 ∈ Rd)

xK ← αx0 + βv0, v0 ∼ N (0, 1), |α| ≥ 10, |β| ≥ 1. (10.53)

Lemma 209. Letting (xK , vK) be the result of K-step HMC from any x0, and f(x) = κ
2 ‖x‖

2
2, for

η ≥ 1, with probability at least 1− d−5 over the randomness of v0 ∼ N (0, I), we have

H(x0, v0)−H(xK , vK) = −Ω(d).

CHAPTER 10. TOWARDS AN ORACLE COMPLEXITY OF SAMPLING 552

Proof. Following notation (10.53) and applying Corollary 53, it suffices to show

‖x0‖22 − ‖αx0 + βv0‖22 = −Ω(d).

Expanding, it suffices to upper bound

(
1− α2

)
‖x0‖22 − 2αβ 〈x0, v0〉 − β2 ‖v0‖22 .

With probability at least 1− d−5, Fact 32 shows ‖v0‖22 ≥
1
2d and 〈x0, v0〉 ≥ −4

√
log d ‖x0‖2. Hence,

(
1− α2

)
‖x0‖22 − 2αβ 〈x0, v0〉 − β2 ‖v0‖22 ≤ −0.99α2 ‖x0‖22 + 8αβ

√
log d ‖x0‖2 −

β2

2
d

≤ 20β2 log d− β2

2
d = −Ω(d).

Here, we used that α2 ≥ 100 and took d larger than a sufficiently large constant.

Proof of Theorem 74

A consequence of Corollary 54 is that if the step size h = ω(
√

log d

κK
√
d
), initializing the chain from any

x0 in the set Ω defined in (10.36) leads to a polynomially bad mixing time. We further relate the

step size to the spectral gap of the HMC Markov chain in the following.

Lemma 210. The spectral gap of the K-step HMC Markov chain for sampling from the density

proportional to exp(−fhq), where fhq is defined in (10.31), is O(hK2 + h2K4).

Proof. We follow the proof of Lemma 192; again let g(x) = x1, and π∗ be the stationary distribution.

For our function f , it is clear again that Varπ∗ [g] = Θ(1). Thus it suffices to upper bound E(g, g):

letting Px(y) be the proposal distribution of K-step HMC, and α1, β1 be as in (10.49),

E(g, g) ≤ 1

2

∫∫
(x1 − y1)2Px(y)dπ∗(x)dy

≤ Ex∼π∗
[
α2

1x
2
1

]
+ Eξ∼N (0,1)

[
β2

1ξ
2
]

= α2
1 + β2

1 = O
(
hK2 + h2K4

)
.

Finally, by combining Lemma 210 and Corollary 56, we arrive at the main result of this section.

Theorem 74. For every step size and count, there is a target Gaussian on Rd whose negative log-

density always has Hessian eigenvalues in [1, κ], such that the relaxation time of HMC is Ω(κ
√
d

K
√

log d
).

Proof. For 1 ≥ η2 ≥ π2

κK2 it suffices to apply Proposition 52. For η2 ≥ 1, we apply Lemma 209.

Otherwise, in the relevant range of h = 2η2 , the dominant term in Lemma 210 is O(hK2). Applying

CHAPTER 10. TOWARDS AN ORACLE COMPLEXITY OF SAMPLING 553

Corollary 56 with the hard quadratic function fhqc, the remainder of the proof follows analogously

to that of Theorem 71.

We remark that as in Theorem 71, it is straightforward to see that the measure of the bad region

‖x−1d‖2 ≤
√

2d
3κ , |x1| ≤ 5

√
log d, and |xd| ≤ log d√

κ
used in the proof is at least exp(−d).

10.11 Conclusion

In this work, we presented relaxation time lower bounds for the MALA and HMC Markov chains

at every step size and scale, as well as a mixing time bound for MALA from an exponentially warm

start. We highlight in this section a number of unexplored directions left open by our work, beyond

direct strengthenings of our results, which we find interesting and defer to a future exploration.

Variable or random step sizes. Our lower bounds were for MALA and HMC Markov chains with

a fixed step size. For variable step sizes which take e.g. values in a bounded multiplicative range, we

believe our arguments can be modified to give relaxation time lower bounds for the resulting Markov

chains. However, the arguments of Section 10.10 (our HMC lower bound) are particularly brittle to

large multiplicative ranges of candidate step sizes, because they rely on the locations of Chebyshev

polynomial zeroes, which only occur in a bounded range. From an algorithm design perspective,

this suggests that adaptively or randomly choosing step size ranges may be effective in improving

the performance of HMC. Such a result would also give theoretical justification to the No-U-Turn

sampler of [273], a common HMC alternative in practice. We state as an explicit open problem: can

one obtain improved upper bounds, such as a
√
κ dependence or a dimension-independent rate, for

example by using variations of these strategies (variable step sizes)?

Necessity of κ lower bound. All of our witness sets throughout the paper are exp(−d) sized. It was

observed in [210] that it is possible to construct a starting distribution with warmness arbitrarily

close to
√
κ
d
; the marginal restriction of our witness set falls under this warmness bound for all

κ ≥ e2 ≈ 8. However, recently [346] proposed a proximal point reduction approach to sampling,

which (for mixing bounds scaling at least linearly in κ) shows that it suffices to sample a small

number of regularized distributions, whose condition numbers are arbitrarily close to 1.

By adjusting constants, we can modify the proof of the Gaussian lower bounds (Theorems 71

and 74) to have witness sets with measure cd for a constant c arbitrarily close to 1 (the bottleneck

being Lemma 195). However, our witness set for the family of hard distributions in Section 10.8

encounters a natural barrier at measure 2d, since the set is sign-restricted by the cosine function

(and hence can only contain roughly every other period). This bottleneck is encountered in the proof

of Lemma 200. We find it interesting to see if a stronger construction rules out the existing warm

starts for all κ ≥ 1, or if an upper bound can take advantage of the reduction of [346] to obtain

improved dependences on dimension assuming κ ≈ 1.

Appendix A

Deferred proofs from Chapter 2

A.1 Convex analysis

We use the standard notion of a convex conjugate of a convex function, also known as the Fenchel

dual, which we will refer to as a “dual function” throughout.

Definition 47 (Fenchel dual). For convex function f , its Fenchel dual is defined by

f∗(y) := minx {〈y, x〉 − f(x)}

We state several key facts about dual functions that we will frequently make use of. These are

well-known and we defer proofs to standard texts, e.g. [458].

Lemma 211 (Convex conjugate, Fenchel duality). For any convex f , its Fenchel dual f∗, and x, y

in their respective domains, f(x) + f∗(y) ≥ 〈y, x〉.

Lemma 212 (Conjugate of a conjugate, maximizing argument). For convex f , it holds that f∗∗(x) =

f(x), and if x = argmaxx′{〈y, x〉 − f(x′)}, then x ∈ ∂f∗(y) where ∂ is the subgradient operator.

Consequently, if f and f∗ are both differentiable, ∇f and ∇f∗ are inverse functions.

Lemma 213 (Divergence of f∗). The Bregman divergences of dual functions are related by

V f
∗

∇f(x)(∇f(x′)) = V fx′(x).

We prove two statements regarding strong convexity of the dual of a smooth function. The

first has been previously been observed by e.g. [303], but we include a proof for completeness as a

precursor to Lemma 215, a coordinate smoothness generalization.

Lemma 214 (Strong convexity of the dual). Suppose f is convex and L-smooth with respect to ‖·‖.
Then, f∗ is 1

L -strongly convex with respect to ‖·‖∗.

554

APPENDIX A. DEFERRED PROOFS FROM CHAPTER 2 555

Proof. This is equivalent to showing that, for two dual points ξ1, ξ2, we have

f∗(ξ2)− f∗(ξ1)− 〈∇f∗(ξ1), ξ1 − ξ2〉 ≥
1

2L
‖ξ1 − ξ2‖2∗ .

Writing y = ∇f∗(ξ1), x = ∇f∗(ξ2), we also have ξ1 = ∇f(y), ξ2 = ∇f(x) by the earlier analysis of

maximizing arguments. Furthermore, by Lemma 213 relating the Bregman divergences of conjugate

functions, it suffices to show that

f(y)− f(x)− 〈∇f(x), y − x〉 ≥ 1

2L
‖∇f(y)−∇f(x)‖2∗ .

Let

z = argminw 〈∇f(y)−∇f(x), w − y〉+
L

2
‖w − y‖2 ,

where we note that by the equality case of Cauchy-Schwarz, we have

〈∇f(y)−∇f(x), z − y〉+
L

2
‖z − y‖2 = − 1

2L
‖∇f(y)−∇f(x)‖2∗ .

Then, the proof follows directly by using convexity and smoothness. Indeed,

0 ≤ f(z)− f(x)− 〈∇f(x), z − x〉

≤ f(y) + 〈∇f(y), z − y〉+
L

2
‖z − y‖2 − f(x)− 〈∇f(x), z − x〉

= f(y)− f(x)− 〈∇f(x), y − x〉+ 〈∇f(y)−∇f(x), z − y〉+
L

2
‖z − y‖2

= f(y)− f(x)− 〈∇f(x), y − x〉 − 1

2L
‖∇f(y)−∇f(x)‖2∗ ,

where in the last line, we used the definition of z. This proves the desired claim.

The following Lemma 215 can be thought of as a limit of Lemma 214 in diagonal quadratic norms

‖·‖ where all but one coordinate tends to∞ (and in the dual, only one coordinate is nonzero), which

captures coordinate smoothness. We provide a more direct proof for completeness.

Lemma 215 (Coordinate strong convexity of the dual). For a convex function f which is Li-smooth

in the ith coordinate, we have

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
1

2Li
|∇if(y)−∇if(x)|2 .

Proof. The proof is essentially the same as that of Lemma 214, with a tighter guarantee given by

APPENDIX A. DEFERRED PROOFS FROM CHAPTER 2 556

coordinate smoothness. Let ‖·‖ be the `2 norm, and

z = argminw:w=y+tei 〈∇f(y)−∇f(x), w − y〉+
Li
2
‖w − y‖2

where we note that by the equality case of Cauchy-Schwarz, and as y and z only differ in the ith

coordinate, we have

〈∇f(y)−∇f(x), z − y〉+
Li
2
‖z − y‖2 = − 1

2Li
|∇if(y)−∇if(x)|2 .

Then, the proof follows:

0 ≤ f(z)− f(x)− 〈∇f(x), z − x〉

≤ f(y) + 〈∇f(y), z − y〉+
Li
2
‖z − y‖2 − f(x)− 〈∇f(x), z − x〉

= f(y)− f(x)− 〈∇f(x), y − x〉+ 〈∇f(y)−∇f(x), z − y〉+
Li
2
‖z − y‖2

= f(y)− f(x)− 〈∇f(x), y − x〉 − 1

2Li
|∇if(y)−∇if(x)|2

where in the last line, we used the definition of z. This proves the desired claim.

As a corollary of (2.10), we obtain the following.

Lemma 216. For w = Proxrz(g), ∀u, 〈g, w − u〉 ≤ V rz (u)− V rw(u)− V rz (w).

Proof. By first order optimality of the function 〈g, w〉+ V rz (w) as a function of w, we have

〈g +∇V rz (w), u− w〉 ≥ 0 =⇒ 〈g, w − u〉 ≤ 〈−∇V rz (w), w − u〉 = V rz (u)− V rw(u)− V rz (w),

where we used (2.10).

Lemma 2. If g is L-Lipschitz and r is µ-strongly convex in ‖·‖, g is L/µ-relatively Lipschitz with

respect to r.

Proof. By Cauchy-Schwarz, Lipschitzness of g, and strong convexity of r,

〈g(w)− g(z), w − u〉 ≤ ‖g(w)− g(z)‖∗ ‖w − u‖ ≤ L ‖w − z‖ ‖w − u‖

≤ L

2

(
‖w − z‖2 + ‖w − u‖2

)
≤ L

µ
(V rz (w) + V rw(u)) .

Lemma 3. If f is L-relatively smooth with respect to r, i.e. V fx (y) ≤ LV rx (y) for all x and y, then

g, defined by g(x) := ∇f(x) for all x, is L-relatively Lipschitz with respect to r.

APPENDIX A. DEFERRED PROOFS FROM CHAPTER 2 557

Proof. By assumption of relative smoothness of f and the definition of divergence,

L (V rz (w) + V rw(u)) ≥ V fz (w) + V fw (u)

= f(w)−
[
f(z) +∇f(z)>(w − z)

]
+ f(u)−

[
f(w) +∇f(w)>(u− w)

]
= V fz (u)−∇f(z)>(z − u)−∇f(z)>(w − z) +∇f(w)>(w − u)

= V fz (u) + 〈g(w)− g(z), u− z〉 .

The result follows from the fact that V fz (u) ≥ 0 by convexity of f .

A.2 Unaccelerated smooth convex optimization via mirror

prox

For completeness, we provide here the proof that the 1/T rate of extragradient methods for solving

Lipschitz monotone VIs also yields a 1/T rate for smooth function minimization. Given a smooth,

convex f this rate is achieved by applying these methods to solve the VI induced by g(x) := ∇f(x).

Consequently, this section highlights that the accelerated rates we achieve for minimizing f are via

working in the expanded primal-dual space of the VI induced by the Fenchel game, as well as our

fine-grained notion of relative Lipschitzness, as considered in Section 2.4.

Lemma 217. For L-smooth, convex f : Rd → R define g : Rd → R by g(x) := ∇f(x), and for

arbitrary x0 let r(x) := 1
2 ‖x0 − x‖22. For all T ≥ 0, both Mirror-Prox(x0, T) (Algorithm 1) and

Dual-Ex(x0, T) (Algorithm 65) produce {wt}0≤t<T such that for any x∗ minimizing f ,

f

 1

T

∑
0≤t<T

wt

− f(x∗) ≤
L ‖x0 − x∗‖22

2T
.

Proof. Since x0 = argminx∈Rdr(x), and since (by Lemma 2 and smoothness) g is L-relatively Lips-

chitz with respect to r, Proposition 1 and Proposition 53 imply

∑
0≤t<T

〈g(wt), wt − u〉 ≤ LV rx0
(u).

Consequently, applying convexity and letting u = x∗ above yields

f

 1

T

∑
0≤t<T

wt

− f(x∗) ≤
1

T

∑
0≤t<T

(f(wt)− f(x∗)) ≤ 1

T

∑
0≤t<T

〈g(wt), wt − x∗〉 ≤
LV rx0

(x∗)

T

=
L ‖x0 − x∗‖22

2T
.

APPENDIX A. DEFERRED PROOFS FROM CHAPTER 2 558

We remark that for µ-strongly convex functions, it is well-known that this also implies a O(Lµ)

rate of linear convergence to an approximate minimizer by converting function error back to a bound

on the squared distance to x∗ via applying strong convexity.

A.3 Minimax optimization

In this section, we give a new fine-grained complexity bound of minimax optimization under block-

wise strong convexity and smoothnesses of the problem. Specifically, consider the problem

min
x∈Rd

max
y∈Rd

f(x, y), (A.1)

and assume that the objective satisfies the following bounds1:

1.
∥∥∇2

xxf(x, y)
∥∥

op
≤ Lxx,

∥∥∇2
xyf(x, y)

∥∥
op
≤ Lxy,

∥∥∇2
yyf(x, y)

∥∥
op
≤ Lyy everywhere

2. f(x, ·) is µy-strongly concave for each x, and f(·, y) is µx-strongly convex for each y

We show an upper bound of

O

((
Lxx
µx

+

√
L2
xy

µxµy
+
Lyy
µy

)
· log

1

ε

)

queries via a simple application of our relative Lipschitzness framework, and a known strongly

monotone variant of Algorithm 1, for obtaining ε Euclidean distance to the saddle point of (A.1),

improving upon the bound of [366] in some cases. This can be converted into a duality gap bound

while only increasing the logarithmic term by problem parameters; see the end of this section for

a discussion. We will use Algorithm 3 and a tightening of its guarantees following Definition 1, in

Proposition 3, a strengthening of a known derivation (see e.g. Proposition 5 of [111]) under relative

Lipschitzness. We defer its proof to Appendix A.4. Our claimed upper bound follows by combining

Proposition 3 with the following relative Lipschitzness bound. We note that the same rate can be

obtained by directly combining Proposition 3 with a rescaling of the space to make the objective

1-strongly convex in each variable, but we include a proof via relative Lipschitzness because it makes

the calculation more mechanical (and also originally motivated this observation).

Lemma 218. Let r(x, y) = µx
2 ‖x‖

2
2 +

µy
2 ‖y‖

2
2 and g(x, y) = (∇xf(x, y),−∇yf(x, y)). Then with

respect to r, g is 1-strongly monotone and

Lxx
µx

+

√
L2
xy

µxµy
+
Lyy
µy

-relatively Lipschitz.

1Here, ‖·‖op is the `2 operator norm.

APPENDIX A. DEFERRED PROOFS FROM CHAPTER 2 559

Proof. First, we prove strong monotonicity: let z = (zx, zy) and w = (wx, wy). Moreover, let J be

the Jacobian of the operator g, and note that

g(w)− g(z) =

∫ 1

0

J(zt)(w − z)dt, where zt := (1− t)z + tw.

Thus, integrating and using antisymmetry of the off-diagonal blocks of J,

〈g(w)− g(z), w − z〉 =

∫ 1

0

(w − z)>J(zt)(w − z)dt

=

∫ 1

0

(
(wx − zx)>∇2fxx(zt)(w

x − zx)− (wy − zy)>∇2fyy(zt)(w
y − zy)

)
dt

≥
∫ 1

0

(
µx ‖wx − zx‖22 + µy ‖wy − zy‖22

)
dt = V rz (w) + V rw(z).

In the only inequality, we used our strong convexity and strong concavity assumptions. Next, we

prove the relative Lipschitz bound: consider three points z, w, and u = (ux, uy). We have by triangle

inequality and the assumed operator norm bounds

gx(w)− gx(z) =

∫ 1

0

(
∇2
xxf(zt)(w

x − zx) +∇2
xyf(zt)(w

y − zy)
)
dt

=⇒ ‖gx(w)− gx(z)‖2 ≤ Lxx ‖w
x − zx‖2 + Lxy ‖wy − zy‖2 ,

gy(w)− gy(z) = −
∫ 1

0

(
∇2
yxf(zt)(w

x − zx) +∇2
yyf(zt)(w

y − zy)
)
dt

=⇒ ‖gy(w)− gy(z)‖2 ≤ Lxy ‖w
x − zx‖2 + Lyy ‖wy − zy‖2 .

Therefore, it follows from Cauchy-Schwarz that

〈g(w)− g(z), w − u〉 ≤ Lxx ‖wx − zx‖2 ‖w
x − ux‖2 + Lxy ‖wy − zy‖2 ‖w

x − ux‖2
+Lxy ‖wx − zx‖2 ‖w

y − uy‖2 + Lyy ‖wy − zy‖2 ‖w
y − uy‖2 .

Finally, denoting rx(x) := µx
2 ‖x‖

2
2, ry(y) :=

µy
2 ‖y‖

2
2, the conclusion of relative Lipschitzness follows

from nonnegativity of divergences and combining the three bounds

Lxx ‖wx − zx‖2 ‖w
x − ux‖2 ≤

Lxx
µx

(
V r

x

zx (wx) + V r
x

wx (ux)
)
,

Lyy ‖wy − zy‖2 ‖w
y − uy‖2 ≤

Lyy
µy

(
V r

y

zy (wy) + V r
y

wy (uy)
)
,

Lxy ‖wy − zy‖2 ‖w
x − ux‖2 + Lxy ‖wx − zx‖2 ‖w

y − uy‖2 ≤
Lxy√
µxµy

(V rz (w) + V rw(u)) .

APPENDIX A. DEFERRED PROOFS FROM CHAPTER 2 560

We prove the last bound here; the other two follow similarly. By expanding the definition of r,

Lxy√
µxµy

(V rz (w) + V rw(u)) =
Lxy√
µxµy

(µx
2
‖wx − zx‖22 +

µy
2
‖wy − zy‖22

+
µx
2

∥∥zx+ − wx
∥∥2

2
+
µy
2

∥∥zy+ − wy
∥∥2

2

)
≥ Lxy (‖wx − zx‖2 ‖w

y − uy‖2 + ‖wx − ux‖2 ‖w
y − zy‖2) .

We give a brief discussion regarding converting a distance bound from a pair (x, y) to the saddle

point (x∗, y∗) of (A.1) into a duality gap bound. Specifically, let y′ be the best response to x, and

x′ be the best response to y. Further, denote

h1(x) := max
y∈Rd

f(x, y), h2(y) := min
x∈Rd

f(x, y).

Note the duality gap of the pair (x, y) is precisely

f(x, y′)− f(x′, y) = (f(x, y′)− f(x∗, y∗)) + (f(x∗, y∗)− f(x′, y))

= (h1(x)− h1(x∗)) + (h2(y∗)− h2(y)) .

Denote L = max(Lxx, Lxy, Lyy). Under the setting of this section, it was shown in Lemma B.2 of

[366] that h1 is 2L2

µx
smooth, which implies the bound (since x∗ minimizes h1 by definition)

h1(x)− h1(x∗) ≤ L2

µx
‖x− x∗‖22 .

Consequently, we can convert a distance bound into a duality gap bound, while only affecting the

logarithmic runtime term. A similar argument holds for terms corresponding to h2.

A.4 Additional extragradient methods

A.4.1 Strongly monotone mirror prox

We give a proof of Proposition 3, restated here for convenience.

Proposition 3. If Φ is λ-relatively Lipschitz with respect to r over Zalg containing all iterates of

Algorithm 3, and its VI is solved by z?, the iterates of Algorithm 3 satisfy

V rzt(z?) ≤
(

1 +
m

λ

)−t
V rz0(z?), for all t ∈ [T].

APPENDIX A. DEFERRED PROOFS FROM CHAPTER 2 561

Proof. As in (2.11), first-order optimality with respect to z∗ and nonnegativity of Vwt(zt+1) implies

1

λ
〈g(zt), wt − zt+1〉 ≤ V rzt(zt+1)− V rwt(zt+1)− V rzt(wt),

1

λ
〈g(wt), zt+1 − z∗〉 ≤ V rzt(z

∗)− V rzt+1
(z∗)− V rzt(zt+1) +

m

λ

(
V rwt(z

∗)− V rzt+1
(z∗)

)
.

Rearranging and applying relative Lipschitzness (Definition 1) as in (2.12) yields(
1 +

m

λ

)
Vzt+1

(z∗) ≤ 1

λ
(〈g(wt), wt − z∗〉 −mVwt(z∗)) +

(
1 +

m

λ

)
Vzt+1

(z∗) ≤ Vzt(z∗). (A.2)

Here, we used the fact that by the definition of z∗ and strong monotonicity,

〈g(wt), wt − z∗〉 −mVwt(z∗) ≥ 〈g(wt)− g(z∗), wt − z∗〉 −mVwt(z∗) ≥ 0.

Thus, iterating the inequality (A.2) yields the conclusion.

A.4.2 Dual extrapolation

In this section, we give a simplified presentation of the dual extrapolation algorithm of [420] for

approximately solving a variational inequality in a monotone operator g, using a regularizer r. It

obtains the same rate of convergence as the mirror prox algorithm, under relative Lipschitzness

(Definition 1). Specifically, it is the following algorithm which updates a dual variable st iteratively.

Algorithm 65: Dual-Ex(z̄, T): Dual extrapolation [420]

1 Input: Distance generating r, λ-relatively Lipschitz monotone g : Z → Z∗, initial point
z̄ ∈ Z;

2 s0 ← 0;
3 for 0 ≤ t < T do
4 zt ← Proxrz̄(st);

5 wt ← Proxrzt(
1
λg(zt));

6 st+1 ← st + 1
λg(wt);

Proposition 53. The iterates {wt} of Algorithm 65 satisfy for all u ∈ Z,

∑
0≤t<T

〈g(wt), wt − u〉 ≤ λV rz̄ (u).

Proposition 53 requires the following helper lemma, the main tool in its proof.

Lemma 219. For every iteration t,

1

λ
〈g(wt), wt − z̄〉 ≤ 〈st+1, zt+1 − z̄〉+ V rz̄ (zt+1)− 〈st, zt − z̄〉 − V rz̄ (zt).

APPENDIX A. DEFERRED PROOFS FROM CHAPTER 2 562

Proof. We again apply Lemma 216 on the two steps with respect to zt+1, yielding

〈st, zt − zt+1〉 ≤ V rz̄ (zt+1)− V rzt(zt+1)− V rz̄ (zt),

1

λ
〈g(zt), wt − zt+1〉 ≤ V rzt(zt+1)− V rwt(zt+1)− V rzt(wt).

Furthermore, note that by relative Lipschitzness, we have

1

λ
〈g(wt)− g(zt), wt − zt+1〉 ≤ V rwt(zt+1) + V rzt(wt).

Combining these three inequalities and rearranging terms appropriately yields the conclusion:

〈st, zt − zt+1〉+
1

λ
〈g(wt), wt − zt+1〉 ≤ V rz̄ (zt+1)− V rz̄ (zt)

=⇒ 1

λ
〈g(wt), wt − z̄〉 ≤ 〈st+1, zt+1 − z̄〉+ V rz̄ (zt+1)− 〈st, zt − z̄〉 − V rz̄ (zt).

This immediately yields the following:

Corollary 57. Φt = 1
λ

∑t−1
k=0 〈g(wk), wk − z̄〉 − 〈st, zt − z̄〉 − Vz̄(zt) is nonincreasing in t.

Proof of Proposition 53. Note that for any u,

T−1∑
t=0

〈g(wt), wt − u〉 =

T−1∑
t=0

〈g(wt), wt − z̄〉+

T−1∑
t=0

〈g(wt), z̄ − u〉+ (λVz̄(u)− λVz̄(u))

≤
T−1∑
t=0

〈g(wt), wt − z̄〉+

T−1∑
t=0

〈g(wt), z̄ − zT 〉+ (λVz̄(u)− λVz̄(zT))

= λΦT + λVz̄(u) ≤ λΦ0 + λVz̄(u) = λVz̄(u).

The first inequality used the definition of zT , and the second inequality used Corollary 57.

We note that all our acceleration results are also implementable with dual extrapolation as the

base method, by analogous arguments as in Sections 2.4 and 2.6.

A.5 Extragradient acceleration in non-Euclidean norms

In this section, we generalize the developments of Section 2.4 to general norms, where f is L-smooth

in some ‖·‖. The notion of strong convexity in general norms is slightly different; for acceleration

to be achievable, f must be µ-strongly convex with respect to a regularizer ω, where ω is 1-strongly

convex in ‖·‖; see e.g. [18] for a discussion.

APPENDIX A. DEFERRED PROOFS FROM CHAPTER 2 563

We first state our general strategy. Let h(x) := f(x) − µω(x), for all x ∈ Rd; it is immediate

that h is convex and L-smooth in ‖·‖. To solve the problem minx∈Rd f(x) = minx∈Rd h(x) + µω(x),

it instead suffices to solve the equivalent saddle point problem

min
x∈Rd

max
y∈Rd

µω(x) + 〈y, x〉 − h∗(y). (A.3)

It is immediate that the saddle point of (A.3) is z∗ := (x∗,∇h(x∗)). The key observation is that

(A.3) is strongly monotone and relatively Lipschitz (with an accelerated parameter) with respect to

the natural choice of regularizer,

r(x, y) := µω(x) + h∗(y). (A.4)

From this point, it suffices to apply the strongly monotone extragradient framework of Proposition 3.

We now make this formal by giving the following two helper lemmata.

Lemma 220. Let f : Rd → R be L-smooth in norm ‖·‖, and µ-strongly convex with respect to

ω, a 1-strongly convex function in ‖·‖. Let h(x) := f(x) − µω(x) ∀x ∈ Rd, and let g(x, y) =

(y + µ∇ω(x),∇h∗(y)− x) be the gradient operator of the objective (A.3). Then, g is 1-strongly

monotone with respect to the distance generating function r defined in (A.4).

Proof. By definition, it suffices to show that for all w, z ∈ Rd × Rd,

〈g(w)− g(z), w − z〉 ≥ V rw(z) + V rz (w) = 〈∇r(w)−∇r(z), w − z〉 .

By direct expansion, this is an equality. In particular, for w = (wx, wy) and z = (zx, zy),

〈g(w)− g(z), w − z〉 = 〈(wy − zy) + µ (∇ω(wx)−∇ω(zx)) , wx − zx〉

+ 〈(∇h∗(wy)−∇h∗(zy))− (wx − zx) , wy − zy〉

= µ 〈∇ω(wx)−∇ω(zx), wx − zx〉+ 〈∇h∗(wy)−∇h∗(zy), wy − zy〉

= 〈∇r(w)−∇r(z), w − z〉 .

Lemma 221. In the setting of Lemma 220, g is 1 +
√

L
µ -relatively Lipschitz with respect to r.

Proof. The proof is patterned off of Lemma 4. Consider three points z = (zx, zy), w = (wx, wy),

u = (ux, uy). By direct calculation,

〈g(w)− g(z), w − u〉 = 〈wy − zy, wx − ux〉+ 〈−wx + zx, wy − uy〉

+ µ 〈∇ω(wx)−∇ω(zx), wx − ux〉+ 〈∇h∗(wy)−∇h∗(zy), wy − uy〉 .
(A.5)

To bound the first line of (A.5), we have the following analog to (2.14), where we use that h∗ is

APPENDIX A. DEFERRED PROOFS FROM CHAPTER 2 564

1
L -strongly convex in ‖·‖∗ by Lemma 214:

〈wy − zy, wx − ux〉+ 〈zx − wx, wy − uy〉 ≤ ‖wy − zy‖∗ ‖w
x − ux‖+ ‖zx − wx‖ ‖wy − uy‖∗

≤

√
L

µ

(
µ

2
‖wx − zx‖2 +

µ

2
‖wx − ux‖2 +

1

2L
‖wy − zy‖2∗ +

1

2L
‖wy − uy‖2∗

)

≤

√
L

µ
(V rz (w) + V rw(u)) .

To bound the second line of (A.5), we use that the calculation (2.15) implies that

µ 〈∇ω(wx)−∇ω(zx), wx − ux〉+ 〈∇h∗(wy)−∇h∗(zy), wy − uy〉 = 〈∇r(w)−∇r(z), w − u〉

≤ V rz (w) + V rw(u).

Combining the above two calculations in the context of (A.5) yields the desired claim.

Theorem 75. In the setting of Lemma 220, consider running Algorithm 3 on the monotone operator

g and the distance generating function r initialized at z0 := (x0,∇h(x0)), for T iterations. Every

iteration consists of solving a constant number of proximal problems in the function ω, and a constant

number of d-dimensional vector operations; moreover, we can always maintain each zt in the form

(xt,∇h(vt)) for some explicitly computed vt ∈ Rd. Finally, we have

T ≥ 4

√
L

µ
log

(
2L

µ
· f(x0)− f(x∗)

ε

)
=⇒ f(xT)− f(x∗) ≤ ε.

Proof. We first demonstrate the claimed implementability of steps of Algorithm 3. Note that from

the form of iterates in Algorithm 3, each x block of variables indeed results from solving proximal

problems in ω. On the y block, the claim of the invariant (that it can be represented as some ∇h(v)

for explicit v) follows identically to the arguments in Lemma 5, where we inductively show that the

y block of each zt, wt can be maintained as a gradient of h.

Next, we prove the desired error bound. We first compute, for z∗ := (x∗,∇h(x∗)),

V rz0(z∗) = µV ωx0
(x∗) + V h

∗

∇h(x0)(∇h(x∗)) = µV ωx0
(x∗) + V hx∗(x0)

≤ V fx0
(x∗) + V fx∗(x0) = 〈∇f(x0)−∇f(x∗), x0 − x∗〉

≤ L ‖x0 − x∗‖2 ≤
2L

µ
(f(x0)− f(x∗)) .

By applying Proposition 3 with the bounds from Lemmas 220 and 221, we have

V rzT (z∗) ≤ µε

L
.

APPENDIX A. DEFERRED PROOFS FROM CHAPTER 2 565

The conclusion follows from smoothness of f and strong convexity of ω, i.e.

L

µ
V rzT (z∗) ≥ L

µ
V µωxT (x∗) ≥ L

2
‖xT − x∗‖2 ≥ f(xT)− f(x∗).

A.6 Missing proofs from Section 2.6

Lemma 7. Let w̄t := (xt +
∑
i∈[d] ∆

(i)
t ,∇f(vt+ 1

2
)). Then ∀u, taking expectations over iteration t,

E
[〈
gi(w

(i)
t), w

(i)
t − u

〉]
= 〈g(w̄t), w̄t − u〉 .

Proof. Note vt+ 1
2

is deterministic regardless of the sampled i ∈ [d]. Expanding for u = (ux, uy),

E
[〈
gi(w

(i)
t), w

(i)
t − u

〉]
=
∑
i∈[d]

pi

(〈
1

pi
∇if(vt+ 1

2
), x

(i)

t+ 1
2

− ux
〉

+

〈
vt+ 1

2
−
(
xt +

1

pi
∆

(i)
t

)
, yt+ 1

2
− uy

〉)
= 〈g(w̄t), w̄t − u〉 .

Here, we used the fact that ∇if(vt+ 1
2
) is 1-sparse.

Lemma 8 (Expected relative Lipschitzness). Let λ = 1 + S1/2/
√
µ, where S1/2 :=

∑
i∈[d]

√
Li.

Then, for the iterates (2.21) with pi =
√
Li/S1/2, taking expectations over iteration t,

E
[〈
gi(w

(i)
t)− gi (zt) , w

(i)
t − z

(i)
t+1

〉]
≤ λE

[
V rzt(w

(i)
t) + V r

w
(i)
t

(z
(i)
t+1)

]
.

Proof. Equivalently, we wish to show that

E
[〈
gi(w

(i)
t)− gi (zt) , w

(i)
t − z

(i)
t+1

〉]
≤
(

1 +
S1/2√
µ

)
E
[
V rzt(w

(i)
t) + V r

w
(i)
t

(z
(i)
t+1)

]
.

The proof is patterned from Lemma 4. By direct calculation, the left hand side is

E
[〈
gi(w

(i)
t)− gi (zt) , w

(i)
t − z

(i)
t+1

〉]
=
∑
i∈[d]

pi

(
1

pi

〈
∇if(vt+ 1

2
)−∇if (vt) , x

(i)

t+ 1
2

− x(i)
t+1

〉
+

1

pi

〈
xt − x(i)

t+ 1
2

,∇if(vt+ 1
2
)−∇if(v

(i)
t+1)

〉)
+
∑
i∈[d]

pi

〈
vt+ 1

2
− vt,∇f(vt+ 1

2
)−∇f(v

(i)
t+1)

〉
.

(A.6)

APPENDIX A. DEFERRED PROOFS FROM CHAPTER 2 566

We first bound the second and third lines of (A.6):

1

pi

(〈
∇if(vt+ 1

2
)−∇if (vt) , x

(i)

t+ 1
2

− x(i)
t+1

〉
+
〈
xt − x(i)

t+ 1
2

,∇if(vt+ 1
2
)−∇if(v

(i)
t+1)

〉)
≤
S1/2√
µ

(
µ

2

∥∥∥x(i)

t+ 1
2

− x(i)
t+1

∥∥∥2

2
+

1

2Li

∥∥∥∇if(vt+ 1
2
)−∇if(v

(i)
t+1)

∥∥∥2

2

+
µ

2

∥∥∥xt − x(i)

t+ 1
2

∥∥∥2

2
+

1

2Li

∥∥∥∇if(vt+ 1
2
)−∇if (vt)

∥∥∥2

2

)
≤
S1/2√
µ

(
V rzt(w

(i)
t) + V r

w
(i)
t

(z
(i)
t+1)

)
.

(A.7)

The first inequality used the definition pi =
√
Li/S1/2 and Cauchy-Schwarz, and the second used

strong convexity and Lemma 215. Next, we bound the fourth line of (A.6):〈
vt+ 1

2
− vt,∇f(vt+ 1

2
)− E

[
∇f(v

(i)
t+1)

]〉
≤ V f

∗

∇f(vt)

(
∇f(vt+ 1

2
)
)

+ V f
∗

∇f(v
t+ 1

2
)

(
E
[
∇f(v

(i)
t+1)

])
≤ V f

∗

∇f(vt)

(
∇f(vt+ 1

2
)
)

+ E
[
V f
∗

∇f(v
t+ 1

2
)

(
∇f(v

(i)
t+1)

)]
≤ E

[
V rzt(w

(i)
t) + V r

w
(i)
t

(z
(i)
t+1)

]
.

The first inequality is (2.15), the second is convexity of Bregman divergence, and the third used

nonnegativity of µ
2 ‖·‖

2
2. Combining with an expectation over (A.7) yields the claim.

Lemma 222. Suppose at step t, for Bt ∈ R2×2, pt, qt ∈ Rd, we maintain(
xt vt

)
=
(
pt qt

)
Bt.

Then, for any sampled i, we can compute Bt+1 ∈ R2×2, pt+1, qt+1 ∈ Rd such that(
xt+1 vt+1

)
=
(
pt+1 qt+1

)
Bt+1,

using two generalized partial derivative oracle queries and constant additional work.

Proof. Suppose on iteration t that coordinate i was sampled. In closed form, we have by the

definition of gradient estimators (2.21) the updates to the x component

xt+ 1
2

= xt −
1

µλpi
∇if(vt), xt+1 = xt −

1

µλpi
∇if(vt+ 1

2
).

Thus, if we can maintain the implicit representation of vt and vt+ 1
2
, we can compute these updates

APPENDIX A. DEFERRED PROOFS FROM CHAPTER 2 567

Algorithm 1 EG-Coord-Accel(x0, ε): Extragradient accelerated coordinate-smooth minimiza-
tion

Input: x0 ∈ Rd, f {Li}i∈[d]-coordinate smooth and µ-s.c. in ‖·‖2, and ε0 ≥ f(x0)− f(x∗)

λ← 1 +
∑
i∈[d]

√
Li/µ, T ← 4dλe, K ← dlog2

ε0
ε e, A←

(
1 1

κ −
1
κ2

0 1− 1
κ + 1

κ2

)
p0 ← x0, q0 ← x0, B0 ← I2×2

for 0 ≤ k < K do
Sample τ uniformly in [0, T − 1]
for 0 ≤ t < τ do

Sample i ∝
√
Li

Compute ∇if(vt), ∇if((1− λ−1)vt + λ−1xt) via generalized partial derivative oracle

st ←
(

1
µλpi
∇if((1− λ−1)vt + λ−1xt)

1
µλ2p2

i
∇if(vt)

)
Bt+1 ← BtA,

(
pt+1 qt+1

)
←
(
pt qt

)
− stBt+1

−1

end for

B0 ←

(
[Bτ]12 [Bτ]12

[Bτ]22 [Bτ]22

)
, p0 ← pτ , q0 ← qτ

end for
return [Bτ]12pτ + [Bτ]22qτ

via a partial derivative oracle. Next, the proof of Lemma 5 implies in closed form

vt+ 1
2

=

(
1− 1

λ

)
vt +

1

λ
xt,

vt+1 = vt +
1

λ

(
xt +

1

pi
∆

(i)
t − vt+ 1

2

)
=

(
1− 1

λ
+

1

λ2

)
vt +

(
1

λ
− 1

λ2

)
xt −

1

µλ2p2
i

∇if(vt),

where we have already computed ∇if(vt). Therefore, the update can be written as, for 2-sparse st,(
xt+1 vt+1

)
=
(
xt vt

)
A− st

where A :=

1 1
κ −

1
κ2

0 1− 1
κ + 1

κ2

 , st :=
(

1
µλpi
∇if(vt+ 1

2
) 1

µλ2p2
i
∇if(vt)

)
.

We can therefore maintain this implicitly via the equivalent step (doing constant extra work),

Bt+1 = BtA,
(
pt+1 qt+1

)
=
(
pt qt

)
− stBt+1

−1.

APPENDIX A. DEFERRED PROOFS FROM CHAPTER 2 568

A.7 Optimism

In this section, we discuss the relationship of our condition (relative Lipschitzness) with the condition

of “optimism” proposed by [452], which is known to recover the mirror prox algorithm for Lipschitz

operators. Specifically, the optimistic mirror descent procedure of [452] iterates the following steps

(see Equation 1 of their paper), for strongly convex r:

wt ← Proxrzt (ηMt) , zt+1 ← Proxrzt (ηg(wt)) . (A.8)

Here, Mt is a vector which ideally “resembles” the point ηg(wt), capturing a notion of “predictabil-

ity.” Under Lipschitzness of g, [452] notes that simply choosing Mt = g(zt) and η = 1
L yields an

algorithm identical to Algorithm 1, where the notion of predictable sequences comes from stability

of g. Rakhlin and Sridharan prove the following claim about their procedure (Lemma 1, [452]):

Proposition 54 (Optimistic mirror descent). For g : Z → Z∗ and any u ∈ Z,

∑
0≤t<T

〈g(wt), wt − u〉 ≤
V rz0(u)

η
+
∑

0≤t<T

‖Mt − g(wt)‖∗ ‖wt − zt+1‖

− 1

2η

(
‖wt − zt‖2 + ‖wt − zt+1‖2

)
.

Indeed, Proposition 54 follows by the proofs we give of Proposition 1 and Lemma 2, where we

apply Cauchy-Schwarz and strong convexity of r. However, crucially our proof in Section 2.4 of the

accelerated rate bypasses this direct application of Cauchy-Schwarz to the quantity Mt− g(wt), and

couples terms in a way which can yield a tighter relative Lipschitz parameter (see Lemma 4). In

this sense, relative Lipschitzness can sharpen the rate of convergence for optimistic mirror descent

achieved by [452], which was crucial for our improved guarantees.

A.8 Reducing strongly monotone problems to regularized

subproblems

A.8.1 Convex optimization

We give the following generic reduction for strongly convex optimization in the form of an algorithm.

Similar reductions are standard in the literature [227], but we include the algorithm and full analysis

here for completeness.

Lemma 223. In Algorithm 66, letting x? minimize f , we have for every k ∈ [K]:

EVxk (x?) ≤
1

2k
Vx0

(x?) .

APPENDIX A. DEFERRED PROOFS FROM CHAPTER 2 569

Algorithm 66: Redx-Convex: Strongly convex optimization reduction

1 Input: µ-strongly convex f : X → R, x0 ∈ X
2 Parameter(s): K ∈ N
3 for 0 ≤ k < K do
4 xk+1 ← any (possibly random) point satisfying

EVxk+1
(x?k+1) ≤ 1

4
Vxk(x?k+1), where x?k+1 := argminx∈X f(x) +

µ

4
Vxk(x)

Proof. By applying the optimality condition on x?k+1, strong convexity of f , and (2.10),

〈
∇f(x?k+1), x?k+1 − x?

〉
≤ µ

4

〈
xk − x?k+1, x

?
k+1 − x?

〉
=⇒ µVx?k+1

(x?) ≤ f(x?k+1)− f(x?)

≤
〈
∇f(x?k+1), x?k+1 − x?

〉
≤ µ

4
Vxk(x?)−

µ

4
Vx?k+1

(x?)−
µ

4
Vxk(x?k+1).

Further by the triangle inequality and (a+ b)2 ≤ 2a2 + 2b2, we have

Vxk+1
(x?) ≤ 2Vxk+1

(x?k+1) + 2Vx?k+1
(x?).

Hence, combining these pieces,

EVxk+1
(x?) ≤ 2Vx?k+1

(x?) + 2EVxk+1
(x?k+1)

≤ 2Vx?k+1
(x?) +

1

2
Vxk(x?k+1)

≤ 1

2
Vxk(x?)−

1

2
Vx?k+1

(x?) ≤
1

2
Vxk(x?).

We apply this reduction in order to prove Corollary 4.

Corollary 4. Suppose the summands {fi}i∈[n] in (2.36) satisfy Assumption 2, and Ffs is µ-strongly

convex with minimizer x?. Further, suppose we have x0 ∈ X such that Ffs(x0) − Ffs(x?) ≤ ε0.

Algorithm 66 using Algorithm 6 to implement steps returns x ∈ X with EFfs(x) − Ffs(x?) ≤ ε in

Ntot iterations, using a total of O(Ntot) gradient calls each to some fi for i ∈ [n], where

Ntot = O
(
κfs log

(κfsε0
ε

))
, for κfs := n+

∑
i∈[n]

√
Li√
nµ

.

Proof. The overhead K is asymptotically the same here as the parameter T in Theorem 8, by

APPENDIX A. DEFERRED PROOFS FROM CHAPTER 2 570

analogous smoothness and strong convexity arguments. Moreover, we use Theorem 8 to solve each

subproblem required by Algorithm 66; in particular, the subproblem is equivalent to approximately

minimizing Ffs + µ
8 ‖·‖

2
, up to a linear shift which does not affect any smoothness bounds, and a

constant in the strong convexity. We note that we will initialize the subproblem solver in iteration

k with xk. We hence can set T = 2 and S = O(κfs), yielding the desired iteration bound.

A.8.2 Convex-concave optimization

We give the following generic reduction for strongly convex-concave optimization in the form of an

algorithm. For simplicity in this section, we define for z = (zx, zy) ∈ X × Y,

ω(z) :=
µx

2
‖zx‖2 +

µy

2
‖zy‖2 .

Algorithm 67: Redx-Minimax: Reduction for minimax

1 Input: F : X × Y → R such that F (·, y) is µx-strongly convex for all y ∈ Y and F (x, ·)
µy-strongly concave for all x ∈ X , z0 ∈ X × Y

2 Parameter(s): K ∈ N
3 for 0 ≤ k < K do
4 zk+1 ← any (possibly random) point satisfying

E
[
V ωzk+1

(
z?k+1

)]
≤ 1

4

(
V ωzk

(
z?k+1

))
,

where z?k+1 := argminzx∈X argmaxzy∈YF (zx, zy) +
µx

4
Vzxk (zx)− µy

4
Vzyk (zy)

Lemma 224. In Algorithm 67, letting (x?, y?) be the saddle point of F , we have for every k ∈ [K]:

E
[
V ωzk(z?)

]
≤ 1

2k
V ωz0(z?).

Proof. By applying the optimality conditions on z?k+1, strong convexity-concavity of F , and (2.10),

and letting ΦF be the gradient operator of F ,

〈
ΦF (z?k+1), z?k+1 − z?

〉
≤ µx

4

〈
zxk − [z?k+1]x, [z?k+1]x − zx?

〉
+
µy

4

〈
zyk − [z?k+1]y, [z?k+1]y − zy?

〉
=⇒ V ωz?k+1

(z?) ≤
〈
ΦF (z?k+1), z?k+1 − z?

〉
≤ 1

4
V ωzk(z?)−

1

4
V ωz?k+1

(z?)−
1

4
Vzk(z?k+1).

APPENDIX A. DEFERRED PROOFS FROM CHAPTER 2 571

Further by the triangle inequality and (a+ b)2 ≤ 2a2 + 2b2, we have

V ωzk+1
(z?) ≤ 2V ωzk+1

(z?k+1) + 2V ωz?k+1
(z?).

Hence, combining these pieces,

EV ωzk+1
(z?) ≤ 2V ωz?k+1

(z?) + 2EV ωzk+1
(z?k+1)

≤ 2V ωz?k+1
(z?) +

1

2
V ωzk(z?k+1)

≤ 1

2
V ωzk(z?)−

1

2
V ωz?k+1

(z?) ≤
1

2
V ωzk(z?).

We apply this reduction in order to prove Corollary 5.

Corollary 5. Suppose the summands {fi, gi, hi}i∈[n] in (2.49) satisfy Assumption 4, and Fmmfs is

µx-strongly convex in x, µy-strongly convex in y, with saddle point (x?, y?). Further, suppose we

have (x0, y0) ∈ X × Y such that GapFmmfs
(x0, y0) ≤ ε0. Algorithm 66 using Algorithm 8 and 9 to

implement steps returns (x, y) ∈ X × Y with EGap(x, y) ≤ ε in Ntot iterations, using a total of

O(Ntot) gradient calls each to some fi, gi, or hi for i ∈ [n], where

Ntot = O
(
κmmfs log(κmmfs) log

(κmmfsε0
ε

))
,

for κmmfs := n+
1√
n

∑
i∈[n]

√Lx
i

µx
+

√
Ly
i

µy
+

Λxx
i

µx
+

Λxx
i√
µxµy

+
Λyy
i

µy

 .

Proof. The overhead K is asymptotically the same here as the logarithmic term in the parameter T in

Theorem 9, by analogous smoothness and strong convexity arguments. Moreover, we use Theorem 9

with µx, µy rescaled by constants to solve each subproblem required by Algorithm 67; in particular,

the subproblem is equivalent to approximately finding a saddle point to Ffs(z) + µx

8 ‖z
x‖2− µy

8 ‖z
y‖2,

up to a linear shift which does not affect any smoothness bounds. We note that we will initialize the

subproblem solver in iteration k with zk. We hence can set T = O(γ), yielding the desired iteration

bound.

A.9 Helper facts

Here we state two helper facts that are used throughout the analysis, for completeness of the paper.

The first gives a few properties on monotone operators. We first recall by definition, an operator

APPENDIX A. DEFERRED PROOFS FROM CHAPTER 2 572

Φ : Z → Z∗ is monotone if

〈Φ(z)− Φ(z′), z − z′〉 ≥ 0, for all z′, z′ ∈ Z.

An operator Φ is m-strongly monotone with respect to convex r : Z → R if for all z, z′ ∈ Z,

〈Φ(z)− Φ(z′), z − z′〉 ≥ m 〈∇r(z)−∇r(z′), z − z′〉 , for all z′, z′ ∈ Z.

We state the following standard facts about monotone operators and their specialization to

convex-concave functions, and include references or proofs for completeness.

Fact 35. The following facts about monotone operators hold true:

1. Given a convex function f(x) : X → R, its induced operator Φ = ∇f : X → X ∗ is monotone.

2. Given a convex-concave function h(x, y) : X × Y → R, Φ(x, y) = (∇xh(x, y),−∇yh(x, y)) :

X × Y → X ∗ × Y∗ is monotone.

3. Given a convex function f , its induced operator Φ = ∇f is 1-strongly monotone with respect

to itself.

4. Monotonicity is preserved under addition: For any m,m′ ≥ 0, if Φ is m-strongly monotone

and Ψ is m′-strongly monotone with respect to convex r, then Φ + Ψ is (m + m′)-strongly

monotone with respect to r.

Proof. The first two items are basic fact of convexity and minimax optimization [460]. For the third

item, we note that for any x, x′ ∈ X

〈Φ(x)− Φ(x′), x− x′〉 = 〈∇f(x)−∇f(x′), x− x′〉 ,

which satisfies 1-strong monotonicity with respect to f by definition.

For the fourth item, we note that for any m,m′ ≥ 0 and assumed Φ,Ψ,

〈Φ(z)− Φ(z′), z − z′〉 ≥ m 〈∇r(z)−∇r(z′), z − z′〉 ,

〈Ψ(z)−Ψ(z′), z − z′〉 ≥ m′ 〈∇r(z)−∇r(z′), z − z′〉 ,

=⇒ 〈Φ(z) + Ψ(z)− (Φ(z′) + Ψ(z′)) , z − z′〉 ≥ (m+m′) 〈∇r(z)−∇r(z′), z − z′〉 .

These facts about monotone operators find usage in proving (relative) strong monotonicity of

our operators; see Lemma 11, 18 and 27 in the main paper.

The second fact bounds the smoothness of best-response function of some given convex-concave

function h;X × Y → R. We refer readers to Fact 1 of [533] for a complete proof.

APPENDIX A. DEFERRED PROOFS FROM CHAPTER 2 573

Fact 36 (Fact 1, [533]). Suppose h satisfies the blockwise-smoothness properties: for all u, v ∈ X×Y,

‖∇xh(u)−∇xh(v)‖ ≤ Λxx ‖ux − vx‖+ Λxx ‖uy − vy‖ ,

‖∇yh(u)−∇yh(v)‖ ≤ Λxx ‖ux − vx‖+ Λyy ‖uy − vy‖ ,
(A.9)

and suppose h is µx-strongly convex in x and µy-strongly concave in y. The best response function

hy(x) := maxy∈Y h(x, y) is µx-strongly convex and Λxx + (Λxx)2

µy -smooth, and hx(y) := minx∈Y h(x, y)

is µy-strongly concave and Λyy + (Λxx)2

µx -smooth.

We use this fact when converting radius bounds to duality gap bounds in Lemma 15 and 16.

A.10 Proofs for Section 2.9

A.10.1 Proofs for Section 2.9.2

Proposition 5 (Partial variance analysis of randomized mirror prox). Suppose (possibly random)

Φ̃ is defined so that in each iteration s, for all u ∈ Z and all ρ > 0, there exists a (possibly random)

point w̄s ∈ Z and a γ-strongly monotone operator Φ : Z → Z∗ (with respect to r) such that

E
[〈

Φ̃(ws+1/2), ws+1/2 − w?
〉]

= E [〈Φ(w̄s), w̄s − w?〉] ,

E
[〈

Φ̃(ws+1/2)− Φ̃(ws), ws+1/2 − ws+1

〉]
≤
(
λ0 +

1

ρ

)
E
[
V rws(ws+1/2) + V rws+1/2

(ws+1)
]

+ ρλ1E
[
V rw0

(w?) + V rw̄s(w?)
]
,

(2.56)

where w? solves the VI in Φ. Then by setting

ρ← γ

5λ1
, λ← λ0 +

1

ρ
, T ← 5λ

γ
=

5λ0

γ
+

25λ1

γ2
,

in Algorithm 5, and returning w̄σ for 0 ≤ σ < S sampled uniformly at random,

E
[
V rw̄σ (w?)

]
≤ 1

2
V rw0

(w?).

Proof. First, consider a single iteration 0 ≤ s < S, and fix the point ws in Algorithm 5. By the

optimality conditions on ws+1/2 and ws+1, we have

1

λ

〈
Φ̃(ws), ws+1/2 − ws+1

〉
≤ V rws(ws+1)− V rws+1/2

(ws+1)− V rws(ws+1/2),

1

λ

〈
Φ̃(ws+1/2), ws+1 − w?

〉
≤ V rws(w?)− V

r
ws+1

(w?)− V rws(ws+1).

APPENDIX A. DEFERRED PROOFS FROM CHAPTER 2 574

Summing the above, rearranging, and taking expectations yields

E
[

1

λ
〈Φ(w̄s), w̄s − w?〉

]
= E

[
1

λ

〈
Φ̃(ws+1/2), ws+1/2 − w?

〉]
≤ E

[
V rws(w?)− V

r
ws+1

(w?)
]

+ E
[

1

λ

〈
Φ̃(ws+1/2)− Φ̃(ws), ws+1/2 − ws+1

〉
− V rws(ws+1/2) + V rws+1/2

(ws+1)

]
≤ E

[
V rws(w?)− V

r
ws+1

(w?)
]

+
ρλ1

λ
E
[
V rw0

(w?) + V rw̄s(w?)
]
.

In the last line we used the assumption (2.56). Since w? solves the VI in Φ, adding E 1
λ 〈Φ(w?), w? − w̄s〉

to the left-hand side above and applying strong monotonicity of g in r yields

E
[

1

λ
V rw̄s(w?)

]
≤ E

[
V rws(w?)− V

r
ws+1

(w?)
]

+
ρλ1

λ
E
[
V rw0

(w?) + V rw̄s(w?)
]
.

Telescoping the above for 0 ≤ s < S and using nonnegativity of Bregman divergences yields

(γ − ρλ1)E

 1

T

∑
0≤t<T

V rw̄s(w?)

 ≤ (λ
T

+ ρλ1

)
V rw0

(w?).

Substituting our choices of w̄s, ρ, λ, and T yields the claim.

Lemma 25. Define {Φjk`,Φjk`′} : Z → Z∗ as in (2.58), (2.59), and the random “aggregate point”

w̄(`) as in (2.60). Then, for all u ∈ Z, recalling the definition of Φ = Φmmfs-pd + γ(∇r − ∇r(z̄))
from (2.55),

E [〈Φjk`′(waux(jk`)), waux(jk`)− u〉] = E`∼r [〈Φ(w̄(`)), w̄(`)− u〉] .

Proof. We demonstrate this equality for the X and (X ∗)n blocks; the others (the Y and (Y∗)n

blocks) follow symmetrically. We will use the definitions of Φh and Φbilin from (2.54).

X block. Fix ` ∈ [n]. We first observe that

E`′∼r
[[

Φhjk`′(waux(jk`))
]x]

=
[
Φh(w̄(`))

]x
,

E`′∼r
[[

Φsep
jk`′(waux(jk`))

]x]
= (1 + γ) [∇r(w̄(`))]

x − γ [∇r(z̄)]x .

Moreover, by expanding the expectation over j ∼ p,

Ej∼p
[〈[

Φbilin
jk`′ (waux(jk`))

]x
, wx

aux(`)− ux
〉]

=

〈
1

n

∑
j∈[n]

(wf∗j + ∆x(j)), wx
aux(`)− ux

〉

=
〈[

Φbilin(w̄(`))
]x
, wx

aux(`)− ux
〉
.

APPENDIX A. DEFERRED PROOFS FROM CHAPTER 2 575

Summing, we conclude that for fixed ` and taking expectations over j, k, `′,

E
[〈

[Φjk`′(waux(jk`))]
x
, wx

aux(`)− ux
〉]

=
〈
[Φ(w̄(`))]

x
, wx

aux(`)− ux
〉
.

The conclusion for the X block follows by taking expectations over `.

X ∗ blocks. Note that the [Φhjk`′]
f∗ blocks are always zero. Next, for the [Φsep

jk`′]
f∗ component, by

expanding the expectation over j ∼ p and taking advantage of sparsity, for any ` ∈ [n],

Ej∼p
[〈[

Φsep
jk`′(waux(jk`))

]f∗
, wf∗

aux(jk`)− uf
∗
〉]

= (1 + γ)
∑
j∈[n]

〈
1

n
∇f∗j

(
w

f∗j
aux

)
, w

f∗j
aux − uf

∗
j

〉

−γ
∑
j∈[n]

〈
1

n
∇f∗j

(
z̄f
∗
j

)
, w

f∗j
aux − uaj

〉
=
〈

(1 + γ) [∇r(w̄(`))]
f∗ − γ [∇r(z̄)]f

∗
, w̄f∗(`)− uf

∗
〉
.

Here, we recall f∗j denotes the block corresponding to the jth copy of X ∗. Finally, for the [Φbilin
jk`′]

f∗

component, fix ` ∈ [n]. Expanding the expectation over j ∼ p and taking advantage of sparsity,

Ej∼p
[〈[

Φbilin
jk`′ (waux(jk`))

]f∗
, [waux(jk`)]

f∗ − uf
∗
〉]

=
〈[

Φbilin(w̄(`))
]f∗

, w̄f∗(`)− uf
∗
〉
.

Summing, we conclude that for fixed ` and taking expectations over j, k, `′,

E
〈

[gjk`′(waux(jk`))]
f∗
, [waux(jk`)]

f∗ − uf
∗
〉

=
〈

[gtot(w̄(`))]
f∗
, w̄f∗(`)− uf

∗
〉
.

The conclusion for the X ∗ blocks follows by taking expectations over `.

Lemma 26. Lines 6 to 18 of Algorithm 9 implement Algorithm 5 on ({Φ̃}, r) defined in (2.58),

(2.59), (2.53), for σ iterations, and returns w̄σ, following the definition (2.60). Each iteration s > 0

is implementable in O(1) gradient calls to some {fj , gk, hl}, and O(1) vector operations on X and

Y.

Proof. Let {ws, ws+1/2}0≤s≤σ be the iterates of Algorithm 5. We will inductively show that some

run of Lines 6 to 18 in Algorithm 9 preserves the invariants

ws =
(
wx
s, w

y
s,
{
∇fi(wfi

s)
}
i∈[n]

, {∇fi(wgi
s)}i∈[n]

)
,

ws+1/2 =

(
wx
s+1/2, w

y
s+1/2,

{
∇fi(wfi

s+1/2)
}
i∈[n]

,
{
∇fi(wgi

s+1/2)
}
i∈[n]

)

APPENDIX A. DEFERRED PROOFS FROM CHAPTER 2 576

for all 0 ≤ s ≤ σ. Once we prove this claim, it is clear that Lines 6 to 18 in Algorithm 9 implements

Algorithm 5 and returns w̄σ, upon recalling the definitions (2.58), (2.59), (2.53), and (2.60).

The base case of our induction follows from the way w0 is initialized in Line 18. Next, suppose

for some 0 ≤ s ≤ σ, our inductive claim holds. By the update in Line 9 of Algorithm 9, if j ∈ [n]

was sampled in iteration s, using the first item in Fact 1,

w
f∗j
s+1/2 ← argmin

w
f∗
j ∈X∗

{〈
1

nλpj

(
(1 + γ)w

fj
s − γz̄fj − wx

s

)
, wf∗j

〉
+ V

f∗j

w
f∗
j
s

(
wf∗j

)}
= ∇fj

(
w

fj
s −

1

nλpj

(
(1 + γ)w

fj
s − γz̄fj − wx

s

))
.

Similarly, by the update in Line 10, if k ∈ [n] was sampled in iteration s,

w
g∗k
s+1/2 ← argmin

wg∗
k

〈
1

nλqk
((1 + γ)wgk

s − γz̄gk − wy
s) , w

g∗k

〉
+ V

g∗k

w
g∗
k
s

(
wg∗k

)
.

= ∇gk
(
wgk
s −

1

nλqk
((1 + γ)wgk

s − γz̄gk − wy
s)

)
.

Hence, the updates to w
f∗j
s+1/2 and w

g∗k
s+1/2 preserve our invariant, and all other w

f∗i
s+1/2, i 6= j and

w
g∗i
s+1/2, i 6= k do not change by sparsity of Φjk`. Analogously the updates to each w

f∗i
s+1 and w

g∗i
s+1

preserve our invariant. Finally, in every iteration s > 0, the updates to wxx
s+1/2 and wxx

s+1 only require

evaluating O(1) new gradients each, by 1-sparsity of the dual block updates.

A.10.2 Proofs for Section 2.9.3

Lemma 28. Define {Φjk`,Φjk`′} : Z → Z∗ as in (2.58), (2.59), and define r : Z → R as in (2.53).

Letting w+(jk``′) be ws+1 in Algorithm 9 if j, k, `, `′ were sampled in iteration s, defining

Φfgjk`(w) := Φsep
jk`(w) + Φbilin

jk` (w),

Φfgjk`′(waux(jk`)) := Φsep
jk`′(waux(jk`)) + Φbilin

jk`′ (waux(jk`)),

we have

E
[〈

Φfgjk`′(waux(jk`))− Φfgjk`(w), waux(jk`)− w+(jk``′)
〉]

≤ λfgE
[
V rw (waux(jk`)) + V rwaux(jk`)

(w+(jk``′))
]
,

for

λfg = 2n(1 + γ) +

∑
i∈[n]

√
Lx
i√

nµx
+

∑
i∈[n]

√
Ly
i√

nµy
.

Proof. This is immediate upon combining the following Lemmas 225 and 226.

APPENDIX A. DEFERRED PROOFS FROM CHAPTER 2 577

Lemma 225. Following notation of Lemma 28, for λsep := 2n(1 + γ), we have

E
[〈

Φsep
jk`′(waux(jk`))− Φsep

jk`(w), waux(jk`)− w+(jk``′)
〉]

≤ λsepE
[
V rw (waux(jk`)) + V rwaux(jk`)

(w+(jk``′))
]
.

Proof. The proof is similar to (part of) the proof of Lemma 21. We claim that for any j, k, `, `′,〈
Φsep
jk`′(waux(jk`))− Φsep

jk`(w), waux(jk`)− w+(jk``′)
〉
≤ λsep

(
V rw (waux(jk`)) + V rwaux(jk`)

(w+(jk``′))
)
.

Fix j, k, `, `′. Since all pj and qk are lower bounded by 1
2n by assumption, applying Lemma 1 to the

relevant blocks of r and nonnegativity of Bregman divergences proves the above display.

Lemma 226. Following notation of Lemma 28, for

λcross :=
2
∑
i∈[n]

√
Lx
i√

nµx
+

2
∑
i∈[n]

√
Ly
i√

nµy
,

we have

E
[〈

Φbilin
jk`′ (waux(jk`))− Φbilin

jk` (w), waux(jk`)− w+(jk``′)
〉]

≤ λcrossE
[
V rw (waux(jk`)) + V rwaux(jk`)

(w+(jk``′))
]
.

Proof. The proof is similar to (part of) the proof of Lemma 21. We claim that for any j, k, `, `′,

〈
Φbilin
jk`′ (waux(jk`))− Φbilin

jk` (w), waux(jk`)− w+(jk``′)
〉
≤ λcross

(
V rw (waux(jk`)) + V rwaux(jk`)

(w+(jk``′))
)
.

Fix j, k, `, `′. By applying Item 1 in Lemma 13 with f = fj , α = (Lx
jµ

x)−
1
2 ,

Ej
[

1

npj

〈
w

f∗j
aux − wf∗j , wx

aux(`)− wx
+(jk``′)

〉
+

1

npj

〈
wx − wx

aux(`), w
f∗j
aux − w

f∗j
+ (jk``′)

〉]
≤

2
∑
i∈[n]

√
Lx
i√

nµx

(
V rw (waux(jk`)) + V rwaux(jk`)

(w+(jk``′))
)
.

Similarly, by applying Item 1 in Lemma 13 with f = gk, α = (Ly
kµ

y)−
1
2 ,

Ej
[

1

nqk

〈
w

g∗k
aux − wg∗k , wy

aux(`)− w
y
+(jk``′)

〉
+

1

nqk

〈
wy − wy

aux(`), w
g∗k
aux − wg∗k

+ (jk``′)
〉]

≤
2
∑
i∈[n]

√
Ly
i√

nµy

(
V rw (waux(jk`)) + V rwaux(jk`)

(w+(jk``′))
)
.

Summing the above displays yields the desired claim.

APPENDIX A. DEFERRED PROOFS FROM CHAPTER 2 578

Lemma 29. Following notation of Lemma 28, and recalling the definition (2.61), for

λ1 := 32(λh)2,

where we define

λh :=
1

n

∑
i∈[n]

(
Λxx
i

µx
+

Λxx
i√
µxµy

+
Λyy
i

µy

)
. (2.61)

we have for any ρ > 0,

E
[〈

Φhjk`′(waux(jk`))− Φhjk`(w), waux(jk`)− w+(jk``′)
〉]

≤
(

2λh +
1

ρ

)
E
[
V rw (waux(jk`)) + V rwaux(jk`)

(w+(jk``′))
]

+ ρλ1E
[
V rw0

(w?) + V rw̄(`)(w?)
]
.

(2.62)

Proof. The proof is similar to (part of) the proof of Lemma 14. Fix j, k, `, `′. By definition,

[
Φhjk`′(waux(jk`))− Φhjk`(w)

]xx
=

1

nr`′
(∇xh`′(wx

aux(`), w
y
aux(`))−∇xh`′(wx

0, w
y
0),∇yh`′(wx

0, w
y
0)−∇yh`′(wx

aux(`), w
y
aux(`)))

− 1

nr`
(∇xh`(wx, wy)−∇xh`(wx

0, w
y
0),∇yh`(wx

0, w
y
0)−∇yh`(wx, wy)) .

We decompose the x blocks of the left-hand side of (2.62) as〈[
Φhjk`′(waux(jk`))− Φhjk`(w)

]x
, wx

aux(`)− wx
+(jk``′)

〉
= 1 + 2 + 3 ,

1 :=
1

nr`′

〈
∇xh`′(wx

aux(`), w
y
aux(`))−∇xh`′(wx

0, w
y
0), wx

aux(`)− wx
+(jk``′)

〉
,

2 :=
1

nr`

〈
∇xh`(wx

0, w
y
0)−∇xh`(wx

aux(`), w
y
aux(`)), w

x
aux(`)− wx

+(jk``′)
〉
,

3 :=
1

nr`

〈
∇xh`(wx

aux(`), w
y
aux(`))−∇xh`(wx, wy), wx

aux(`)− wx
+(jk``′)

〉
.

By the Lipschitzness bounds in (2.51) and Young’s inequality,

1 ≤ 1

nr`′
‖∇xh`′(wx

aux(`), w
y
aux(`))−∇xh`′(wx

0, w
y
0)‖
∥∥wx

aux(`)− wx
+(jk``′)

∥∥
≤ 1

nr`′

(
Λxx
`′ ‖wx

aux(`)− wx
0‖
∥∥wx

aux(`)− wx
+(jk``′)

∥∥+ Λxx
`′ ‖wy

aux(`)− w
y
0‖
∥∥wx

aux(`)− wx
+(jk``′)

∥∥)
≤ 2ρ(Λxx

`′)
2

µxn2r2
`′
‖wx

aux(`)− wx
0‖

2
+

2ρ(Λxx
`′)

2

µxn2r2
`′
‖wy

aux(`)− w
y
0‖

2
+
µx

4ρ

∥∥wx
aux(`)− wx

+(jk``′)
∥∥2
.

APPENDIX A. DEFERRED PROOFS FROM CHAPTER 2 579

Symmetrically, we bound

2 ≤ 2ρ(Λxx
`)2

µxn2r2
`

‖wx
aux(`)− wx

0‖
2

+
2ρ(Λxx

`)2

µxn2r2
`

‖wy
aux(`)− w

y
0‖

2
+
µx

4ρ

∥∥wx
aux(`)− wx

+(jk``′)
∥∥2
.

Finally, we have

3 ≤ 1

nr`
‖∇xh`(wx

aux(`), w
y
aux(`))−∇xh`(wx, wy)‖

∥∥wx
aux(`)− wx

+(jk``′)
∥∥

≤ 1

nr`

(
Λxx
` ‖wx

aux(`)− wx‖
∥∥wx

aux(`)− wx
+(jk``′)

∥∥+ Λxx
` ‖wy

aux(`)− wy‖
∥∥wx

aux(`)− wx
+(jk``′)

∥∥)
≤ 1

nr`

(
Λxx
`

µx

(
µx

2
‖wx

aux(`)− wx‖2 +
µx

2

∥∥wx
aux(`)− wx

+(jk``′)
∥∥2
))

+
1

nr`

(
Λxx
`√
µxµy

(
µy

2
‖wy

aux(`)− wy‖2 +
µx

2

∥∥wx
aux(`)− wx

+(jk``′)
∥∥2
))

.

We may similarly decompose the y blocks of the left-hand side of (2.62) as 4 + 5 + 6 , where

symmetrically, we have

4 ≤
2ρ(Λyy

`′)
2

µyn2r2
`′
‖wy

aux(`)− w
y
0‖

2
+

2ρ(Λxx
`′)

2

µyn2r2
`′
‖wx

aux(`)− wx
0‖

2
+
µy

4ρ

∥∥wy
aux(`)− w

y
+(jk``′)

∥∥2
,

5 ≤
2ρ(Λyy

`)2

µyn2r2
`

‖wy
aux(`)− w

y
0‖

2
+

2ρ(Λxx
`)2

µyn2r2
`

‖wx
aux(`)− wx

0‖
2

+
µy

4ρ

∥∥wy
aux(`)− w

y
+(jk``′)

∥∥2
,

6 ≤ 1

nr`

(
Λyy
`

µy

(
µy

2
‖wy

aux(`)− wy‖2 +
µy

2

∥∥wy
aux(`)− w

y
+(jk``′)

∥∥2
))

+
1

nr`

(
Λxx
`√
µxµy

(
µx

2
‖wx

aux(`)− wx‖2 +
µy

2

∥∥wy
aux(`)− w

y
+(jk``′)

∥∥2
))

.

We first observe that by definition of r and nonnegativity of Bregman divergences,

3 + 6 ≤ 1

nr`

(
Λxx
`

µx
+

Λxx
`√
µxµy

+
Λyy
`

µy

)(
V rw(waux(jk`)) + V rwaux(jk`)

(w+(jk``′))
)

≤ 2λh
(
V rw(waux(jk`)) + V rwaux(jk`)

(w+(jk``′))
)
.

Moreover, since by the triangle inequality and (a+ b)2 ≤ 2a2 + 2b2,

‖wx
aux(`)− wx

0‖
2 ≤ 2 ‖wx

aux(`)− wx
?‖

2
+ 2 ‖wx

0 − wx
?‖

2
,

‖wy
aux(`)− w

y
0‖

2 ≤ 2 ‖wy
aux(`)− wy

?‖
2

+ 2 ‖wy
0 − wy

?‖
2
,

APPENDIX A. DEFERRED PROOFS FROM CHAPTER 2 580

we have by definition of r and λ1,

1 + 2 + 4 + 5 ≤ 1

ρ

(
V rw(waux(jk`)) + V rwaux(jk`)

(w+(jk``′))
)

+ ρλ1

(
V rw0

(w?) + V rw̄(`)(w?)
)
.

Summing the above displays and taking expectations yields the claim.

A.10.3 Proofs for Section 2.9.4

Proposition 7. Consider a single iteration 0 ≤ t < T of Algorithm 8, and let z? is the saddle point

to Fmmfs-pd (defined in (2.52)). Setting S as in (2.63) and

N := O (log (γλ)) , (2.64)

for an appropriately large constant in our implementation of Algorithm 9 and λ as in (2.63), we

have

EV rzt+1
(z?) ≤

4γ

1 + 4γ
V rzt(z?).

Proof. Fix an iteration t ∈ [T] of Algorithm 8, and let z?t+1 be the exact solution to the VI in

Φmmfs-pd + γ∇r − ∇r(zt). By the guarantee of Proposition 6, after the stated number of NS

iterations in Algorithm 9 (for an appropriately large constant), we obtain a point zt+1 such that

E
[
V rzt+1

(z?t+1)
]
≤ 1

1 + 3γκ̃
V rzt(ẑt+1), where κ̃ := 10

∑
i∈[n]

(
Lx
i + Λxx

i

µx
+
Ly
i + Λyy

i

µy
+

Λxx
i√
µxµy

)2

.

(A.10)

The optimality condition on z?t+1 yields

〈
Φmmfs-pd

(
z?t+1

)
, z?t+1 − z?

〉
≤ γV rzt (z?)− γV rz?t+1

(z?)− γVzt
(
z?t+1

)
.

APPENDIX A. DEFERRED PROOFS FROM CHAPTER 2 581

Rearranging terms then gives:

〈
Φmmfs-pd (zt+1) , zt+1 − z?

〉
≤ γV rzt (z?)− γV rzt+1

(z?)− γV rzt
(
z?t+1

)
+ γ

(
V rzt+1

(z?)− V rz?t+1
(z?)

)
+
〈
Φmmfs-pd (zt+1)− Φmmfs-pd

(
z?t+1

)
, z?t+1 − z?

〉
+
〈
Φmmfs-pd (zt+1) , zt+1 − z?t+1

〉
= γV rzt (z?)− γV rzt+1

(z?)− γV rzt
(
z?t+1

)
+ γV rzt+1

(
z?t+1

)
+ γ

〈
∇r (zt+1)−∇r

(
z?t+1

)
, z?t+1 − z?

〉
+
〈
Φmmfs-pd (zt+1)− Φmmfs-pd

(
z?t+1

)
, z?t+1 − z?

〉
+
〈
Φmmfs-pd (zt+1) , zt+1 − z?t+1

〉
≤ γV rzt (z?)− γV rzt+1

(z?)− γV rzt
(
z?t+1

)
+ γV rzt+1

(
z?t+1

)
+ γ

〈
∇r (zt+1)−∇r

(
z?t+1

)
, zt+1 − z?

〉
+
〈
Φmmfs-pd (zt+1)− Φmmfs-pd

(
z?t+1

)
, zt+1 − z?

〉
+
〈
Φmmfs-pd (zt+1)− Φmmfs-pd (z?) , zt+1 − z?t+1

〉
.

(A.11)

In the only equality, we used the identity (2.10). The last inequality used monotonicity of the

operators γ∇r and Φmmfs-pd, as well as Φmmfs-pd(z?) = 0 because it is an unconstrained minimax

optimization problem. In the remainder of the proof, we will bound the last three lines of (A.11).

First, for any α > 0, we bound:

〈
∇r (zt+1)−∇r

(
z?t+1

)
, zt+1 − z?

〉
= µx

〈
zxt+1 − (z?t+1)x, zxt+1 − zx?

〉
+ µy

〈
zyt+1 − (z?t+1)y, zyt+1 − zy?

〉
+

1

n

∑
i∈[n]

〈
∇f∗i (z

f∗i
t+1)−∇f∗i ((z?t+1)f

∗
i), z

f∗i
t+1 − z

f∗i
?

〉
+

1

n

∑
i∈[n]

〈
∇g∗i (z

g∗i
t+1)−∇g∗i ((z?t+1)g

∗
i), z

g∗i
t+1 − z

g∗i
?

〉
≤ 2αµx

∥∥zxt+1 − (z?t+1)x
∥∥2

+
µx

8α

∥∥zxt+1 − zx?
∥∥2

+ 2αµy
∥∥zyt+1 − (z?t+1)y

∥∥2
+
µy

8α

∥∥zyt+1 − zy?
∥∥2

+
1

n

∑
i∈[n]

(
2αLx

i

(µx)2

∥∥∥zf∗it+1 − (z?t+1)f
∗
i

∥∥∥2

+
1

8αLx
i

∥∥∥zf∗it+1 − z
f∗i
?

∥∥∥2
)

+
1

n

∑
i∈[n]

(
2αLy

i

(µy)2

∥∥∥zg∗it+1 − (z?t+1)g
∗
i

∥∥∥2

+
1

8αLy
i

∥∥∥zg∗it+1 − z
g∗i
?

∥∥∥2
)

≤ 1

4α
V rzt+1

(z?) + κ̃αV rzt+1
(z?t+1). (A.12)

The equality used the definition of r in (2.53). The first inequality used Young’s and Cauchy-Schwarz

APPENDIX A. DEFERRED PROOFS FROM CHAPTER 2 582

on the X × Y blocks, as well as 1
µx
i
-smoothness of the f∗i from Assumption 3 and Item 4 in Fact 1

(and similar bounds on each g∗i). The last inequality used strong convexity of each piece of r.

Similarly, by definition of Φmmfs-pd (2.54) which we denote for Φ for brevity in the following:

〈
Φ (zt+1)− Φ

(
z?t+1

)
, zt+1 − z?

〉
≤ 1

8
V rzt+1

(z?) + 2κ̃V rzt+1
(z?t+1)

+
1

n

∑
i∈[n]

〈
∇xhi(zxt+1, z

y
t+1)−∇xhi((z?t+1)x, (z?t+1)y), zxt+1 − zx?

〉
+

1

n

∑
i∈[n]

〈
∇yhi(zxt+1, z

y
t+1)−∇yhi((z?t+1)x, (z?t+1)y), zyt+1 − zy?

〉
+

1

n

∑
i∈[n]

(〈
z
f∗i
t+1 − (z?t+1)f

∗
i , zxt+1 − zx?

〉
+
〈
z
g∗i
t+1 − (z?t+1)g

∗
i , zyt+1 − zy?

〉)
− 1

n

∑
i∈[n]

(〈
zxt+1 − (z?t+1)x, z

f∗i
t+1 − z

f∗i
?

〉
+
〈
zyt+1 − (z?t+1)y, z

g∗i
t+1 − z

g∗i
?

〉)

where we used (A.12) to bound the ∇r terms. Consequently,

〈
Φ (zt+1)− Φ

(
z?t+1

)
, zt+1 − z?

〉
≤ 1

8
V rzt+1

(z?) + 2κ̃V rzt+1
(z?t+1)

+
1

n

∑
i∈[n]

(
µx

16
Vzxt+1

(zx?) +
µy

16
Vzyt+1

(zy?)

)

+
1

n

∑
i∈[n]

(
16

(
(Λxx

i)2

µx
+

(Λxx
i)2

µy

)
Vzxt+1

((z?t+1)x)

)

+
1

n

∑
i∈[n]

(
16

(
(Λxx

i)2

µx
+

(Λyy
i)2

µy

)
Vzyt+1

((z?t+1)y)

)

+
1

n

∑
i∈[n]

(
µx

16
Vzxt+1

(zx?) +
µy

16
Vzyt+1

(zy?)

)

+
1

n

∑
i∈[n]

(
8

µx

∥∥∥zf∗it+1 − (z?t+1)f
∗
i

∥∥∥2

+
8

µy

∥∥∥zg∗it+1 − (z?t+1)g
∗
i

∥∥∥2
)

+
1

n

∑
i∈[n]

(
1

8
V
f∗i

z
f∗
i
t+1

(
z
f∗i
?

)
+

1

8
V
g∗i

z
g∗
i
t+1

(
z
g∗i
?

))
+

1

n

∑
i∈[n]

(
8Lx

iVzxt+1
((z?t+1)x) + 8Ly

iVzyt+1
((z?t+1)y)

)
≤ 1

4
V rzt+1

(z?) + κ̃V rzt+1
(z?t+1). (A.13)

In the first inequality, we used Cauchy-Schwarz, Young’s, and our various smoothness assumptions

(as well as strong convexity of each f∗i and g∗i). The last inequality used strong convexity of each

piece of r.

APPENDIX A. DEFERRED PROOFS FROM CHAPTER 2 583

For the last term, by a similar argument as in the previous bounds, we have

〈
Φ(zt+1)− Φ(z?), zt+1 − z?t+1

〉
≤ 1

4
V rzt+1

(z?) + κ̃V rzt+1
(z?t+1). (A.14)

Plugging the inequalities (A.12) with α = γ, (A.13) and (A.14) back into (A.11), this implies

〈
Φmmfs-pd (zt+1) , zt+1 − z?

〉
≤ γV rzt (z?)− γV rzt+1

(z?)− γV rzt
(
z?t+1

)
+ γV rzt+1

(
z?t+1

)
(A.15)

+
3

4
V rzt+1

(z?) + 3κ̃γ2V rzt+1
(z?t+1). (A.16)

By strong monotonicity of Φmmfs-pd with respect to r, we also have

〈
Φmmfs-pd (zt+1) , zt+1 − z?

〉
≥
〈
Φmmfs-pd (zt+1)− Φmmfs-pd (z?) , zt+1 − z?

〉
≥ V rzt+1

(z?) . (A.17)

Combining (A.16) and (A.17) with the assumption (A.10), and taking expectations, we obtain(
1

4
+ γ

)
EV rzt+1

(z?) ≤ γV rzt(z?) =⇒ EV rzt+1
(z?) ≤

4γ

1 + 4γ
V rzt(z?).

Appendix B

Deferred proofs from Chapter 3

B.1 Deferred proofs from Section 3.2

Proof of Proposition 8. It is clear that our choices of X ,Y are compact and convex, and that the

local norms we defined are indeed norms (in all cases, they are quadratic norms). Validity of our

choices of Θ follow from the well-known facts that for x ∈ ∆n, the entropy function
∑
j∈[n] xj log xj

is convex with range log n, and that for x ∈ Bn, 1
2 ‖x‖

2
2 is convex with range 1

2 .

In the Euclidean case we have that Vx(x′) = 1
2 ‖x− x

′‖22 and (3.18) follows from the Cauchy-

Schwarz and Young inequalities:

〈γ, x′ − x〉 ≤ 1

2
‖γ‖22 +

1

2
‖x− x′‖22 .

Similarly, for the simplex we have that entropy is 1-strongly-convex with respect to ‖·‖1 and therefore

Vy(y′) ≥ 1
2 ‖y − y

′‖21, and we obtain (3.18) from the Hölder and Young inequalities,

〈γ, y′ − y〉 ≤ 1

2
‖γ‖2∞ +

1

2
‖y − y′‖21 ,

where we note that ‖γ‖∞ = ‖γ‖∗ in this case.

Finally, clip(·) is not the identity only when the corresponding domain is the simplex, in which

case entropy satisfies the local norms bound (see the following Lemma 227),

〈γ, y − y′〉 − Vy(y′) ≤
∑
i∈[m]

γ2
i yi for all y, y′ ∈ ∆m and γ ∈ Rm such that ‖γ‖∞ ≤ 1.

Noting that ‖clip(γ)‖∞ ≤ 1 and that ‖clip(γ)‖y ≤ ‖γ‖y for all y ∈ ∆m, we have the desired local

584

APPENDIX B. DEFERRED PROOFS FROM CHAPTER 3 585

bound (3.19). Finally, for every coordinate i ∈ [m] we have

|γi − [clip(γ)]i| = ||γi| − 1| I{|γi|>1} ≤ |γi| I{|γi|>1} ≤ |γi|2.

Consequently, | 〈γ − clip(γ), z〉 | ≤
∑
i∈[m] γ

2
i zi, giving the distortion bound (3.20).

We now state and give a proof of Lemma 227, our local norm bound. For the remainder of this

subsection, let Y be the m dimensional simplex ∆m, and let r(y) =
∑m
i=1 yi log yi be the negative

entropy distance generating function. The corresponding Bregman divergence is the KL divergence,

which is well-defined for any y, y′ ∈ Rm≥0 and has the form

Vy(y′) =
∑
i∈[m]

[
y′i log

y′i
yi

+ yi − y′i
]

=

∫ 1

0

dt

∫ t

0

∑
i∈[m]

(yi − y′i)2

(1− τ)yi + τy′i
dτ. (B.1)

In the literature, “local norms” regret analysis [474] relies on the fact that r∗(γ) = log(
∑
i e
γi) (the

conjugate of negative entropy in the simplex) is locally smooth with respect to a Euclidean norm

weighted by ∇r∗(γ) = eγ

‖eγ‖1
. More precisely, the Bregman divergence V ∗γ (γ′) = r∗(γ′) − r∗(γ) −

〈∇r∗(γ), γ′ − γ〉 satisfies

V ∗γ (γ + δ) ≤ ‖δ‖2∇r∗(γ) :=
∑
i

[∇r∗(γ)]i · δ2
i whenever δi ≤ 1.79 ∀i. (B.2)

Below, we state this bound in a form that is directly applicable to our analysis.

Lemma 227. Let y, y′ ∈ ∆m and δ ∈ Rm. If δ satisfies δi ≤ 1.79 for all i ∈ [m] then the KL

divergence Vy(y′) satisfies

〈δ, y′ − y〉 − Vy(y′) ≤ ‖δ‖2y :=
∑
i∈[m]

yiδ
2
i

Proof. It suffices to consider y in the relative interior of the simplex where r is differentiable; the

final result will hold for any y in the simplex by continuity. Recall the following general facts about

convex conjugates:
〈
γ′, y′

〉
− r(y′) ≤ r∗(γ′) for any γ′ ∈ Rm, y = ∇r∗(∇r(y)) and r∗(∇r(y)) =

〈∇r(y), y〉 − r(y). Therefore, we have for all y′ ∈ ∆m,

〈δ, y′ − y〉 − Vy(y′) = 〈∇r(y) + δ, y′〉 − r(y′)− [〈∇r(y), y〉 − r(y)]− 〈y, δ〉

≤ r∗(∇r(y) + δ)− r∗(∇r(y))− 〈∇r∗(∇r(y)), δ〉 = V ∗∇r(y)

(
∇r(y) + δ

)
.

The result follows from (B.2) with γ = ∇r(y), recalling again that y = ∇r∗(∇r(y)). For completeness

APPENDIX B. DEFERRED PROOFS FROM CHAPTER 3 586

we prove (B.2) below, following [474]. We have

r∗(γ + δ)− r∗(γ) = log

(∑
i∈[m] e

γi+δi∑
i∈[m] e

γi

)
(i)

≤ log

(
1 +

∑
i∈[m] e

γi(δi + δ2
i)∑

i∈[m] e
γi

)

= log(1 +
〈
∇r∗(γ), δ + δ2

〉
)

(ii)

≤ 〈∇r∗(γ), δ〉+
〈
∇r∗(γ), δ2

〉
,

where (i) follows from ex ≤ 1 + x+ x2 for all x ≤ 1.79 and (ii) follows from log(1 + x) ≤ x for all x.

Therefore,

V ∗γ (γ + δ) = r∗(γ + δ)− r∗(γ)− 〈∇r∗(γ), δ〉 ≤
〈
∇r∗(γ), δ2

〉
= ‖δ‖2∇r∗(γ) ,

completing the proof.

B.2 Deferred proofs from Section 3.3

B.2.1 Proof of Proposition 9

In this section, we provide a convergence result for mirror descent under local norms. We require

the following well-known regret bound for mirror descent.

Lemma 228. Let Q : Z → R be convex, let T ∈ N, z0 ∈ Z and γ0, γ1, . . . , γT ∈ Z∗. The sequence

z1, . . . , zT defined by

zt = argminz∈Z
{
〈γt−1, z〉+Q(z) + Vzt−1(z)

}
satisfies for all u ∈ Z (denoting zT+1 := u),

T∑
t=0

〈γt, zt − u〉+

T∑
t=1

〈∇Q(zt), zt − u〉 ≤ Vz0(u) +

T∑
t=0

{〈γt, zt − zt+1〉 − Vzt(zt+1)}. (B.3)

Proof. Fix u ≡ zT+1 ∈ Z. We note that by definition zt is the solution of a convex optimization

problem with (sub)gradient γt−1 + ∇Q(·) + ∇Vzt−1
(·), and therefore by the first-order optimality

condition [271] satisfies

〈
γt−1 +∇Q(zt) +∇Vzt−1

(zt), zt − zT+1

〉
≤ 0.

By the three-point equality of Bregman divergences we have−
〈
∇Vzt−1

(zt), zt − zT+1

〉
= Vzt−1

(zT+1)−
Vzt(zT+1)− Vzt−1

(zt). Substituting and summing over t ∈ [T] gives

T∑
t=1

〈γt−1 +∇Q(zt), zt − zT+1〉 ≤ Vz0(zT+1)−
T∑
t=0

Vzt(zt+1).

APPENDIX B. DEFERRED PROOFS FROM CHAPTER 3 587

Rearranging the LHS and adding 〈γT , zT − zT+1〉 to both sides of the inequality gives

T∑
t=1

〈γt +∇Q(zt), zt − zT+1〉 ≤ Vz0(zT+1) +

T∑
t=0

{〈γt, zt − zt+1〉 − Vzt(zt+1)} ,

which is the bound stated in the lemma.

The proposition follows from this regret bound, the properties of the local norm setup, and the

“ghost iterate” argument due to [416].

Proposition 9. Let (Z, ‖·‖·, r, Θ, clip) be a local norm setup, let L, ε > 0, and let g̃ be an L-local

estimator. Then, for η ≤ ε
9L2 and T ≥ 6Θ

ηε ≥
54L2Θ
ε2 , Algorithm 10 outputs a point z̄ such that

EGap(z̄) ≤ E

[
sup
u∈Z

1

T + 1

T∑
t=0

〈g(zt), zt − u〉

]
≤ ε.

Proof. Defining

∆̃t := g(zt)−
1

η
clip(ηg̃(zt))

and the ghost iterates

st = argmins∈Z

{〈
1

2
η∆̃t−1, s

〉
+ Vst−1(s)

}
with s0 = w0,

we rearrange the regret as

η

T∑
t=0

〈g(zt), zt − u〉 ≤
T∑
t=0

〈clip(ηg̃(zt)), zt − u〉+

T∑
t=0

〈
η∆̃t, st − u

〉
+

T∑
t=0

〈
η∆̃t, zt − st

〉
, (B.4)

and bound each term in turn.

We first apply Lemma 228 with Q = 0 and γt = clip(ηg̃(zt)), using (3.19) to conclude that

T∑
t=0

〈clip(ηg̃(zt)), zt − u〉 ≤ Vz0(u) + η2
T∑
t=0

‖g̃(zt)‖2zt , for all u ∈ Z. (B.5)

Next, we apply Lemma 228 again, this time with γt = 1
2η∆̃t, to obtain the regret bound

T∑
t=0

〈
η∆̃t, st − u

〉
≤ 2Vz0(u) +

T∑
t=0

{〈
η∆̃t, st − st+1

〉
− 2Vst(st+1)

}
≤ 2Vz0(u) + η2

T∑
t=0

{
‖g̃(zt)‖2st +

1

2
‖g(zt)‖2∗

}
, (B.6)

APPENDIX B. DEFERRED PROOFS FROM CHAPTER 3 588

for all u ∈ Z, where we used〈
η∆̃t, st − st+1

〉
− 2Vst(st+1) ≤〈ηg(zt), st − st+1〉 − Vst(st+1)

+ | 〈clip(ηg̃(zt)), st − st+1〉 | − Vst(st+1),

and then appealed to the bounds (3.18) and (3.19) in the definition of the local norm setup. Now,

substituting (B.5) and (B.6) into (B.4), maximizing over u, and taking an expectation, we obtain

E sup
u∈Z

T∑
t=0

〈ηg(zt), zt − u〉 ≤ 3Θ + η2E
T∑
t=0

{
‖g̃(zt)‖2zt + ‖g̃(zt)‖2st + 1

2 ‖g(zt)‖2∗
}

+ E
T∑
t=0

〈
η∆̃t, zt − st

〉
.

(B.7)

To bound the last term we use the fact that g(zt) = E [g̃(zt) | zt, st] (which follows from the first

part of Definition 4). We then write∣∣∣E〈η∆̃t, zt − st
〉∣∣∣ ≤ E |〈ηg̃(zt)− clip(ηg̃(zt)), zt − st〉| ≤ η2 ‖g̃(zt)‖2zt + η2 ‖g̃(zt)‖2st , (B.8)

where the first inequality is by Jensen’s inequality, and the last is due to the property (3.20) of the

local norm setup. Substituting (B.8) into (B.7), we obtain

E sup
u∈Z

T∑
t=0

〈ηg(zt), zt − u〉 ≤ 3Θ + η2E
T∑
t=0

{
2 ‖g̃(zt)‖2zt + 2 ‖g̃(zt)‖2st +

1

2
‖g(zt)‖2∗

}
.

Finally, using the second moment bound of local gradient estimator (Definition 4) and its consequence

Lemma 30, we may bound each of the expected squared norm terms by L2. Dividing through by

η(T + 1) gives

E sup
u∈Z

[
1

T + 1

T∑
t=0

〈g(zt), zt − u〉

]
≤ 3Θ

η(T + 1)
+

9ηL2

2
.

Our choices η = ε
9L2 and T ≥ 6Θ

ηε imply that the right hand side is at most ε, as required.

B.2.2 Proof of Proposition 10

Proposition 10. Let O be an (α, εinner)-relaxed proximal oracle with respect to gradient mapping

g, distance-generating r with range at most Θ and some εinner ≤ εouter. Let z1/2, z3/2, . . . , zK−1/2 be

iterates of Algorithm 11 and let z̄K be its output. Then

EGap(z̄K) ≤ Emax
u∈Z

1

K

K∑
k=1

〈
g(zk−1/2), zk−1/2 − u

〉
≤ αΘ

K
+ εouter.

APPENDIX B. DEFERRED PROOFS FROM CHAPTER 3 589

Proof. For some iteration k, we have by the optimality conditions on z?k that

〈
g(zk−1/2), z?k − u

〉
≤ α

(
Vzk−1

(u)− Vz?k (u)− Vzk−1
(z?k)

)
∀u ∈ Z.

Summing, writing
〈
g(zk−1/2), z?k − u

〉
=
〈
g(zk−1/2), zk−1/2 − u

〉
−
〈
g(zk−1/2), zk−1/2 − z?k

〉
, and re-

arranging yields

K∑
k=1

〈
g(zk−1/2), zk−1/2 − u

〉
≤αVz0(u) +

K∑
k=1

α
(
Vzk(u)− Vz?k (u)

)
+

K∑
k=1

(〈
g(zk−1/2), zk−1/2 − z?k

〉
− αVzk−1

(z?k)
)
,

(B.9)

for all u ∈ Z. Since z0 minimizes r, the first term is bounded by Vz0(u) ≤ r(u) − r(z0) ≤ Θ. The

second term is bounded by the definition of zk in Algorithm 11:

K∑
k=1

α
(
Vzk(u)− Vz?k (u)

)
≤ K(εouter − εinner).

Thus, maximizing (B.9) over u and then taking an expectation yields

Emax
u∈Z

K∑
k=1

〈
g(zk−1/2), zk−1/2 − u

〉
≤ αΘ +K(εouter − εinner)

+

K∑
k=1

E
[〈
g(zk−1/2), zk−1/2 − z?k

〉
− αVzk−1

(z?k)
]
.

Finally, by Definition 6, E
[〈
g(zk−1/2), zk−1/2 − z?k

〉
− αVzk−1

(z?k)
]
≤ εinner for every k, and the result

follows by dividing by K.

B.2.3 Proof of Proposition 11

We provide a convergence result for the variance-reduced stochastic mirror descent scheme in Al-

gorithm 12. We first state the following helper bound which is an application of Lemma 230. It

is immediate from the variance bound of local-centered estimators (Property 2 of Definition 5) and

the fact that all local norms (whether the domains are balls or simplices) are quadratic.

Lemma 229. For any w ∈ Z, (L, ε)-centered-local estimator g̃w0
satisfies

E ‖g̃w0
(z)− g(z)‖2w ≤ L

2Vw0
(z).

Lemma 230. Let ‖·‖D be a quadratic norm in a diagonal matrix, e.g. for some D = diag(d) and

APPENDIX B. DEFERRED PROOFS FROM CHAPTER 3 590

d ≥ 0 entrywise, let ‖x‖2D =
∑
dix

2
i . Then, if X is a random vector, we have

E ‖X − E[X]‖2D ≤ E ‖X‖2D .

Proof. This follows from the definition of variance:

E ‖X − E[X]‖2D = E ‖X‖2D − ‖E[X]‖2D ≤ E ‖X‖2D .

Proposition 11. Let (Z, ‖·‖·, r, Θ, clip) be any local norm setup. Let w0 ∈ Z, α ≥ εinner > 0,

and g̃w0
be an L-centered-local estimator for some L ≥ α. Assume the domain is bounded by

maxz∈Z ‖z‖ ≤ D, that g is L-Lipschitz, i.e. ‖g(z)− g(z′)‖∗ ≤ L ‖z − z′‖, that g is LD-bounded, i.e.

maxz∈Z ‖g(z)‖∗ ≤ LD, and that ŵ0 = w0. Then, for η = α
10L2 , T ≥ 6

ηα ≥
60L2

α2 , and ϕ = εinner

6 ,

Algorithm 12 outputs a point ŵ ∈ Z such that

Emax
u∈Z

[〈g(w̃), w̃ − u〉 − αVw0(u)] ≤ εinner, (3.27)

i.e. Algorithm 12 is an (α, εinner)-relaxed proximal oracle.

Proof. For any u ∈ Z, and defining ∆̃t := g̃(ŵt)− g(w0) and ∆t := g(ŵt)− g(w0), we have∑
t∈[T]

〈ηg(wt), wt − u〉 =
∑
t∈[T]

〈
clip(η∆̃t) + ηg(w0), wt − u

〉
+
∑
t∈[T]

〈
η∆t − clip(η∆̃t), wt − u

〉
+
∑
t∈[T]

〈ηg(wt)− ηg(ŵt), wt − u〉 .

(B.10)

We proceed to bound the three terms on the right hand side of (B.10) in turn. For the first term,

recall the guarantees for the “ideal” iterates of Algorithm 12,

w?t = argminw∈Z

{〈
clip(η∆̃t) + ηg(w0), w

〉
+
αη

2
Vw0(w) + Vwt−1(w)

}
.

By using the optimality conditions of these iterates, defining Q(z) := 〈ηg(w0), z〉+ αη
2 Vw0

(z), γt :=

clip(η∆̃t), and defining for notational convenience w?T+1 := u,

∑
t∈[T]

〈γt−1 +∇Q(w?t), w?t − u〉 ≤
∑
t∈[T]

〈
−∇Vwt−1

(w?t), w?t − u
〉

=
∑
t∈[T]

(
Vwt−1

(u)− Vw?t (u)− Vwt−1
(w?t)

)
= Vw0

(u) +
∑
t∈[T]

(
Vwt(u)− Vw?t (u)

)
−

T∑
t=0

Vwt(w
?
t+1).

(B.11)

APPENDIX B. DEFERRED PROOFS FROM CHAPTER 3 591

We thus have the chain of inequalities, recalling γ0 = 0,∑
t∈[T]

〈
clip(η∆̃t) + ηg(w0), wt − u

〉
+
αη

2

∑
t∈[T]

〈∇Vw0(w?t), w?t − u〉

=

T∑
t=0

〈γt, wt − u〉+
∑
t∈[T]

〈∇Q(w?t), w?t − u〉+
∑
t∈[T]

〈ηg(w0), wt − w?t 〉

(i)

≤Vw0
(u) +

∑
t∈[T]

(
Vwt(u)− Vw?t (u)

)
+

T∑
t=0

(
〈γt, wt − w?t+1〉 − Vwt(w?t+1)

)
+
∑
t∈[T]

〈ηg(w0), wt − w?t 〉

(ii)

≤ Vw0
(u) + 2ηϕT +

T∑
t=0

(
〈clip(η∆̃t), wt − w?t+1〉 − Vwt(w?t+1)

) (iii)

≤ Vw0
(u) + 2ηϕT +

T∑
t=0

η2
∥∥∥∆̃t

∥∥∥2

wt
.

(B.12)

Here, (i) was by rearranging (B.11) via the equality

∑
t∈[T]

〈γt−1, w
?
t − u〉 =

T∑
t=0

〈γt, wt − u〉 −
T∑
t=0

〈
γt, wt − w?t+1

〉
,

(ii) was by the conditions maxu
[
Vwt(u)− Vw?t (u)

]
≤ ηϕ and ‖wt − w?t ‖ ≤

ϕ
LD satisfied by the

iterates, and (iii) was by the property of clipping (3.18), as defined in the problem setup. Now by

rearranging and using the three-point property of Bregman divergence (i.e. 〈−∇Vw′(w), w − u〉 =

Vw′(u)− Vw(u)− Vw′(w)), it holds that

∑
t∈[T]

〈
clip(η∆̃t) + ηg(w0), wt − u

〉
≤Vw0

(u) + 2ηϕT + η2
T∑
t=0

∥∥∥∆̃t

∥∥∥2

wt
+
αη

2

∑
t∈[T]

(Vw0
(u)− Vw0

(w?t))

≤Vw0
(u) + 3ηϕT + η2

T∑
t=0

∥∥∥∆̃t

∥∥∥2

wt
+
αη

2

∑
t∈[T]

(Vw0
(u)− Vw0

(ŵt)) ,

(B.13)

where the second inequality follows from the condition Vw0
(ŵt)−Vw0

(w?t) ≤ 2ϕ
α satisfied by iterates

of Algorithm 12. To bound the second term of (B.10), we define the ghost iterate sequnce {st} by

st = argmins∈Z

{
1

2

〈
η∆t−1 − clip(η∆̃t−1), s

〉
+ Vst−1

(s)

}
with s0 = w0.

APPENDIX B. DEFERRED PROOFS FROM CHAPTER 3 592

Applying Lemma 228 with Q = 0 and γt = 1
2 (η∆t − clip(η∆̃t)), and observing that again γ0 = 0,

∑
t∈[T]

〈
η∆t − clip(η∆̃t), st − u

〉
≤2Vw0

(u) +

T∑
t=0

{
〈η∆t − clip(η∆̃t), st − st+1〉 − 2Vst(st+1)

}
≤2Vw0(u) + η2

T∑
t=0

(
‖∆t‖2∗ +

∥∥∥∆̃t

∥∥∥2

st

)
.

Here, we used properties (3.18) and (3.19). Consequently,∑
t∈[T]

〈
η∆t − clip(η∆̃t), wt − u

〉
=
∑
t∈[T]

〈
η∆t − clip(η∆̃t), wt − st

〉
+
∑
t∈[T]

〈
η∆t − clip(η∆̃t), st − u

〉

≤ 2Vw0
(u) + η2

T∑
t=0

(
‖∆t‖2∗ +

∥∥∥∆̃t

∥∥∥2

st

)
+
∑
t∈[T]

〈
η∆t − clip(η∆̃t), wt − st

〉
.

(B.14)

To bound the third term of (B.10), we use the condition ‖wt − ŵt‖ ≤ ϕ
LD which implies

∑
t∈[T]

〈ηg(wt)− ηg(ŵt), wt − u〉 ≤
∑
t∈[T]

‖ηg(wt)− ηg(ŵt)‖∗ ‖wt − u‖ ≤ 2ηϕT. (B.15)

Combining our three bounds (B.13), (B.14), and (B.15) in the context of (B.10), using ŵ0 = w0 and

g̃(w0) = g(w0), and finally dividing through by ηT , we obtain

1

T

∑
t∈[T]

〈g(wt), wt − u〉 −
(

3

ηT
+
α

2

)
Vw0

(u)

≤ 5ϕ+
1

T

∑
t∈[T]

(
η
∥∥∥∆̃t

∥∥∥2

wt
+ η

∥∥∥∆̃t

∥∥∥2

st
+ η ‖∆t‖2∗ +

〈
∆t −

1

η
clip(η∆̃t), wt − st

〉
− α

2
Vw0

(ŵt)

)
.

(B.16)

Since T ≥ 6
αη , taking a supremum over u ∈ Z in (B.16) and then an expectation yields

E sup
u∈Z

 1

T

∑
t∈[T]

〈g(wt), wt − u〉 − αVw0
(u)

 ≤ 5ϕ

+
1

T
E

∑
t∈[T]

η
∥∥∥∆̃t

∥∥∥2

wt
+ η

∥∥∥∆̃t

∥∥∥2

st
+ η ‖∆t‖2∗ +

〈
∆t −

1

η
clip(η∆̃t), wt − st

〉
− α

2
Vw0(ŵt)

 .
(B.17)

We will show the second line of (B.17) is nonpositive. To do so, observe for each t ∈ [T], by the

APPENDIX B. DEFERRED PROOFS FROM CHAPTER 3 593

property (3.20) of clip(·), since conditional on wt, st, ∆̃t is unbiased for deterministic ∆t,∣∣∣∣E〈∆t −
1

η
clip(η∆̃t), wt − st

〉∣∣∣∣ =

∣∣∣∣E〈∆̃t −
1

η
clip(η∆̃t), wt − st

〉∣∣∣∣ ≤ η ∥∥∥∆̃t

∥∥∥2

wt
+ η

∥∥∥∆̃t

∥∥∥2

st
.

(B.18)

Finally, by using property 2 of the centered-local estimator ∆̃t, as well as Remark 1, we have for

each t ∈ [T],

E
[
η
∥∥∥∆̃t

∥∥∥2

wt

]
≤ ηL2Vw0(ŵt), E

[
η
∥∥∥∆̃t

∥∥∥2

st

]
≤ ηL2Vw0(ŵt), and η ‖∆t‖2∗ ≤ ηL

2Vw0(ŵt). (B.19)

Using bounds (B.18) and (B.19) in (B.17), as well as η ≤ α
10L2 ,

E sup
u∈Z

 1

T

∑
t∈[T]

〈g(wt), wt − u〉 − αVw0
(u)

 ≤ 5ϕ. (B.20)

For the final claim, denote the true average iterate by w̄ := 1
T

∑
t∈[T] wt. We have ∀u ∈ Z,

〈g(w̃), w̃ − u〉 (i)
= −〈g(w̃), u〉 = 〈g(w̄)− g(w̃), u〉+ 〈g(w̄), w̄ − u〉
(ii)

≤ ϕ+ 〈g(w̄), w̄ − u〉

=
1

T

∑
t∈[T]

〈g(wt), wt − u〉+ ϕ.

Here, (i) used the fact that linearity of g gives 〈g(z), z〉 = 0, ∀z ∈ Z, and (ii) used Hölder’s inequality

〈g(w̄)− g(w̃), u〉 ≤ ‖g(w̄)− g(w̃)‖∗ ‖u‖ ≤ 2LD ‖w̃ − w̄‖ ≤ ϕ following from the approximation

guarantee ‖w̃ − w̄‖ ≤ ϕ
2LD . Combining with (B.20) yields the conclusion, as 6ϕ = εinner.

B.3 Deferred proofs for sublinear methods

B.3.1 `2-`2 sublinear coordinate method

Assumptions. The algorithm in this section will assume access to entry queries, `1 norms of rows

and columns, and `1 sampling distributions for rows and columns. Further, it assumes the ability

to sample a row or column proportional to its squared `1 norm; given access to all `1 norms, the

algorithm may spend O(m + n) constructing these sampling oracles in O(m + n) time, which does

not affect its asymptotic runtime. We use the `2-`2 local norm setup (Table 3.6). We define

L2,2
co :=

√∑
i∈[m]

‖Ai:‖21 +
∑
j∈[n]

‖A:j‖21. (B.21)

APPENDIX B. DEFERRED PROOFS FROM CHAPTER 3 594

Gradient estimator

For z ∈ Bn × Bm, we specify two distinct choices of sampling distributions p(z), q(z) which obtain

the optimal Lipschitz constant. The first one is an oblivious distribution:

pij(z) :=
‖Ai:‖21∑

k∈[m] ‖Ak:‖21
· |Aij |
‖Ai:‖1

and qij(z) :=
‖A:j‖21∑

k∈[n] ‖A:k‖21
· |Aij |
‖A:j‖1

. (B.22)

The second one is a dynamic distribution:

pij(z) :=
[zy]i

2

‖zy‖22
· |Aij |
‖Ai:‖1

and qij(z) :=
[zx]j

2

‖zx‖22
· |Aij |
‖A:j‖1

. (B.23)

We now state the local properties of each estimator.

Lemma 231. In the `2-`2 setup, estimator (3.26) using the sampling distribution in (B.22) or (B.23)

is an L2,2
co -local estimator.

Proof. For convenience, we restate the distributions here: they are respectively

pij(z) :=
‖Ai:‖21∑

k∈[m] ‖Ak:‖21
· |Aij |
‖Ai:‖1

and qij(z) :=
‖A:j‖21∑

k∈[n] ‖A:k‖21
· |Aij |
‖A:j‖1

and

pij(z) :=
[zy]i

2

‖zy‖22
· |Aij |
‖Ai:‖1

and qij(z) :=
[zx]j

2

‖zx‖22
· |Aij |
‖A:j‖1

.

Unbiasedness holds by definition. We first show the variance bound on the x block for distribu-

tion (B.22):

E
[
‖g̃x(z)‖22

]
=

∑
i∈[m],j∈[n]

pij(z) ·
(
Aij [z

y]i
pij(z)

)2

=
∑

i∈[m],j∈[n]

A2
ij [z

y]2i
pij(z)

=
∑

i∈[m],j∈[n]

|Aij |
‖Ai:‖1

[zy]2i ·

∑
i∈[m]

‖Ai:‖21

 =
∑
i∈[m]

‖Ai:‖21.

Similarly, we have

E
[
‖g̃y(z)‖22

]
≤
∑
j∈[n]

‖A:j‖21.

APPENDIX B. DEFERRED PROOFS FROM CHAPTER 3 595

Now, we show the variance bound on the x block for distribution (B.23):

E
[
‖g̃x(z)‖22

]
=

∑
i∈[m],j∈[n]

pij(z) ·
(
Aij [z

y]i
pij(z)

)2

=
∑

i∈[m],j∈[n]

A2
ij [z

y]2i
pij(z)

=
∑

i∈[m],j∈[n]

|Aij |‖Ai:‖1 ‖zy‖22 ≤
∑
i∈[m]

‖Ai:‖21,

and a similar bound holds on the y block.

We remark that using the oblivious distribution (B.22) saves a logarithmic factor in the runtime

compared to the dynamic distribution, so for the implementation of all of our `2-`2 algorithms we

will use the oblivious distribution.

Implementation details

In this section, we discuss the details of how to leverage the IterateMaintainer2 data structure

to implement the iterations of our algorithm. The algorithm we analyze is Algorithm 10, using the

local estimator defined in (3.26), and the distribution (B.22). We choose

η =
ε

9
(
L2,2
co

)2 and T =

⌈
6Θ

ηε

⌉
≥

54
(
L2,2
co

)2
ε2

.

Lemma 231 implies that our estimator satisfies the remaining requirements for Proposition 9, giving

the duality gap guarantee in T iterations. In order to give a runtime bound, we claim that each

iteration can be implemented in constant time, with O(m+ n) additional runtime.

Data structure initializations and invariants. At the start of the algorithm, we spend O(m+ n)

time initializing data structures via IMx2.Init(0n, b), IM
y
2.Init(0m, c), where IMx2, IM

y
2 are instanti-

ations of IterateMaintainer2 data structures. Throughout, we preserve the invariant that the

points maintained by IMx2, IM
y
2 correspond to the x and y blocks of the current iterate zt at iteration

t of the algorithm. We note that we instantiate data structures which do not support Sample().

Iterations. For simplicity, we only discuss the runtime of updating the x block as the y block fol-

lows symmetrically. We divide each iteration into the following substeps, each of which we show run

in constant time. We refer to the current iterate by z = (zx, zy), and the next iterate by w = (wx, wy).

Sampling. Because the distribution is oblivious, sampling both i and j | i using precomputed data

structures takes constant time.

Computing the gradient estimator. To compute c := Aij [z
y]i/pij , it suffices to compute Aij , [zy]i,

and pij . Using an entry oracle for A obtains Aij in constant time, and calling IM
y
2.Get(i) takes

constant time. Computing pij using the precomputed row norms and the values of Aij , [z
y]i takes

APPENDIX B. DEFERRED PROOFS FROM CHAPTER 3 596

constant time.

Performing the update. For the update corresponding to a proximal step, we have

wx ← ΠX (zx − ηg̃x(z)) =
zx − ηg̃x(z)

max{‖zx − ηg̃x(z)‖2 , 1}
.

We have computed g̃x(z), so to perform this update, we call

IMx2.AddSparse(j,−ηc);

IMx2.AddDense(−η);

IMx2.Scale(max{IMx.GetNorm(), 1}−1);

IMx2.UpdateSum().

By assumption, each operation takes constant time because we do not support Sample in our in-

stances of IM2, giving the desired iteration complexity. It is clear that at the end of performing these

operations, the invariant that IMx2 maintains the x block of the iterate is preserved.

Averaging. After T iterations, we compute the average point z̄x:

[z̄x]j ←
1

T
· IMx2.GetSum(j),∀j ∈ [n].

By assumption, this takes O(n) time.

Algorithm guarantee

Theorem 76. In the `2-`2 setup, the implementation in Section B.3.1 has runtime

O

((
L2,2
co

)2
ε2

+m+ n

)

and outputs a point z̄ ∈ Z such that

EGap(z̄) ≤ ε.

Proof. The runtime bound follows from the discussion in Section B.3.1. The correctness follows from

Proposition 9.

Remark 11. Using our IterateMaintainer2 data structure, the `2-`2 algorithm of [55] runs in

time O
(
rcs‖A‖2F /ε2

)
. Our runtime universally improves upon it since

∑
i∈[m]

‖Ai:‖21 +
∑
j∈[n]

‖A:j‖21 ≤ 2rcs ‖A‖2F .

APPENDIX B. DEFERRED PROOFS FROM CHAPTER 3 597

B.3.2 `2-`1 sublinear coordinate method

Assumptions. The algorithm in this section will assume access to every oracle listed in Section 3.2.3.

However, for a specific matrix A, only one of three sampling distributions will be used in the

algorithm; we describe the specific oracle requirements of each distribution following their definition.

We use the `2-`1 local norm setup (Table 3.6). Throughout this section, we will assume that the

linear term in (3.26) is g(0) = 0 uniformly.

Finally, in this section we assume access to a weighted variant of IterateMaintainer2, which

takes a nonnegative weight vector w as a static parameter. WeightedIterateMaintainer2 supports

two modified operations compared to the data structure IterateMaintainer2: its GetNorm() oper-

ation returns
√∑

j [w]j [x]2j , and its Sample() returns coordinate j with probability proportional to

[w]j [x]2j (cf. Section 3.2.4). We give the implementation of this extension in Appendix B.8.

Gradient estimator

For z ∈ Bn ×∆m and desired accuracy ε > 0, we specify three distinct choices of sampling distribu-

tions p(z), q(z). Each of our distributions induces an estimator with different properties.

The first one is

pij(z) :=
|Aij |
‖Ai:‖1

· [zy]i and qij(z) :=
A2
ij

‖A‖2F
. (B.24)

The second one is

pij(z) :=
|Aij |
‖Ai:‖1

· [zy]i and qij(z) :=
[zx]2j · 1{Aij 6=0}∑
l∈[n] csl · [zx]2l

. (B.25)

Here, we let csj ≤ rcs denote the number of nonzero elements in column A:j . The third one is

pij(z) :=
|Aij |
‖Ai:‖1

· [zy]i and qij(z) :=
|Aij | · [zx]2j∑

l∈[n] ‖A:l‖1 · [zx]2l
. (B.26)

For L
2,1,(1)
co , L

2,1,(2)
co , and L

2,1,(3)
co to be defined, the estimators induced by these distributions

are local estimators whose guarantees depend on these constants respectively. Furthermore, these

Lipschitz constants are in general incomparable and depend on specific properties of the matrix.

Therefore, we may choose our definition of L2,1
co to be the minimum of these constants, by choosing

an appropriate estimator. We now state the local properties of each estimator.

Lemma 232. In the `2-`1 setup, estimator (3.26) using the sampling distributions in (B.24), (B.25),

APPENDIX B. DEFERRED PROOFS FROM CHAPTER 3 598

or (B.26) is respectively a L
2,1,(k)
co -local estimator, for k ∈ {1, 2, 3}, and

L2,1,(1)
co :=

√
max
i∈[m]

‖Ai:‖21 + ‖A‖2F,

L2,1,(2)
co :=

√
2rcs max

i∈[m]
‖Ai:‖22,

L2,1,(3)
co :=

√
max
i∈[m]

‖Ai:‖21 +

(
max
i∈[m]

‖Ai:‖1

)(
max
j∈[n]

‖A:j‖1

)
.

Proof. First, we give the proof for the sampling distribution (B.24). Unbiasedness holds by definition.

For the x block, we have the variance bound:

E
[
‖g̃x(z)‖22

]
=

∑
i∈[m],j∈[n]

pij(z) ·
(
Aij [z

y]i
pij(z)

)2

=
∑

i∈[m],j∈[n]

|Aij |‖Ai:‖1[zy]i

=
∑
i∈[m]

‖Ai:‖21[zy]i ≤ max
i∈[m]

‖Ai:‖21.

For arbitrary wy, we have the variance bound on the y block:

E
[
‖g̃y(z)‖2wy

]
=

∑
i∈[m],j∈[n]

qij(z) ·

(
[wy]i ·

(
Aij [z

x]j
qij(z)

)2
)

=
∑

i∈[m],j∈[n]

[wy]i
A2
ij [z

x]2j
qij(z)

=
∑

i∈[m],j∈[n]

[wy]i[z
x]2j ‖A‖

2
F ≤ ‖A‖

2
F .

Next, we give the proof for the sampling distribution (B.25). Unbiasedness holds by definition. By

Cauchy-Schwarz and our earlier proof, we have the variance bound for the x block:

E
[
‖g̃x(z)‖22

]
≤ max
i∈[m]

‖Ai:‖21 ≤ rcs max
i∈[m]

‖Ai:‖22 .

For arbitrary wy, we have the variance bound on the y block, where Si :=
{
j | 1Aij 6=0 = 1

}
:

E
[
‖g̃y(z)‖2wy

]
=

∑
i∈[m],j∈Si

qij(z) ·

(
[wy]i ·

(
Aij [z

x]j
qij(z)

)2
)

=
∑

i∈[m],j∈Si

[wy]i
A2
ij [z

x]2j
qij(z)

≤
∑

i∈[m],j∈Si

[wy]iA
2
ijrcs ≤ rcs max

k∈[m]
‖Ak:‖22 .

Finally, we give the proof for the sampling distribution (B.26). Unbiasedness and the variance bound

APPENDIX B. DEFERRED PROOFS FROM CHAPTER 3 599

for the x block again hold. For arbitrary wy, we have the variance bound on the y block:

E
[
‖g̃y(z)‖2wy

]
=

∑
i∈[m],j∈[n]

qij(z) ·

(
[wy]i ·

(
Aij [z

x]j
qij(z)

)2
)

=
∑

i∈[m],j∈[n]

[wy]i
A2
ij [z

x]2j
qij(z)

≤

 ∑
i∈[m],j∈[n]

[wy]i|Aij |

∑
l∈[n]

‖A:l‖1 [zx]2l

≤
(

max
k∈[m]

‖Ak:‖1

)(
max
l∈[n]
‖A:l‖1

)
.

By using the definitions of L
2,1,(1)
co , L

2,1,(2)
co , and L

2,1,(3)
co , we define the constant

L2,1
co :=

√
max
i∈[m]

‖Ai:‖21 + min

(
‖A‖2F , rcs max

i∈[m]
‖Ai:‖22 ,

(
max
i∈[m]

‖Ai:‖1

)(
max
j∈[n]

‖A:j‖1

))
. (B.27)

In particular, by choosing whichever of the distributions (B.24), (B.25), or (B.26) yields the

minimial Lipschitz constant, we may always ensure we have a L2,1
co -local estimator. We now discuss

the specific precomputed quantities each estimator requires, among those listed in Section 3.2.3. All

distributions require access to entry queries, `1 norms of rows, and `1 sampling distributions for

rows.

• Using the sampling distribution (B.24) requires additional access to `2 sampling distributions

for rows and columns and the Frobenius norm of A.

• Using the sampling distribution (B.25) requires additional access to uniform sampling nonzero

entries of columns.

• Using the sampling distribution (B.26) requires additional access to `1 norms of columns and

`1 sampling distributions for columns.

Implementation details

In this section, we discuss the details of how to leverage the appropriate IterateMaintainer1 and

IterateMaintainer2 data structures to implement the iterations of our algorithm. The algorithm

we analyze is Algorithm 10, using the local estimator defined in (3.26), and the best choice of

distribution among (B.24), (B.25), (B.26). We choose

η =
ε

9
(
L2,1
co

)2 and T =

⌈
6Θ

ηε

⌉
≥

54
(
L2,1
co

)2
log(2m)

ε2
.

APPENDIX B. DEFERRED PROOFS FROM CHAPTER 3 600

Lemma 232 implies that our estimator satisfies the remaining requirements for Proposition 9, giving

the duality gap guarantee in T iterations. In order to give a runtime bound, we claim that each

iteration can be implemented in O(logmn) time, with O(m+n) additional runtime. For simplicity,

because most of the algorithm implementation details are exactly same as the discussion of Sec-

tion 3.4.1 for the simplex block y ∈ Y, and exactly the same as the discussion of Section B.3.1 for

the ball block x ∈ X , we discuss the differences here, namely the implementations of sampling and

gradient computation.

We assume that we have initialized IM
y
1, an instantiation of IterateMaintainer1, and IMx2, an

instantiation of IterateMaintainer2. When the choice of distribution is (B.25), we also assume

access to WIMx2, an instantiation of WeightedIterateMaintainer2 initialized with the weight vec-

tor of nonzero counts of columns of the matrix; similarly, for distribution (B.26) we instantiate a

WeightedIterateMaintainer2 with the weight vector of `1 norms of each column.

Sampling. Recall that

pij(z) :=
|Aij |
‖Ai:‖1

· [zy]i.

We first sample coordinate i via IM
y
1.Sample() inO(logm), and then sample j using the data structure

corresponding to Ai: in O(1). Next, to sample from the distribution

qij(z) :=
A2
ij

‖A‖2F

required by (B.24), we can sample a coordinate of the matrix proportional to its square in constant

time using our matrix access. To sample from the distribution

qij(z) :=
[zx]2j · 1{Aij 6=0}∑
l∈[n] csl · [zx]2l

required by (B.25), we first sample coordinate j via WIMx2.Sample() in O(log n), and then uniformly

sample a coordinate i amongst the entries of A:j for which the indicator labels as nonzero. Finally,

to sample from the distribution

qij(z) :=
|Aij | · [zx]2j∑

l∈[n] ‖A:l‖1 · [zx]2l

required by (B.26), we sample coordinate j via WIMx2.Sample(), and then sample a coordinate i pro-

portional to its absolute value using a column sampling oracle.

Computing the gradient estimator. By the proofs of Theorem 10 and Theorem 76, it suffices to com-

pute pixjx , qiyjy in constant time. Calling IMx2.Get(j), IMy1.Get(i), IMx2.GetNorm(), and WIMx2.GetNorm()

APPENDIX B. DEFERRED PROOFS FROM CHAPTER 3 601

when appropriate, and using access to precomputation allows us to obtain all relevant quantities for

the computations in O(1).

Algorithm guarantee

Theorem 77. In the `2-`1 setup, the implementation in Section B.3.2 has runtime

O

((
L2,1
co

)2
logm log(mn)

ε2
+m+ n

)

and outputs a point z̄ ∈ Z such that

EGap(z̄) ≤ ε.

Proof. The runtime bound follows from the discussion in Section B.3.2. The correctness follows from

Proposition 9.

Remark 12. Using our IterateMaintainer1 and IterateMaintainer2 data structures, the `2-`1

algorithm of Clarkson et al. [140] runs in time O(rcs maxi∈[m] ‖Ai:‖22 log2(mn)/ε2). By noting the

definition of L
2,1,(2)
co , our runtime universally improves upon it since

(
L2,1
co

)2 ≤ 2rcs maxi∈[m] ‖Ai:‖22.

B.4 Deferred proofs for variance-reduced methods

B.4.1 Helper proofs

Lemma 32. For y, y′ ∈ ∆m, divergence Vy(y′) generated by r(y) =
∑
i∈[m][y]i log[y]i− [y]i satisfies

Vy(y′) ≥ 1

2
‖y′ − y‖2 3

2y+y′
=

1

2

∑
i∈[m]

([y]i − [y′]i)
2

2
3 [y]i + 1

3 [y′]i
.

Proof. Let γ ∈ Rm. Note that for every τ ∈ [0, 1] (with elementwise multiplication, division and

square root), 〈γ, y − y′〉 =

〈
γ
√

(1− τ)y + τy′, y−y′√
(1−τ)y+τy′

〉
. Therefore, using 2 〈u,w〉 ≤ ‖u‖22 +

‖w‖22, we have for every τ ∈ [0, 1],

2 〈γ, y − y′〉 ≤
∑
i∈[m]

((1− τ)[y]i + τ [y′]i) [γ]2i +
∑
i∈[m]

([y]i − [y′]i)
2

(1− τ)[y]i + τ [y′]i
.

Applying the double integral
∫ 1

0
dt
∫ t

0
dτ to both sides of the inequality, and using

∫ 1

0
dt
∫ t

0
1 · dτ = 1

2

and
∫ 1

0
dt
∫ t

0
τ · dτ = 1

6 gives

〈γ, y − y′〉 ≤
∑
i∈[m]

(
1

3
[y]i +

1

6
[y′]i

)
[γ]2i +

∫ 1

0

dt

∫ t

0

∑
i∈[m]

([y]i − [y′]i)
2

(1− τ)[y]i + τ [y′]i
dτ.

APPENDIX B. DEFERRED PROOFS FROM CHAPTER 3 602

Identifying the double integral with the expression

Vy(y′) =
∑
i∈[m]

(
y′i log

y′i
yi

+ yi − y′i
)

=

∫ 1

0

dt

∫ t

0

∑
i∈[m]

(yi − y′i)2

(1− τ)yi + τy′i
dτ. (B.28)

for the divergence induced by entropy, the result follows by choosing [γ]i = [y]i−[y′]i
2
3 [y]i+

1
3 [y′]i

.

Lemma 34. Let x′ ∈ ∆n be a β-padding of x ∈ ∆n. Then,

∑
j∈[n]

x′j log x′j −
∑
j∈[n]

xj log xj ≤
βn

e
+ β(1 + β).

Proof. Letting x̃ be the point inducing x′ in Definition 3, we have

∑
j∈[n]

x′j log x′j −
∑
j∈[n]

xj log xj =

∑
j∈[n]

x′j log x′j −
∑
j∈[n]

x̃j log x̃j

+

∑
j∈[n]

x̃j log x̃j −
∑
j∈[n]

xj log xj

 .

We bound these two terms separately. For the first term, let ‖x̃‖1 = 1 + b, for some b ≤ β; we

see that entrywise, (1 + b)x′j = x̃j . For each j ∈ [n],

x′j log x′j − x̃j log x̃j = x′j log x′j − (1 + b)x′j log
(
(1 + b)x′j

)
= bx′j log

1

x′j
− (1 + b)x′j log(1 + b)

≤ bx′j log
1

x′j
≤ β

e
.

The first inequality was due to nonnegativity of (1 + b) log(1 + b) and x′j , and the second was due

to the maximum value of the scalar function z log 1
z over the nonnegative reals being 1/e. Summing

over all coordinates yields that the first term is bounded by βn/e.

For the second term, we have by integration that entrywise

x̃j log x̃j − xj log xj =

∫ 1

α=0

(1 + log(xj + α(x̃j − xj)))(x̃j − xj)dα

≤
∫ 1

α=0

(1 + log(x̃j))(x̃j − xj)dα

≤
∫ 1

α=0

x̃j(x̃j − xj)dα ≤ (1 + β)|x̃j − xj |.

The first inequality is by x̃j ≥ xj for all j ∈ [n] and log(x) is monotone in x > 0; the second is by

APPENDIX B. DEFERRED PROOFS FROM CHAPTER 3 603

log(x) ≤ x − 1 for all x > 0; the third again uses x̃j ≥ xj and that x̃j ≤ ‖x̃‖1 ≤ 1 + β, and the

second condition in Definition 3. Finally, combining yields the desired

∑
j∈[n]

x′j log x′j −
∑
j∈[n]

xj log xj ≤
βn

e
+ β(1 + β).

B.4.2 `2-`2 variance-reduced coordinate method

Assumptions. As in Section B.3.1, the algorithm in this section will assume access to entry queries,

`1 norms of rows and columns, and `1 sampling distributions for rows and columns, and the ability

to sample a row or column proportional to its squared `1 norm. We use the `2-`2 local norm setup

(cf. Table 3.6). Again, we define

L2,2
co :=

√∑
i∈[m]

‖Ai:‖21 +
∑
j∈[n]

‖A:j‖21.

Gradient estimator

Given reference point w0 ∈ Bn × Bm, for z ∈ Bn × Bm, we specify two distinct sampling distribu-

tions p(z;w0), q(z;w0) which obtain the optimal Lipschitz constant. The first one is an oblivious

distribution:

pij(z;w0) :=
‖Ai:‖21∑

k∈[m] ‖Ak:‖21
· |Aij |
‖Ai:‖1

and qij(z;w0) :=
‖A:j‖21∑

k∈[n] ‖A:k‖21
· |Aij |
‖A:j‖1

. (B.29)

The second one is a dynamic distribution:

pij(z;w0) :=
[wy

0 − zy]2i
‖wy

0 − zy‖
2
2

· |Aij |
‖Ai:‖1

and qij(z;w0) :=
[wx

0 − zx]2j
‖wx

0 − zx‖
2
2

· |Aij |
‖A:j‖1

. (B.30)

We now state the local properties of each estimator.

Lemma 233. In the `2-`2 setup, estimator (3.28) using the sampling distribution in (B.29) or (B.30)

is a
√

2L2,2
co -centered-local estimator.

Proof. Unbiasedness holds by definition in both cases. We first show the variance bound on the x

APPENDIX B. DEFERRED PROOFS FROM CHAPTER 3 604

block for distribution (B.29):

E
[∥∥g̃xw0

(z)− gx(w0)
∥∥2

2

]
=

∑
i∈[m],j∈[n]

pij(z;w0) ·
(
Aij [z

y − wy
0]i

pij(z;w0)

)2

=
∑

i∈[m],j∈[n]

A2
ij [z

y − wy
0]2i

pij(z;w0)

=
∑

i∈[m],j∈[n]

|Aij |
‖Ai:‖1

[zy − wy
0]2i ·

 ∑
k∈[m]

‖Ak:‖21

=

∑
i∈[m]

‖Ai:‖21

 ‖zy − wy
0‖

2
2 .

Similarly, we have

E
[∥∥g̃yw0

(z)− gy(w0)
∥∥2

2

]
≤

∑
j∈[n]

‖A:j‖21

 ‖zx − wx
0‖

2
2 .

Combining these and using ‖zx − wx
0‖

2
2 + ‖zy − wy

0‖
2
2 = 2Vw0

(z) yields the desired variance bound.

Now, we show the variance bound on the x block for distribution (B.30):

E
[∥∥g̃xw0

(z)− gx(w0)
∥∥2

2

]
=

∑
i∈[m],j∈[n]

pij(z;w0) ·
(
Aij [z

y − wy
0]i

pij(z;w0)

)2

=
∑

i∈[m],j∈[n]

A2
ij [z

y − wy
0]2i

pij(z;w0)

=
∑

i∈[m],j∈[n]

|Aij |‖Ai:‖1 ‖zy − wy
0‖

2
2

=

∑
i∈[m]

‖Ai:‖21

 ‖zy − wy
0‖

2
2 .

and a similar bound holds on the y block.

Again, for algorithmic considerations (i.e. an additional logarithmic factor in the complexity of

sampling from (B.30)), we will only discuss using the oblivious distribution (B.29) in our algorithm.

Implementation details

In this section, we discuss the details of how to leverage the IterateMaintainer2 data structure

to implement the iterations of our algorithm. The algorithm we analyze is Algorithm 11 with

K = αΘ/ε, using Algorithm 12 as an (α, 0)-relaxed proximal oracle. In the implementation of

Algorithm 12, we use the centered-local gradient estimator defined in (B.29). For each use of

Algorithm 12, we choose

η =
α

20
(
L2,2
co

)2 and T =

⌈
6

ηα

⌉
≥

120
(
L2,2
co

)2
α2

. (B.31)

APPENDIX B. DEFERRED PROOFS FROM CHAPTER 3 605

Our discussion will follow in three steps: first, we discuss the complexity of all executions in Algo-

rithm 11 other than the calls to the oracles, as well as the initialization procedure for each inner

loop. Next, we discuss the complexity of each iteration of Algorithm 12. Finally, we discuss the

complexity of computing the average iterate in each run of Algorithm 12. For simplicity, when

discussing Algorithm 12, we will only discuss implementation of the x-block, and the y-block will

follow symmetrically. Altogether, the guarantees of Proposition 10 and Proposition 11 imply that if

the guarantees required by the algorithm hold, the expected gap of the output is bounded by ε.

Outer loop extragradient steps and inner loop data structures. Overall, we execute K = αΘ/ε

iterations of Algorithm 11, and let εouter = εinner = 0 to obtain the desired gap, where Θ = 1 in

the `2-`2 setup. We spend O(nnz) time executing each extragradient step in Algorithm 11 exactly,

where the dominant term in the runtime is the computation of each g(zk−1/2), for k ∈ [K]. Also,

we can maintain the average point z̄ throughout the duration of the algorithm, in O(m + n) time

per iteration. At the beginning of each inner loop, we initialize a data structure IMx2 which does not

support sampling, an instance of IterateMaintainer2, with IMx2.Init(wx
0, v), for

v = (1− κ)wx
0 − ηκgx(w0),

where κ := 1
1+ηα/2 . The inner loop will preserve the invariant that the point maintained by IMx2 is

the x block of the current inner loop iterate wt in each iteration t. To motivate this initialization,

we recall the form of the updates,

wx
t+1 ← ΠX

(
κ

(
wx
t +

(
1

κ
− 1

)
wx

0 − ηg̃xw0
(wt)

))
, (B.32)

where ΠX (w) = w
max{1,‖w‖2}

, and the fixed dense part of g̃xw0
(wt) is gx(w0). Therefore, in the

following discussion we will be able to maintain this difference via a scaling by κ, an appropriate

addition of the scaled dense vector, and a sparse update.

Finally, we also store the vector w0 in full, supporting entry queries.

Inner loop iterations. Each inner loop iteration consists of sampling indices for the computation

of g̃w0 , computing the sparse part of g̃w0 , and performing the update to the iterate. We show that

we can run each substep in constant time. Then, this implies that the total complexity of the inner

loop, other than initializing the data structures and outputting the average iterate, is

O(T) = O

((
L2,2
co

)2
α2

)
.

We discuss how to make appropriate modifications to the x-block. For simplicity we denote our

APPENDIX B. DEFERRED PROOFS FROM CHAPTER 3 606

current iterate as z, and the next iterate as w. Recall that the distribution is given by

pij(z;w0) :=
‖Ai:‖21∑

k∈[m] ‖Ak:‖21
· |Aij |
‖Ai:‖1

.

Sampling. By using precomputed distributions, we can sample i ∝ ‖Ai:‖21 and then j | i ∝ |Aij | in

constant time.

Computing the gradient estimator. Computing the sparse component of the gradient estimator 3.28

requires computing Aij , [zy − wy
0]i, and pij(z;w0). Using appropriate use of precomputed access to

entries and row norms (it is clear we may pay O(m+ n) at the beginning of the algorithm to store

the sum
∑
k∈[m] ‖Ak:‖21), entry [wy

0]i, and IM
y
2.Get(i) allows us to perform the required computation

of the sparse component

c := [g̃xw0
(z)− g(w0)]j

in constant time, by assumption.

Performing the update. In order to perform the update, we recall the form of the update given by

(B.32). Thus, it suffices to call

IMx2.Scale(κ);

IMx2.AddDense(1);

IMx2.AddSparse(j,−κηc);

IMx2.Scale(max{IMx2.GetNorm(), 1}−1);

IMx2.UpdateSum()

By assumption, each operation takes constant time. By the discussion in the data structure initial-

ization section, it is clear that we preserve the invariant that the point maintained by IMx2 is the x

block of the current iterate.

Average iterate computation. At the end of each run of Algorithm 12, we spend O(n) time

computing and returning the average iterate via appropriate calls to IMx2.GetSum(j) for each j ∈ [n],

and scaling by 1/T . This operation is asymptotically dominated by the O(nnz(A)) cost of the

extragradient step.

APPENDIX B. DEFERRED PROOFS FROM CHAPTER 3 607

Algorithm guarantee

Theorem 78. In the `2-`2 setup, the implementation in Section B.4.2 with the optimal choice of

α = max{ε, L2,2
co

√
1/nnz} has runtime

O

((
nnz +

(
L2,2
co

)2
α2

)
α

ε

)
= O

(
nnz +

√
nnzL2,2

co

ε

)

and outputs a point z̄ ∈ Z such that

EGap(z̄) ≤ ε.

Proof. The correctness of the algorithm is given by the discussion in Section B.4.2 and the guarantees

of Proposition 10 and Proposition 11. The runtime bound is given by the discussion in Section B.4.2,

and the optimal choice of α is clear.

To better understand the strengths of our runtime guarantee, Proposition 55 shows that Theo-

rem 78 implies a universal improvement for `2-`2 games compared to accelerated gradient descent

for matrices A with nonnegative entries (or more generally, for A with ‖|A|‖op = O(‖A‖op)).

Proposition 55. For any A ∈ Rm×n, we have

L2,2
co := max

√∑

i

‖Ai:‖21,
√∑

j

‖A:j‖21

 ≤ √m+ n · ‖|A|‖op .

Proof. Denote 1k as the all 1 vector in Rk. We have the following sequence of inequalities:√∑
i∈[m]

‖Ai:‖21 =
∥∥|A|>1m

∥∥
2

= max
x∈Bn

1>m|A|x ≤ ‖1m‖2 max
x∈Bn

‖|A|x‖2 ≤
√
m ‖|A|‖op .

Similarly, bounding maxy∈Bn y
>|A|1n implies

√∑
j∈[n] ‖A:j‖21 ≤

√
n ‖|A|‖op. Taking a maxi-

mum and using max{
√
m,
√
n} ≤

√
m+ n implies the result.

Remark 13. For matrix A ∈ Rm×n, combining the guarantees of Theorem 78 with the bound from

Proposition 55 implies a runtime bounded by

O

(
nnz +

√
nnz · (m+ n) ‖|A|‖op

ε

)
.

Whenever ‖A‖op ≥ ‖|A|‖op, this is an improvement by a factor of
√

nnz/(m+ n) compared to the

accelerated full-gradient method (c.f. Table 3.2), which obtains a runtime of O(nnz · ‖A‖op /ε). This

applies without any sparsity or numerical sparsity assumptions, and is the same speedup factor as we

obtain for `1-`1 and `2-`1 games using a variance reduction framework with row and column based

APPENDIX B. DEFERRED PROOFS FROM CHAPTER 3 608

gradient estimators in Appendix B.5. The `2-`2 variance reduction algorithms of Appendix B.5 and

[55] do not offer such improvements, and our improvement stems from our coordinate-based gradient

estimators and our data structure design.

B.4.3 `2-`1 variance-reduced coordinate method

Assumptions. The algorithm in this section will assume access to entry queries, `1 norms of rows, `2

sampling distributions for rows and columns, and the Frobenius norm of A. We use the `2-`1 local

norm setup (cf. Table 3.6). Again, we define

L2,1,(1)
co :=

√
max
i∈[m]

‖Ai:‖21 + ‖A‖2F, (B.33)

L2,1,(2)
co :=

√
2rcs max

i∈[m]
‖Ai:‖22, (B.34)

L2,1,(3)
co :=

√
max
i∈[m]

‖Ai:‖21 +

(
max
i∈[m]

‖Ai:‖1

)(
max
j∈[n]

‖A:j‖1

)
. (B.35)

Finally, in this section we assume access to a centered variant of WeightedIterateMaintainer2,

which takes a point x0 as a static parameter, where x0 is in the space as the iterates x main-

tained. CenteredIterateMaintainer2 supports two additional operations compared to the data

structure WeightedIterateMaintainer2: Sample() returns coordinate j with probability propor-

tional to [w]j [x− x0]2j (cf. Section 3.2.4) in O(log n) time, and we may query ‖x− x0‖2w in constant

time, where w is a specified weight vector. We give the implementation of this extension in Ap-

pendix B.8.

Gradient estimator

Given reference point w0 ∈ Bn ×∆m, for z ∈ Bn ×∆m and a parameter α > 0, as in Section B.3.2,

we specify three distinct choices of sampling distributions p(z;w0), q(z;w0).

The first one is

pij(z;w0) :=
[zy]i + 2[wy

0]i
3

· |Aij |
‖Ai:‖1

and qij(z;w0) :=
A2
ij

‖A‖2F
. (B.36)

The second one is

pij(z;w0) :=
[zy]i + 2[wy

0]i
3

· |Aij |
‖Ai:‖1

and qij(z) :=
[zx − wx

0]2j · 1{Aij 6=0}∑
l∈[n] csl · [zx − wx

0]2l
. (B.37)

APPENDIX B. DEFERRED PROOFS FROM CHAPTER 3 609

As in Section B.3.2, csj is the number of nonzeros of A:j . The third one is

pij(z;w0) :=
[zy]i + 2[wy

0]i
3

· |Aij |
‖Ai:‖1

and qij(z) :=
|Aij | · [zx − wx

0]2j∑
l∈[n] ‖A:l‖1 · [zx − wx

0]2l
. (B.38)

We now state the local properties of each estimator.

Lemma 234. In the `2-`1 setup, estimator (3.28) using the sampling distributions in (B.36), (B.37),

or (B.38) is respectively a
√

2L
2,1,(k)
co -centered-local estimator, for k ∈ {1, 2, 3}.

Proof. First, we give the proof for the sampling distribution (B.36). Unbiasedness holds by definition.

For the x block, we have the variance bound:

E
[∥∥g̃xw0

(z)− gx(w0)
∥∥2

2

]
=

∑
i∈[m],j∈[n]

pij(z;w0)

(
Aij [z

y − wy
0]i

pij(z;w0)

)2

=
∑

i∈[m],j∈[n]

A2
ij [z

y − wy
0]2i

pij(z;w0)

≤ 2 max
i∈[m]

‖Ai:‖21 Vwy
0
(zy),

where in the last inequality we used Lemma 32.

For arbitrary wy, we have the variance bound on the y block:

E
[∥∥g̃yw0

(z)− gy(w0)
∥∥2

wy

]
=

∑
i∈[m],j∈[n]

[wy]i
A2
ij [z

x − wx
0]2j

qij(z;w0)

=
∑

i∈[m],j∈[n]

[wy]i[z
x − wx

0]2j ‖A‖
2
F ≤ 2 ‖A‖2F Vwx

0
(zx).

Combining these and using

‖g̃w0
(z)− g(w0)‖2w := ‖g̃w0

(z)x − g(w0)x‖22 + ‖g̃w0
(z)y − g(w0)y‖2wy

yields the desired variance bound. For the remaining two distributions, the same argument demon-

strates unbiasedness and the variance bound for the x block. For sampling distribution (B.37) and

arbitrary wy, we have the variance bound on the y block:

E
[∥∥g̃yw0

(z)− gy(w0)
∥∥2

wy

]
=

∑
i∈[m],j∈[n]

[wy]i
A2
ij [z

x − wx
0]2j

qij(z;w0)

≤

 ∑
i∈[m],j∈[n]

[wy]iA
2
ij

rcs
∑
j∈[n]

[zx − wx
0]2j

≤ 2rcs max

i∈[m]
‖Ai:‖22 Vwx

0
(zx).

APPENDIX B. DEFERRED PROOFS FROM CHAPTER 3 610

Finally, for sampling distribution (B.38), we have the variance bound on the y block:

E
[∥∥g̃yw0

(z)− gy(w0)
∥∥2

wy

]
=

∑
i∈[m],j∈[n]

[wy]i
A2
ij [z

x − wx
0]2j

qij(z;w0)

≤

 ∑
i∈[m],j∈[n]

[wy]i|Aij |

∑
l∈[n]

‖A:l‖1 · [z
x − wx

0]2l

≤ 2

(
max
i∈[m]

‖Ai:‖1

)(
max
j∈[n]

‖A:j‖1

)
Vwx

0
(zx).

Finally, as in Section B.3.2, we define the constant

L2,1
co :=

√
max
i∈[m]

‖Ai:‖21 + min

(
‖A‖2F , rcs max

i∈[m]
‖Ai:‖22 ,

(
max
i∈[m]

‖Ai:‖1

)(
max
j∈[n]

‖A:j‖1

))
,

and note that Lemma 234 implies that we can obtain a
√

2L2,1
co -centered-local estimator by appro-

priately choosing a sampling distribution depending on the minimizing parameter.

Implementation details

The algorithm we analyze is Algorithm 11 with K = 3αΘ/ε, εouter = 2ε/3 using Algorithm 12 as an

(α, εinner = ε/3)-relaxed proximal oracle with ϕ = ε/18. In the implementation of Algorithm 11, we

again apply the truncate(·, δ) operation to each iterate z?k, where the truncate operation only affects

the y block; choosing δ = εouter−εinner

αm suffices for its guarantees (see Section 3.4.2 for the relevant

discussion). In the implementation of Algorithm 12, we use the centered-local gradient estimator

defined in (3.28), using the sampling distribution amongst (B.36), (B.37), or (B.38) which attains

the variance bound L2,1
co . For each use of Algorithm 12, we choose

η =
α

20
(
L2,1
co

)2 and T =

⌈
6

ηα

⌉
=

120
(
L2,1
co

)2
α2

.

For simplicity, because most of the algorithm implementation details are exactly the same as the

discussion of Section 3.4.2 for the simplex block y ∈ Y, and exactly the same as the discussion of

Section B.4.2 for the ball block x ∈ X , we discuss the differences here.

Outer loop extragradient steps. We execute 3α log(2m)/ε iterations of Algorithm 11 to obtain the

desired gap. We spend O(nnz) time executing each extragradient step exactly, and then O(m + n)

time applying the truncate operation and maintaining the average point z̄. When we initialize the

inner loop, we also create a data structure supporting sampling from wy
0 in constant time.

Data structure initializations and invariants.

APPENDIX B. DEFERRED PROOFS FROM CHAPTER 3 611

On the simplex block, we follow the strategy outlined in Section 3.4.2. We initialize our simplex

maintenance data structure AEMy(wy
0, v, κ, ε̃) with parameters

κ :=
1

1 + ηα/2
, v := (1− κ) logwy

0 − ηκgy(w0), ε̃ := (m+ n)−8.

We will again maintain the invariant that the data structures maintain “exact” and “approximate”

points corresponding to the iterates of our algorithm. The correctness of this setting with respect

to the requirements of Proposition 11, i.e. the approximation conditions in Line 5, 7 and 8 in

Algorithm 12, follows from the discussion of Section 3.4.2; we note that the condition minj [w
x
0]j ≥

(m + n)−5 = λ again holds, and that 1 − κ ≥ (m + n)−8. Thus, for the parameter ω used in the

interface of ApproxExpMaintainer, we have

log(ω) = log

(
max

(
1

1− κ
,
m

λε̃

))
= O(log(mn)).

On the ball block, we follow the strategy outlined in Section B.4.2, but instead of using an

IterateMaintainer2 on the x-block, we use CIMx2, an instance of CenteredIterateMaintainer2

data structure initialized with the point wx
0, supporting the required sampling operation. For the

sampling distribution (B.37), we use the weight vector of column nonzero counts, and for (B.38)

we use the weight vector of column `1 norms. Overall, the complexity of the initializations on both

blocks is bounded by O(n+m log2(m) log2(mn)).

Inner loop iterations.

We discuss how to sample from each of the distributions (B.36), (B.37), and (B.38) inO(log(m) log(mn)).

Combining with the discussions of implementing the inner loop in Sections 3.4.2 and B.4.2, the total

complexity of the inner loop, other than outputting the average iterate, is

O
(
T log2(m) log2(mn) + nnz +m log(m) log2(mn)

)
= O

(
L

2,1,(1)
co

)2

log2(m) log2(mn)

α2
+ nnz +m log(m) log2(mn)

 .

As in the variance-reduced `1-`1 setting, the dominant term in the runtime is the complexity of

calling AEMy.AddSparse in each iteration. Recall that the distribution p in every case is given by

pij(z;w0) :=
[zy]i + 2[wy

0]i
3

· |Aij |
‖Ai:‖1

With probability 2/3 we sample a coordinate i from the precomputed data structure for sampling

from wy
0, and otherwise we sample i via AEMy.Sample(). Then, we sample an entry j proportional to

its magnitude from the `1 sampling oracle for Ai: in constant time. The runtime is dominated by

APPENDIX B. DEFERRED PROOFS FROM CHAPTER 3 612

O(log(m) log(mn)).

To sample from the distribution q in (B.36), we follow the outline in Section B.4.3. Similarly, for

sampling from distributions (B.37) and (B.38), we follow the outline in Section B.4.3 but replace all

calls to an IterateMaintainer instance with a call to CIMx2 initialized with an appropriate weight

vector. In all cases, the runtime is O(logm) which does not dominate the iteration complexity.

Finally, it is clear from discussions in previous sections that the iterate maintenance invariants

of our data structures are preserved by the updates used in this implementation.

Algorithm guarantee

Theorem 79. In the `2-`1 setup, let nnz′ := nnz + m log(m) log2(mn). The implementation in

Section B.4.3 with the optimal choice of α = max
(
ε/3, L2,1

co log(m) log (mn) /
√

nnz′
)

has runtime

O

((
nnz′ +

(
L2,1
co

)2
log2(m) log2(mn)

α2

)
α log(m)

ε

)
= O

(
nnz′ +

√
nnz′L2,1

co log(mn) log2(m)

ε

)

and outputs a point z̄ ∈ Z such that

E [Gap(z)] ≤ ε.

Proof. The correctness of the algorithm is given by the discussion in Section B.4.3 and the guarantees

of Proposition 10 with K = 3αΘ/ε, εouter = 2ε/3, εinner = ε/3, Proposition 11 with ϕ = ε/18 and

data structure ApproxExpMaintainer with our choice of

ε̃ := (m+ n)−8

to meet the approximation conditions in Line 5, 7 and 8 in Algorithm 12. The runtime bound is

given by the discussion in Section B.4.3, and the optimal choice of α is clear.

B.5 Additional results on variance-reduced methods

B.5.1 Row-column sparsity variance-reduced methods

By instantiating relaxed proximal oracles with row-column based gradient estimators, implemented

with the data structures we develop in Section 3.5, we obtain the row-column sparsity based runtimes

as stated in Table 3.2. Notably, up to logarithmic factors, we generically replace a dependence on

O(m + n) in a prior version of this work [111] with O(rcs), where rcs is defined as the maximum

number of nonzero entries for any row or column. In this section, we give implementation details,

as well as the instantiation of our framework using row-column gradient estimators.

Our row-column estimators g̃w0
in this section, parameterized by reference point w0, sample a

full column or row of the matrix (rather than a coordinate). To compute g̃w0(z) we sample i ∼ p(z)

APPENDIX B. DEFERRED PROOFS FROM CHAPTER 3 613

and j ∼ q(z) independently according to a specified distribution depending on the setup, and use

the estimator

g̃w0
(z) :=

(
A>wy

0 +Ai:
[zy]i − [wy

0]i
pi(w)

,−Awx
0 −A:j

[zx]j − [wx
0]j

qj(w)

)
, (B.39)

The key difference between this estimator with that of Section 8 is that its difference with g(w0)

is O(rcs)-sparse rather than O(1)-sparse, requiring MultSparse steps with O(rcs)-sparse vectors. In

all other respects, the implementation details are exactly the same as those in Section 3.4.2 and

Appendix B.4, so we omit them for brevity. We now state our sampling distributions used with the

estimator form (B.39), and the corresponding centered local variance bounds.

In the `1-`1 setup, we use the sampling distribution (from reference point w0 ∈ ∆m ×∆n)

pi(z) :=
[zy]i + 2[wy

0]i
3

and qj(z) :=
[zx]j + 2[wx

0]j
3

. (B.40)

Lemma 235. In the `1-`1 setup, gradient estimator (B.39) using the sampling distribution in (B.40)

is a
√

2 ‖A‖max-centered-local estimator.

Proof. Unbiasedness holds by definition. For the variance bound, it suffices to show that

E ‖g̃w0
(z)− g(w0)‖2∞ ≤ 2 ‖A‖2max Vwx

0
(zx);

clearly this implies the weaker relative variance bound statement (along with an analogous bound

on the y block). To this end, we have

E ‖g̃w0
(z)− g(w0)‖2∞ ≤

∑
i∈[m]

‖Ai:‖2∞ [zy − wy
0]2i

pi(z)
≤ 2 ‖A‖2max Vwx

0
(zx),

where the last inequality used Lemma 32.

In the `2-`2 setup, we use the oblivious sampling distribution

pi =
‖Ai:‖22
‖A‖2F

and qj =
‖A:j‖22
‖A‖2F

. (B.41)

We proved that gradient estimator (B.39) using the sampling distribution in (B.41) admits a

‖A‖F-centered estimator in [111], which is an equivalent definition to Definition 5 in the `2-`2 setup.

For self-containment, we reproduce this proof here.

Lemma 236. In the `2-`2 setup, gradient estimator (B.39) using the sampling distribution in (B.41)

is a ‖A‖F-centered estimator.

APPENDIX B. DEFERRED PROOFS FROM CHAPTER 3 614

Proof. Unbiasedness holds by definition. For the variance bound,

E ‖g̃w0
(z)− g(w0)‖22 =

∑
i∈[m]

‖Ai:‖22
pi

([zy]i − [wy
0]i)

2 +
∑
j∈[n]

‖A:j‖22
qj

([zx]j − [wx
0]j)

2

= ‖A‖2F ‖z − w0‖22 .

In the `2-`1 setup, we use the sampling distribution (from reference point w0 ∈ Bn ×∆m)

pi(z) =
[zy]i + 2[wy

0]i
3

and qj(z) =
([zx]j − [wx

0]j)
2

‖zx − wx
0‖

2
2

. (B.42)

Lemma 237. In the `2-`1 setup, gradient estimator (B.39) using the sampling distribution in (B.42)

is a
√

2L-centered-local estimator with L = maxi∈[m] ‖Ai:‖2 = ‖A‖2→∞.

Proof. Unbiasedness holds by definition. For the variance bound, we first note

E
[∥∥g̃xw0

(z)− gx(w0)
∥∥2

2

]
≤
∑
i∈[m]

‖Ai:‖22
([zy]i − [wy

0]i)
2

1
3 [zy]i + 2

3 [wy
0]i
≤ max
i∈[m]

‖Ai:‖22

∑
i∈[m]

([zy]i − [wy
0]i)

2

1
3 [zy]i + 2

3 [wy
0]i

≤ 2 max

i∈[m]
‖Ai:‖22 Vwy

0
(zy),

where for the last inequality we use Lemma 32. On the other block, we have

max
i∈[m]

E
[
g̃yw0

(w)− gy(w0)
]2
i
≤ max
i∈[m]

∑
j∈[n]

A2
ij [w

x − wx
0]2j

qj(w)
= 2 max

i∈[m]
‖Ai:‖22 Vwx

0
(wx).

Summing these two bounds concludes the proof.

B.5.2 Extensions with composite terms

In this section, we give a brief discussion of how to change Proposition 11 and implementations

of the procedures in Sections 3.3.1 and 3.3.2 to handle modified regularization in the context of

Proposition 19, and composite regularization terms in the objective in the methods of Section 3.6.

Specifically we consider a composite optimization problem of the form:

min
x∈X

max
y∈Y

y>Ax+ µxφ(x)− µyψ(y) where φ = V x
x′ and ψ = V y

y′ .

For simplicity of notation we define Υ(x, y) := µxφ(x) +µyψ(y). We remark that x′ = 0 recovers

the case of φ = rx when X = Bn, and x′ = 1
n1 recovers the case of φ = rx when X = ∆n (similarly

setting y′ allows us to recover this for the y block).

APPENDIX B. DEFERRED PROOFS FROM CHAPTER 3 615

Changes to inner loop

In this section, we first discuss the necessary changes to Algorithm 12 and Proposition 11. For

simplicity of notation, we denote ρ :=
√
µx/µy, V̂ x := ρV x, V̂ y := 1

ρV
y, V̂ := V̂ x + V̂ y.

Algorithm 68: InnerLoop(w0, g̃w0 , ϕ)

1 Input: Initial w0 ∈ Z, (L,α)-centered-local gradient estimator g̃w0 , oracle quality α > 0;
2 Parameters: Step size η, number of iterations T , approximation tolerance ϕ;
3 Output: Point w̃ satisfying Definition 6;
4 for t = 1, . . . , T do

5 ŵt−1 ≈ wt−1 satisfying V̂w0(ŵt−1)− V̂w0(wt−1) ≤ ϕ
α and ‖ŵt−1 − wt−1‖ ≤ ϕ

LD ;

6 w?t ← argmin
{
〈clip(ηg̃w0(ŵt−1)− ηg(w0)), w〉+ ηΥ(w) + ηα

2 V̂w0(w) + V̂wt−1(w)
}

;

7 wt ≈ w?t satisfying maxu

[
V̂wt(u)− V̂w?t (u)

]
≤ ϕ

1+
√
µxµy , V̂w0

(wt)− V̂w0
(w?t) ≤ ϕ

α , and

V̂z′(wt)− V̂z′(w?t) ≤ ϕ√
µxµy ;

8 Return: w̃ ≈ 1
T

∑T
t=1 wt satisfying

∥∥∥w̃ − 1
T

∑T
t=1 wt

∥∥∥ ≤ ϕ
LD ,

maxu

[
V̂w̃(u)− V̂w̄(u)

]
≤ ϕ√

µxµy , V̂w′(w̃)− V̂w′(w̄) ≤ ϕ√
µxµy , and ‖wt − w?t ‖ ≤

ϕ
2LD

Corollary 58. Let (Z, ‖·‖·, r, Θ, clip) be any local norm setup. Let w0 ∈ Z, εinner > 0, and g̃w0

be an L-centered-local estimator for some L ≥ α ≥ εinner. Assume the problem has bounded domain

size maxz∈Z ‖z‖ ≤ D, g is L-Lipschitz, i.e. ‖g(z)− g(z′)‖∗ ≤ L ‖z − z′‖, that g is LD-bounded, i.e.

maxz∈Z ‖g(z)‖∗ ≤ LD, and ŵ0 = w0. Then, for η = α
10L2 , T ≥ 8

ηα ≥
60L2

α2 , ϕ = εinner

10 , Algorithm 68

outputs a point ŵ ∈ Z such that

Emax
u∈Z

[〈g(w̃) +∇Υ(w̃), w̃ − u〉 − αVw0(u)] ≤ εinner, (B.43)

i.e. Algorithm 68 is an (α, εinner)-relaxed proximal oracle.

Proof sketch. Note that the only change is in the definition of the regularized mirror descent step

with extra composite terms

w?t ← argmin
{
〈clip(ηg̃w0(ŵt−1)− ηg(w0)), w〉+ ηΥ(w) +

ηα

2
V̂w0(w) + V̂wt−1(w)

}
.

Denote ∇Υ(w) = (µx∇φ(wx), µy∇ψ(wy)), so that for the final regret bound there are two additional

error terms. The first term comes from the error in regularized mirror descent steps via (denoting

APPENDIX B. DEFERRED PROOFS FROM CHAPTER 3 616

z′ = (x′, y′))

1

T

∑
t∈[T]

[−〈∇Υ(w?t), w?t − u〉+ 〈∇Υ(wt), wt − u〉]

≤
√
µxµy

T

∑
t∈[T]

(
V̂z′(wt)− V̂z′(w?t) + V̂wt(u)− V̂w?t (u)

)
≤ 2ϕ

following the approximation guarantee in Line 7. The other term comes from averaging error. Denote

the true average iterate by w̄ := 1
T

∑
t∈[T] wt. We have ∀u ∈ Z,

〈g(w̃), w̃ − u〉 − 1

T

∑
t∈[T]

〈g(wt), wt − u〉 = −〈g(w̃), u〉 − 〈g(w̄), w̄ − u〉

= 〈g(w̄)− g(w̃), u〉 ≤ ϕ,

and also

〈∇Υ(w̃), w̃ − u〉 = 〈∇Υ(w̃)−∇Υ(w̄), w̃ − u〉+ 〈∇Υ(w̄), w̃ − w̄〉+ 〈∇Υ(w̄), w̄ − u〉
(i)
=
√
µxµy

(
−V̂w̄(u) + V̂w̃(u) + V̂w̄(w̃)

)
+ 〈∇Υ(w̄), w̃ − w̄〉+ 〈∇Υ(w̄), w̄ − u〉

(ii)
=
√
µxµy

(
−V̂w̄(u) + V̂w̃(u) + V̂w′(w̃)− V̂w′(w̄)

)
+ 〈∇Υ(w̄), w̄ − u〉,

(iii)

≤ 2ϕ+ 〈∇Υ(w̄), w̄ − u〉
(iv)

≤ 2ϕ+
1

T

∑
t∈[T]

〈∇Υ(wt), wt − u〉.

where we use (i) the three-point property of Bregman divergence, (ii) the fact that V̂w̄(w̃) +

〈∇Υ(w̄), w̃ − w̄〉 = V̂w′(w̃) − V̂w′(w̄) again by the three-point property, (iii) the approximation

guarantee of Line 8, and (iv) the fact that 〈∇Υ(w), w − u〉 is convex in w for our choices of Υ.

Hence incorporating the above extra error terms into the regret bound yields the conclusion, as

10ϕ = εinner by our choice of ϕ.

Changes to implementation

Broadly speaking, all of these modifications can easily be handled via appropriate changes to the

initial data given to our data structures CenteredIterateMaintainer2 and ApproxExpMaintainer.

We discuss general formulations of iterations with these modifications in both simplices and Eu-

clidean balls, and provide appropriate modifications to the inital data given to our data structures.

Finally, it is simple to check that all relevant parameters are still bounded by a polynomial in the di-

mensions of variables, so no additional cost due to the data structure is incurred. For simplicity here

we only considerfor the x-block when φx(x) = µr(x) and remark that the case when φx(x) = µVx′(x)

APPENDIX B. DEFERRED PROOFS FROM CHAPTER 3 617

for some x′ follows similarly.

`1 domains. For this section, define a domain X = ∆n, let r(x) =
∑
j∈[n] xj log xj be entropy,

and let µ, α, η, ρ be nonnegative scalar parameters. Consider a sequence of iterates of the form

xt+1 ← argminx∈X 〈g̃x0(xt), x〉+ µr(x) +
αρ

2
Vx0(x) +

ρ

η
Vxt(x).

This update sequence, for the form of gradient estimator

g̃x0
(x) = g(x0) + b+ g′(x),

where g′(x) is a vector with suitable sparsity assumptions depending on the point x, and b is some

fixed vector, generalizes all of the settings described above used in our various relaxed proximal

oracle implementations. Optimality conditions imply that the update may be rewritten as

xt+1 ← Π∆

(
exp

(
ρ
η log xt + αρ

2 log x0 − g(x0)− b− g′(xt)
µ+ αρ

2 + ρ
η

))
.

Thus, initializing an ApproxExpMaintainer instance with

κ =
1

µη
ρ + αη

2 + 1
, v =

αρ
2 log x0 − g(x0)− b

µ+ αρ
2 + ρ

η

enables DenseStep to propagate the necessary changes to the iterate; we propagate changes due to

g′(xt) via AddSparse and the appropriate sparsity assumptions.

`2 domains. For this section, define a domain X = Bn, let r(x) = 1
2 ‖x‖

2
2 be entropy, and let µ,

α, η, ρ be nonnegative scalar parameters. Consider a sequence of iterates of the form

xt+1 ← argminx∈X 〈g̃x0(xt), x〉+ µr(x) +
αρ

2
Vx0(x) +

ρ

η
Vxt(x).

This update sequence, for the form of gradient estimator

g̃x0
(x) = g(x0) + b+ g′(x),

where g′(x) is a vector with suitable sparsity assumptions depending on the point x, and b is some

fixed vector, generalizes all of the settings described above used in our various relaxed proximal

oracle implementations. Optimality conditions imply that the update may be rewritten as

xt+1 ← ΠBn

(
ρ
ηxt + αρ

2 x0 − g(x0)− b− g′(xt)
µ+ αρ

2 + ρ
η

)
.

APPENDIX B. DEFERRED PROOFS FROM CHAPTER 3 618

Thus, initializing an CenteredIterateMaintainer instance with

v =
αρ
2 x0 − g(x0)− b
µ+ αρ

2 + ρ
η

enables AddDense, Scale, and GetNorm to propagate the necessary changes to the iterate; we prop-

agate changes due to g′(xt) via AddSparse and the appropriate sparsity assumptions.

B.6 Deferred proofs from Section 3.6

B.6.1 Proofs from Section 3.6.1

Proof of Lemma 39. We consider the following (µ, µ)-strongly monotone problem, for various levels

of µ:

max
x∈Bn

min
y∈∆m

fµ(x, y) := y>Ãx+ y>b+ µ
∑
i∈[m]

[y]i log[y]i −
µ

2
‖x‖22 .

We claim we can implement an (α, ε)-relaxed proximal oracle for this problem in time

Õ

((
L2,1
co

)2
α2

)
.

The oracle is a composite implementation of Algorithm 12 as in Algorithm 68, using the estimator of

Appendix B.4.3. By an application of Proposition 19, the overall complexity of solving this problem

is (by choosing the optimal α, and overloading the constant L2,1
co to be with respect to Ã):

Õ

((
nnz +

(
L2,1
co

)2
α2

)
α

µ

)
= Õ

(
nnz +

√
nnz · L2,1

co

µ

)
.

By conducting a line search over the parameter µ via repeatedly halving, the total cost of solving

each of these problems is dominated by the last setting, wherein µ = Θ(r∗/ logm), and R/µ = Õ (ρ);

here, we recall that we rescaled Ã so that L2,1
co = O(R). We defer details of the line search procedure

to Lemma C.3 of [19].

Proof of Theorem 12. We solve the problem (3.61) to duality gap εr̂/8 ≤ εr∗, using the algorithm

of Appendix B.4.3 for `2-`1 games. The complexity of this algorithm is (choosing α optimally)

Õ

((
nnz(Ã) +

(
L2,1
co

)2
α2

)
· α
εr̂

)
= Õ

(
nnz +

ρ
√

nnz · L2,1
co

ε

)
,

as claimed. Here, we used that Ã is a rescaling of A by 2R, and r̂ is a constant multiplicative approx-

imation of r. The approximate solution (x∗ε′ , y
∗
ε′) obtains the requisite duality gap in expectation;

APPENDIX B. DEFERRED PROOFS FROM CHAPTER 3 619

Markov’s inequality implies that with logarithmic overhead in the runtime, we can obtain a pair of

points satisfying with high probability

max
x

f(x, y∗ε′)−min
y
f(x∗ε′ , y) = max

x
f(x, y∗ε′)− f(x∗, y∗) + f(x∗, y∗)−min

y
f(x∗ε′ , y) ≤ ε′.

Because y∗ is the best response to x∗, we have f(x∗, y∗ε′) ≥ f(x∗, y∗), which implies

max
x

f(x, y∗ε′)− f(x∗, y∗) = max
x

f(x, y∗ε′)− f(x∗, y∗ε′) + f(x∗, y∗ε′)− f(x∗, y∗) ≥ 0.

Combining yields f(x∗, y∗) −miny f(x∗ε′ , y) ≤ ε′ ≤ εr∗, so since f(x∗, y∗) = r∗, rearranging implies

miny f(x∗ε′ , y) ≥ r∗ − ε′ ≥ (1− ε)r∗. Thus, x∗ε′ is an ε-approximate solution for Max-IB.

B.6.2 Proofs from Section 3.6.2

Proof of Lemma 40. If (x′, y′) is an approximately optimal solution with duality gap ε/16 for (3.64),

by definition

max
y∈∆m

fε′(x
′, y)− min

x∈Rn
fε′(x, y

′) ≤ ε

16
.

Therefore, the following sequence of inequalities hold:

max
y∈∆m

f(x′, y)− min
x∈Rn

f(x, y′) =

(
max
y∈∆m

f(x′, y)− max
y∈∆m

fε′(x
′, y)

)
+

(
max
y∈∆m

fε′(x
′, y)− min

x∈Rn
fε′(x, y

′)

)
+

(
min
x∈Rn

fε′(x, y
′)− min

x∈Rn
f(x, y′)

)
(i)

≤
(

max
y∈∆m

f(x′, y)− max
y∈∆m

fε′(x
′, y)

)
+

ε

16
+

(
min
x∈Rn

fε′(x, y
′)− min

x∈Rn
f(x, y′)

)
(ii)

≤ ε

32
+

ε

16
+

ε

32
=
ε

8
.

In (i), we used the fact that the pair (x′, y′) has good duality gap with respect to fε′ , and in (ii)

we used that for the first summand, fε′(x
′, ·) approximates f(x′, ·) to an additive ε/32, and for the

third summand, −ε′
∑
i∈[m][y

′]i log[y′]i is bounded by ε/32, and all other terms cancel.

B.6.3 Proofs from Section 3.6.3

Proof of Lemma 41. At optimality for (3.65), it holds thaty∗x′ = 1
β (Ax∗x′ − b)

x∗x′ = x′ − 1
βA
>y∗x′

.

APPENDIX B. DEFERRED PROOFS FROM CHAPTER 3 620

By substituting y∗x′ and rearranging terms we get(
I +

1

β2
A>A

)
(x∗x′ − x∗) = x′ − x∗,

which in turn gives

‖x∗x′ − x∗‖2 =

∥∥∥∥∥
(
I +

1

β2
A>A

)−1

(x′ − x∗)

∥∥∥∥∥
2

≤ 1

1 + µ/β2
‖x′ − x∗‖2 .

For the last inequality we use the fact that∥∥∥∥I +
1

β2
A>A

∥∥∥∥−1

2

= λmin

(
I +

1

β2
A>A

)−1

=
1

1 + µ/β2
,

by the definition of µ and since I and A>A commute.

Theorem 14. Given data matrix A ∈ Rm×n, vector b ∈ Rm, and desired accuracy ε ∈ (0, 1),

assuming A>A � µI for µ > 0, Algorithm 69 outputs an expected ε-accurate solution x̃, i.e.

E [‖x̃− x∗‖2] ≤ ε,

and runs in time

Õ

nnz +
√

nnz ·
max

{√∑
i ‖Ai:‖21,

√∑
j ‖A:j‖21

}
√
µ

 .

Proof. We first prove correctness. We bound the progress from x(h) to x(h+1), for some h ∈ [H], by

1

2

∥∥∥x(h+1) − x∗
∥∥∥2

2
≤
∥∥∥x(h+1) − x∗x(h)

∥∥∥2

2
+
∥∥x∗x(h) − x∗

∥∥2

2
≤ 2Vz(h+1)(z∗x(h)) +

∥∥x∗x(h) − x∗
∥∥2

2
. (B.44)

The first inequality used ‖a+ b‖22 ≤ 2 ‖a‖22 + 2 ‖b‖22, and the second used the definition of the

divergence in the `2-`2 setup. Next, choosing a sufficiently large value of K = Õ (β/µ), we use

Proposition 19 to obtain a point z(h+1) satisfying

Vz(h+1)(z∗x(h)) ≤
ε2

80
Vz(h)(z∗x(h)) ≤

ε2

40
Vz(h)(z∗) +

ε2

40
Vz∗(z

∗
x(h)). (B.45)

Further, using Lemma 41 with x′ = x(h), β =
√
µ yields

∥∥x∗x(h) − x∗
∥∥

2
≤ 1

2

∥∥∥x(h) − x∗
∥∥∥

2
. (B.46)

APPENDIX B. DEFERRED PROOFS FROM CHAPTER 3 621

Algorithm 69: Coordinate variance reduced method for linear regression

1 Input: Matrix A ∈ Rm×n with ith row Ai: and jth column A:j , vector b ∈ Rm, accuracy ε
Output: A point x̃ with ‖x̃− x∗‖2 ≤ ε

2 L← max
{√∑

i ‖Ai:‖21,
√∑

j ‖A:j‖21
}

, α← L/
√

nnz, β =
√
µ, η ← α

4L2 ;

3 T ←
⌈

4
ηα

⌉
, K ← Õ (α/β), H = Õ (1), z(0) = (x(0), y(0))← (0n,0m), (zx0, z

y
0)← (0n,0m);

4 for h = 1, 2, · · · , H do
5 for k = 1, . . . ,K do

. Relaxed oracle query:

6 (x0, y0)← (zxk−1, z
y
k−1), (gx0, g

y
0)← (A>y0 + β(x0 − x(h−1)),−Ax0 + βy0);

7 for t = 1, . . . , T do

. Gradient estimation:

8 Sample i ∼ p where pi =
([yt−1]i − [y0]i)

2

‖yt−1 − y0‖22
;

9 Sample j ∼ q where qj =
([xt−1]j − [x0]j)

2

‖xt−1 − x0‖22
;

10 Set g̃t−1 = g0 +

(
Ai:

[yt−1]i − [y0]i
pi

,−A:j
[xt−1]j − [x0]j

qj

)
;

. Mirror descent step:

11 xt ←
1

1 + ηα/2

(
xt−1 +

ηα

2
x0 − ηg̃xt−1

)
12 yt ← ΠY

(
1

1 + ηα/2

(
yt−1 +

ηα

2
y0 − ηg̃yt−1

))
. ΠY(v) = v

max{1,‖v‖2}
;

13 zk−1/2 ←
1

T

T∑
t=1

(xt, yt);

. Extragradient step:

14 zxk ←
α

α+ 2β
zxk−1 +

2β

α+ 2β
zxk−1/2 −

1

α+ 2β

(
A>zyk−1/2 + β(zxk−1/2 − x

(h−1))
)

;

15 zyk ← ΠY

(
α

α+ 2β
zyk−1 +

2β

α+ 2β
zyk−1/2 +

1

α+ 2β

(
Azxk−1/2 − βz

y
k−1/2

))
;

. Reshifting the oracle:

16 z(h) = (x(h), y(h))← zK = (zxK , z
y
K);

17 Return: x̃← x(H)

APPENDIX B. DEFERRED PROOFS FROM CHAPTER 3 622

Plugging these two bounds into (B.44), and using the form of the divergence in the `2-`2 setup,

1

2

∥∥∥x(h+1) − x∗
∥∥∥2

2

(B.45)

≤ ε2

20
Vz(h)(z∗) +

ε2

20
Vz∗(z

∗
x(h)) +

∥∥x∗x(h) − x∗
∥∥2

2

(B.46)

≤ 1

2

(
ε2

20
+
ε2

20
+

1

2

)∥∥∥x(h) − x∗
∥∥∥2

2
+
ε2

40

(∥∥∥y(h) − y∗
∥∥∥2

2
+
∥∥y∗x(h) − y∗

∥∥2

2

)
≤ 3

4
· 1

2

∥∥∥x(h) − x∗
∥∥∥2

2
+
ε2

5
.

(B.47)

In the last inequality we use the conditions that ε ∈ (0, 1) and Y = Bm. Recursively applying this

bound for h ∈ [H], and for a sufficiently large value of H = Õ (1), we have the desired

∥∥∥x(H) − x∗
∥∥∥2

2
≤
(

3

4

)H ∥∥∥x(0) − x∗
∥∥∥2

2
+

4ε2

5
≤ ε2.

To bound the runtime, recall the inner loop runs for T = O((L2,2
co)2/α2) iterations, each costing

constant time, and the outer loop runs for K = Õ (α/β) iterations, each costing O(T +nnz). Finally,

since H = Õ (1), the overall complexity of the algorithm is

Õ

((
nnz +

(
L2,2
co

)2
α2

)
α

β

)
.

Choosing α = max{L2,2
co /
√

nnz, β} optimally and substituting

β =
√
µ, L2,2

co = max

√∑

i

‖Ai:‖21,
√∑

j

‖A:j‖21

 ,

we have the desired runtime bound on Algorithm 69.

B.7 Strongly monotone proximal method

We provide a proof of a generalization of Proposition 19, namely Proposition 56. It is straightforward

to deduce Proposition 19 from Proposition 56; by the definition of our distance-generating function

r in Proposition 19, g is µ-strongly monotone in r, and the range of the regularizer is affected by a

ρ+ ρ−1 factor. Finally, we mention that we proved a similar convergence rate in Appendix A.4, but

it used a slightly different algorithm (namely, it generated the intermediate step using a first-order

extrapolation step rather than a relaxed proximal oracle). For our variance reduction results, we

require the specialization of strongly monotone extragradient methods to proximal oracles developed

in this section.

As a brief refresher, in this section we consider variational inequalities with strongly monotone

APPENDIX B. DEFERRED PROOFS FROM CHAPTER 3 623

operators. Following [375], we say that an operator g is µ-strongly monotone relative to the distance

generating function r if it satisfies

〈g(z′)− g(z), z′ − z〉 ≥ µ · Vz′(z) for all z′, z ∈ Z. (B.48)

By strong convexity of r, a µ-strongly monotone operator relative to r is also µ-strongly mono-

tone in the standard sense, i.e., 〈g(z′)− g(z), z′ − z〉 ≥ µ
2 ‖z

′ − z‖2 for all z, z′ ∈ Z. For saddle

point problems minx∈X maxy∈Y f(x, y) with gradient mapping g(x, y) = (∇xf(x, y),−∇yf(x, y))

and separable r(x, y) = rx(x) + ry(y), the property (B.48) holds whenever f(x, y)− µrx(x) + µry(y)

is convex-concave, i.e., whenever f(·, y) is µ-strongly convex relative to rx for every y and f(x, ·) is

µ-strongly-concave relative to ry for every x.

Strongly monotone operators have a unique saddle point z? satisfying

max
u∈Z
〈g(z?), z? − u〉 ≤ 0. (B.49)

We show that Algorithm 70—a small modification of Algorithm 11—converges linearly to z? (i.e.,

with the distance to z? decaying exponentially in the number of iterations). The main difference

between the algorithms is that the extra-gradient step in Algorithm 70 has an additional regulariza-

tion term around zk−1/2, making it similar in form to the regularized mirror descent steps we use in

Algorithm 12. In addition, Algorithm 70 outputs the last iterate rather the iterate average.

Algorithm 70: OuterLoopStronglyMonotone(O)

1 Input: (α, ε)-relaxed proximal oracle O(z) for gradient mapping g satisfying (B.48);
2 Parameters: Number of iterations K;

3 Output: Point zK with EVzK (z?) ≤ (α
µ+α)KΘ + ε

µ ;

4 z0 ← argminz∈Zr(z) ;
5 for k = 1, . . . ,K do
6 zk−1/2 ← O(zk−1) . We implement O(zk−1) by calling InnerLoop(zk−1, g̃zk−1

, α) ;

7 zk ← argminz∈Z
{〈
g
(
zk−1/2

)
, z
〉

+ αVzk−1
(z) + µVzk−1/2

(z)
}

;

8 Return: zK ;

Proposition 56. Let O be an (α,ε)-relaxed proximal oracle for a gradient mapping g that is µ-

strongly monotone relative to distance-generating function r with range at most Θ. Let zK be the

output of Algorithm 70. Then

EVzK (z?) ≤
(

α

µ+ α

)K
Θ +

ε

µ
.

APPENDIX B. DEFERRED PROOFS FROM CHAPTER 3 624

If in addition g is a gradient mapping for f and ‖(∇xf(z),−∇yf(z′))‖∗ ≤ G for all z, z′ ∈ Z, then

EGap(zK) ≤
√

2G

√(
α

µ+ α

)K
Θ +

ε

µ
.

Proof. Fix an iteration k. Using µ-strong-monotonicity (B.48) and optimality of z? (B.49) yields

µVzk−1/2
(z?)

(B.48)

≤
〈
g(zk−1/2)− g(z?), zk−1/2 − z?

〉 (B.49)

≤
〈
g(zk−1/2), zk−1/2 − z?

〉
=
〈
g(zk−1/2), zk − z?

〉
+
〈
g(zk−1/2), zk−1/2 − zk

〉
. (B.50)

Next,

〈
g(zk−1/2), zk − z?

〉 (i)

≤ −〈α∇Vzk−1
(zk) + µ∇Vzk−1/2

(zk), zk − z?〉
(ii)

≤ µ(Vzk−1/2
(z?)− Vzk(z?)− Vzk−1/2

(zk)) + α(Vzk−1
(z?)− Vzk(z?)− Vzk−1

(zk))

≤ αVzk−1
(z?)− (µ+ α)Vzk(z?) + µVzk−1/2

(z?)− αVzk−1
(zk), (B.51)

where we use (i) the first-order optimality condition for zk and (ii) the three-point property of

Bregman divergence. In the last inequality, we also use nonnegativity of Vzk−1/2
(zk). Now, combin-

ing (E.8) and (E.10) yields

µVzk−1/2
(z?) ≤ αVzk−1

(z?)− (µ+ α)Vzk(z?) + µVzk−1/2
(z?) + [

〈
g(zk−1/2), zk−1/2 − zk

〉
− αVzk−1

(zk)].

Rearranging terms, taking an expectation, and using the Definition 6 of an (α, ε)-relaxed proximal

oracle yields

EVzk(z?) ≤ α

µ+ α
EVzk−1

(z?) +
ε

µ+ α
.

Applying this bound recursively K times and using that Vz0(u) = r(u) − r(z0) ≤ Θ for z0 the

minimizer of r, we have

EVzK (z?) ≤
(

α

µ+ α

)K
Θ +

K−1∑
k=0

(
α

µ+ α

)k (
ε

µ+ α

)
≤
(

α

µ+ α

)K
Θ +

ε

µ
.

To bound Gap(zK) (defined in (3.24)), write gap(z;u) = f(zx, uy) − f(ux, zy). Then we have

‖∇zgap(z;u)‖∗ = ‖(∇xf(zx, uy),−∇yf(uy, zx))‖∗ ≤ G by assumption (since Z = X × Y), and

therefore gap(z;u) is G-Lipschitz in z. Consequently, for any u ∈ Z,

gap(zK ;u) ≤ gap(z?;u) +G ‖zK − z?‖ ≤ G ‖zK − z?‖ ,

where the second transition follows from the optimality of z?. Therefore, the definition (3.24) of

APPENDIX B. DEFERRED PROOFS FROM CHAPTER 3 625

Gap, strong convexity of r and Jensen’s inequality yield

EGap(zK) = Emax
u∈Z

gap(zK ;u) ≤ GE ‖zK − z?‖ ≤ EG
√

2VzK (z?) ≤
√

2G
√

EVzK (z?).

Substituting the bound on EVzK (z?) concludes the proof.

B.8 IterateMaintainer2: numerical stability and variations

B.8.1 Numerical stability of IterateMaintainer1.

We discuss the implementation of a numerically stable version of IterateMaintainer1, and the

complexity of its operations, for use in our sublinear algorithms in Section 3.4.1 and Section B.3.2.

We discuss this implementation for a simplex block, e.g. a simplex variable of dimension n, as for

an `2 geometry numerical stability is clear. The main modifications we make are as follow.

• We reinitialize the data structure whenever the field ν grows larger than some fixed polynomial

in n, or if n/2 iterations have passed.

• We track the coordinates modified between restarts.

• Every time we reinitialize, we maintain the invariant that the multiplicative range of coordi-

nates of x is bounded by a polynomial in n, i.e. maxj xj/minj xj is bounded by some fixed

polynomial in n. We will implement this via an explicit truncation, and argue that such an

operation gives negligible additive error compared to the accuracy of the algorithm.

• We implicitly track the set of truncated coordinates at each data structure restart. We do so

by explicitly tracking the set of non-truncated coordinates whenever a truncation operation

happens (see the discussion below), in constant amortized time.

We now discuss the complexity and implementation of these restarts. First, note that ν can never

decrease by more than a multiplicative polynomial in n between restarts, because of nonnegativity

of the exponential, the fact that the original range at the time of the last restart is multiplicatively

bounded, and we restart every time half the coordinates have been touched. Thus, the only source

of numerical instability comes from when ν grows by more than a multiplicative polynomial in n.

Suppose this happens in τ iterations after the restart. Then,

• If τ < n/2, we claim we can implement the restart in O(τ), so the amortized cost per iteration is

O(1). To see this, for every coordinate touched in these τ iterations, we either keep or explicitly

truncate if the coordinate is too small. For every coordinate not touched in these τ iterations,

the relative contribution is at most inverse polynomial in n; we truncate all such coordinates.

Then, we compute the normalization constant according to all non-truncated coordinates, such

APPENDIX B. DEFERRED PROOFS FROM CHAPTER 3 626

that the value of all truncated coordinates is set to a fixed inverse polynomial in n. We can

implement this by implicitly keeping track of the set of truncated coordinates as well as their

contribution to the normalization factor, and explicitly setting their value in the data structure

when they are updated by AddSparse. Overall, this does not affect the value of the problem

by more than a small multiple of ε, by our assumptions on Lrc/ε. To see that we can track the

non-truncated coordinates explicitly, we note that it is a subset of the at most τ coordinates

that were touched, so this can be done in constant amortized time.

• If τ = n/2, we claim we can implement the restart in O(n), so the amortized cost per iteration

is O(1). This is clear: we can do so by explicitly recomputing all coordinates, and truncating

any coordinates which have become too small.

We describe how the data structure implements this through its maintained fields: for non-truncated

coordinates, we do not do anything other than change the scaling factor ν, and for truncated

coordinates, we reset the values of u, u′ in that coordinate appropriately once they have been sparsely

updated. Overall, this does not affect the amortized runtime of our algorithm.

B.8.2 WeightedIterateMaintainer2

In this section, we give implementation details for a weighted generalization of IterateMaintainer2,

which we will call WeightedIterateMaintainer2. It is used in Section B.3.2, when using the sam-

pling distribution (B.26). At initialization, WeightedIterateMaintainer2 is passed an additional

parameter w ∈ Rn≥0, a nonnegative weight vector. We let

〈u, v〉w :=
∑
j∈[n]

[w]j [u]j [v]j , ‖v‖w :=
√
〈v, v〉w.

WeightedIterateMaintainer2 supports all the same operations as IterateMaintainer2, with two

differences:

• For the current iterate x, WeightedIterateMaintainer2.Norm() returns weighted norm ‖x‖w.

• For the current iterate x, WeightedIterateMaintainer2.Sample() returns a coordinate j with

probability proportional to [w]j [x]2j .

Similarly to IterateMaintainer2, WeightedIterateMaintainer2 maintains the following fields.

• Scalars ξu, ξv, σu, σv, ι, ν

• Vectors u, u′, v, w

• Precomputed value ‖v‖2w.

APPENDIX B. DEFERRED PROOFS FROM CHAPTER 3 627

We maintain the following invariants on the data structure fields at the end of every operation:

• x = ξuu+ ξvv, the internal representation of x

• s = v + σuu+ σvv, the internal representation of running sum s

• ι = 〈x, v〉w, the weighted inner product of the iterate with fixed vector v

• ν = ‖x‖w, the weighted norm of the iterate

To support sampling, our data structure also maintains a binary tree distx of depth O(log n).

For the node corresponding to S ⊆ [n] (where S may be a singleton), we maintain

•
∑
j∈S [w]j [u]2j ,

∑
j∈S [w]j [u]j [v]j ,

∑
j∈S [w]j [v]2j

We now give the implementation of the necessary operations for WeightedIterateMaintainer2,

giving additional proofs of correctness when applicable.

Initialization.

• Init(x0, v, w). Runs in time O(n).

1. (ξu, ξv, u)← (1, 0, x0).

2. (σu, σv, u
′)← (0, 0,0n).

3. (ι, ν)← (〈x0, v〉w , ‖x0‖w).

4. Compute and store ‖v‖2w.

5. Initialize distx, storing the relevant sums in each internal node.

Updates.

Scale(c) and UpdateSum() follow identically to the analysis of IterateMaintainer2.

• AddSparse(j, c): [x]j ← [x]j + c. Runs in time O(log n).

1. u← u+ c
ξu
ej .

2. u′ ← u′ − cσu
ξu
ej .

3. ν ←
√
ν2 + 2c[w]j [ξuu+ ξvv]j + c2[w]j .

4. ι← ι+ c[w]j [v]j .

5. For internal nodes of distx on the path from leaf j to the root, update
∑
j∈S [w]j [u]2j ,∑

j∈S [w]j [u]j [v]j appropriately.

• AddDense(c): x← x+ cv. Runs in time O(1).

1. ξv ← ξv + c.

APPENDIX B. DEFERRED PROOFS FROM CHAPTER 3 628

2. ν ←
√
ν2 + 2cι+ c2 ‖v‖2w.

3. ι← ι+ c ‖v‖2w.

We demonstrate that the necessary invariants on ι, ν are preserved. Regarding correctness of

AddSparse, the updates to u and u′ are identical to in the analysis of IterateMaintainer2. Next,

because only [x]j changes, the updates to ν, ι are correct respectively by

[w]j · [ξuu+ ξvv + c]2j = [w]j ·
(
[ξuu+ ξvv]2j + 2c[ξuu+ ξvv]j + c2

)
,

[w]j · ([ξuu+ ξvv + c]j) · [v]j = [w]j · ([ξuu+ ξvv]j · [v]j + c[v]j) .

Regarding correctness of AddDense,

‖x+ cv‖2w = ν2 + 2cι+ c2 ‖v‖2w ,

〈x+ cv, v〉w = ι+ c ‖v‖2w .

Here, we used that the invariants ν = ‖x‖w and ι = 〈x, v〉w held. Queries. Get(j) and GetSum(j)

follow identically to the analysis of IterateMaintainer2.

• Norm(): Return ‖x‖w. Runs in time O(1).

1. Return ν.

Sampling.

To support Sample, we must produce a coordinate j with probability proportional to [w]j [x]2j . To

do so, we recursively perform the following procedure, where the recursion depth is at most O(log n),

starting at the root node and setting S = [n]: the proof of correctness is identical to the proof in

the analysis of IterateMaintainer2.Sample().

1. Let S1, S2 be the subsets of coordinates corresponding to the children of the current node.

2. Using scalars ξu, ξv, and the maintained
∑
j∈Si [w]j [u]2j ,

∑
j∈Si [w]j [u]j [v]j ,

∑
j∈Si [w]j [v]2j , com-

pute
∑
j∈Si [w]j [x]2j =

∑
j∈Si [w]j [ξuu+ ξvv]2j for i ∈ {1, 2}.

3. Sample a child i ∈ {1, 2} of the current node proportional to
∑
j∈Si [w]j [x]2j by flipping an

appropriately biased coin. Set S ← Si.

B.8.3 CenteredIterateMaintainer2

In this section, we give implementation details for a generalization of WeightedIterateMaintainer2,

which we call CenteredIterateMaintainer2. It is used in Section B.4.3, when using the sampling

APPENDIX B. DEFERRED PROOFS FROM CHAPTER 3 629

distributions (B.37) and (B.38). At initialization, CenteredIterateMaintainer2 is passed an addi-

tional parameter x0 ∈ Rn, a reference point. CenteredIterateMaintainer2 supports all the same

operations as WeightedIterateMaintainer2, with two differences:

• For the current iterate x, CenteredIterateMaintainer2.Sample() returns a coordinate j with

probability proportional to [w]j [x− x0]2j .

• CenteredIterateMaintainer2 supports querying ‖x− x0‖2w in constant time.

Because all the other operations, fields, and invariants supported and maintained by the data struc-

ture are exactly the same as IterateMaintainer2, we only discuss the changes made to the binary

tree distx in this section for brevity. In particular, to support sampling, our data structure also

maintains a binary tree distx of depth O(log n). For the node corresponding to S ⊆ [n] (where S

may be a singleton), we maintain

•
∑
j∈S [w]j [u]2j ,

∑
j∈S [w]j [u]j [v]j ,

∑
j∈S [w]j [v]2j

•
∑
j∈S [w]j [x0]2j ,

∑
j∈S [w]j [u]j [x0]j ,

∑
j∈S [w]j [v]j [x0]j

At initialization, CenteredIterateMaintainer2 creates this data structure and stores the relevant

sums in each internal node. Upon modifications to u due to updates of the form AddSparse(j, c),

CenteredIterateMaintainer2 propagates the changes along internal nodes of distx on the path

from leaf j to the root. Thus, using these maintained values and the stored values ξu, ξv, it is clear

that for any appropriate subset S, we are able to compute the quantity

∑
j∈S

[w]j [ξu+ξvv−x0]2j =
∑
j∈S

[w]j
(
ξ2
u[u]2j + ξ2

v [v]2j + 2ξuξv[u]j [v]j + [x0]2j + 2ξu[u]j [x0]j + 2ξv[v]j [x0]j
)

in constant time, admitting the sampling oracle in time O(log n) by propagating down the tree

maintained by distx. This proves the desired sampling complexity. Finally, by appropriately querying

the stored values in the root node, we can return ‖x− x0‖2w in constant time.

Appendix C

Deferred proofs from Chapter 4

C.1 Missing proofs from Section 4.1 and Section 4.2

C.1.1 Folklore bound on size of `∞-strongly-convex functions

In this section, we prove the following claim which occurs in the literature, but does not seem to

usually be formally shown:

Lemma 238. Suppose ψ is 1-strongly convex with respect to the `∞ norm on [−1, 1]n. Then,

max
x∈[−1,1]n

ψ(x)− min
x∈[−1,1]n

ψ(x) ≥ n

2

Furthermore, this lower bound is tight, i.e. there is a 1-strongly convex function in the `∞ norm for

which equality holds.

Proof. We will prove this by iteratively constructing a set of points x0, x1, . . . xn ∈ [−1, 1]n such that

for all i with 0 ≤ i ≤ n− 1, we have

ψ(xi) ≤ ψ(xi+1)− 1

2

and consequently,

ψ(x0) ≤ ψ(xn)− n

2

Let ei be the ith standard basis vector, namely the n-dimensional vector which is 1 in the ith

coordinate and 0 elsewhere. Let x0 = (0, 0, . . . 0), the n-dimensional point which is 0 in every

coordinate. Let x+
1 = x0 +e1 and let x−1 = x0−e1, such that x0 = 1

2x
+
1 + 1

2x
−
1 . By strong convexity,

ψ(x0) ≤ 1

2
ψ(x+

1) +
1

2
ψ(x−1)− 1

8

∥∥x+
1 − x

−
1

∥∥2

∞ =
1

2
ψ(x+

1) +
1

2
ψ(x−1)− 1

2

630

APPENDIX C. DEFERRED PROOFS FROM CHAPTER 4 631

Consequently, it must be the case that at least one of

ψ(x0) ≤ ψ(x+
1)− 1

2

ψ(x0) ≤ ψ(x−1)− 1

2

holds. Let x1 be the point x+
1 or x−1 for which this holds.

More generally, suppose we have constructed x0, x1, . . . xi in this fashion, such that xi is 0 in

the coordinates i + 1, i + 2, . . . n. Then, let x+
i+1 = xi + ei+1 and let x−i+1 = xi − ei+1, such that

xi = 1
2x

+
i+1 + 1

2x
−
i+1. Again by strong convexity, we have that at least one of

ψ(xi) ≤ ψ(x+
i+1)− 1

2

ψ(xi) ≤ ψ(x−i+1)− 1

2

holds, and therefore we can pick one of the points x+
i+1, x

−
i+1 to be the point xi+1. We can clearly

iteratively construct a point xn in this fashion, proving the claim.

To show that the lower bound is tight, consider ψ(x) = 1
2 ‖x‖

2
2. Clearly this function has range

n
2 over [−1, 1]n. Furthermore, for all x ∈ [−1, 1]n, and arbitrary vector z, we have

z>∇2ψ(x)z = z>Iz = ‖z‖22 ≥ ‖z‖
2
∞

where this second-order condition is well-known to be equivalent to 1-strong convexity, for twice-

differentiable functions.

C.1.2 Reduction from general box-constrained `∞ regression to Defini-

tion 8

In this section, we describe a general reduction from unconstrained `∞ regression and more arbitrary

box constraints to the setting where the domain of the argument is [−1, 1]m, proving Corollary 6.

Consider first the problem of solving the generalized box-constrained regression problem

min
x∈[−r,r]m

‖Ax− b‖∞ , (C.1)

for some r > 0. By performing the change of variables x̃ = x/r, b̃ = b/r, it suffices to find an

ε/r-approximate minimizer to

min
x̃∈[−1,1]m

∥∥∥Ax̃− b̃∥∥∥
∞
, (C.2)

APPENDIX C. DEFERRED PROOFS FROM CHAPTER 4 632

which under the change of variables x ← rx̃ recovers an ε-approximate minimizer to the original

problem. To see this, let x∗ be the minimizer to (C.1); it is clear under a simple rescaling and

linearity of norms that x̃∗ := x∗/r is the minimizer to (C.2). Next, let x̃ be any point in [−1, 1]m

with ∥∥∥Ax̃− b̃∥∥∥
∞
−
∥∥∥Ax̃∗ − b̃∥∥∥

∞
≤ ε

r
.

By linearity of norms, we see that x = rx̃ has x ∈ [−r, r]m and

‖Ax− b‖∞ − ‖Ax
∗ − b‖∞ ≤ ε,

i.e. x is an ε-approximate minimizer to (C.1). To bound the complexity of solving (C.2) to ε/r

additive accuracy, it suffices to invoke Theorem 15.

Next, to deal with the unconstrained case with the promise ‖x0 − x∗‖∞ ≤ r, it suffices to perform

a change of variables b′ ← b−Ax0, x′ ← x− x0, and solve the problem

min
x′∈[−r,r]m

‖Ax′ − b′‖∞ = min
x′∈[−r,r]m

‖A(x− x0)− (b−Ax0)‖∞ = min
x∈Rm

‖Ax− b‖∞ .

To see the last inequality, we use the guarantee that ‖x0 − x∗‖∞ ≤ r, i.e. x∗ − x0 is a valid point

x′. We then can invoke the general box-constrained case with radius r.

Finally, we remark that similar additive shifts and rescalings allow us to handle the more general

box constraint
∏
j∈[m][`j , rj] with appropriate (weighted) dependences on the quantities rj − `j .

C.1.3 Convergence rates of first-order methods

In this section, we give guarantees for the convergence rates of the classical unaccelerated first-order

methods of gradient descent in general norms and coordinate descent.

Gradient descent in general norms

We briefly review the basic guarantees of gradient descent applied to a convex function f which is

L-smooth in an arbitrary norm ‖ · ‖. The general framework of gradient descent initializes at some

point x0 and iteratively maximizes the primal progress using the upper bound guaranteed by the

smoothness. In particular, we perform the following update:

xk+1 ← argminy

{
f(xk) +∇f(xk)>(y − xk) +

L

2
‖y − xk‖2

}
The O(1

T) convergence rate of gradient descent is well-known in the literature. We state the con-

vergence guarantee here.

Lemma 239. Let xT be the result of running gradient descent for T iterations. Then for the global

minimizer x∗, we have f(xT)− f(x∗) ≤ 2LR2

T , where R = maxy:f(y)≤f(x0)‖y − x∗‖.

APPENDIX C. DEFERRED PROOFS FROM CHAPTER 4 633

Coordinate descent

Next, we briefly review the basic guarantees of randomized coordinate descent when applied to a

convex function f which is Lj-smooth in the jth coordinate. Here, we analyze the convergence

rate of the simple unaccelerated variant of coordinate descent where coordinate j is sampled with

probability
Lj
S , where S :=

∑
j Lj . In particular, we perform the following update after sampling a

coordinate j:

xk+1 ← argminy

{
f(xk) +∇jf(xk)>(y − xk) +

Lj
2
|yj − xkj |2

}
= xk − 1

Lj
∇jf(xk)

Here, we give the convergence rate of this simple coordinate descent algorithm.

Lemma 240. Let xT be the result of running gradient descent for T iterations. Then for the global

minimizer x∗, we have f(xT)− f(x∗) ≤ 2SR2

T , where R = maxy:f(y)≤f(x0)‖y − x∗‖2.

We remark that for any randomized iterative method for minimizing a convex function which

converges in expectation, it is easy to use Markov’s inequality to bound the convergence with constant

probability. For example, if an algorithm terminates with a ε-approximate minimizer on expectation,

with probability at least 1
2 it terminates with a 2ε-approximate minimizer. Thus, if one desires a

high probability result for the approximate minimization, the runtime only incurs a logarithmic

multiplicative loss in the failure probability.

C.1.4 Proof of Lemma 239

First we give an intermediate progress bound which will be useful in the final proof.

Lemma 241. f(xk)− f(xk+1) ≥ 1
2L‖∇f(xk)‖2∗

Proof. We will prove that miny

{
∇f(x)>(y − x) + L

2 ‖y − x‖
2
}
≤ − 1

2L‖∇f(x)‖2∗; clearly this yields

the desired claim. Let z be such that ‖z‖ = 1 and z>∇f(x) = ‖∇f(x)‖∗, by the definition of dual

norm; let y = x− ‖∇f(x)‖∗
L z. Then,

∇f(x)>(y − x) +
L

2
‖y − x‖2 = −

(
‖∇f(x)‖∗

L

)
z>∇f(x) +

L

2

‖∇f(x)‖2∗
L2

‖z‖2 = − 1

2L
‖∇f(x)‖2∗

Thus, the minimizer of the upper bound yields the desired progress result.

Next, we prove Lemma 239.

Proof. Let εk := f(xk)− f(x∗). Note that by convexity and Cauchy-Schwarz, we have

f(xk)− f(x∗) ≤ (∇f(xk))>(f(xk)− f(x∗)) ≤ ‖∇f(xk)‖∗‖xk − x∗‖

APPENDIX C. DEFERRED PROOFS FROM CHAPTER 4 634

Thus, we have the two equations εk − εk+1 ≥ 1
2L‖∇f(xk)‖2∗ and εk ≤ R‖∇f(xk)‖∗. Combining the

two, it’s easy to see that

ε2k ≤ 2LR2(εk − εk+1)↔
(1

εk+1
− 1

εk

)
≥ εk

2LR2εk+1
≥ 1

2LR2

Thus, telescoping we have 1
εT
≥ T

2LR2 , which yields the desired rate of convergence.

C.1.5 Proof of Lemma 240

The progress of a step in the jth coordinate is thus lower bounded by − 1
2Lj
|∇jf(xk)|2, which can

be verified by computing the upper bound on f(xk+1). The analysis of convergence follows directly

from the following result on the expected progress of a single step.

Lemma 242. f(xk)− Ek[f(xk+1)] ≥ 1
2S ‖∇f(xk)‖22

Proof. We directly compute the expectation. We have

E[f(xk+1)] =
∑
j

Lj
S

(
f(xk)− 1

2Lj
|∇jf(xk)|2

)
= f(xk)− 1

2S

∑
j

|∇jf(xk)|2

Thus, we can immediately plug in this expected progress result into the convergence rate proof

of gradient descent, and obtain the desired result.

C.2 Missing proofs from Section 4.4

C.2.1 Reducing undirected maximum flow to `∞ regression

In this section, we prove Lemma 52, via giving the reduction and analyzing its convergence. First,

suppose we have a subroutine, Almost-Route, which takes in matrices R (an α = Õ(1)-congestion

approximator), B (an edge-incidence matrix), U (the capacities of edges), α, an error tolerance ε,

and a demand vector d, and returns some x such that

2α‖RBUx−Rd‖∞ + ‖x‖∞ ≤ (1 + ε)(2α‖RBUx∗ −Rd‖∞ + ‖x∗‖∞) := (1 + ε)OPT(d) (C.3)

Here, under a change of variables we have that x = U−1f . Note that we are writing with an

ε-multiplicative approximation to OPT instead of an additive one. We do this without loss of

generality: assume we have scaled the problem appropriately so that the optimal value is 1, which

it will be when we find the true maximum flow instead of the minimum congestion flow. We can

find this optimal value via a binary search, as we argued before, losing a Õ(1) factor in the runtime.

APPENDIX C. DEFERRED PROOFS FROM CHAPTER 4 635

Now, we show a key property of the function we try to minimize. Intuitively, the next lemma

says that if we are able to ε-approximately minimize our regression problem, the cost of routing the

residual demands d−Bf is only an ε fraction of routing the original demands, allowing us to quickly

recurse. This is a restatement of Lemma 2.2 in [482].

Lemma 243. Define the change of variables Ux = f . Suppose 2α‖RBUx − Rd‖∞ + ‖x‖∞ =

2α‖R(d−Bf)‖∞ + ‖U−1f‖∞ ≤ (1 + ε)OPT(d). Then, ‖R(d−Bf)‖∞ ≤ ε‖Rd‖∞.

Proof. Let f ′ be the optimal routing of the residual demands d− Bf , namely the argument which

achieves OPT(d−Bf). Then, Bf ′ = d−Bf , and by the definition of a congestion approximator,

OPT(d−Bf) = ‖U−1f ′‖∞ + 2α‖R((d−Bf)−Bf ′)‖∞ = ‖U−1f ′‖∞ ≤ α‖R(d−Bf)‖∞ (C.4)

For simplicity we write d′ := d − Bf . Furthermore, we have by assumption of the quality of the

initial solution f ,

OPT(d) + α‖Rd′‖∞ ≤ ‖U−1(f + f ′)‖∞ + 2α‖R(d−B(f + f ′))‖∞ + α‖Rd′‖∞ (C.5)

≤ ‖U−1f‖∞ + ‖U−1f ′‖∞ + α‖Rd′‖∞ (C.6)

≤ ‖U−1f‖∞ + 2α‖Rd′‖∞ ≤ (1 + ε)OPT(d) (C.7)

Here, we used that d = B(f +f ′) and our bound ‖U−1f ′‖∞ ≤ α‖Rd′‖∞. Subtracting OPT(d), and

noting that OPT(d) ≤ α‖Rd‖∞, we have the desired claim.

Now, we give the full reduction to calling Almost-Route. Note that it was shown in [482] that

routing through a maximal spanning tree yields an O(m)-congestion approximator.

We now need to prove the correctness of our algorithm. This is a restatement of ideas presented

in [482].

Lemma 244. The output of Flow-To-Regress is an ε-approximate solution to the minimum

congestion flow problem.

Proof. By the guarantees of Almost-Route, we have the following guarantees:

‖U−1f0‖∞ + 2α‖Rd1‖∞ ≤ (1 + ε)OPT(d), (C.8)

‖U−1fk‖∞ + 2α‖Rdk+1‖∞ ≤
3

2
OPT(dk) ≤ 3

2
α‖Rdk‖∞, k ≥ 1. (C.9)

Now, using the second inequality and repeatedly applying it to the first, we have the following

guarantee:
1

2
α‖Rd1‖∞ + ‖U−1f0‖∞ + . . .+ ‖U−1fT ‖∞ ≤ (1 + ε)OPT(d). (C.10)

APPENDIX C. DEFERRED PROOFS FROM CHAPTER 4 636

ffinal = Flow-To-Regress(G, d, ε)

1. Let T = log 2m.

2. Initialize d0 = d. Initialize f0 = UAlmost-Route(R,B,U, d0, α, ε).

3. Let ffinal = f0.

4. Iterate for k = 1, 2, . . . T :

(a) Let dk = dk−1 −Bfk−1.

(b) Let fk = UAlmost-Route(R,B,U,Dk, α, 1
2).

(c) Let ffinal = ffinal + fk.

5. Let fT+1 be an (exact) routing of dk −Bfk in a maximal spanning tree. Let ffinal + fT+1.

6. Return ffinal

Figure C.1: The reduction from solving the approximate maximum flow problem to solving Õ(1)
approximate regression problems.

It suffices to note that by our choice of T and seeing that by applying Lemma 243 T times, we

have α‖RdT+1‖∞ ≤ 1
2mα‖Rd

1‖∞. Thus because we routed dT+1 exactly through a m-congestion

approximator, we have ‖U−1fT+1‖∞ ≤ 1
2α‖Rd

1‖∞. Finally, Bffinal = d, and

‖U−1ffinal‖∞ ≤ ‖U−1fT+1‖∞ + ‖U−1f0‖∞ + . . .+ ‖U−1fT ‖∞ (C.11)

≤ ‖U−1ffinal‖∞ ≤
1

2
α‖Rd1‖∞ + ‖U−1f0‖∞ + . . .+ ‖U−1fT ‖∞ (C.12)

≤ (1 + ε)OPT(d). (C.13)

Lemma 245. The runtime of our routine Flow-To-Regress is the cost of solving the first as-

sociated regression problem, 2α‖RBUx−Rd‖∞ + ‖x‖∞, to an ε approximation, plus an additional

Õ(m) additive overhead.

Proof. We analyze the time of each of the calls to Almost-Route. Clearly, the first call is the cost

of solving the first associated regression problem.

Note that we have flexibility in terms of how to implement Almost-Route; for all remaining

calls, we consider the implementation in the form of unaccelerated gradient descent in the `∞ norm.

The runtime as we demonstrated in Appendix C.1.3 for each round k is

m‖fk∗ ‖2∞‖αRBU‖2∞
(1

2)2
= Õ(m) (C.14)

APPENDIX C. DEFERRED PROOFS FROM CHAPTER 4 637

where fk∗ is the optimal solution to the kth regression problem. Here, we used the known properties

of αRBU , as well as the fact that the implications of Lemma 243 allow us to bound the `∞ norm of

the optimal solution by O(1) as well.

As a final note in the proof of Lemma 52, observe that to optimize the first objective 2α ‖Ax− b‖∞+

‖x‖∞ it suffices to binary search over values r ≥ ‖U−1f‖∞ = ‖x‖∞, and solve the associated regres-

sion problem ‖Ax−b‖∞ over x ∈ [−r, r]m. More formally, since r is our guess of OPT to the original

flow problem, we repeatedly solve the problem over [−r, r]m to εr additive error; if the conclusion

is that the optimal value cannot be 0 (i.e. the additive approximation is larger than εr), then we

conclude that this value of r is not routable. This only incurs a multiplicative loss in the runtime by

a factor of Õ(1), due to the binary search. By normalizing x, b appropriately, it suffices to consider

the case where r = 1, and solve to ε additive error (see Appendix C.1.2). Finally, we need only

consider the case where ‖b‖∞ ≤ ‖A‖∞, as x ∈ [−1, 1]∞ the unit box, so the demands are clearly not

routable otherwise.

C.2.2 Reducing directed maximum flow to undirected maximum flow

In this section, we give an overview of the main result in [363]. In particular, we prove the following

statement, which is used in our algorithms for finding exact maximum flows in unit-capacity graphs.

Lemma 246 (Summary of results in [363]). Suppose we wish to find an s − t maximum flow in a

unit-capacity directed (multi)graph G with m edges and maximum flow value F . Then, it suffices

to find the s − t maximum flow fmax in an undirected (multi)graph G′ with O(m) edges, such

that edges of G′ have capacity 1
2 , and the maximum flow in G′ has value F + m

2 . Furthermore,

we are able to initialize the undirected maximum flow algorithm in G′ with some finit such that

‖finit − fmax‖22 = F .

Proof. First, we give the construction of the undirected graph G′. For every directed edge (u, v) of

weight 1 in G, G′ has the undirected edges (s, v), (v, u), and (u, t) of weight 1
2 . Clearly, G′ has O(m)

edges, since each edge in G is replaced with 3 edges in G′.

Next, we give the (algorithmic) proof that one can recover a maximum flow in G from a maximum

flow in G′, and that the maximum flow in G′ has value F + m
2 . Consider the following algorithm.

We will now prove correctness of the algorithm UMF-to-DMF, namely that ffinal − finit is a

maximum flow in graph G. To do so, we show that ffinal has value m
2 + F , and that ffinal − finit

puts flow only in the (u, v) direction and does not put any flow on any new edges (s, v) or (u, t).

Note that this immediately implies the statement ‖finit − fmax‖22 = F .

We begin by showing that ffinal has value m
2 + F . The residual graph of G′ with respect to the

flow finit is the directed graph G. Thus, the maximum flow in the residual graph has value F by

assumption, and the flow finit has value m
2 , yielding the conclusion.

APPENDIX C. DEFERRED PROOFS FROM CHAPTER 4 638

f = UMF-to-DMF(G)

1. Let G′ be the undirected graph with edges (s, v), (v, u), (u, t) of weight 1
2 for every directed

edge (u, v) in G.

2. Let finit be the flow which puts 1
2 units of flow on each of the (s, v), (v, u), (u, t).

3. Compute ffinal, the maximum flow of G′.

4. Return ffinal − finit.

Figure C.2: Recovering a maximum flow in directed G via a maximum flow in undirected G′.

Next, we show that for every edge (u, v) in G′ which resulted from a directed edge (u, v) in G,

ffinal−finit puts flow only in the (u, v) direction, and does not violate the capacity constraint. This

is simple to see because ffinal puts a flow with value in {− 1
2 , 0,

1
2} in the (u, v) direction, and −finit

puts a flow with value 1
2 in the (u, v) direction; adding yields the result.

Finally, we show that ffinal−finit puts no flow on any of the new edges (s, v) (the same statement

holds for edges (u, t) by a similar argument). Again, ffinal puts a flow with value in {− 1
2 , 0,

1
2} in

the (v, s) direction, and −finit puts a flow with value 1
2 in the (v, s) direction, thus ffinal−finit puts

a flow with nonnegative value in the (v, s) direction. If this value was strictly positive, it would be

part of a path in the flow decomposition sending flow into s, contradicting the maximality of ffinal.

Appendix D

Deferred proofs from Chapter 5

D.1 Area convexity and optimal transport

In this section, we provide the optimization tools which will be used in our semi-streaming solver

of Section 5.3. These tools were originally developed in our earlier work [293] to obtain a direct

parallel solver for optimal transport. For this reason, we choose to first give an overview of the

optimal transport problem in Section D.1.1, and then our general-purpose tools in Section D.1.3.

D.1.1 Optimal transport

Optimal transport is playing an increasingly important role as a subroutine in tasks arising in

machine learning [32], computer vision [90, 490], robust optimization [215, 83], and statistics [434].

Given these applications for large scale learning, designing algorithms for efficiently approximately

solving the problem has been the subject of extensive recent research [151, 25, 236, 115, 208, 365,

82, 450].

Given two vectors r and c in the n-dimensional probability simplex ∆n and a cost matrix C ∈
Rn×n≥0

1, the optimal transportation problem is

min
X∈Ur,c

〈C,X〉 , where Ur,c :=
{
X ∈ Rn×n≥0 , X1 = r, X>1 = c

}
. (D.1)

This problem arises from defining the Wasserstein or Earth mover’s distance between discrete

probability measures r and c, as the cheapest coupling between the distributions, where the cost

of the coupling X ∈ Ur,c is 〈C,X〉. If r and c are viewed as distributions of masses placed on n

points in some space (typically metric), the Wasserstein distance is the cheapest way to move mass

to transform r into c. In (D.1), X represents the transport plan (Xij is the amount moved from ri

1Similarly to earlier works, we focus on square matrices; generalizations to rectangular matrices are straightforward.

639

APPENDIX D. DEFERRED PROOFS FROM CHAPTER 5 640

to cj) and C represents the cost of movement (Cij is the cost of moving mass from ri to cj).

Throughout, the value of (D.1) is denoted OPT. We call X̂ ∈ Ur,c an ε-approximate transporta-

tion plan if
〈
C, X̂

〉
≤ OPT + ε. Our goal is to design an efficient algorithm to produce such a

X̂.

Our contributions

Our main contribution is an algorithm running in Õ(‖C‖max/ε) parallelelizable iterations2 and

Õ(n2‖C‖max/ε) total work producing an ε-approximate transport plan.

Matching runtimes were given in the recent work of [82, 450]. Their runtimes were obtained

via reductions to matrix scaling and positive linear programming, each well-studied problems in

theoretical computer science. However, the matrix scaling algorithm is a second-order Newton-type

method which makes calls to structured linear system solvers, and the positive LP algorithm is

not parallelizable (i.e. has depth polynomial in dimension). These features potentially limit the

practicality of these algorithms. The key remaining open question this paper addresses is, is there

an efficient first-order, parallelizable algorithm for approximating optimal transport? We answer this

affirmatively and give an efficient, parallelizable primal-dual first-order method; the only additional

overhead is a scheme for implementing steps, incurring roughly an additional log ε−1 factor.

Our approach heavily leverages the recent improvement to the maximum flow problem, and more

broadly two-player games on a simplex (`1 ball) and a box (`∞ ball), due to the breakthrough work of

[483]. First, we recast (D.1) as a minimax game between a box and a simplex, proving correctness via

a rounding procedure known in the optimal transport literature. Second, we show how to adapt the

dual extrapolation scheme under the weaker convergence requirements of area-convexity, following

[483], to obtain an approximate minimizer to our primal-dual objective in the stated runtime. En

route, we slightly simplify analysis in [483] and relate it more closely to the existing extragradient

literature.

Finally, we give preliminary experimental evidence showing our algorithm can be practical, and

highlight some open directions in bridging the gap between theory and practice of our method, as

well as accelerated gradient schemes [208, 365] and Sinkhorn iteration.

Previous work

Optimal transport. The problem of giving efficient algorithms to find ε-approximate transport plans

X̂ which run in nearly linear time3 has been addressed by a line of recent work, starting with [151]

and improved upon in [236, 25, 208, 365, 82, 450]. We briefly discuss their approaches here.

2Our iterations consist of vector operations and matrix-vector products, which are easily parallelizable. Throughout
‖C‖max is the largest entry of C.

3We use “nearly linear” to describe complexities which have an n2polylog(n) dependence on the dimension (where
the size of input C is n2), and polynomial dependence on ‖C‖max , ε

−1.

APPENDIX D. DEFERRED PROOFS FROM CHAPTER 5 641

Works by [151, 25] studied the Sinkhorn algorithm, an alternating minimization scheme. Regu-

larizing (D.1) with an η−1 multiple of entropy and computing the dual, we arrive at the problem

min
x,y∈Rn

1>BηC(x, y)1− r>x− c>y where BηC(x, y)ij = exi+yj−ηCij .

This problem is equivalent to computing diagonal scalings X and Y for M = exp(−ηC) such that

XMY has row sums r and column sums c. The Sinkhorn iteration alternates fixing the row sums

and the column sums by left and right scaling by diagonal matrices until an approximation of such

scalings is found, or equivalently until XMY is close to being in Ur,c.
As shown in [25], we can round the resulting almost-transportation plan to a transportation plan

which lies in Ur,c in linear time, losing at most 2‖C‖max(‖X1− r‖1 +
∥∥X>1− c

∥∥
1
) in the objective.

Further, [25] showed that Õ(‖C‖3max/ε
3) iterations of this scheme sufficed to obtain a matrix which

ε/‖C‖max-approximately meets the demands in `1 with good objective value, by analyzing it as an

instance of mirror descent with an entropic regularizer. The same work proposed an alternative

algorithm, Greenkhorn, based on greedy coordinate descent. [208, 365] showed that Õ
(
‖C‖2max/ε

2
)

iterations, corresponding to Õ
(
n2‖C‖2max/ε

2
)

work, suffice for both Sinkhorn and Greenkhorn, the

current state-of-the-art for this line of analysis.

An alternative approach based on first-order methods was studied by [208, 365]. These works

considered minimizing an entropy-regularized Equation D.1; the resulting weighted softmax function

is prevalent in the literature on approximate linear programming [419], and has found similar appli-

cations in near-linear algorithms for maximum flow [482, 318, 486] and positive linear programming

[541, 23]. An unaccelerated algorithm, viewable as `∞ gradient descent, was analyzed in [208] and

ran in Õ(‖C‖2max/ε
2) iterations. Further, an accelerated algorithm was discussed, for which the

authors claimed an Õ(n1/4‖C‖0.5max/ε) iteration count. [365] showed that the algorithm had an addi-

tional dependence on a parameter as bad as n1/4, roughly due to a gap between the `2 and `∞ norms.

Thus, the state of the art runtime in this line is the better of Õ
(
n2.5‖C‖max/ε

)
, Õ

(
n2‖C‖2max/ε

2
)

operations. The dependence on dimension of the former of these runtimes matches that of the linear

programming solver of [348, 349], which obtain a polylogarithmic dependence on ε−1, rather than

a polynomial dependence; thus, the question of obtaining an accelerated ε−1 dependence without

worse dimension dependence remained open.

This was partially settled in [82, 450], which studied the relationship of optimal transport to

fundamental algorithmic problems in theoretical computer science, namely positive linear program-

ming and matrix scaling, for which significantly-improved runtimes have been recently obtained

[23, 552, 145]. In particular, they showed that optimal transport could be reduced to instances of

either of these objectives, for which Õ (‖C‖max/ε) iterations, each of which required linear O(n2)

work, sufficed. However, both of these reductions are based on black-box methods for which prac-

tical implementations are not known; furthermore, in the case of positive linear programming a

parallel Õ(1/ε)-iteration algorithm is not known. [82] also showed any polynomial improvement to

APPENDIX D. DEFERRED PROOFS FROM CHAPTER 5 642

Year Author Complexity Approach 1st-order Parallel

2015 [349] Õ(n2.5) Interior point No No

2017-19 [25] Õ(n2‖C‖2max/ε
2) Sink/Greenkhorn Yes Yes

2018 [208] Õ(n2‖C‖2max/ε
2) Gradient descent Yes Yes

2018-19 [365] Õ(n2.5‖C‖max/ε) Acceleration Yes Yes

2018 [82] Õ(n2‖C‖max/ε) Matrix scaling No Yes

2018-19 [82, 450] Õ(n2‖C‖max/ε) Positive LP Yes No

2019 This work Õ(n2‖C‖max/ε) Dual extrapolation Yes Yes

Table D.1: Optimal transport algorithms. Algorithms using second-order information use
potentially-expensive SDD system solvers; the runtime analysis of Sink/Greenkhorn is due to
[208, 365].

the runtime of our paper in the dependence on either ε or n would result in maximum-cardinality

bipartite matching in dense graphs faster than Õ(n2.5) without fast matrix multiplication [468], a

fundamental open problem unresolved for almost 50 years [274].

Specializations of the transportation problem to `p metric spaces or arising from geometric set-

tings have been studied [479, 11, 28]. These specialized approaches seem fundamentally different

than those concerning the more general transportation problem.

Finally, we note recent work [24] showed the promise of using the Nyström method for low-rank

approximations to achieve speedup in theory and practice for transport problems arising from specific

metrics. As our method is based on matrix-vector operations, where low-rank approximations may

be applicable, we find it interesting to see if our method can be combined with these improvements.

Remark. During the revision process for this work, an independent result [336] was published to

arXiv, obtaining improved runtimes for optimal transport via a combinatorial algorithm. The work

obtains a runtime of Õ(n2‖C‖max/ε+n‖C‖2max/ε
2), which is worse than our runtime by a low-order

term. Furthermore, it does not appear to be parallelizable.

Box-simplex objectives. Our main result follows from improved algorithms for bilinear minimax

problems over one simplex domain and one box domain developed in [483]. This fundamental

minimax problem captures `1 and `∞ regression over a simplex and box respectively, and inspired

the development of conjugate smoothing [419] as well as mirror prox / dual extrapolation [415,

420]. These latter two approaches are extragradient methods (using two gradient operations per

iteration rather than one) for approximately solving a family of problems, which includes convex

minimization and finding a saddle point to a convex-concave function. These methods simulate

backwards Euler discretization of the gradient flow, similar to how mirror descent simulates forwards

Euler discretization [193]. The role of the extragradient step is a fixed point iteration (of two steps)

which is a good approximation of the backwards Euler step when the operator is Lipschitz.

Nonetheless, the analysis of [415, 420] fell short in obtaining a 1/T rate of convergence without

APPENDIX D. DEFERRED PROOFS FROM CHAPTER 5 643

worse dependence on dimension for these domains, where T is the iteration count (which would

correspond to a Õ (1/ε) runtime for approximate minimization). The fundamental barrier was that

over a box, any strongly-convex regularizer in the `∞ norm has a dimension-dependent domain size

(shown in [486]). This barrier can also be viewed as the reason for the worse dimension dependence

in the accelerated scheme of [208, 365].

The primary insight of [483] was that previous approaches attempted to regularize the schemes

of [415, 420] with separable regularizers, i.e. the sum of a regularizer which depends only on the

primal block and one which depends only on the dual. If, say, the domain of the primal block was a

box, then such a regularization scheme would run into the `∞ barrier and incur a worse dependence

on dimension. However, by more carefully analyzing the requirements of these algorithms, [483]

constructed a non-separable regularizer with small domain size, satisfying a property termed area-

convexity which sufficed for provable convergence of dual extrapolation [420]. Interestingly, the

property seems specialized to dual extrapolation and not mirror prox [415].

D.1.2 Overview

In this section, we describe a reformulation of (D.1) as a primal-dual objective, which we solve

approximately in Section D.1.3. We adapt the view of [82, 450] of the objective (D.1) as a positive

linear program. Let d be the (vectorized) cost matrix C associated with the instance and let ∆n2

be

the n2 dimensional simplex4. We recall r, c are specified row and column sums with 1>r = 1>c = 1.

The optimal transport problem can be written as, for m = n2, and A ∈ {0, 1}2n×m, b ∈ R2n
≥0, for A

the (unsigned) edge-incidence matrix of the underlying bipartite graph and b the concatenation of

r and c.

min
x∈∆m,Ax=b

d>x. (D.2)

A =

1 1 1 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 1 1 1

1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 1

, b =

1/3

1/3

1/3

1/3

1/3

1/3

.

Figure D.1: Edge-incidence matrix A of a 3× 3 bipartite graph and uniform demands.

In particular, A is the 0-1 matrix on V ×E such that Ave = 1 iff v is an endpoint of edge e. We

summarize some additional properties of the constraint matrix A and vector b.

4We use d because C often arises from distances in a metric space, and to avoid overloading c.

APPENDIX D. DEFERRED PROOFS FROM CHAPTER 5 644

Fact 37. A, b have the following properties.

1. A ∈ {0, 1}2n×m has 2-sparse columns and n-sparse rows. Thus ‖A‖1→1 = 2.

2. b> =
(
r> c>

)
, so that ‖b‖1 = 2.

3. A has 2n2 nonzero entries.

Section D.1.4 recalls the proof of the following theorem, which first appeared in [25].

Theorem 80 (Rounding guarantee, Lemma 7 in [25]). There is an algorithm which takes x̃ with

‖Ax̃− b‖1 ≤ δ and produces x̂ in O(n2) time, with

Ax̂ = b, ‖x̃− x̂‖1 ≤ 2δ.

We now show how the rounding procedure gives a roadmap for our approach. Consider the

following `1 regression objective over the simplex (a similar penalized objective appeared in [482]):

min
x∈∆m

d>x+ 2 ‖d‖∞ ‖Ax− b‖1 . (D.3)

We show that the penalized objective value is still OPT, and furthermore any approximate minimizer

yields an approximate transport plan.

Lemma 247 (Penalized `1 regression). The value of (D.3) is OPT. Also, given x̃, an ε-approximate

minimizer to (D.3), we can find ε-approximate transportation plan x̂ in O(n2) time.

Proof. Recall OPT = minx∈∆m,Ax=b d
>x. Let x̃ be the minimizing argument in (D.3). We claim

there is some optimal x̃ with Ax̃ = b; clearly, the first claim is then true. Suppose otherwise, and

let ‖Ax̃− b‖1 = δ > 0. Then, let x̂ be the result of the algorithm in Theorem 80, applied to x̃, so

that Ax̂ = b, ‖x̃− x̂‖1 ≤ 2δ. We then have

d>x̂+ 2 ‖d‖∞ ‖Ax̂− b‖1 = d>(x̂− x̃) + d>x̃ ≤ d>x̃+ ‖d‖∞ ‖x̂− x̃‖1 ≤ d
>x̃+ 2 ‖d‖∞ δ.

The objective value of x̂ is no more than of x̃, a contradiction. By this discussion, we can take any

approximate minimizer to (D.3) and round it to a transport plan without increasing the objective.

Section D.1.3 proves Theorem 81, which says we can efficiently find an approximate minimizer

to (D.3).

Theorem 81 (Approximate `1 regression over the simplex). There is an algorithm (Algorithm 71)

taking input ε, which has O((‖d‖∞ log n log γ)/ε) parallel depth for γ = log n · ‖d‖∞ /ε, and total

work O(n2(‖d‖∞ log n log γ)/ε), and obtains x̃ an ε-additive approximation to the objective in (D.3).

APPENDIX D. DEFERRED PROOFS FROM CHAPTER 5 645

We will approach proving Theorem 81 through a primal-dual viewpoint, in light of the following

(based on the definition of the `1 norm):

min
x∈∆m

d>x+ 2 ‖d‖∞ ‖Ax− b‖1 = min
x∈∆m

max
y∈[−1,1]2n

d>x+ 2 ‖d‖∞
(
y>Ax− b>y

)
. (D.4)

Further, a low-duality gap pair to (D.4) yields an approximate minimizer to (D.3).

Lemma 248 (Duality gap to error). Suppose x, y is feasible (x ∈ ∆m, y ∈ [−1, 1]2n), and for any

feasible u, v,

(
d>x+ 2 ‖d‖∞

(
v>Ax− b>v

))
−
(
d>u+ 2 ‖d‖∞

(
y>Au− b>y

))
≤ δ.

Then, we have d>x+ 2 ‖d‖∞ ‖Ax− b‖1 ≤ δ + OPT.

Proof. The result follows from maximizing over v, and noting that for the minimizing u,

d>u+ 2 ‖d‖∞
(
y>Au− b>y

)
≤ d>u+ 2 ‖d‖∞ ‖Au− b‖1 = OPT.

Correspondingly, Section D.1.3 gives an algorithm which obtains (x, y) with bounded duality gap

within the runtime of Theorem 81.

Additional notation

We recall the definitions of a Bregman divergence of a regularizer and the proximal operator of a

divergence here, which will be used in Section D.1.3.

Definition 48 (Bregman divergence). For (differentiable) regularizer r and z, w in its domain, the

Bregman divergence from z to w is

V rz (w) := r(w)− r(z)− 〈∇r(z), w − z〉 .

Definition 49 (Proximal operator). For (differentiable) regularizer r, z in its domain, and g in the

dual space (when the domain is in Rd, so is the dual space), we define the proximal operator as

Proxrz(g) := argminw {〈g, w〉+ V rz (w)} .

Several variables have specialized meaning throughout the remainder of this section. All graphs

considered will be on 2n vertices with m edges, i.e. m = n2. A ∈ R2n×m is the edge-incidence

matrix. d is the vectorized cost matrix C. b is the constraint vector, concatenating row and column

constraints r, c. In algorithms for solving (D.4), x and y are primal (in a simplex) and dual (in a

APPENDIX D. DEFERRED PROOFS FROM CHAPTER 5 646

box) variables respectively. In Section D.1.3, we adopt the linear programming perspective where

the decision variable x ∈ ∆m is a vector. In Section D.1.4, for convenience we take the perspective

where X is an unflattened n× n matrix. Ur,c is the feasible polytope: when the domain is vectors,

Ur,c is x | Ax = b, and when it is matrices, Ur,c is X | X1 = r,X>1 = c (by flattening X this is

consistent).

D.1.3 Main algorithm

This section describes our algorithm for finding a primal-dual pair (x, y) with a small duality gap,

with respect to the objective in (D.4), which we restate here for convenience:

min
x∈X

max
y∈Y

d>x+ 2 ‖d‖∞
(
y>max−b>y

)
, X := ∆m, Y := [−1, 1]2n. (Restatement of (D.4))

Our algorithm is a specialization of the algorithm in [483]. One of our technical contributions in this

regard is an analysis of the algorithm which more closely relates it to the analysis of dual extrapola-

tion [420], an algorithm for finding approximate saddle points with a more standard analysis. In the

first part of this section, we give the algorithmic framework and convergence analysis. In the second

part of this section, we provide analysis of an alternating minimization scheme for implementing

steps of the procedure. The same procedure was used in [483] which claimed without proof the

linear convergence rate of the alternating minimization; we hope the analysis will make the method

more broadly accessible to the optimization community. We defer many proofs to Appendix D.1.5.

Finally, we remark that the dual extrapolation analysis in this section (based on [483]) is some-

what different than its earlier incarnation in Appendix A.4; the main difference is that we allow

for the subproblems to be solved to a specified level of relative function error, rather than regret.

This difference ends up being crucial in improving our parameter dependences in our semi-streaming

solver of Section 5.3.

For an objective F (x, y) convex in x and concave in y, the standard way to measure the duality

gap is to define the gradient operator g(x, y) = (∇xF (x, y),−∇yF (x, y)), and show that for z = (x, y)

and any u on the product space, the regret, 〈g(z), z − u〉, is small. Correspondingly, we define

g(x, y) :=
(
d+ 2 ‖d‖∞A>y, 2 ‖d‖∞ (b−Ax)

)
.

The dual extrapolation framework [420] requires a regularizer on the product space. The algorithm

is simple to state; it takes two “mirror descent-like” steps each iteration, maintaining a state st in

the dual space5. A typical setup is a Lipschitz gradient operator and a regularizer which is the sum

of canonical strongly-convex regularizers in the norms corresponding to the product space X ,Y.

However, recent works have shown that this setup can be greatly relaxed and still obtain similar

5In this regard, it is more similar to the “dual averaging” or “lazy” mirror descent setup [98].

APPENDIX D. DEFERRED PROOFS FROM CHAPTER 5 647

rates of convergence. In particular, [483] introduced the following definition.

Definition 50 (Area-convexity). Regularizer r is κ-area-convex with respect to operator g if for any

points a, b, c in its domain,

κ

(
r(a) + r(b) + r(c)− 3r

(
a+ b+ c

3

))
≥ 〈g(b)− g(a), b− c〉 . (D.5)

Area-convexity is so named because 〈g(b)− g(a), b− c〉 can be viewed as measuring the “area”

of the triangle with vertices a, b, c with respect to some Jacobian matrix. In the case of bilinear

objectives, the left hand side in the definition of area-convexity is invariant to permuting a, b, c,

whereas the sign of the right hand side can be flipped by interchanging a, c, so area-convexity

implies convexity. However, it does not even imply the regularizer r is strongly-convex, a typical

assumption for the convergence of mirror descent methods.

We state the algorithm for time horizon T ; the only difference from [420] is a factor of 2 in

defining st+1, i.e. adding a 1/2κ multiple rather than 1/κ. We find it of interest to explore whether

this change is necessary or specific to the analysis of [483].

Algorithm 71: w̄ = Dual-Extrapolation(κ, r, g, T): Dual extrapolation with area-convex
r.

1 Initialize s0 = 0, let z̄ be the minimizer of r;
2 for t < T do
3 zt ← Proxrz̄(st);

4 wt ← Proxrz̄
(
st + 1

κg(zt)
)
;

5 st+1 ← st + 1
2κg(wt);

6 t← t+ 1;

7 Return: w̄ := 1
T

∑
t∈[T] wt;

Lemma 249 (Dual extrapolation convergence). Suppose r is κ-area-convex with respect to g. Fur-

ther, suppose for some u, Θ ≥ r(u)− r(z̄). Then, the output w̄ to Algorithm 71 satisfies

〈g(w̄), w̄ − u〉 ≤ 2κΘ

T
.

In fact, by more carefully analyzing the requirements of dual extrapolation we have the following.

Corollary 59. Suppose in Algorithm 71, the proximal steps are implemented with ε′/4κ additive

error. Then, the upper bound of the regret in Lemma 249 is 2κΘ/T + ε′.

We now state a useful second-order characterization of area-convexity involving a relationship

between the Jacobian of g and the Hessian of r, which was proved in [483].

APPENDIX D. DEFERRED PROOFS FROM CHAPTER 5 648

Theorem 82 (Second-order area-convexity, Theorem 1.6 in [483]). For bilinear minimax objectives,

i.e. whose associated operator g has Jacobian

J =

 0 M>

−M 0

 ,

and for twice-differentiable r, if for all z in the domain,κ∇2r(z) −J

J κ∇2r(z)

 � 0,

then r is 3κ-area-convex with respect to g.

Finally, we complete the outline of the algorithm by stating the specific regularizer we use, which

first appeared in [483]. We then prove its 3-area-convexity with respect to g by using Theorem 82.

r(x, y) = 2δ̄max

10
∑
j∈[n]

xj log xj + x>A>(y2)

 , (D.6)

where (y2) is entry-wise. To give some motivation for this regularizer, one `∞-strongly convex

regularizer is 1
2 ‖y‖

2
2, but over the `∞ ball, this regularizer has large range. The term x>A>(y2) in

(D.6) captures the curvature required for strong-convexity locally, but has a smaller range due to

the restrictions on x,A. The constants chosen were the smallest which satisfy the assumptions of

the following Lemma 250. We note that similar intuition was used to develop the local coordinate

descent method of Chapter 4.

Lemma 250 (Area-convexity of the Sherman regularizer). For the Jacobian J associated with the

objective in (D.4) and the regularizer r defined in (D.6), we have∇2r(z) −J

J ∇2r(z)

 � 0.

We now give the proof of Theorem 81, requiring some claims in Appendix D.1.5 for the complexity

of Algorithm 71. In particular, Appendix D.1.5 implies that although the minimizer to the proximal

steps cannot be computed in closed form because of non-separability, a simple alternating scheme

converges to an approximate-minimizer in near-constant time.

Proof of Theorem 81. The algorithm is Algorithm 71, using the regularizer r in (D.6). Clearly,

in the feasible region the range of the regularizer is at most 20 ‖d‖∞ log n + 4 ‖d‖∞, where the

former summand comes from the range of entropy and the latter
∥∥A>∥∥∞ = 2. We may choose

APPENDIX D. DEFERRED PROOFS FROM CHAPTER 5 649

Θ = O(‖d‖∞ log n) to be the range of r to satisfy the assumptions of Lemma 249, since for all u,

〈∇r(z̄), z̄ − u〉 ≤ 0⇒ V rz̄ (u) ≤ r(u)− r(z̄).
By Theorem 82 and Lemma 250, r is 3-area-convex with respect to g. By Corollary 59, T =

12Θ/ε iterations suffice, implementing each proximal step to ε/12-additive accuracy. Finally, using

Theorem 83 to bound this implementation runtime concludes the proof.

D.1.4 Rounding to Ur,c
We state the rounding procedure in [25] for completeness here, which takes a transport plan X̃ close

to Ur,c and transforms it into a plan which exactly meets the constraints and is close to X̃ in `1,

and then prove its correctness. Throughout r(X) := X1, c(X) := X>1.

Algorithm 72: X̂ = Rounding(X̃, r, c): Rounding to feasible polytope

1 X′ ← diag
(

min
(

r
r(X̃)

, 1
))

X̃;

2 X′′ ← X′diag
(

min
(

c
c(X′) , 1

))
;

3 er ← r − 1>r(X′′), ec ← c− 1>c(X′′), E ← 1>er;

4 X̂← X′′ + 1
E ere

>
c ;

5 Return: X̂;

Theorem 80 (Rounding guarantee, Lemma 7 in [25]). There is an algorithm which takes x̃ with

‖Ax̃− b‖1 ≤ δ and produces x̂ in O(n2) time, with

Ax̂ = b, ‖x̃− x̂‖1 ≤ 2δ.

Proof. The algorithm is Algorithm 72. We adopt the alternative view of x̃ as a n × n matrix X̃ in

the simplex, and define operations r(X) = X1, c(X) = X>1, recalling the first and last n entries of

b are r, c, i.e. the row and column constraints. Recall we assume we have∥∥∥r(X̃)− r
∥∥∥

1
+
∥∥∥c(X̃)− c

∥∥∥
1
≤ δ.

Clearly all operations in Algorithm 72 take O(n2) time. To explain briefly, X′ is fixed so that its

row sums are feasible (i.e. X′1 ≤ r) and X′′ is fixed so that its column sums are feasible. Further,

entrywise X′′ ≤ X′ ≤ X̃, so X′′ is feasible. We first bound

d :=
∥∥∥X′′ − X̃

∥∥∥
1

=

 ∑
i:ri(X̃)>ri

ri(X̃)− ri

+

 ∑
j:cj(X′)>cj

cj(X
′)− cj

 .

APPENDIX D. DEFERRED PROOFS FROM CHAPTER 5 650

Note
∥∥∥r(X̃)− r

∥∥∥
1
≥
∑
i:ri(X̃)>ri

ri(X̃)− ri. Further, by X′ ≤ X̃ entrywise,

∑
j:cj(X′)>cj

cj(X
′)− cj ≤

∥∥∥c(X̃)− c
∥∥∥

1
.

Thus d ≤ δ. X̂ ∈ Ur,c, since er, ec ≥ 0 and 1>er = 1>ec = e, so X̂1 = r, X̂>1 = c. Also,∥∥∥X̂− X̃
∥∥∥

1
≤
∥∥∥X′′ − X̃

∥∥∥
1

+
∥∥∥X̂−X′′

∥∥∥
1
≤ δ + e.

Finally,

e = 1− 1>X′′1 = 1−
(
1>X̃1− d

)
= d.

Thus using d ≤ δ proves the claim.

D.1.5 Missing proofs from Section D.1.3

In this section, we state missing proofs from Section D.1.3. We will also provide the efficient

implementation of the proximal steps required by Algorithm 71.

Proof of Lemma 249. Our first step is to prove the following inequality:

1

2κ
〈g(wt), wt − z̄〉 ≤ 〈st+1, zt+1 − z̄〉+ V rz̄ (zt+1)− 〈st, zt − z̄〉 − V rz̄ (zt). (D.7)

Let ct = zt+wt+zt+1

3 . The proof follows from minimality of zt with respect to ct, minimality of wt

with respect to zt+1, and area-convexity (D.5) with respect to zt, wt, and zt+1. Respectively,

〈st, zt〉+ r(zt) ≤ 〈st, ct〉+ r(ct)

〈st, wt〉+
1

κ
〈g(zt), wt〉+ r(wt) ≤ 〈st, zt+1〉+

1

κ
〈g(zt), zt+1〉+ r(zt+1)

1

κ
〈g(wt)− g(zt), wt − zt+1〉 ≤ r(zt) + r(wt) + r(zt+1)− 3r (ct) .

(D.8)

Adding three times the first equation to the third, rearranging, and using the definition of ct, we

have
1

κ
〈g(wt)− g(zt), wt − zt+1〉 ≤ r(wt) + r(zt+1)− 2r(zt) + 〈st, wt + zt+1 − 2zt〉 .

Rearranging the second equation, we have

1

κ
〈g(zt), wt − zt+1〉 ≤ r(zt+1)− r(wt) + 〈st, zt+1 − wt〉 .

APPENDIX D. DEFERRED PROOFS FROM CHAPTER 5 651

Adding these two equations, we have

1

κ
〈g(wt), wt − zt+1〉 ≤ 2r(zt+1)− 2r(zt) + 〈st, 2zt+1 − 2zt〉 .

Dividing by 2 and adding 1
2κ 〈g(wt), zt+1 − z̄〉 to both sides, we obtain the desired (D.7). Now, define

the potential function

Φk =
1

2κ

k−1∑
t=0

〈g(wt), wt − z̄〉 − 〈sk, zk − z̄〉 − V rz̄ (zk)

Then, by (D.7), Φk is nonincreasing in k. Therefore for any u, by the definition of Θ,

1

T

T−1∑
t=0

〈g(wt), wt − u〉 ≤
1

T

T−1∑
t=0

〈g(wt), wt − z̄〉+
1

T

T−1∑
t=0

〈g(wt), z̄ − u〉+

(
2κΘ

T
− 2κVz̄(u)

T

)

≤ 1

T

T−1∑
t=0

〈g(wt), wt − z̄〉+
1

T

T−1∑
t=0

〈g(wt), z̄ − zT 〉+

(
2κΘ

T
− 2κVz̄(zT)

T

)
=

2κ

T
ΦT +

2κΘ

T
≤ 2κ

T
Φ0 +

2κΘ

T
=

2κΘ

T
.

The inequality on the second line used the definition of zT = Proxrz̄

(
1

2κ

∑
t∈[T−1] g(wt)

)
, and the

last inequality is ΦT ≤ Φ0. The conclusion follows from the definition of g (because it is linear).

Proof of Corollary 59. We see that (D.7) now holds up to ε′

2κ additive error, so that Φk is increasing

by at most ε′

2κ each step. Thus, we obtain ΦT ≤ Φ0 + Tε′

2κ , yielding the conclusion.

Proof of Lemma 250. We scale both r and J down by 2 ‖d‖∞, which does not affect positive-

semidefiniteness. By computation we have (recalling all columns of A have `1 norm of 2)

∇2r(x, y) =

5 ‖A:j‖1 diag
(

1
xj

)
2A>diag (yi)

2diag (yi) A 2diag
(
A>i x

)
 .

It suffices to show that for any vector
(
a b c d

)
we have

(
a b c d

)

5 ‖A:j‖1 diag
(

1
xj

)
2A>diag (yi) 0 −A>

2diag (yi) A 2diag
(
A>i x

)
A 0

0 A> 5 ‖A:j‖1 diag
(

1
xj

)
2A>diag (yi)

−A 0 2diag (yi) A 2diag
(
A>i x

)

a

b

c

d

APPENDIX D. DEFERRED PROOFS FROM CHAPTER 5 652

is nonnegative. Upon simplifying and gathering like terms, it suffices to show

∑
i,j

Aij

(
5a2
j

xj
+ 4ajbiyi + 2b2ixj − 2ajdi + 2cjbi +

5c2j
xj

+ 4cjdiyi + 2d2
ixj

)
≥ 0.

However, this is true for yi ∈ [−1, 1], since each coefficient groups into clearly nonnegative terms,(
4a2
j

xj
+ 4ajbiyi + b2ixj

)
+

(
a2
j

xj
− 2ajdi + d2

ixj

)

+

(
4c2j
xj

+ 4cjdiyi + d2
ixj

)
+

(
c2j
xj

+ 2cjbi + b2ixj

)
.

Alternating minimization analysis

We now give the convergence analysis of an alternating minimization procedure for minimizing a

function of the form (throughout this section, r(x, y) is as in (D.6))

f(x, y) := 〈ξ, x〉+ 〈η, y〉+ r(x, y) (D.9)

which is the type of minimization problem arising from steps of the form Proxrz̄(g). As we will see,

f(x, y) is jointly convex. Throughout this section, let xOPT, yOPT be the minimizer to f . Corollary 59

states that O(ε) additive error to f gives the same asymptotic convergence rate in Algorithm 71.

We will show that a simple alternating minimization scheme enjoys a linear rate of convergence in

our setting; thus, roughly O(log ε−1) iterations suffice. We first give a proof of a general condition

which suffices for linear convergence.

Lemma 251. Suppose f(x, y) is twice-differentiable and jointly convex, over the product space X×Y.

Consider the alternating minimization scheme,

1. xk+1 := argminx∈X f(x, yk)

2. yk+1 := argminy∈Yf(xk+1, y)

Further, suppose there are convex regions Xk+1 ⊆ X , Yk ⊆ Y which contain xk+1, yk respectively,

such that for any x′ ∈ Xk+1, y′, y′′ ∈ Yk, and for some σ ≥ 1,

∇2f(x′, y′) � 1

σ
∇2
yyf(xk+1, y

′′), (D.10)

where ∇2
yy is the Hessian with all but the yy block zeroed out. Then, for any x∗ ∈ Xk+1, y∗ ∈ Yk,

f(xk+1, yk)− f(xk+1, yk+1) ≥ 1

σ
(f(xk+1, yk)− f(x∗, y∗)) .

APPENDIX D. DEFERRED PROOFS FROM CHAPTER 5 653

Proof. Let ỹ =
(
1− 1

σ

)
yk + 1

σy
∗. We will prove instead that

f(xk+1, yk)− f(xk+1, ỹ) ≥ 1

σ
(f(xk+1, yk)− f(x∗, y∗)) ,

from which the conclusion will follow since f(xk+1, yk+1) ≤ f(xk+1, ỹ). Note by definition of ỹ, as

well as optimality of xk+1 which implies 0 ≥ 〈∇xf(xk+1, yk), xk+1 − x∗〉,

〈∇yf(xk+1, yk), yk − ỹ〉 =
1

σ
〈∇yf(xk+1, yk), yk − y∗〉 ≥

1

σ

〈
∇f(xk+1, yk), zk+ 1

2
− z∗

〉
(D.11)

where zk+ 1
2

:= (xk+1, yk) and z∗ := (x∗, y∗). Further, let yα := (1−α)yk+αy∗, ỹα := (1−α)yk+αỹ,

and xα := (1− α)xk+1 + αx∗. Then, by Taylor expansion we have f(xk+1, yk)− f(xk+1, ỹ) equals

〈∇yf(xk+1, yk), yk − ỹ〉 −
∫ 1

0

∫ β

0

(ỹ − yk)>∇2
yyf(xk+1, ỹα)(ỹ − yk)dαdβ

≥ 1

σ

〈
∇f(xk+1, yk), zk+ 1

2
− z∗

〉
− 1

σ2

∫ 1

0

∫ β

0

(y∗ − yk)>∇2
yyf(xk+1, ỹα)(y∗ − yk)dαdβ

≥ 1

σ

(〈
∇f(xk+1, yk), zk+ 1

2
− z∗

〉
−
∫ 1

0

∫ β

0

(z∗ − zk+ 1
2
)>∇2f(xα, yα)(z∗ − zk+ 1

2
)dαdβ

)

=
1

σ
(f(xk+1, yk)− f(x∗, y∗)) .

In the first inequality, we used (D.11) and the definition of ỹ, and in the second we used (D.10)

(since xα ∈ Xk+1, yα, ỹα ∈ Yk by convexity).

We now give a helper lemma specialized to the particular f in (D.9), which will be used in the

proof of convergence.

Lemma 252. For some xk+1, yk, let Xk+1 =
{
x | x ≥ 1

2xk+1

}
where the inequality is entrywise,

and let Yk be the entire domain of y (i.e. Y). Then for any x′ ∈ Xk+1, y
′, y′′ ∈ Yk,

∇2r(x′, y′) � 1

12
∇2
yyr(xk+1, y

′′).

Proof. Recall that (since ‖A:j‖1 = 2)

∇2r(x, y) = 2 ‖d‖∞

5 ‖A:j‖1 diag
(

1
xj

)
2A>diag (yi)

2diag (yi) A 2diag
(
A>i x

)
 .

Consider the diagonal approximation

D(x) = 2 ‖d‖∞

‖A:j‖1 diag
(

1
xj

)
0

0 diag
(
A>i x

)
 .

APPENDIX D. DEFERRED PROOFS FROM CHAPTER 5 654

We claim for any y,

D(x) � ∇2r(x, y) � 6D(x). (D.12)

To see this, consider the quadratic forms with respect to some vector
(
u v

)
:

(
u v

)
∇2r(x, y)

u
v

 = 2 ‖d‖∞
∑
i,j

Aij

(
5u2

j

xj
+ 4ujviyi + 2v2

i xj

)
,

(
u v

)
D(x)

u
v

 = 2 ‖d‖∞
∑
i,j

Aij

(
u2
j

xj
+ v2

i xj

)
.

Now (D.12) follows because for any yi ∈ [−1, 1], it’s easy to verify

u2
j

xj
+ v2

i xj ≤
5u2

j

xj
+ 4ujviyi + 2v2

i xj ≤ 6

(
u2
j

xj
+ v2

i xj

)
.

Therefore, to prove the lemma statement we can use

∇2r(x′, y′) � D(x′) � 1

2
D(xk+1) � 1

12
∇2
yyr(xk+1, y

′′).

The inequality D(x′) � 1
2D(xk+1) followed from the definition of Xk+1, and the last inequality

followed from D(xk+1) spectrally dominating 1
6∇

2r(xk+1, y
′′), and restrictions of D(xk+1) to the yy

block can only decrease the quadratic form.

We now give the proof of the linear rate of convergence.

Lemma 253. For f(x, y) defined in (D.9), the alternating minimization scheme

1. xk+1 := argminx∈X f(x, yk).

2. yk+1 := argminy∈Yf(xk+1, y).

decreases the function error f(xk, yk)− f(xOPT, yOPT) by a factor of at least 1/24 in each iteration.

Proof. We can apply Lemma 251 with the sets defined in Lemma 252, with σ = 12. On iteration k,

consider picking the points x∗, y∗ = 1
2 (xk+1 + xOPT), 1

2 (yk + yOPT). Evidently, x∗ ∈ Xk+1, y
∗ ∈ Yk.

Therefore, since f(xk+1, yk+1) ≥ f(xk+2, yk+1),

f(xk+1, yk)− f(xk+2, yk+1) ≥ f(xk+1, yk)− f(xk+1, yk+1) ≥ 1

12
(f(xk+1, yk)− f(x∗, y∗)).

Furthermore, by convexity, we have

f(xk+1, yk)− f(x∗, y∗) ≥ 1

2
(f(xk+1, yk)− f(xOPT, yOPT)).

APPENDIX D. DEFERRED PROOFS FROM CHAPTER 5 655

Finally, combining these two inequalities and rearranging,

23

24
(f(xk+1, yk)− f(xOPT, yOPT)) ≥ f(xk+2, yk+1)− f(xOPT, yOPT).

Thus, by taking a y step and then an x step, we decrease the function error by a 1/24 factor.

Finally, we show that steps of the alternating minimization can be implemented in linear time.

Lemma 254. For f(x, y) defined in (D.9), we can implement the steps

1. xk+1 := argminxf(x, yk).

2. yk+1 := argminyf(xk+1, y).

restricted to the relevant domains, in time O(n2).

Proof. Recall A has n2 nonzero entries, so a matrix-vector multiplication can be performed in this

time. Computing x in linear time is straightforward: it is defined by

argminx 〈γ, x〉+
∑
j∈[n]

xj log xj such that x ∈ ∆m, γ :=
1

20 ‖d‖∞
ξ +

1

10
A>(y2).

By examining the KKT conditions, it is clear that the minimizing x is proportional to exp(−γ);

computing γ takes O(n2) time, as does the simplex projection. Similarly, computing y in linear time

is simple for fixed x: it is

argminy 〈η, y〉+
〈
2 ‖d‖∞Ax, y2

〉
such that y ∈ [−1, 1]2n,

which is coordinate-wise decomposable as minimizing a quadratic over an interval.

Theorem 83 (Complexity of alternating minimization). We can obtain an ε/2-approximate mini-

mizer to the proximal steps required by Algorithm 71 to ε/2 accuracy, with the regularizer of (D.6)

and κ = 3, in O(log γ) parallelizable iterations for γ = log n · ‖d‖∞ · ε−1, and O(n2 log γ) total work.

Proof. By Lemmas 253 and 254, we can spend O(n2) parallelizable work to decrease the suboptimal-

ity gap by a 1/24 factor, so it remains to argue that the initial error is at most poly(log n, ‖d‖∞ , ε−1)

to show that implementing the proximal steps to additive error ε/2 can be done in O(log γ) itera-

tions. We show that this is true for implementing the proximal step for zt; a similar argument holds

for wt. To this end, note that by our setting of κ, for any z where we let g(z) = (gx(z), gy(z)),

1

2κ
‖gx(z)‖∞ =

1

6

∥∥d+ 2 ‖d‖∞A>y
∥∥
∞ ≤

‖d‖∞
2

,

1

2κ
‖gy(z)‖1 =

1

6
‖2 ‖d‖∞ (b−Ax)‖

1
≤

4 ‖d‖∞
3

.

APPENDIX D. DEFERRED PROOFS FROM CHAPTER 5 656

Therefore, for st = (sxt , s
y
t), by the triangle inequality, and t ≤ 12Θ/ε the bound on the number of

steps required where Θ is the range of r, we have

‖sxt ‖∞ ≤ t ·
1

2κ
‖gx(z)‖∞ ≤

6 ‖d‖∞Θ

ε
,

‖syt ‖1 ≤ t ·
1

2κ
‖gy(z)‖1 ≤

16 ‖d‖∞Θ

ε
.

A simple calculation yields Θ = 20 ‖d‖∞ log n + 4 ‖d‖∞ upper bounds the range of r. Finally, let

x∗t , y
∗
t be the minimizer of the proximal objective,

〈sxt , x〉+ 〈syt , y〉+ r(x, y).

For any initialization xinit, yinit to the alternating minimization, the suboptimality gap is given by

〈sxt , xinit − x∗t 〉+ 〈syt , yinit − y∗t 〉+ r(xinit, yinit)− r(x∗t , y∗t)

≤ ‖xinit − x∗t ‖1 ‖s
x
t ‖∞ + ‖yinit − y∗t ‖∞ ‖s

y
t ‖1 + Θ ≤

(
44 ‖d‖∞

ε
+ 1

)
Θ.

Therefore, the total number of iterations required is bounded by 24 log
((

88‖d‖∞
ε2 + 2

ε

)
Θ
)

as desired.

Numerical precision. We also make a brief comment on bit-complexity issues which may arise

when scaling exponentials. In particular, each of our alternating minimization steps of the form

〈g, x〉+
∑
j

xj log xj (D.13)

require exponentiating a potentially large vector log x − g, and rescaling the vector to be on the

simplex. The following lemma shows that we can implement this step with O(log n) bit-complexity,

with a small polynomial (say n−90) loss in the objective value. Because we may assume that ε−1 is

bounded by say, n2, else an interior point method achieves our stated runtime, the cumulative loss

in objective value over all iterations due to limited precision is significantly less than ε, and does not

affect our asymptotic convergence rate. More precisely, we maintain x implicitly through a vector

v which is log x up to a scaling, and show that by truncating v to have its range of coordinates

bounded by O(log n), the resulting simplex variable remains a high-precision minimizer to (D.13).

Lemma 255. Let v ∈ Rm, and let x ∈ ∆m be such that x ∝ exp(v). Consider the following

operation: let j∗ = argminjvj, and j′ be such that vj′ < vj∗ − 100 log n. Set v̂ = v in every

APPENDIX D. DEFERRED PROOFS FROM CHAPTER 5 657

coordinate, except v̂j′ ← vj∗ − 100 log n. Then, for x̂ ∝ exp(v̂) in the simplex,

∑
j

x̂j log x̂j −
∑
j

xj log xj < n−95, 〈g, x̂− x〉 < ‖g‖∞ n−95.

Proof. Clearly, ‖exp(v)‖1 < ‖exp(v̂)‖1, since exp is monotone. Moreover,

‖exp(v̂)‖1 − ‖exp(v)‖1 = exp(vj∗ − 100 log n)− exp(vj′) < n−100 exp(vj∗) < n−100 ‖exp(v)‖1 .

Now, for every coordinate j 6= j′, this implies that (1− n−100)xj < x̂j < xj . Thus,

x̂j log x̂j − xj log xj < −n−100xj log xj .

Furthermore, we have

x̂j′ log x̂j′ − xj′ log xj′ < −xj′ log xj′ < 100n−100,

by −x log x is increasing for small x and xj′ is bounded by n−100. Combining these estimates,

∑
j

x̂j log x̂j −
∑
j

xj log xj < (100 + log n)n−100 < n−95

for n > 10. Similarly,

〈g, x̂− x〉 ≤ ‖g‖∞

x̂j′ +
∑
j 6=j′

n−100xj

 ≤ ‖g‖∞ n−95

for n > 10.

Thus, repeatedly applying Lemma 255 every time we need to truncate a coordinate of v due to

finite bit precision, over the course of all iterations of the algorithm and all alternating minimization

steps, the error incurred is negligible compared to the desired accuracy ε (where we also note ‖g‖∞
for all g we encounter is bounded by a small polynomial in n).

D.1.6 Experiments

We show experiments illustrating the potential of our algorithm to be useful in practice, by consider-

ing its performance on computing optimal transport distances on the MNIST dataset and comparing

against algorithms in the literature including APDAMD [365] and Sinkhorn iteration. All compar-

isons are based on the number of matrix-vector multiplications (rather than iterations, due to our

algorithm’s alternating subroutine), the main computational component of all algorithms considered.

APPENDIX D. DEFERRED PROOFS FROM CHAPTER 5 658

(a) Comparison with Sinkhorn iteration with differ-
ent parameters.

(b) Comparison with APDAMD [365] with different
parameters.

(a) Comparison with Sinkhorn iteration on 20 ran-
domly chosen MNIST digit pairs.

(b) Comparison with APDAMD [365] on 20 ran-
domly chosen MNIST digit pairs.

While our unoptimized algorithm performs poorly, slightly optimizing the size of the regularizer

and step sizes used results in an algorithm with competitive performance to APDAMD, the first-order

method with the best provable guarantees and observed practical performance. Sinkhorn iteration

outperformed all first-order methods experimentally; however, an optimized version of our algorithm

performed better than conservatively-regularized Sinkhorn iteration, and was more competitive with

variants of Sinkhorn found in practice than other first-order methods.

As we discuss in our implementation details, we acknowledge that implementations of our al-

gorithm illustrated are not the same as those with provable guarantees in our paper. However, we

believe that our modifications are justifiable in theory, and consistent with those made in practice to

existing algorithms. Further, we hope that studying the modifications we made (step size, using mir-

ror prox [415] for stability considerations), as well as the consideration of other numerical speedups

such as greedy updates [25] or kernel approximations [24], will become fruitful for understanding

the potential of accelerated first-order methods in both the theory and practice of computational

optimal transport.

APPENDIX D. DEFERRED PROOFS FROM CHAPTER 5 659

Implementation details.

Dataset. For the first two figures, we had the following experimental setup. We randomly sampled

a pair of digits from the MNIST dataset corresponding to the digit 1, and added a small amount of

background noise for numerical stability, as is standard in the literature [25]. We downsampled the

28× 28 pixel images to size 14× 14 by skipping every other pixel to speed up experiments. Similar

performances were observed across multiple random instances. Finally, the cost metric used was by

Manhattan distance on the 2-dimensional grid.

For the second pair of figures, we randomly sampled 20 pairs of digits from the MNIST dataset

where each pair corresponds to the same digit. As before we added a small amount of background

noise for stability. As opposed to the previous comparison we ran all three algorithms on the true

28× 28 pixel images. For each of the digit pairs we ran the Sinkhorn algorithm to high precision to

obtain a baseline solution for comparison, and for each of the three algorithms tested we compared

the value of the solutions obtained to this baseline. The plots compare the number of matrix-vector

multiplies to the objective value error averaged over all 20 digit pairs. The metric is again the

Manhattan distance over the 2-dimensional grid.

Objective value. For simplicity, in all cases we measured objective value by the overestimate

presented in (D.4). By the proof of Lemma 247, this is an overestimate to the true objective after

performing the rounding procedure in Algorithm 72. In practice, we observed that this overestimate

was negligibly different from the objective after rounding.

Sinkhorn implementation details. We implemented the standard Sinkhorn algorithm, using dif-

ferent settings of η−1. Sinkhorn iteration converges to an ε-approximate transportation plan in

theory when η is very large, roughly log n/ε. However, in practice, it is observed that much smaller

values of η suffice for rapid convergence. We tracked the convergence of Sinkhorn iteration for η = 70

and η = 5, which we considered close to a theoretically guaranteed parameter and a much less con-

servative practical parameter, respectively. The optimized Sinkhorn algorithm converged at rates

much faster than the predicted ε−2 rate on all experiments, outperforming all other methods, which

we believe merits further investigation. Significantly larger values of η led to numerical stability

issues when computing exp(−ηC).

APDAMD implementation details. We implemented the APDAMD algorithm (Algorithm 4 in

[365]), with the quadratic regularizer (i.e. 1
2γ ‖λ‖

2
2). We observed that the amount of the quadratic

regularizer added did not affect the practical convergence of the algorithm. A simple reason for this is

because the algorithm builds in a more aggressive step-size strategy, because the pessimistic γ = O(n)

is often too conservative to be necessary in practice. The figure tracks APDAMD convergence with

η = 10−2, ε = 10−3.

Mirror prox. For numerical stability considerations, we implemented our algorithm as an in-

stance of mirror prox [415], another extragradient method which takes local iterations rather than

accumulating a dual operator and taking steps with respect to some z̄ (i.e. dual extrapolation).

APPENDIX D. DEFERRED PROOFS FROM CHAPTER 5 660

Although there is not a known proof of mirror prox convergence with an area-convex regularizer, we

find this decision reasonable for several reasons. In general, variations of entropic mirror descent are

well-known to be equivalent to their dual averaging versions; it is likely that a similar equivalence

can be drawn between mirror prox and extragradient dual averaging, i.e. dual extrapolation. Fur-

thermore, the standard proofs of dual extrapolation and mirror prox are quite similar; we believe

it is likely that area-convexity results in convergence for mirror prox, although this merits further

investigation.

Termination. We terminated our alternating minimization procedure when the movement of

iterations in `1 was negligible. Typically, we observed that 3-5 alternating steps sufficed for conver-

gence.

Step sizes. We varied two parameters in our experiments: the step size 1
κ used in our extragra-

dient algorithm, and the amount of entropy used in our regularizer (in the paper, we used 10 times

entropy compared to the quadratic component x>A>(y2)). One reason this may be reasonable in

practice is similar to the observed behavior of the Sinkhorn iteration tuning the η−1 parameter, and

APDAMD performing a more-aggressive line search for the observed amount of regularizer neces-

sary. We note that the need to tune the amount of entropy used in the regularizer is likely due to

the analysis not being tight in the constants, and with a tighter analysis, it may not be necessary

to tune this parameter. To this end, we plotted the performance of three algorithm settings.

• In the “unoptimized constants”, we set the constants to roughly those with theoretical guar-

antees, i.e. 10 times entropy and step size 1.

• In the “reasonably optimized constants”, we set the amount of entropy to be 4, and the step

size to be ‖d‖∞ /3, to offset the ‖d‖∞ multiple of the regularizer used in our iterations. For

smaller values of ε, these settings compared favorably with APDAMD.

• In the “optimized constants”, we set the amount of entropy at 3, and the step size at ‖d‖∞.

This setting outperformed APDAMD and was more competitive with Sinkhorn iteration.

Discussion. We believe multiple interesting avenues of exploration arise from our experiments.

• Sinkhorn with aggressively chosen η outperformed all other methods we benchmarked against,

and converged at rates faster than suggested by its known analyses. It may prove fruitful to

study if further assumptions about practical instances explain this discrepancy.

• Directly accelerated methods such as APDAMD also exhibit ε−1 convergence rates, at the cost

of a worse dependence on dimension. However, this worst-case dependence can be mitigated

if the instance is favorable in practice, i.e. by choosing γ ≈ O(1). This was observed to be the

case in our experiments for the MNIST dataset. It is interesting to see if a similar adaptive

tuning applies to our method with provable guarantees.

APPENDIX D. DEFERRED PROOFS FROM CHAPTER 5 661

• Our method did not exhibit instability when changing the amount of entropy in the regularizer,

but it did exhibit vastly-improved convergence. It is possible that the amount of regularizer

needed is not quite so large, perhaps through a more careful analysis.

• We did not benchmark against the greedy Sinkhorn method of [25], or consider numerical

speedups such as those in [24]. It remains open to explore if these practical speedups are

applicable to first-order methods such as ours as well.

D.1.7 Deferred proofs from Section 5.3

In this section, we give a proof of Proposition 14, which we restate for convenience. We recall the

following definition: for convex-concave f : X × Y → R, we say a pair (x, y) is an ε-approximate

saddle point if f(x, y′) − f(x′, y) ≤ ε ∀x′ ∈ X , y′ ∈ Y. Before embarking on the proof, we require

the following helper lemma for demonstrating correctness of Line 2 of Algorithm 13.

Lemma 256. Consider (5.1) under the transformation described by Lines 1 and 2 of Algorithm 13.

The approximate optimality of any point in ∆m for the corresponding problem (5.2) is unaffected

by this transformation (i.e. if some point is ε-approximately suboptimal for the new problem, it also

has ε-approximate optimality for the old problem). Moreover, using O(n) space and one pass we can

implement this transformation for the remainder of any semi-streaming algorithm under the model

of Definition 18.

Proof. We discuss correctness of each line separately.

Correctness of Line 1. Let i∗ = argmini∈[m]ci. We claim that the minimizer of 〈c, x〉 +∥∥A>x− b∥∥
1

only puts nonzero values on coordinates i ∈ [m] where ci ≤ ci∗ + 2 ‖A‖∞. To see

this, consider any x ∈ ∆m where xi 6= 0 for some ci ≤ ci∗ + 2 ‖A‖∞, and consider taking x̃ = x in

every coordinate, except x̃i∗ = xi∗ + xi and x̃i = 0 (i.e. we zero out the coordinate i and shift its

mass to i∗). Then,

〈c, x− x̃〉 > 2 ‖A‖∞ xi = ‖A‖∞ ‖x̃− x‖1 ≥
∥∥A>(x̃− x)

∥∥
1
≥
∥∥A>x̃− b∥∥

1
−
∥∥A>x− b∥∥

1
.

Rearranging implies x̃ obtains better objective value for the problem (5.2). Hence, by ignoring all

large coordinates, any ε-approximately suboptimal point in the new problem is also ε-approximately

suboptimal for the old problem, because the objective values are the same and any feasible point in

the new problem is also feasible for the old problem. Finally, shifting c by a multiple of the all-ones

vector affects the problem globally by a constant, since x is in the simplex.

Correctness of Line 2. Because c>x is unaffected, it suffices to discuss the effect on

∥∥A>x− b∥∥
1

=
∑
j∈[n]

∣∣∣[A>x]j − bj∣∣∣ .

APPENDIX D. DEFERRED PROOFS FROM CHAPTER 5 662

For disambiguation call b′ the result of the truncation, and b the vector in the original problem.

Consider a coordinate where bj 6= b′j ; suppose without loss that bj > ‖A‖∞ (the other case is

handled symmetrically). Then, since
[
A>x

]
j
≤ ‖A‖∞ by definition,

∣∣∣[A>x]
j
− bj

∣∣∣ = bj−
[
A>x

]
j

= (bj − ‖A‖∞)+
(
‖A‖∞ −

[
A>x

]
j

)
= (bj − ‖A‖∞)+

∣∣∣[A>x]
j
− b′j

∣∣∣ .
Hence the effect is a constant scalar shift, as desired. Finally, regarding the semi-streaming imple-

mentation, b is n-dimensional and hence we can store it in O(n) space. We can also store ‖A‖∞
and Cmax in one pass and constant space, and simulate the post-processed vector c by modifying

any coordinate ci encountered in a stream using these precomputed values.

Proposition 14. By taking T = O(
‖A‖∞ logm

ε) for a sufficiently large constant, Algorithm 13 results

in iterates {(x′t, y′t)}0≤t<T so that x̄ := 1
T

∑
0≤t<T x

′
t is an ε-approximate minimizer to (5.2).

Proof. First, the effects of Lines 1 and 2 of Algorithm 13 does not affect the problem (5.2) other

than changing the objective value everywhere by a constant, by Lemma 5 of [147] and Lemma 256

respectively. Next, the claim on the number of iterations required by Algorithm 13 follows immedi-

ately from Corollary 59. It remains to show that the given value of K suffices for Algorithm 14 to

solve the subproblems to δ additive accuracy.

For simplicity, we will prove this bound on K suffices for the computation of wt; the bound for

zt+1 follows analogously. Lemma 251 demonstrates that in solving the minimization subproblem of

Algorithm 14, every iteration of alternating minimizaton decreases the suboptimality gap for the

subproblem by a constant factor, so we only require a bound on the initial error of each subproblem

in Line 5 of Algorithm 13. The subproblem is of the form: minimize over z = (x, y) ∈ ∆m× [−1, 1]n,

〈sxt + gxt , x〉+ 〈syt + gyt , y〉+ x>|A|(y2) + 10 ‖A‖∞
∑
i∈[m]

xi log
xi

[xt]i
=: 〈γ, z〉+ r(z). (D.14)

Call the optimal solution to the above problem z∗. Note that the initial point used by Algorithm 14

in Line 8 is zt, which by assumption was an ε
2 -approximate minimizer to an objective of the form

(D.14) where γ is replaced by γ′ such that by construction (and our pre-processing of c),

‖(γ − γ′)x‖∞ = O (‖A‖∞) , ‖(γ − γ′)y‖1 = O (max (‖A‖∞ , ‖b‖1)) .

Hence,

〈γ, zt〉+ r(zt) = 〈γ′, zt〉+ r(zt) + 〈γ − γ′, zt〉

≤ 〈γ′, z∗〉+ r(z∗) +
ε

2
+ 〈γ − γ′, zt〉

= 〈γ, z∗〉+ r(z∗) +
ε

2
+ 〈γ − γ′, zt − z∗〉 .

APPENDIX D. DEFERRED PROOFS FROM CHAPTER 5 663

In the only inequality, we used the suboptimality bound on zt. Hence, zt can have initial function

error at most O(‖A‖∞ + ‖b‖1 + ε) for the objective (D.14), yielding the required bound on K.

To give the final result, we claim that any ε-approximate saddle point (x̄, ȳ) to a convex-concave

function f on the domain X ,Y has that fX (x̄) approximates the value of the primal-only problem

min
x∈X

fX (x), where fX (x) := max
y∈Y

f(x, y),

within an additive ε. To see this, let (x?, y?) be the exact saddle point of f so that f(x?, y?) = OPT.

By definition of (x̄, ȳ), (
max
y∈Y

f(x̄, y)−OPT

)
+

(
OPT−min

x∈X
f(x, ȳ)

)
≤ ε.

Moreover, both quantities on the left hand side are nonnegative by definition of OPT, i.e.

OPT = f(x?, y?) = min
x∈X

(
max
y∈Y

f(x, y)

)
= max

y∈Y

(
min
x∈X

f(x, y)

)
.

Thus, by nonnegativity of the second quantity, we conclude that

fX (x̄) = max
y∈Y

f(x̄, y) ≤ OPT + ε = fX (x?) + ε.

D.2 Matching tools from the literature

In this section, we prove Lemma 71 and Proposition 15. We begin with the former.

Lemma 71. The greedy algorithm can be implemented in one semi-streaming pass over a graph

using O(n) space and O(m) work to return a matching of size M with M ≤M∗ ≤ 2M .

Proof. It is folklore that the greedy algorithm (adding edges one at a time to a matching, if and only

if neither endpoint is already matched) is a 2-approximation to the MCM, proving the approximation

guarantee. Regarding the implementation, we can keep marking an array of vertex indices and check

if a current edge violates a matched vertex, in O(1) time per edge.

We now proceed to Proposition 15. We first state our algorithm, a greedy iterative procedure

which repeatedly adds a maximal matching from a maintained vertex set to the remaining vertices.

We require one key technical claim for analyzing Algorithm 73.

Lemma 257. Fix an iteration 0 ≤ i ≤ N − 1 of Algorithm 73, and suppose the MCM size of G[Vi]

is Mi. Then, the MCM size of G[Vi+1] increases by at least 1
3 (M∗ −Mi).

APPENDIX D. DEFERRED PROOFS FROM CHAPTER 5 664

Algorithm 73: VertexReduction(G, ε)

1 Input: Bipartite graph G = (V,E) with MCM size M∗;
2 Output: Vertex subset V ′ ⊆ V with |V ′| = O(M∗ log(ε−1)) and G[V ′] that has MCM size
≥ (1− ε)M∗;

3 V0 ← vertices incident to some maximal matching in G;
4 N ← d3 log(ε−1)e;
5 for i ∈ [N] do
6 S ← vertices in V \ Vi−1 incident to some maximal matching between Vi−1 and V \ Vi−1;
7 Vi ← Vi−1 ∪ S;

8 Return: V ′ ← VN

Proof. The symmetric difference between the maximum matchings ofG[Vi] andG can be decomposed

into even cycles and paths (to see this, every vertex in the symmetric difference has degree at most

2). Hence, ignoring all even cycles, there is a vertex-disjoint augmenting path decomposition of size

k := M∗ −Mi; call these paths P1, P2, . . . Pk. For each path Pj , j ∈ [k], all of its edges except

the first and last are contained in G[Vi]; call the first and last edges (xj , x
′
j) and (yj , y

′
j), where

xj , yj ∈ G[Vi]. We consider a few cases, “processing” paths sequentially.

1. If both (xj , x
′
j) and (yj , y

′
j) are included in the maximal matching between Vi and V \ Vi, this

increases the maximum matching size in Vi+1 by one since we can use the augmenting path.

2. If both xj and yj are matched to other vertices x′′j 6= x′j and y′′j 6= y′j , we can still use the

resulting augmenting path in Vi+1. The other vertices x′′j , y′′j can only remove two other later

paths from consideration in the process, where we consider paths sequentially. Note that if x′′j

or y′′j is not an endpoint from a later path, this can only help the argument here.

3. If one of xj and yj is matched to its corresponding endpoint in Pj but the other is not, we can

use the augmenting path and remove one other path from consideration.

Because we took a maximal matching between Vi and S \ Vi, at least one of the above cases must

happen, so we increase the MCM size by at least 1
3k.

We conclude with our analysis of Algorithm 73.

Proposition 15 (Vertex size reduction). There is a procedure VertexReduction (Algorithm 73) which

takes as input unweighted bipartite G = (V,E) with MCM size M∗ and with O(log ε−1) passes,

O(M∗ log ε−1) space, and O(m log ε−1) work outputs a subset V ′ ⊆ V of size O(M∗ log ε−1) such

that the induced subgraph G[V ′] has a MCM of size at least (1− ε)M∗.

Proof. The correctness follows immediately by applying Lemma 257, and the fact that our original

maximal matching (contained in G[V0]) is of size at least 1
2M

∗. We now prove correctness. For

the first pass, the complexity follows directly from Lemma 71. For all additional iterations of the

APPENDIX D. DEFERRED PROOFS FROM CHAPTER 5 665

algorithm, note that we can only add O(M∗) additional vertices to the current set since it is a valid

matching in the original graph, and the iteration can be implemented in a single pass analogously

to the proof of Lemma 71. The space overhead is only the maintenance of the current set Vi.

D.3 Cycle cancelling in low space

In this section, we provide implementation of a data structure which proves the following claim.

Proposition 16 (Cycle cancelling). Consider a (possibly weighted) matching problem on a bipartite

graph G = (V,E,w) (for MCM, we let w = 1). There is an algorithm that has the following property:

given a stream of length L, consisting of edge-flow tuples (e, fe) where e ∈ E and fe ∈ R≥0, define

x ∈ RE≥0 to be the sum of all fe1e in the stream where 1e is the 1-sparse indicator of edge e. Then

the algorithm runs in O(n) space and O(L log n) time, and outputs a flow x̃ supported on O(n) edges

forming a forest, so that 〈w, x̃〉 ≥ 〈w, x〉, and B>x = B>x̃.

Specifically, we reduce its proof to demonstrating the existence of a bipartite cycle-cancelling

oracle.

Definition 51 (Bipartite cycle-cancelling oracle). We call O a bipartite cycle-cancelling oracle

(BCCO) if it is associated with a (weighted) bipartite graph G = (V,E,w), and given any vector

x ∈ RE≥0 supported on L ≤ 2n edges, O outputs a vector x̃ ∈ RE≥0 such that B>x = B>x̃ and

〈w, x̃〉 ≥ 〈w, x〉, so that x̃ is supported on at most n edges.

Lemma 258. A BCCO O is implementable in O(L) space and O(L log n) work.

Proof of Proposition 16. If the stream length is L ≤ 2n, applying O obtains the desired results.

Otherwise, it suffices to divide the stream into chunks of n edges, and repeatedly call O. Specif-

ically, we can input the first 2n edges of the stream into O and produce a set of n edges, then input

these n edges with the next n edges of the stream, and so on. Inducting on the properties of O,

we obtain the value and feasibility guarantees on the final output. Regarding the space and work

guarantees, it suffices to repeatedly apply Lemma 258, and note that we can reuse the space for

O.

The remainder of this section is devoted to proving Lemma 258. Specifically, we demonstrate

how to use the link/cut tree data structure of [488, 500], with a few small modifications, to provide

the required oracle. In the following discussion, we state some preliminaries on link/cut trees which

are known from prior work (namely a set of supported operations), and we put these components

together at the end of this section to give an implementation which proves Lemma 258.

APPENDIX D. DEFERRED PROOFS FROM CHAPTER 5 666

D.3.1 Link/cut tree description

The description in this section primarily follows the implementation of link/cut trees given in Chapter

5 of [500], with a few terminology changes following the later lecture notes of [169]. It is primarily

a summary of prior work, where we state the supported operations that we will use.

Data structure representation. The link/cut tree implementation of [488, 500] we will use is main-

tained as a forest, where each (undirected, rooted) tree in the forest is decomposed into “preferred

paths” and each path is stored as a splay tree, along with a parent pointer to the neighbor of the

preferred path endpoint closer to the root. Every edge in the forest has an associated value (which

can change). We refer to the tree representations of preferred paths as “auxiliary trees” and the

tree representation of all connected vertices as a “main tree.” The link/cut tree supports queries or

modifications to main trees, including the following operations.

1. Link(v, w,C): add an edge of value C between v and w in the main tree (if they are in different

trees, join them so that w is the parent of v).

2. Cut(v): remove the edge between v and its parent in the main tree.

3. ChangeRoot(r): change the root of the main tree to the vertex r.

4. LCA(v, w): return the least common ancestor of v and w in the main tree.

5. Min(v): return the smallest edge value between v and its root in the main tree.

6. Add(v, C): add C to all edge values between v and its root in the main tree.

7. Sum(v): return the sum of all edge values between v and its root in the main tree.

For a more complete and formal description, we refer the reader to [500, 169].

Space complexity of link/cut trees. Based on the representation described above, it is clear that

as long as the amount of additional information we need to store in the auxiliary trees to implement

path aggregation operations is a constant per vertex, the overall space complexity is O(n) where n

is an upper bound on the number of vertices of all main trees. The only remaining space overhead

is storing all auxiliary trees, and the parent pointers of preferred paths in main trees. We include

this discussion because it is not explicitly stated in the source material.

Work complexity of link/cut trees. We state the guarantees of the link/cut tree in the following

claim, which follows by the analysis of the works [488, 500].

Proposition 57 (Main result of [488, 500]). The amoritized cost of L calls to any of the operations

Link, Cut, ChangeRoot, LCA, Min, Add, or Sum is bounded by O(L log n).

APPENDIX D. DEFERRED PROOFS FROM CHAPTER 5 667

D.3.2 Implementation of BCCO

We now prove Lemma 258. We first outline our approach in constructing the oracle, and then

describe a concrete implementation by using link/cut trees.

Approach outline. The main goal is to show how to preserve an acyclic matching x̃ so that

B>x̃ = B>x and 〈w, x̃〉 ≥ 〈w, x〉 after processing every edge, in a total of O(n log n) work using the

link/cut tree. Inductively it is clear that the output will satisfy all the requirements of O.

We now describe how to process a single input edge e = (u, v) where u ∈ L and v ∈ R are on

opposite sides of the bipartition. First, if u and v are both not in the data structure, create a new

main tree consisting of just this edge (with say u as the root). If only one is in the data structure

then create a new edge with value xe appropriately using Link. If u and v are in different main trees,

we can call Link(u, v, xe). In these cases, no cycles are created and no edge values are changed.

The last case is when u and v are in the same main tree. The path between u and v in their

main tree and the new edge (u, v) forms a cycle. In order to preserve B>x, it suffices to alternate

adding and subtracting some amount C from edges along the cycle. In order to make sure 〈w, x〉 is

monotone, it suffices to compute the alternating sum of weights along the cycle to pick a parity, i.e.

whether we add from every odd edge in the cycle and subtract from every even edge, or vice versa

(since all cycles are even length, one of these will increase the weight). Once we pick a parity, we

compute the minimum value amongst all edges of that parity in the cycle and alternate adding and

subtracting this value; this will result in the tree becoming acyclic and preserve all invariants.

We finally remark that it suffices to divide the support of the input x into connected components,

and remove cycles from each connected component. By designating a “root vertex” in each connected

component and processing the edges in that component in BFS order from the root, it is clear that

the tree corresponding to that component will never become disconnected (edges are only removed

when a cycle is formed, and removing any edge on the cycle will not disconnect the tree). Thus, it

suffices to discuss how to implement cycle cancelling for a single connected component.

Implementation. We discuss the implementation of cycle cancelling for a single connected com-

ponent. It will use three link/cut trees, called W , T+, and T−; the topology of these three trees will

always be the same (i.e. they are the same tree up to the edge values). Roughly speaking, W will

contain edge weights with alternating signs (e.g. each edge’s weight will be signed (−1)depth of edge),

and will be used to determine the direction of cycle cancelling to preserve 〈w, x̃〉 ≥ 〈w, x〉. Further,

T+ and T− will each correctly contain half of the edge values of the current fractional matching

(depending on their sign in W), and the other edge values will be set to a large quantity. They are

used to compute the minimum (signed) edge value in cycles and to modify the fractional matching.

Consider processing a new edge e = (u, v) with weight we and value xe. If this edge is in any

of the non-cycle-creating cases described in the outline, i.e. its endpoints do not belong in the same

tree with a path between them, then we add a copy to each of W , T+, and T−. Depending on the

depth of the edge in W (which we can check by looking at the sign of its parent edge), we either

APPENDIX D. DEFERRED PROOFS FROM CHAPTER 5 668

give it value we or −we. If it is positive in W , then we give it value xe in T+ and value n2 ‖x‖∞ in

T−; otherwise, we swap these values. We choose the value n2 ‖x‖∞ for one copy of the edge, so that

it never becomes the minimum value edge returned by Min throughout the algorithm.

Finally, we handle the case where we need to remove a cycle (when u and v are in the same

tree, and the edge is not in the tree). We start by determining which half of edges in the cycle we

want to remove value from, and which we should add to. To do this, we query r = LCA(u, v) and

ChangeRoot(r) on the tree in W . Then, we compute the alternating sums of weights in each half of

edges in the cycle. This allows us to determine a direction to preserve 〈w, x̃〉 ≥ 〈w, x〉. We also call

LCA(u, v) and ChangeRoot(r) for both copies of the main tree in T .

We next determine the amount we wish to alternatingly add and subtract along the u-to-r and v-

to-r paths by calling Min on the appropriate tree, T− or T+ (corresponding to the direction obtained

from querying W). We then call Add on both copies of the main tree in T for these paths, with the

value obtained by the Min queries or its negation appropriately. This zeros one edge, which we Cut

from all three copies of the tree. Finally, we revert to the original root in all three trees to maintain

correctness of signs. Overall, the number of link/cut tree operations per edge in the stream is a

constant, so Proposition 57 bounds the total work by O(n log n).

D.4 Sampling for rounding linear programming solutions

In this section, we give a general procedure for rounding a fractional solution which is returned by

our algorithm for box-simplex games in Section 5.3. This procedure applies to general box-simplex

problems, beyond those with combinatorial structure, so we include this section for completeness. In

particular, directly applying the sparsity bounds of this section to our matching problems directly

imply Õ(n · poly(ε−1)) space bounds for the various matching-related applications in the paper, up

to width parameters, which roughly match our strongest results up to the ε−1 dependence. As an

example, we give an application of this technique to MCM at the end of this section.

Given streaming access to an approximate fractional solution x on the simplex (via an implicit

representation), a natural way of constructing a low-space approximate solution is to randomly

sample each entry of xi and reweight to preserve expected objective value; this is the rounding

strategy we analyze. We use the following Algorithm 2, parameterized by some prescribed {Mi}i∈[m].

D.4.1 Concentration bounds

For proofs in this section, as well as later, we crucially rely on well-known concentration properties

of bounded random variables. We state here a few facts used repeatedly throughout.

Proposition 58 (Chernoff bound). For K independent scaled Bernoulli random variables {Xk}k∈[K]

APPENDIX D. DEFERRED PROOFS FROM CHAPTER 5 669

Algorithm 2 RandomSample(x,K, {Mi}i∈[m])

Input: Coordinates of x ∈ Rm≥0 in streaming fashion, sample count K, parameters {Mi}i∈[m]

9 for i ∈ [m] do
10 Draw K independent random variables {Xk

i }k∈[K], where

Xk
i =

{
Mi with probability xi

Mi

0 otherwise
.

x̂i ← 1
K

∑
k∈[K]X

k
i

11 return x̂

satisfying Xk = Nk with probability pk, 0 < Nk ≤ 1 for all k ∈ [K], and all 0 < δ < 1,

Pr

∣∣∣∣∣∣
∑
k∈[K]

Xk −
∑
k∈[K]

EXk

∣∣∣∣∣∣ ≥ δ
∑
k∈[K]

EXk

 ≤ 2 exp

(
−
δ2
∑
k∈[K] EXk

3

)

We give a simple generalization of Proposition 58 to the case where the scaled Bernoulli variables

are allowed to take on negative values.

Corollary 60 (Generalized Chernoff bound). For K independent scaled Bernoulli random variables

{Xk}k∈[K] satisfying Xk = Nk with probability pk, 0 < |Nk| ≤ 1 for all k ∈ [K], and all 0 < δ < 1,

Pr

∣∣∣∣∣∣
∑
k∈[K]

Xk −
∑
k∈[K]

EXk

∣∣∣∣∣∣ ≥ δ
∑
k∈[K]

E|Xk|

 ≤ 4 exp

(
−
δ2
∑
k∈[K] E|Xk|

3

)

Proof. Divide the set [K] = K+ ∪ K−, where we define K+ := {k ∈ [K]|Nk ≥ 0} and K+ := {k ∈
[K]|Nk < 0}. Applying Proposition 58 to

∑
k∈K+ Xk and

∑
k∈K− −Xk yields the result.

Furthermore, the following one-sided Chernoff bound holds when 0 < Nk ≤ 1 and δ ≥ 1.

Proposition 59 (One-sided Chernoff bound). For K independent scaled Bernoulli random variables

{Xk}k∈[K] satisfying Xk = Nk with probability pk, 0 < Nk ≤ 1 for all k ∈ [K], and all δ > 0,

Pr

 ∑
k∈[K]

Xk −
∑
k∈[K]

EXk ≥ δ
∑
k∈[K]

EXk

 ≤ exp

(
−
δ2
∑
k∈[K] EXk

2 + δ

)

Proposition 60 (Bernstein’s inequality). For K independent random variables {Xk}k∈[K] satisfying

|Xk| ≤ C with probability one, let V =
∑
k∈[K] Var[Xk]. Then for all t ≥ 0,

Pr

∣∣∣∣∣∣
∑
k∈[K]

Xk −
∑
k∈[K]

EXk

∣∣∣∣∣∣ ≥ t
 ≤ 2 exp

(
− t2

2V + 2Ct/3

)
.

APPENDIX D. DEFERRED PROOFS FROM CHAPTER 5 670

D.4.2 Random sampling guarantees

We first give a general guarantee on the approximation error incurred by random sampling via

Algorithm 2. While the guarantees are a bit cumbersome to state, they become significantly simpler

in applications. For instance, in all our applications, all binary random variables are scaled with Mi

such that maxi∈[n]Mi ≤ 1 (see Lemma 259 for definition), and the bounds on A>x̂−A>x become

standard multiplicative error approximations when the matrix A is all-positive.

Lemma 259. Consider an instance of problem (5.1) parameterized by A, b, c. For some x ∈ ∆m

whose coordinates can be computed in streaming fashion, define for all j ∈ [n],

Bj =
[
|A|> x

]
j
.

Let x̂ be the output of Algorithm 2 on input x with

Mi = min
j∈[n]

Bj
|Aij |

and K =
12 log(mn)

ε2
.

With probability at least 1− (mn)−1, x̂ satisfies the following properties for B := maxi∈[m]Mi:∣∣∣[A>x̂−A>x
]
j

∣∣∣ ≤ εBj for all j ∈ [n], | ‖x̂‖1 − ‖x‖1 | ≤ εmax(1, B),∣∣c>x̂− c>x∣∣ ≤ ε ‖c‖∞max(1, B),

‖x̂‖0 = O

1 +
∑
i∈[m]

xi max
j∈[n]

|Aij |
Bj

 · log(mn)

ε2

 .

Proof. First note that it is immediate by definition of the Bj to see that all xi
Mi

= maxj∈[n]
|Aij |xi
Bj

≤ 1

are valid sampling probabilities for all i ∈ [m]. Also, recall that entrywise

x̂i =
1

K

∑
k∈[K]

Xk
i .

We show the first property; fix some j ∈ [n] and consider [A>x̂]j − [A>x]j . Applying Corollary 60

APPENDIX D. DEFERRED PROOFS FROM CHAPTER 5 671

to the random variables { 1
Bj

AijX
k
i }i∈[m],k∈[K] with δ = ε, we see by definition of K that

∑
i∈[m],k∈[K]

1

Bj
AijX

k
i =

K

Bj

[
A>x̂

]
j
,

∑
i∈[m],k∈[K]

E
[

1

Bj
AijX

k
i

]
=

K

Bj
[A>x]j ,

∑
i∈[m],k∈[K]

E
∣∣∣∣ 1

Bj
AijX

k
i

∣∣∣∣ =
K

Bj
[|A|>x]j ,

=⇒ Pr

(
K

Bj

∣∣[A>x̂]j − [A>x]j
∣∣ ≥ δ K

Bj
[|A|>x]j

)
≤ 4 exp

(
−δ

2K[|A|>x]j
3Bj

)
≤ 4

(nm)4
,

where for the last inequality we use definitions of δ, K, and that Bj = [|A|>x]j , for all j ∈ [n].

This conclusion for a coordinate j ∈ [n] is equivalent to
∣∣[A>x̂]j − [A>x]j

∣∣ ≤ εBj . Union

bounding over all j ∈ [n], we thus have with probability at least 1− 4
n3m4∣∣∣[A>x̂−A>x

]
j

∣∣∣ ≤ εBj , ∀j ∈ [n].

Now we show the second and third properties. Given B := maxi∈[m]Mi, we first apply Proposition 60

on the sum
∑
i∈[m]Kcix̂i =

∑
i∈[m],k∈[K] ciX

k
i , using the bound

∑
i∈[m],k∈[K]

Var
[
ciX

k
i

]
≤ K ‖c‖2∞

∑
i∈[m]

Var
[
Xk
i

]
≤ K ‖c‖2∞

∑
i∈[m]

xiMi ≤ K ‖c‖2∞B.

Thus, we can choose parameters C = ‖c‖∞B, V = K ‖c‖2∞B to obtain the following bounds for

K ≥ 12 log(mn)
ε2 depending on whether B > 1 or B ≤ 1. For B > 1, we have

Pr

K
∣∣∣∣∣∣
∑
i∈[m]

cix̂i −
∑
i∈[m]

cixi

∣∣∣∣∣∣ ≥ εB ‖c‖∞K

 ≤ 2 exp

(
−

ε2B2 ‖c‖2∞K2

2K ‖c‖2∞B + 2 ‖c‖2∞B2Kε/3

)

≤ 1

4(mn)2
.

For B ≤ 1, we have

Pr

K
∣∣∣∣∣∣
∑
i∈[m]

cix̂i −
∑
i∈[m]

cixi

∣∣∣∣∣∣ ≥ ε ‖c‖∞K

 ≤ 2 exp

(
−

ε2 ‖c‖2∞K2

2K ‖c‖2∞B + 2 ‖c‖2∞BKε/3

)

≤ 1

4(mn)2
.

APPENDIX D. DEFERRED PROOFS FROM CHAPTER 5 672

Altogether this implies the third conclusion, and the second conclusion follows as a special case

when specifically picking c = 1n. Each holds with probability ≥ 1− 1
4 (mn)−2.

Finally, for all i ∈ [m], let Yi = 1 if x̂i 6= 0 and Yi = 0 otherwise. It is straightforward to see that

Yi = 1 with probability

1−
(

1−max
j∈[n]

|Aij |xi
Bj

)K
≤ K max

j∈[n]

|Aij |xi
Bj

=⇒
∑
i∈[m]

E[Yi] ≤ K
∑
i∈[m]

xi max
j∈[n]

|Aij |
Bj

≤ K max

∑
i∈[m]

xi max
j∈[n]

|Aij |
Bj

, 1

 .

Thus, by applying the one-sided Chernoff bound in Proposition 59 (where we consider the cases

where
∑
i∈[m] xi maxj∈[n]

|Aij |
Bj
≥ 1 and

∑
i∈[m] xi maxj∈[n]

|Aij |
Bj
≤ 1 separately),

Pr

∑
i∈[m]

Yi ≥ 2K + 2K

∑
i∈[m]

xi max
j∈[n]

|Aij |
Bj

 ≤ 1

4(mn)2
.

Finally, applying a union bound, all desired events hold with probability 1− 1
mn .

Note that in the semi-streaming model, one can choose Bj :=
[
|A|>x

]
j

and compute all such

values in one pass when x is of the form in Lemma 69; however, occasionally we will choose larger

values of Bj to obtain improved sparsity guarantees. Thus, we provide the following one-sided

guarantee, which holds when Aij ≥ 0, ∀i, j and Bj ≥ [A>x]j .

Corollary 61. Consider an instance of problem (5.1) parameterized by A with Aij ≥ 0 ∀ i,j, and

b, c. For some x ∈ ∆m whose coordinates can be computed in streaming fashion, suppose we have

bounds for all j ∈ [n],

Bj ≥
[
A>x

]
j
.

Let x̂ be the output of Algorithm 2 on input x with

Mi = min
j∈[n]

Bj
|Aij |

, and K =
12 log(mn)

ε2
.

With probability at least 1− (mn)−1, x̂ satisfies the following properties for B := maxi∈[m]Mi:

[
A>x̂−A>x

]
j
≤ εBj for all j ∈ [n], | ‖x̂‖1 − ‖x‖1 | ≤ εmax(1, B),

∣∣c>x̂− c>x∣∣ ≤ ε ‖c‖∞max(1, B), ‖x̂‖0 = O

1 +
∑
i∈[m]

xi max
j∈[n]

|Aij |
Bj

 · log(mn)

ε2

 .

Note that the first and fourth properties of Corollary 61 are one-sided in that we only wish to

APPENDIX D. DEFERRED PROOFS FROM CHAPTER 5 673

upper bound a property of x̂. The proof is identical to Lemma 259, except that we use Proposition 59

with δ = ε · Bj
[|A|>x]j

> 0 instead of Proposition 58 in cases where δ ≥ 1, which suffices for the one-

sided bound of the first property. Similarly, when δ ≥ 1 as in the proof of the fourth property,

the one-sided Chernoff bound only helps concentration. Next, we give an end-to-end guarantee

on turning Algorithm 13 into a solver for the fractional problem, via applying Algorithm 2 on the

output.

Lemma 260. Given (x, y), an ε
2 -approximate saddle point of (5.1), let

Bj = [|A|>x]j , B = max
i∈[m]

min
j∈[n]

Bj
|Aij |

and x̂ = RandomSample(x,K, {Mi}i∈[m]) with

Mi = min
j∈[n]

Bj
|Aij |

, and K = O

 log(mn)

((
‖c‖2∞ + ‖A‖2∞

)
(1 +B)2 +

(∑
j∈[n]Bj

)2
)

ε2

 .

With probability 1− (mn)−1, (x̂
‖x̂‖1 , y) is an ε-approximate saddle point to (5.1). Moreover, the total

space complexity of Algorithm 13 and Algorithm 2 to compute and store the output (x̂
‖x̂‖1 , y) is

O

log n

∑
i∈[m]

xi max
j∈[n]

|Aij |
Bj

 ·
((
‖c‖2∞ + ‖A‖2∞

)
(1 +B)2 +

(∑
j∈[n]Bj

)2
)

ε2
+
n ‖A‖∞

ε

 .

Proof. Our choice of K is with respect to an accuracy parameter on the order of

ε

(‖c‖∞ + ‖A‖∞)(1 +B) +
∑
j∈[n]Bj

.

Recall that an ε-approximate saddle point to a convex-concave function f satisfies

max
ȳ∈Y

f(x, ȳ)−min
x̄∈X

f(x̄, y) ≤ ε.

For our output (x̂
‖x̂‖1 , y), since we keep the same box variable y, it suffices to show that the side of

the duality gap due to x and x̂
‖x̂‖1 does not change significantly. Namely, we wish to show

max
ȳ∈Y

f

(
x̂

‖x̂‖1
, ȳ

)
−max

ȳ∈Y
f(x, ȳ) =

(
c>

x̂

‖x̂‖1
+

∥∥∥∥A> x̂

‖x̂‖1
− b
∥∥∥∥

1

)
−
(
c>x+

∥∥A>x− b∥∥
1

)
≤ ε

2
.

APPENDIX D. DEFERRED PROOFS FROM CHAPTER 5 674

By the triangle inequality, it equivalently suffices to show that

c>x̂− c>x ≤ ε

8
, c>x̂

(
1

‖x̂‖1
− 1

)
≤ ε

8
,

∥∥A>x̂−A>x
∥∥

1
≤ ε

8
,
∥∥A>x̂∥∥

1

∣∣∣∣ 1

‖x̂‖1
− 1

∣∣∣∣ ≤ ε

8
.

The first and third conclusions hold by applying Lemma 259 for the choice of K. The second and

fourth hold by |c>x̂| ≤ ‖c‖∞ ‖x̂‖1 and
∥∥A>x̂∥∥

1
≤ ‖A‖∞ ‖x̂‖1 and then applying Lemma 259 for the

choice of K. Finally, the desired sparsity follows by combining the space bound of the output (via

Lemma 259) and the space complexity of implicitly representing the average iterate.

D.4.3 Application: rounding MCM solutions

We give a simple application of our random sampling framework to computing an explicit low-space

approximate MCM. While the space complexity does not match our strongest results based on a

low-space cycle cancelling implementation, we hope it is a useful example of how to more generally

sparsify fractional solutions of box-simplex games without explicit combinatorial structure.

Following the reductions of Section 5.4, we assume in this section that we have a simplex variable

x ∈ ∆m and a matching size M̄ ∈ [1, n] such that

B>(M̄x) ≤ 1V , M̄ ≥ (1− ε)M∗,

where M∗ is the maximum matching size. We now show how to apply our random sampling proce-

dure, Algorithm 2, to sparsify the support of the matching without significant loss.

Corollary 62. Suppose for an MCM problem, x ∈ ∆E satisfies B>x ≤ 1
M̄

1V , and ε ∈ (0, 1). Let x̂

be the output of Algorithm 2 on input x with me = 1
M̄

for all e ∈ E, and K := 12 logn
ε2 . Then with

probability at least 1− n−2, the output x̂ satisfies the following properties:

B>x̂ ≤ 1 + ε

M̄
1V , | ‖x̂‖1 − 1| ≤ ε, ‖x̂‖0 = O

(
M̄ log n

ε2

)
.

Proof. It is straightforward to see that by the assumptions, we can take A = M̄B and Bv = 1 for all

v ∈ V , and choose the accuracy level to be ε in Lemma 259. Thus, by the conclusions of Lemma 259,

noting that Me = 1
M̄
≤ 1 holds for all e ∈ E, we conclude that with probability at least 1− n−2, all

APPENDIX D. DEFERRED PROOFS FROM CHAPTER 5 675

desired guarantees hold:

M̄B>x̂ ≤ M̄B>x+ ε1V ≤ (1 + ε)1V ,

| ‖x̂‖1 − 1| ≤ ε,

‖x̂‖0 = O

((∑
e∈E

xe max
v∈V

|Aev|
Bv

)
· log(mn)

ε2

)
= O

(
M̄ log n

ε2

)
.

D.5 Approximate MCM via box-constrained Newton’s method

The goal of this section is to prove the following Theorem 84. In particular, we give an alternate

second-order method to compute (1 − ε)-approximate maximum matchings in unweighted graphs

using techniques developed by [145] for solving matrix scaling and balancing problems.

Theorem 84. For a MCM problem on bipartite G = (V,E) with |V | = n, |E| = m and optimal

value M∗, Algorithm 74 with parameter6 ε ∈ [Θ
(

log(mn)
n

)
, 1

2] obtains a matching of size at least

(1− ε)M∗ using Õ(n) space, Õ(ε−1) passes, and Õ(m) work per pass.

We first recall the dual (vertex cover) formulation of the standard bipartite matching linear

program

min
v≥0,Bv≥1

1>v, (D.15)

where B is the unoriented incidence matrix. Our method (which is based on the box-constrained

Newton’s method of [145]) uses a relaxation of this linear program which makes use of oriented

incidence matrices and Laplacians, which we now define.

Definition 52. Let G = (V,E,w) be a weighted undirected bipartite graph with bipartition L,R and

nonnegative edge weights w. We define the unoriented incidence matrix B ∈ RE×V as the matrix

where for any edge e = (i, j), i ∈ L, j ∈ R the row corresponding to e in B̃ has B̃ei = B̃ej = 1, and

all other entries set to 0. Additionally, we define the oriented incidence matrix B̃ ∈ RE×V as

B̃ =

IL 0

0 −IR

B,

and the graph Laplacian LG = B̃>diag (w) B̃.

When the graph is obvious we drop the subscript from LG. The orientation of the edges in B̃ are

typically chosen to be arbitrary in the literature, but we specify edge orientation as our algorithm

6This lower bound on ε is without loss of generality as otherwise we can use the algorithm in Section 5.5.1 which
computes an exact MCM with a larger value of ε.

APPENDIX D. DEFERRED PROOFS FROM CHAPTER 5 676

will distinguish the vertices in L and R, and denote a vector x on these vertices as xL and xR

(or sometimes [x]L, [x]R for clarity). We will first describe our regularization scheme for this LP

and prove that approximate minimizers for the regularized objective yield approximate fractional

vertex covers. We then prove some stability properties on the Hessian of our regularized objective

and show that a second-order method can be implemented in Õ(n) space and Õ(ε−1) passes. Our

choice of regularization and notion of stability are heavily based on [145], which employed a similar

regularization scheme to solve matrix scaling and balancing problems. We nevertheless give a self-

contained description of these details for completeness.

Lemma 261 (Properties of regularized vertex cover). Let G be an unweighted bipartite graph with

n nodes and m edges, and let L,R be the vertices on either side of its bipartition. Let M∗ be the size

of the maximum matching in G. Let ε ≥ 8 log(mn)
n be a parameter, and set µ = ε

4 log(mn) . Consider

fµ(x) := 1>x+ µ

(∑
e∈E

e
1
µ (1−[Bx]e) +

∑
i∈V

e−
1
µ (xi+

ε
4)

)
. (D.16)

fµ has the following properties.

• For any x with fµ(x) < m we have Bx ≥ (1− ε
2)1 and x ≥ − ε2

• If x? is a feasible minimizer to D.15, x := (1 + ε
2)x? has fµ(x) ≤ (1 + 2ε

3)M∗.

• fµ(x) ≥M∗ − εn for any x.

• For any x with fµ(x) < m, let x′ = min{x, 2 · 1} Then fµ(x′) ≤ fµ(x).

Proof. We prove the claims in order. For the first claim, let i be the index of the smallest entry of

x. If xi ≤ − ε2 , then since xi + ε
4 ≤

xi
2 and exp is always nonnegative,

fµ(x) ≥ 1>x+ µ exp

(
− xi

2µ

)
≥ nxi + µ exp

(
− xi

2µ

)
≥ m.

The second inequality followed from the definition of xi and the third from monotonicity of the ex-

pression in xi. Thus x ≥ − ε21 as claimed. This also implies that 1>x ≥ − εn2 , so it is straightforward

to verify that if some 1 − [Bx]i ≥ ε
2 , then we would have fµ(x) ≥ − εn2 + (mn)2µ ≥ m, completing

the first claim.

Next, since x? is a feasible minimizer to (D.15) we have 1>x? = M∗, x? ≥ 0, and Bx? ≥ 1.

Therefore by construction, 1>x = (1 + ε
2)M∗, x ≥ 0, and Bx = (1 + ε

2)Bx? ≥ (1 + ε
2). Plugging

APPENDIX D. DEFERRED PROOFS FROM CHAPTER 5 677

these into fµ(x) yields (since M∗ ≥ 1)

fµ(x) ≤
(

1 +
ε

2

)
M∗ + µ

(
m exp

(
−ε
2µ

)
+ n exp

(
−ε
4µ

))
≤
(

1 +
ε

2

)
M∗ + µ

m+ n

mn
≤
(

1 +
2ε

3

)
M∗.

For the third claim, suppose x satisfied fµ(x) ≤ M∗ − εn. As M∗ ≤ n we may apply the first

claim and obtain x ≥ − ε2 and Bx ≥ 1 − ε
2 . Let v = x + ε

21, so v ≥ 0 and Bv ≥ 1. This is a

contradiction: as v is feasible for (D.15) we have M∗ ≤ 1>v = 1>x+ εn
2 < fµ(x) + εn

2 < M∗.

Finally, note that fµ(x) < m combined with the first property of fµ implies that Bx ≥ (1− ε
2)1,

x ≥ − ε2 . Assume x has xi = α > 2 for some i: we will show that decreasing this coordinate

to 2 decreases fµ. The only terms affected by changing xi are 1>x (which decreases by α − 2),

µ
∑
j∈V e

− 1
µ (xj+

ε
4), and µ

∑
e∈E e

1
µ (1−[Bx]e). The first of these sums increases by at most

µ exp

(
−

2 + ε
4

µ

)
− µ exp

(
−
α+ ε

4

µ

)
≤ (α− 2)e

2
µ ≤ α− 2

mn
,

while each of the m terms in the second sum increases by at most

µ exp

(
−−1− [xR]j

µ

)
− µ exp

(
−1− α− [xR]j

µ

)
≤ (α− 2)e

1−ε
µ ≤ α− 2

mn
,

for some xj : we use our lower bound on x here. Thus the total change in fµ(x) is at most −(α −
2)
(
1− 1

mn −
1
n

)
< 0.

We next show that derivatives of f satisfy some useful stability properties, which we now define.

Definition 53. Let f be a convex function. We say that f is r-second order robust if for any vectors

x, y where ‖x− y‖∞ ≤ r we have (where � is the Loewner order on the positive semidefinite cone)

e−1∇2f(x) � ∇2f(y) � e∇2f(x).

Lemma 262. Let

gµ(x) = fµ

IL 0

0 −IR

x

where fµ is defined in (D.16). The gradient and Hessian of gµ are

∇gµ(x) =

 1L − zL

−1R + zR

− B̃>y, ∇2gµ(x) =
1

µ

(
diag (z) + B̃> diag (y) B̃

)

where y := exp
(

1
µ

(
1− B̃x

))
, zL := exp

(
− 1
µ (xL + ε

41)
)

, zR := exp
(

1
µ (xR − ε

41)
)

, and z :=

APPENDIX D. DEFERRED PROOFS FROM CHAPTER 5 678

[zL, zR]7. For all x, ∇2gµ(x) is a nonnegative diagonal matrix plus a weighted graph Laplacian

matrix. Further, gµ is convex and µ
2 -second order robust. Finally, for any x, δ we have

δ>∇2gµ(x)δ ≤ 2

µ
· δ>

(
diag

(
B>y

)
+ diag (z)

)
δ.

Proof. The gradient and Hessian claims may be verified directly as we have via the chain rule

∇gµ(x) =

IL 0

0 −IR

∇fµ
IL 0

0 −IR

x

and

∇2gµ(x) =

IL 0

0 −IR

∇2fµ

IL 0

0 −IR

x
IL 0

0 −IR

 .
It is clear that z

µ is nonnegative and B̃>diag
(
y
µ

)
B̃ is a weighted graph Laplacian. Convexity of

gµ follows from ∇2gµ(x) � 0 everywhere. To prove second order robustness, for any x, x′ with

‖x− x′‖∞ ≤
µ
2 , ∥∥∥B̃x− B̃x′

∥∥∥
∞
≤
∥∥∥B̃∥∥∥

∞
‖x− x′‖∞ ≤ 2 · µ

2
≤ µ.

Thus every matrix forming the Hessian of gµ changes by at most a factor of e multiplicatively, and

so gµ is second order robust. For the final claim, let |δ|, δ2 be applied entrywise. Then,

δ>B̃>diag (y) B̃δ =
∑
i∈[m]

yi[B̃δ]
2
i ≤

∑
i∈[m]

yi[B|δ|]2i

≤
∑
i∈[m]

yi[Bδ
2]i[B1]i = 2

∑
i∈[m]

yi[Bδ
2]i = 2δ>diag

(
B>y

)
δ.

The second line used Cauchy-Schwarz and B1 = 2 · 1. Since diag (z) � 0, this yields the claim.

It remains to implement a low-pass and low-space optimization procedure to minimize gµ. We

make use of a variant of the box-constrained Newton’s method of [145] stated below.

Definition 54. We say that a procedure O is an (r, k)-oracle for a class of matrices M if, for any

A ∈M and vector b, O(A, b) returns a vector z where ‖z‖∞ ≤ rk and

z>b+
1

2
z>Az ≤ 1

2

(
min
‖y‖∞≤r

y>b+
1

2
y>Ay

)
.

The proof of the following is patterned from [145], but tolerates multiplicative error in the

Hessian.

7Here, we use the notation xL to refer to the vector x restricted to the entries in L ⊆ V .

APPENDIX D. DEFERRED PROOFS FROM CHAPTER 5 679

Lemma 263. Let f be r-second order robust with minimizer x?. For some x, let M be such that
1
2∇

2f(x) � M � 2∇2f(x). Let O be an (r, k)-oracle for a class of matrices M where M ∈ M.

Then if max{‖x?‖∞ , ‖x‖∞} ≤ R and R ≥ r, for any vector x, x′ = x+ 1
kO
(

1
k∇f(x), 2e

k2 M
)

satisfies

f(x′)− f(x?) ≤
(

1− r

160kR

)
(f(x)− f(x?)).

Proof. We note that for any y where ‖y − x‖∞ ≤ r we have

f(y) = f(x) +∇f(x)>(y − x) +

∫ 1

0

∫ β

0

(y − x)>∇2f(αx+ (1− α)y)(y − x)dαdβ.

As the integral is over a triangle of area 1
2 , the second order robustness of f yields

f(x) +∇f(x)>(y − x) +
1

4e
(y − x)>M(y − x) ≤ f(y),

f(y) ≤ f(x) +∇f(x)>(y − x) + e(y − x)>M(y − x).

(D.17)

Let

δ̂ = argmin‖δ‖∞≤r
1

k
∇f(x)>δ +

e

k2
δ>Mδ.

Also, let ∆ = O(1
k∇f(x), 2e

k2 M). By definition of O we have ‖∆‖∞ ≤ rk and

1

k
∇f(x)>∆ +

e

k2
∆>M∆ ≤ 1

2

(
1

k
∇f(x)>δ̂ +

e

k2
δ̂>Mδ̂

)
.

Thus since x′ = x+ 1
k∆ we see ‖x′ − x‖∞ ≤ r, and hence

f(x′) ≤ f(x) +
1

k
∇f(x)>∆ +

e

k2
∆>M∆ ≤ f(x) +

1

2

(
1

k
∇f(x)>δ̂ +

e

k2
δ̂>Mδ̂

)
. (D.18)

Define x̃ = r
2R (x? − x), we note that ‖x̃‖∞ ≤

r
2R (‖x?‖∞ + ‖x‖∞) ≤ r. By the minimality of δ̂ we

observe that δ̂ achieves a smaller value than cx̃ for any c ≤ 1. For the choice c = 1
4e2 this implies

1

2

(
1

k
∇f(x)>δ̂ +

e

k2
δ̂>Mδ̂

)
≤ 1

2

(
c

k
∇f(x)>x̃+

c2e

k2
x̃>Mx̃

)
=

1

8e2

(
1

k
∇f(x)>x̃+

1

4ek2
x̃>Mx̃

)
≤ 1

8e2

(
f

(
x+

1

k
x̃

)
− f(x)

)
≤ − r

16ke2R
(f(x)− f(x?)) ,

APPENDIX D. DEFERRED PROOFS FROM CHAPTER 5 680

where the third line used (D.17) and the last used convexity of f . Plugging this into (D.18) yields

f(x′)− f(x?) ≤
(

1− r

16ke2R

)
(f(x)− f(x?)) .

Next, the class of matrices which are Laplacians plus a nonnegative diagonal admit an efficient

O.

Lemma 264 (Theorem 5.11, [145]). Let M be the class of matrices which consist of a Laplacian

matrix plus a nonnegative diagonal. Let A ∈ M be a matrix with m nonzero entries. There is an

algorithm which runs in Õ(m) time and space and implements an (r,O(log n))-oracle for A.

We complement this with a known semi-streaming spectral approximation for Laplacians.

Lemma 265 (Section 2.2, [388]). Let G = (V,E,w) be a weighted undirected graph, given as an

insertion-only stream. There is an algorithm which for any ε ∈ (0, 1) takes one pass and returns

a graph H with O(ε−2n log3(n)) edges such that LH � LG � (1 + ε)LH using Õ(m) work and

O(ε−2n log3 n) space.

Algorithm 74: BoxConstrainedVC(G, ε,O)

1 Input: Bipartite graph G = (V,E) with vertex partition V = L ∪R and oriented

edge-incidence matrix B̃ given as a stream, ε > 0, (O(ε
log(n)), k)-oracle O for symmetric

diagonal dominant matrices with nonpositive off diagonal ;
2 Output: v fractional vertex cover for G;

3 R :=

[
IL 0

0 −IR

]
;

4 x0 ← R1, µ = ε
4 log(mn) , T = O(log µ−1

µk);

5 fµ(x) := 1>x+ µ
(∑

e∈E e
1
µ (1−[Bx]e) +

∑
i∈V e

− 1
µ (xi+

ε
4)
)

;

6 gµ(x) := fµ (Rx);
7 for 0 ≤ t < T do
8 Compute ∇gµ(xt) and M, a 2-approximation of ∇2gµ(xt) with Lemma 265;

9 x′t+1 = xt + 1
kO
(

1
k∇gµ(xt),

2e
k2 M

)
;

10 xt+1 = max{min{x′t+1, 2 · 1},−2 · 1} entrywise;

11 Return: v = RxT + ε
21;

We now assemble these claims to prove the correctness of our algorithm.

Proposition 61. Let G = (V,E) be an unweighted bipartite graph with bipartition L,R. Given

access to a (O(ε
logn), k)-oracle O for ∇2gµ, Algorithm 74 computes v, a feasible vertex cover of size

M∗+ εn. For y := exp
(

1
µ (1−Bx)

)
, there exists w with ‖w‖1 ≤ µn so y−w is a feasible matching

APPENDIX D. DEFERRED PROOFS FROM CHAPTER 5 681

with 1>y ≥ M∗ − 5εn. Algorithm 74 requires Õ(n) auxiliary space and O(k log µ−1

µ) passes, each

requiring Õ(m) work, plus the work and space required by one O call.

As the space used by O can be reused between runs, the space overhead will be Õ(n) throughout.

Proof. By Lemmas 261 and 262, O applies to a matrix family containing the Hessian ∇2gµ. In

addition, we see that ∇gµ may be computed in a single pass since it equals

∇gµ(x) = R (1− z)− B̃>y

for z = [zL, zR] and zL, zR, y as in Lemma 262. The first term may be computed directly, while the

second can be computed analogously to Lemma 69. Further, we can obtain a 2-spectral approxima-

tion of ∇2gµ(x) in semi-streaming fashion: we compute z in one pass, and sparsify the Laplacian

using Lemma 265 while computing y coordinatewise in one pass. Thus in each iteration we perform

one pass and one call to O: as there are O(k log µ−1

µ) iterations: the claimed space, pass, and work

bounds follow.

We now prove the correctness of the algorithm. Let x? be the minimizer of gµ. By construction,

gµ(x0) = fµ(Rx0) ≤ 2n ≤ m and the function is monotone decreasing. We note that the point xt

has ‖xt‖∞ ≤ 2 by construction for all t, and that ‖x?‖∞ ≤ 2 by the fourth condition of Lemma 261.

Further, by Lemma 262 we see that is r-second order robust with r = µ
2 . By Lemma 263 we obtain

gµ(x′t+1)− gµ(x?) ≤
(

1− µ

640k

)
(gµ(xt)− gµ(x?))

for any t. As the fourth condition of Lemma 261 implies gµ(xt+1) ≤ gµ(x′t+1), the final xT has

gµ(xT)− gµ(x?) ≤
(

1− µ

640k

)T
(gµ(x0)− gµ(x?)) ≤ µ3n

9e
,

where the second inequality uses gµ(x0) ≤ 2n and gµ(x?) ≥ 0. Thus if M∗ is the size of the minimum

vertex cover of G, we obtain by Lemma 261 that gµ(xT) = fµ(RxT) ≤ (1+ 2ε
3)M∗+ µ3n

9e ≤M
∗+ ε

2n,

since M∗ ≤ n
2 and µ ≤ ε. To complete the proof, the first condition of Lemma 261 implies

v = Rx + ε
21 is nonnegative with Bv ≥ 1 and 1>v ≤ M∗ + ε

2n + ε
2n = M∗ + εn: it is a feasible

fractional matching as claimed.

For the second claim, we observe that for any δ with ‖δ‖∞ ≤
µ
2 and x̂ = xT + δ,

µ3n

9e
≥ gµ(xT)− gµ(x?) ≥ gµ(xT)− gµ(x̂)

≥ −∇gµ(xT)>δ − eδ>∇2gµ(xT)δ

≥ −∇gµ(xT)>δ − 2e

µ
δ>
(
diag

(
B>y

)
+ diag (z)

)
δ;

APPENDIX D. DEFERRED PROOFS FROM CHAPTER 5 682

the first line used optimality of x?, the second used second order robustness of gµ, and the third

used Lemma 262. We choose δ = −µ
2

4e sign (∇gµ(xT)): this satisfies ‖δ‖∞ ≤
µ
2 so

µ2

4e
‖∇gµ(xT)‖1 −

µ3

8e

∥∥B>y + z
∥∥

1
≤ µ3n

9e
.

Now note

∥∥B>y + z
∥∥

1
=
∥∥∥[B̃>y]L + zL

∥∥∥
1

+
∥∥∥−[B̃>y]R + zR

∥∥∥
1

≤
∥∥∥[B̃>y]L + zL − 1L

∥∥∥
1

+
∥∥∥−[B̃>y]R + zR − 1R

∥∥∥
1

+ n = ‖∇gµ(xT)‖1 + n.

Plugging this in to the above expression and rearranging, we obtain

µ2

4e
‖∇gµ(xT)‖1 ≤

µ3n

9e
+
µ3n

8e
+
µ3

8e
‖∇gµ(xT)‖1 ,

so ‖∇gµ(xT)‖1 ≤ µn. This implies the existence of w with ‖w‖1 ≤ µn where 1 + w = B>y + z.

Since z is nonnegative, B>y ≤ 1 + w with ‖w‖1 ≤ µn as desired. We finally lower bound 1>y. Let

v′ = Rx− µ1. Taking the inner product of 1 + w = B>y + z with v′ and rearranging gives

1>xL − 1>xR − µn− 1>y + w>v′ = y>(B̃x− 1)− µ1>y + x>Rz − µ1>z,

or

fµ(Rx)− µn+ w>v′ = y>(B̃x− 1) + 1>y + x>Rz.

Next, w>v′ ≥ −‖w‖1 ‖v′‖∞ ≥ −2µn. Further, since y = exp
(

1
µ (1− B̃x)

)
, for any i either [B̃x]i −

1 ≤ ε
2 or yi ≤ exp

(
− 1
µ
ε
2

)
= ε

2mn . Thus y>(B̃x−1) ≤ ε1>y+ ε
2M

∗. Similarly, we obtain x>Rz ≤ εn.

Plugging these in, and using µ ≤ ε
4 and M∗ ≤ n yields

fµ(Rx)− 3µn− εn− ε

2
M∗ ≤ (1 + ε)1>y =⇒ 1>y ≥ 1

1 + ε
fµ(Rx)− 3εn.

Here we used µ ≤ ε
4 and M∗ ≤ n. The claim follows from fµ(Rx) ≥M∗ − εn via Lemma 261.

Proof of Theorem 84. Let M∗ be the size of the maximum matching in G. We first preprocess

the graph G using Proposition 15 within the pass, space, and work budgets to reduce to n =

O(M∗ log(ε−1)). Applying Algorithm 74 to G̃ with ε = ε
12 log(ε−1) , by the second claim in Proposi-

tion 61 we obtain y ∈ RE≥0 with 1>y ≥ (1− ε
2)M∗ − 5εn ≥ (1−O(ε))M∗, and

∑
j∈V

max
(
[B>y]j − 1, 0

)
≤ µn ≤ ε

12
M∗.

The conclusion follows upon applying Propositions 16 and 73 to round the approximate matching y

APPENDIX D. DEFERRED PROOFS FROM CHAPTER 5 683

to be sparse and feasible, and using the implementation of O from Lemma 258.

Appendix E

Deferred proofs from Chapter 6

E.1 Proofs for Section 6.3

E.1.1 Proofs for Section 6.3.1

Proposition 18. Let ε ∈ (0, 1) and M ≥ 0. Given a family of (ε, β)-CROs {fM,E} for G = (V,E0),

and an (ε, T)-canonical solver for the family, Algorithm 20 satisfies the following.

1. When Mest >
1
4M on Line 7, where Mest estimates MCM(Ek): at any point in the loop of

Lines 9 to 10, 8Mx̃EkEk\Edel
is an ε-approximate matching of G(V,Ek \ Edel).

2. When Mest ≤ 1
4M on Line 7, where Mest estimates MCM(E): MCM(E) ≤ 1

2MCM(E0).

The runtime of the algorithm is O(m+ (T +m) · Mβε).

Proof. Throughout this proof, let the edge sets recomputed by Line 11 be denoted E1, E2, . . . , EK

and assume the termination condition Line 7 breaks the loop for EK+1, where E0 is the original edge

set of the graph. Before proving the two claims, we first observe that for all k ∈ [K], MCM(Ek) ≥ M
8 .

The base case of k = 0 clearly holds because of the approximation guarantee of the greedy algorithm,

which yields M ≥ 1
2MCM(E). Now, for any k ∈ [K], let Mk

est be the greedily computed estimate of

MCM(Ek). We conclude by

MCM(Ek) ≥Mk
est >

1

4
M ≥ 1

8
MCM(E).

Matching approximation. For any 0 ≤ k ≤ K, by item 1 of the CRO definition applied to Ek, we

have (1 + ε
8)MCM(Ek) ≥ −νEk ≥ (1− ε

8)MCM(Ek), and hence combining with (6.11a) and (6.12a)

684

APPENDIX E. DEFERRED PROOFS FROM CHAPTER 6 685

implies

−fM,Ek(x̂Ek) ≥ −
(

1− ε

8

)
νEk ≥

(
1− ε

8

)2 1

4
M ≥ 3

16
M, (E.1)

−fM,Ek(x̃Ek) ≥ −
(

1− ε

8

)
νEk ≥

(
1− ε

8

)2 1

4
M ≥ 3

16
M. (E.2)

By the definition of the CRO in (6.10) and feasiblity of the matching 8Mx̃Ek (which follows by the

assumed guarantees on Round), we have

8M
∥∥x̃Ek∥∥

1
≥ −fM,Ek

(
x̃Ek

)
− ε

128
M ≥ 5

32
M =⇒

∥∥x̃Ek∥∥
1
≥ 5

8 · 32
. (E.3)

Also, following the above calculation and (E.2) we have that

8M
∥∥x̃Ek∥∥

1
≥ −fM,Ek

(
x̃Ek

)
− ε

128
M ≥

(
1− ε

8

)2

MCM(Ek)− ε

32
M ≥

(
1− ε

2

)
MCM(Ek)

where for the last inequality we use MCM(Ek) ≥ 1
4M , as shown in the first part of this proof.

Consequently, considering any E between recomputations satisfying Ek+1 ⊂ E ⊆ Ek such that

E = Ek \ Edel, we have by the condition on Line 9 that

8M
∥∥∥x̃EkEk\Edel

∥∥∥
1

= 8M
∥∥x̃Ek∥∥

1
− 8M

∥∥∥x̃EkEdel

∥∥∥
1
≥
(

1− ε

8

)
8M

∥∥x̃Ek∥∥
1

≥
(

1− ε

8

)(
1− ε

2

)
MCM(Ek) ≥ (1− ε) MCM(Ek \ Edel),

which combined with feasibility of 8Mx̃Ek (and hence, feasibility of any restriction) implies that

8Mx̃EkEk\Edel
is always an ε-approximate matching of current graph.

Multiplicative matching decrease. When the algorithm terminates after K + 1 loops, using the

termination condition, and the guarantee of Mest, we have

MCM(EK+1) ≤ 2Mest ≤
1

2
M ≤ 1

2
MCM(E0).

Hence, the MCM value decreases by a factor of at least 2.

Iteration bound. We next show that the algorithm will stop after K + 1 loops (from Line 9

APPENDIX E. DEFERRED PROOFS FROM CHAPTER 6 686

to Line 10) for bounded K. For some loop 0 ≤ k ≤ K − 1, letting Ek+1 = Ek \ Edel,

fM,Ek+1

(
xEk+1

)
− fM,Ek

(
xEk

) (i)

≥ βV HxEk
(
xEk+1

)
(ii)

≥ β
∑
i∈Edel

(
[xEk+1]i log[xEk+1]i − [xEk]i log[xEk]i −

(
1 + log[xEk]i

)
·
(
[xEk+1]i − [xEk]i

))
(iii)
= β

∑
i∈Edel

[xEk]i
(iv)

≥ β
(∥∥∥x̂EkEdel

∥∥∥
1
−
∥∥x̂Ek − xEk∥∥

1

)
(v)

≥ β
(∥∥∥x̃EkEdel

∥∥∥
1
−
∥∥x̂Ek − xEk∥∥

1

)
,

(E.4)

where we used (i) the assumption (6.9), (ii) convexity of the scalar function c log c allowing us to

restrict the divergence to a subset, (iii) the property that [xEk+1]i = 0 on all deleted edges by Item 2

in Definition 23, (iv) the triangle inequality, and (v) the monotonicity property (6.12b).

We now proceed to bound ‖x̃EkEdel
‖1 and

∥∥x̂Ek − xEk∥∥
1
. By the termination condition on Line 9,

‖x̃EkEdel
‖1 ≥ ε

8

∥∥x̃Ek∥∥
1
. Moreover,

∥∥x̂Ek − xEk∥∥
1
≤ ε

1000
≤ ε

16

∥∥x̃Ek∥∥
1
,

where we used the `1 bound in (6.11b) and the lower bound on
∥∥x̃Ek∥∥

1
implied by (E.3).

Plugging these two bounds back in (E.4), and once again using (E.3), we thus have

fM,Ek+1

(
xEk+1

)
− fM,Ek

(
xEk

)
≥ βε

16

∥∥x̃Ek∥∥
1

= Ω(βε).

At the beginning of the algorithm, recall by (1+ 1
8)MCM(E0) ≥ −νEk = −fM,E0

(xE0) due to Defini-

tion 23 we have −fM,E0
(xE0) ≤ 2.25M . Similarly, due to Definition 23 we also have for EK , it holds

that −νEK ≥ (1 − 1
8)MCM(EK) ≥ 7

32M . Thus, this shows K ≤ O
(
M
βε

)
and thus the algorithm

must terminate within O(Mβε) loops. This implies the runtime bound after combining with the cost

of the greedy approximation.

E.1.2 DDBM via regularized box-simplex games

Throughout this section, let ε ∈ (0, 1), and assume that the DDBM problem is initialized with

bipartite G = (V,E0) with unsigned incidence matrix B ∈ {0, 1}E×V ; we denote n := |V | and

m := |E0|. For E ⊆ E0 and M , an 8-approximation to MCM(E), we consider the following

APPENDIX E. DEFERRED PROOFS FROM CHAPTER 6 687

regularized box-simplex game approximating the matching problem:

min
(x,ξ)∈∆E+1

max
y∈[0,1]V

fM,E(x, ξ, y) := −1>E(8Mx)− y>
(
8MB>x− 1

)
+ γxH(x, ξ) + γy

(
y2
)>

B>x,

where γx =
εM

256 log(m)
, γy =

εM

256
.

(E.5)

We recall a rounding procedure from [39]; we restate its guarantees below for completeness.

Lemma 266 (Rounding). Given bipartite (V,E), RemoveOverflow (Algorithm 4, [39]) takes ` ∈
RE≥0, runs in O(|E|) time, and outputs ˜̀ satisfying ˜̀≤ ` entrywise, B> ˜̀≤ 1, and∥∥∥˜̀

∥∥∥
1
≥ ‖`‖1 −

∑
i∈V

(
[B>`− 1]i

)
+
.

Next, we show that the set of fM,E(x) = minξ|(x,ξ)∈∆E+1 maxy∈[0,1]V fM,E(x, ξ, y) forms a family

of (ε, γx)-CROs.

Lemma 267 (CROs from regularized box-simplex games). Define (overloading notation)

fM,E(x) := min
ξ|(x,ξ)∈∆E+1

max
y∈[0,1]V

fM,E(x, ξ, y).

Then, the family of fM,E(x) is a family of (ε, γx)-CROs.

Proof. We prove each property in turn. Item 2 (restricting coordinates to zero) is immediate from

the problem definition, so we focus on showing the other three.

Multiplicative value approximation (Item 1). By assumption, M is an 8-multiplicative approx-

imation to MCM(E), so there is a maximum matching 8MxE? such that
∥∥xE? ∥∥1

≤ 1. For such xE?

and ξ := 1−
∥∥xE? ∥∥1

, and because the entropic and quadratic regularization terms are nonpositive,

νE ≤ max
y∈[0,1]V

fM,E(xE? , ξ, y)

≤ max
y∈[0,1]V

−1>E(8MxE?)− y>
(
8MB>xE? − 1

)
= −MCM(E).

The last equality holds because we assumed 8MxE? was a maximum matching. For the other direc-

tion, we proceed by contradiction. Suppose we have a feasible (x, ξ) with

max
y

fM,E(x, ξ, y) < −
(

1 +
ε

4

)
MCM(E).

APPENDIX E. DEFERRED PROOFS FROM CHAPTER 6 688

Applying RemoveOverflow on the approximate matching ` := 8Mx yields ˜̀ := 8Mx̃ such that

−MCM(E) ≤ −‖8Mx̃‖1 ≤ −‖8Mx‖1 +
∥∥8MB>x− 1

∥∥
1

(i)

≤ max
y∈[0,1]V

fM,E(x, ξ, y) +
εM

128

(ii)
< −

(
1 +

ε

4

)
MCM(E) +

ε

16
MCM(E) < −MCM(E),

where we used (i) the definition of fM,E and bounds on γx, γy leading to an additive range of at most
εM
128 , and (ii) that M ≤ 8MCM(E) by assumption, leading to a contradiction. Hence, combining

these bounds yields Item 1.

Relative strong convexity (Item 3). For simplicity, we drop the subscript M . Let (xE , ξE , yE)

and (xE
′
, ξE

′
, yE

′
) be the unique optimal solutions of fE and fE′ respectively. By the first order

optimality condition of (xE , ξE), we have

fE′(x
E′ , ξE

′
, yE)− fE(xE , ξE , yE) ≥

∫ 1

0

(1− α)v>∇2
(x,ξ)(x,ξ)f(xα, ξα, y

E)vdα,

where we let v := (xE
′ − xE , ξE′ − ξE), xα := αxE

′
+ (1 − α)xE , and ξα := αξE

′
+ (1 − α)ξE . By

joint convexity of f as a function of (x, ξ) (with y fixed),∫ 1

0

(1− α)v>∇2
(x,ξ)(x,ξ)f(xα, ξα, y

E)vdα ≥
∫ 1

0

(1− α)v>∇2
xxf(xα, ξα, y

E)vdα

= γxV HxE (xE
′
).

Here we let ∇2
xxf zero out blocks of ∇2

(x,ξ)(x,ξ)f appropriately. The conclusion (6.9) follows since

fE′(x
E′ , ξE

′
, yE

′
) ≥ fE′(xE

′
, ξE

′
, yE) by optimality of yE

′
.

Additive approximation (Item 4). It suffices to note that for any feasible matching 8Mx, the

value of fM,E without the added entropic and quadratic regularization terms is exactly −8M ‖xE‖1,

since 8MB>x ≤ 1 entrywise. Using standard bounds on the ranges of H(x, ξ) ∈ [− log(m + 1), 0),(
y2
)>

B>x ∈ [0, 1], we have the additive approximation (6.10) due to the values of γx and γy.

We now apply our high-accuracy box-simplex solver RegularizedBS (Theorem 41), together with

our rounding procedure RemoveOverflow, to develop a (ε, Õ(mε−1))-canonical solver for the CRO

family induced by the regularized objectives (E.5).

Lemma 268 (Canonical solver for regularized box-simplex games). For ε = Ω(m−3), there is an

(ε, T)-canonical solver for the family of fM,E defined in Lemma 267, using RegularizedBS (Algo-

rithm 23) as Solve and RemoveOverflow as Round, achieving T = O
(
mε−1 log3 n

)
.

Proof. We define xE as in (6.8). Solve applies the procedure in Theorem 41 to solve 1
16M fM,E to

APPENDIX E. DEFERRED PROOFS FROM CHAPTER 6 689

additive accuracy O(ε3

logm) in the stated runtime, for a sufficiently small constant. By the mul-

tiplicative approximation guarantee on νE and MCM(E) in Definition 23, and since MCM(E) is

8-approximated by M , we obtain the guarantee (6.11a). The `1 bound (6.11b) then follows since

the objective is Ω(ε
logm)-strongly convex in the x coordinates.

To show that RemoveOverflow is a valid choice of Round, the monotonicity and feasibility con-

ditions follow immediately from Lemma 266. Moreover, for ` ← 8Mx̂E , the definition of fM,E and

the guarantees of Lemma 266 imply∥∥∥˜̀
∥∥∥

1
≥ ‖`‖1 −

∑
i∈V

([
B>`− 1

])
+

= min
y∈[0,1]V

1>E(8Mx̂E)− y>
(
8MB>x̂E − 1

)
≥ −νE −O

(
ε3M

logm

)
− εM

128
.

Combined with our approximation guarantees between νE , MCM(E), and M via Items 1 and 4

of Definition 23, this implies (6.12a), showing all required properties of RemoveOverflow.

Theorem 38. Let G = (V,E) be bipartite and let ε ∈ [Ω(m−3), 1). There is a deterministic

algorithm for the DDBM problem which maintains an ε-approximate matching, based on solving

regularized box-simplex games, running in time O
(
mε−3 log5 n

)
.

Proof. It suffices to combine Lemma 267, Lemma 268, and Corollary 17.

E.1.3 DDBM via matrix scaling and box-constrained Newton’s method

We follow the same notational conventions as in Appendix E.1.2, and further assume |L| ≤ |R|
without loss of generality. Moreover, assume for simplicity that both L and R have at least one

vertex which has no adjacent edges, denoted v?L and v?R; this clearly will not affect any matching sizes

if we add such vertices. We will further expand the graph G = (V,E) to a new graph G̃ = (Ṽ , Ẽ),

with bipartition Ṽ = L̃ ∪ R̃. In particular, L̃ consists of the original left vertices L, a new dummy

vertex set L0 such that |L|+ |L0| = |R|, and an extra dummy vertex vdumL . Similarly, R̃ consists of

the original right vertices R and a new dummy vertex vdumR . The new edge set is

Ẽ := E ∪

(⋃
v∈L∪L0

(v, vdumR)

)
∪

(⋃
v′∈R

(v′, vdumL)

)
∪
(
vdumL , vdumR

)
.

We define B̃ ∈ {0, 1}Ẽ×Ṽ such that B̃e,v = 1 whenever v ∈ e. To instantiate our matrix

scaling solver for approximating Sinkhorn distance in Appendix E.3.2, we construct a demand vector

d ∈ RṼ≥0 and a cost vector c ∈ RẼ as follows.

1. Set dv = 1 for all v ∈ L ∪ L0 ∪R.

2. Set dvdumL = dvdumR = |R|.

APPENDIX E. DEFERRED PROOFS FROM CHAPTER 6 690

3. Set ce = −1 for all e ∈ E, and ce = 0 for all Ẽ \ E.

For a vector in RẼ≥0, we refer to its restrictions to the sets E and Ẽ\E by x and xdum when clear from

context. It is clear that any matching 2|R|x ∈ RE≥0 on the original graph (V,E) can be extended to

a matching

2|R|xtot = 2|R|

 x

xdum

 ∈ RẼ≥0

such that ‖xtot‖1 = 1, and 2|R|B̃>xtot = d, by placing additional flow on the edges in Ẽ \ E.

Specifically, we will extend any flow on (v, v′) ∈ E to put the same amount of flow on (v′, vdumL),

(v, vdumR), and (vdumL , vdumR), and then for any additional demand not routed to a vertex v ∈ L∪L0∪R
by the original edges E, we route it arbitrarily over the additional edges Ẽ (similarly extending this

flow to vdumL and vdumR). This is always feasible, as we can route to v?L and v?R. The total `1 norm of d is

4|R| by construction, and every unit of xtot contributes two units of demand, thus 2|R| ‖xtot‖ = 2|R|
and rearrangement gives the `1 guarantee. We then consider the Sinkhorn distance objective

min
xtot=(x

xdum)∈RẼ≥0
|B̃>(2|R|xtot)=d

f sinkM,E(xtot) := c>
(
2|R|xtot

)
+ γH

(
xtot
)

where γ = Θ

(
εM

log(m)

)
.

(E.6)

We show such objectives also form a family of CROs.

Lemma 269 (CROs from Sinkhorn distances). Define (overloading notation)

f sinkM,E(x) = min
xdum∈RE\E0

≥0

f sinkM,E(x, xdum).

Then, the family of f sinkM,E(x) is a family of (ε, γ)-CROs.

Proof. We focus on proving Item 1; Item 2 is immediate from the problem definition, and Items 3

and 4 follow analogously to the proof in Lemma 267.

Multiplicative value approximation (Item 1). By construction, any optimal matching 2|R|x? on

the edge set E can be extended to xtot? such that ‖xtot? ‖1 = 1 and B̃>(2|R|xtot) = d. By nonpositivity

of entropy and the definition of c, we obtain

νE ≤ f sinkM,E(xE?) = −MCM(E).

For the other direction, we proceed by contradiction. Suppose we have a feasible xtot with x := xtotE ,

so that f sinkM,E(xtot) < −
(
1 + ε

4

)
MCM(E). This implies 2|R|x is a feasible matching, and then an

analogous argument to the one used in Lemma 267 yields the contradiction.

We next construct a canonical solver for the family of f sinkM,E , which makes use of the matrix

scaling solver in Proposition 63 of Appendix E.3.2.

APPENDIX E. DEFERRED PROOFS FROM CHAPTER 6 691

Lemma 270 (Canonical solver for Sinkhorn objectives). For ε = Ω(m−3), there is an (ε, T)-

canonical solver for the family of f sinkM,E defined in Lemma (269), using the matrix scaling solver from

[145] as Solve and truncation to E as Round, running in time Õ(n2/ε).

Proof. Let r be the restriction of d
2|R| to the vertices in R ∪ {vdumR }, and let ` be the restriction

of d
2|R| to the vertices in L ∪ L0 ∪ {vdumL }. Finally, let K be the (|R| + 1) × (|R| + 1) matrix with

Kij = exp(− 2|R|
γ cij) for all indices corresponding to (i, j) ∈ E, and Kij = 0 otherwise. Lemma 2 of

[151] shows that solving the (r, c)-matrix scaling problem on K computes the minimizer to (E.6).

We next apply Proposition 63, similarly to the proof of Theorem 86. Clearly sK ≤ m, and by

Lemma 10 of [82], we may bound B by

O

(
log(n) +

|R|
γ

)
= Õ

(
|R|
εM

)
= Õ

(
n2

εm

)
.

Here, we used that M = Ω(mn) which follows from the fact that the minimum vertex cover size

is the same as the maximum matching size. If there was a vertex cover of size o(mn), this would

be a contradiction since each vertex can cover at most n − 1 edges. The runtime then follows

from Proposition 63, where the required accuracy to satisfy (6.11a) and (6.11b) is a polynomial

in problem parameters, following the proofs of Theorem 86 and Lemma 268 (see Appendix E.3.2

for more details). The requirements of Round are clear from inspection and the additive range of

entropy.

Theorem 39. Let G = (V,E) be bipartite and ε ∈ [Ω(m−3), 1). There is a randomized algorithm for

the DDBM problem which maintains an ε-approximate matching with probability 1 − n−Ω(1), based

on matrix scaling solver of [145], running in time Õ
(
n2ε−3

)
.

Proof. It suffices to combine Lemma 269, Lemma 270, and Corollary 17.

E.1.4 DDBM via Sinkhorn objective solver in [124]

In this section we give an alternative m1+o(1)ε−2-time algorithm for decremental bipartite matching,

leveraging a recent breakthrough of a m1+o(1)-time algorithm for general graph flow problems in

[124]. We follow the same notational conventions as in previous sections.

Our approach is to simply leverage the recent algorithm of [124] to solve the regularized sub-

problems (E.6) from the previous section. We recall the following result from [124].

Proposition 62 (Theorem 10.16 from [124]). Given a graph G = (V,E), demands d ∈ RV , costs

c ∈ RE, and weights w ∈ RE≥0, all entrywise bounded by exp(logO(1)m), let B be its unsigned

adjacency matrix, and h(f) =
∑
e∈E cefe + wefe log fe. Then in m1+o(1) time we can find a flow f

with B>f = d, f ≥ 0, and for any constant C > 0

h(f) ≤ min
B>f?=d,f?≥0

h(f?) +m−C .

APPENDIX E. DEFERRED PROOFS FROM CHAPTER 6 692

Lemma 271 (Canonical solver for Sinkhorn objectives). For ε = Ω(m−3), there is an (ε, T)-

canonical solver for the family of f sinkM,E defined in Lemma 269, using Proposition 62 as Solve and

truncation to E as Round, running in m1+o(1) time.

Proof. To implement Solve, we apply Proposition 62 to the problem (E.6) and solve the subproblem

to accuracy O(ε
3

m), for a sufficiently small constant. We observe that (E.6) is a problem exactly of

the form where Proposition 62 applies: by the multiplicative guarantee on νE and MCM(E) and

since MCM(E) is 8-approximated by M , (6.11a) holds immediately. We additionally obtain (6.11b),

as the function f sinkM,E is Ω(ε
logm)-strongly convex in the coordinates of x. The requirements of Round

are clear by inspection and by the additive range of entropy, as shown in Lemma 270.

With this result, we follow Theorem 39 and obtain an improved runtime for DDBM.

Theorem 40. Let G = (V,E) be bipartite and ε ∈ [Ω(m−3), 1). There is a randomized algorithm for

the DDBM problem which maintains an ε-approximate matching with probability 1 − n−Ω(1), based

on the Sinkhorn objective solver of [124], running in time m1+o(1)ε−2.

Proof. It suffices to combine Lemma 269, Lemma 271, and Corollary 17.

E.2 Proofs for Section 6.4

We first remark on the assumptions made throughout Section 6.4, restated as below: For some δ > 0,

we have

1. upper bounds on entries: ‖A‖∞ ≤ 1, ‖b‖∞ ≤ Bmax, ‖c‖∞ ≤ Cmax. For simplicity, we assume

Bmax ≥ Cmax ≥ 1, as otherwise we set Cmax ← max(1, Cmax) and Bmax ← max(Cmax, Bmax).

2. lower bounds on matrix column entries: maxi |Aij | ≥ δ for every j ∈ [n].

The second assumption can be satisfied by padding entries of A by δ, which at most incurs

O(δ) � O(ε) error in the objective value for any δ � ε. Our runtimes extend to general A in a

scale-invariant way (i.e. by scaling the whole problem by a factor of 1
‖A‖∞

and then scaling up the

resulting error), so the first assumption (on ‖A‖∞) is for simplicity. All of our runtimes depend

logarithmically on the quantity Bmax, which is polynomially bounded in all our applications.

Finally, regarding Cmax, it is clear we can assume without loss of generality that c ≤ 1 entrywise,

since shifting c by a multiple of the all-ones vector changes the objective value in (6.16). In the

unregularized case, i.e. fµ,ε with µ = ε = 0, [39] shows that we can also lower bound the vector

c entrywise by −1. In the regularized case, we provide the following lemma which shows that by

truncating the entries of c, we do not lose too much in objective value (see Appendix E.2).

APPENDIX E. DEFERRED PROOFS FROM CHAPTER 6 693

Lemma 272. Let τ ≥ 0, and define Sτ = {i ∈ [m] | ci ≥ mini∈[m] ci + τ} to be the large entries of

c. Define X ′ := {x ∈ ∆m | xi = 0 for all i ∈ Sτ}. Then,

min
x∈X ′

max
y∈[0,1]n

fµ,ε(x, y) ≤ min
x∈∆m

max
y∈[0,1]n

fµ,ε(x, y) + µm exp

(
−τ − 3

µ

)
.

In other words, Lemma 272 shows that if our goal is to find an x ∈ ∆m which approximately

minimizes maxy∈[0,1]n fµ,ε(x, y), we may restrict ourselves to considering only x supported on co-

ordinates where c is polylogarithmically bounded, without much loss in the error. In particular,

setting τ = Θ(log m
σ) above, where the final desired error is σ, yields this claim for µ ≤ 1. Our

methods will have runtimes depending linearly on Cmax, which upon applying the preprocessing of

Lemma 272, is an overall polylogarithmic dependence on the final target accuracy.

Now we prove Lemma 272. Before we do so, we state two simple helper lemmas used in its proof.

Lemma 273. Let X ,Y be compact and convex, let X ′ ⊆ X also be compact and convex, and let

f : X × Y → R be convex-concave. Suppose for some ∆ > 0 it is the case that for all y ∈ Y,

min
x∈X ′

f(x, y) ≤ min
x∈X

f(x, y) + ∆.

Then,

min
x∈X ′

max
y∈Y

f(x, y) ≤ min
x∈X

max
y∈Y

f(x, y) + ∆.

Proof. Let (x?, y?) be the optimizer to f over X × Y, and let (x′?, y
′
?) be the optimizer to f over

X ′ × Y. We conclude with the following sequence of inequalities:

f(x′?, y
′
?) ≤ min

x∈X
f(x, y′?) + ∆ ≤ f(x?, y

′
?) + ∆ ≤ f(x?, y?) + ∆.

The three inequalities respectively used our assumption, x? ∈ X , and y? = argmaxy∈Yf(x?, y).

Lemma 274. For µ > 0, define the function sminµ : Rm → R by

sminµ(v) := −µ log

∑
i∈[m]

exp

(
− 1

µ
vi

) .

Fix v, and let S ⊆ [m] be a set such that for all i ∈ [m] \ S, we have vi ≥ mini∈[m] vi + T for some

T > 0. Further let v′ ∈ RS be the restriction of v to the set S. Then,

sminµ (v′) := −µ log

(∑
i∈S

exp

(
− 1

µ
v′i

))
≤ sminµ(v) + µm exp

(
−T
µ

)
.

APPENDIX E. DEFERRED PROOFS FROM CHAPTER 6 694

Proof. Let vmin := mini∈[m] vi. Note that

∑
i∈[m]\S

exp

(
− 1

µ
vi

)
≤ m exp

(
− 1

µ
(vmin + T)

)
≤ m exp

(
−T
µ

)∑
i∈S

exp

(
− 1

µ
vi

)
.

Here we used that some element in S achieves vi = vmin. Hence,

∑
i∈[m]

exp

(
− 1

µ
vi

)
≤
(

1 +m exp

(
−T
µ

))∑
i∈S

exp

(
− 1

µ
vi

)
.

Taking logarithms and scaling by −µ yields the claim, where we use log(1 + c) ≤ c for c ≥ 0.

Combining these lemmas allow us to prove Lemma 272 formally.

Proof of Lemma 272. By Lemma 273, it suffices to first fix y ∈ [0, 1]n, and prove that

min
x∈X ′

fµ,ε(x, y) ≤ min
x∈∆m

fµ,ε(x, y) + µm exp

(
−τ − 3

µ

)
. (E.7)

Clearly the term b>y cancels from both sides. Next, define

v := Ay + c− ε

2
|A|(y2).

Let v′ be the restriction of v to the indices in Sτ . By explicitly minimizing over x ∈ ∆m and x ∈ X ′

respectively, (E.7) is equivalent to proving

sminµ(v′) ≤ sminµ(v) + µm exp

(
−τ − 3

µ

)
.

Since Ay − ε
2 |A|(y

2) has a range of at most 3, every truncated entry of v′ must be at least (τ − 3)

larger than the smallest entry of v′. We conclude by applying Lemma 274 with T = τ − 3.

E.2.1 Proofs for Section 6.4.1

Proposition 19 (Convergence of Algorithm 21). Given regularizer r with range at most Θ, suppose

g is ν-strongly-monotone with respect to r (see (6.19)), and is α-relatively-Lipschitz with respect to

r (see (6.20)). Let zK be the output of Algorithm 21. Then, V rzK (z?) ≤
(

α
ν+α

)K
Θ + ε

ν .

Proof. Fix an iteration k. We have

νVzk−1/2
(z?)

(i)

≤
〈
g(zk−1/2)− g(z?), zk−1/2 − z?

〉 (ii)

≤
〈
g(zk−1/2), zk−1/2 − z?

〉
=
〈
g(zk−1/2), zk − z?

〉
+
〈
g(zk−1/2), zk−1/2 − zk

〉
, (E.8)

APPENDIX E. DEFERRED PROOFS FROM CHAPTER 6 695

where we used (i) the definition of ν-strong monotonicity, and (ii) optimality of z?.

Next,

〈
g(zk−1/2), zk − z?

〉
− ε

2

(i)

≤ − 〈α∇Vzk−1
(zk) + ν∇Vzk−1/2

(zk), zk − z?〉

(ii)

≤ ν
(
Vzk−1/2

(z?)− Vzk(z?)− Vzk−1/2
(zk)

)
(E.9)

+ α
(
Vzk−1

(z?)− Vzk(z?)− Vzk−1
(zk)

)
≤αVzk−1

(z?)− (ν + α)Vzk(z?) + νVzk−1/2
(z?)− αVzk−1

(zk), (E.10)

and similarly,

〈
g(zk−1/2), zk−1/2 − zk

〉
− ε

2
(i)

≤ −〈α∇Vzk−1
(zk−1/2), zk−1/2 − zk〉+

〈
g(zk−1/2)− g(zk−1)), zk−1/2 − zk

〉
(ii)

≤ α
(
Vzk−1

(zk)− Vzk−1/2
(zk)− Vzk−1

(zk−1/2)
)

+
〈
g(zk−1/2)− g(zk−1)), zk−1/2 − zk

〉
(iii)

≤ αVzk−1
(zk), (E.11)

where we used (i) the approximate proximal oracle optimality conditions for zk and zk−1/2, (ii) the

three-point property of Bregman divergence (6.7), and (iii) the relative Lipschitzness conddition of

g. In the last inequality, we also use nonnegativity of divergence term V .

Now, combining (E.10) and (E.11) with (E.8) yields

νVzk−1/2
(z?) ≤ αVzk−1

(z?)− (ν + α)Vzk(z?) + νVzk−1/2
(z?) + ε.

Rearranging terms then yields

Vzk(z?) ≤ α

ν + α
Vzk−1

(z?) +
ε

ν + α
.

Applying this bound recursively K times and using that Vz0(u) ≤ r(u) − r(z0) ≤ Θ for z0 the

minimizer of r, we have

VzK (z?) ≤
(

α

ν + α

)K
Θ +

K−1∑
k=0

(
α

ν + α

)k (
ε

ν + α

)
≤
(

α

ν + α

)K
Θ +

ε

ν
.

Corollary 18 (Convergence of Algorithm 22). Let δ, ε ∈ (0, 1), ρ ≥ 1. Suppose we are given

APPENDIX E. DEFERRED PROOFS FROM CHAPTER 6 696

γ ∈ Z∗ = X∗ × Y∗ with max(‖γx‖∞ , ‖γy‖1) ≤ B, and define the proximal subproblem solution

xOPT, yOPT = argminx∈∆margminy∈[0,1]nf(x, y) := 〈γx, x〉+ 〈γy, y〉+ θr(x, y) for some θ > 0.

If the Hessian condition in Lemma 81 holds with a constant κ > 0, and all simplex iterates x of

Algorithm 22 satisfy x ≥ δ elementwise, then the algorithm finds a ε
2 -approximate solution to the

proximal oracle within T = O
(

log
(
ρ(B+mnθ)2

δεθ

))
iterations.

To prove Corollary 18, we first provide technical lemma that shows how to transfer the accuracy

desired for transferring from function error in Algorithm 22 guarantees to the duality gap error

desired by an approximate extragradient step in Algorithm 21, in a controllable sense.

Lemma 275. Let δ, ε ∈ (0, 1), ρ ≥ 1. Suppose we are given γ ∈ Z∗ = X∗ × Y∗ satisfying

max(‖γx‖∞ , ‖γy‖1) ≤ B, and define the proximal oracle subproblem solution

xOPT, yOPT = argminx∈∆margminy∈[0,1]nf(x, y) := 〈γx, x〉+ 〈γy, y〉+ θr(x, y) for some θ > 0.

Let z = (x, y) be an approximate solution satisfying f(x, y) ≤ f(xOPT, yOPT) + ε2δ2θ
64ρ(8nθ+B)2 , and

suppose x, xOPT ≥ δ holds elementwise. For any w ∈ Z = X × Y,

〈γ + θ∇r(z), z − w〉 ≤ ε

2
.

Proof. Let zOPT = (xOPT, yOPT). Under the assumption that f(z) − f(zOPT) ≤ A := ε2δ2θ
64ρ(8nθ+B)2 ,

using the lower bound in (6.23) with |A|>x ≥ δ2 entrywise by the assumption maxi |Aij | ≥ δ for

every column j, and since entropy is strongly convex in the `1 norm, we have

θρ

4
‖x− xOPT‖21 +

δ2θ

2ρ
‖y − yOPT‖2∞ ≤ f(z)− f(zOPT) ≤ A

=⇒ ‖x− xOPT‖1 ≤
ε

4
(
B + 8nρθ

δ

) and ‖y − yOPT‖∞ ≤
ε

4
(
B + 8nθ

ρ

) . (E.12)

For w = (u, v), by definition of zOPT, 〈γ + θ∇r(zOPT), zOPT − w〉 ≤ 0. Hence, we bound

〈γ + θ∇r(z), z − w〉 ≤ 〈γ + θ∇r(z), z − w〉 − 〈γ + θ∇r(zOPT), zOPT − w〉

= 〈γ, z − zOPT〉+ θ 〈∇r(z)−∇r(zOPT), zOPT − w〉+ θ 〈∇r(z), z − zOPT〉 .
(E.13)

APPENDIX E. DEFERRED PROOFS FROM CHAPTER 6 697

We now bound the terms on the right-hand side of (E.13):

〈γ, z − zOPT〉 ≤ ‖γx‖∞‖x− xOPT‖1 + ‖γy‖1‖y − yOPT‖∞

≤ B ‖x− xOPT‖1 +B ‖y − yOPT‖∞ ,

〈∇xr(z)−∇xr(zOPT), xOPT − u〉 ≤ ‖xOPT − u‖1 ‖∇xr(z)−∇xr(zOPT)‖∞

≤ 2ρ

∥∥∥∥log
x

xOPT

∥∥∥∥
∞

+
2

ρ
‖|A|((y + yOPT) ◦ (y − yOPT))‖∞

≤ 2ρ

δ
‖x− xOPT‖1 +

4

ρ
‖y − yOPT‖∞ ,

〈∇yr(z)−∇yr(zOPT), yOPT − v〉 ≤ ‖yOPT − v‖∞ ‖∇yr(z)−∇yr(zOPT)‖1

≤ 2n

ρ
‖y − yOPT‖∞ +

2n

ρ
‖x− xOPT‖1 ,

〈∇r(z), z − zOPT〉 ≤ ‖∇xr(z)‖∞‖x− xOPT‖1 + ‖∇yr(z)‖1‖y − yOPT‖∞

≤
(
ρ

(
1 + log

(
1

δ

))
+

1

ρ

)
‖x− xOPT‖1 +

2

ρ
‖y − yOPT‖∞ .

(E.14)

For the second bound, we used log(1 + c) ≤ c for whichever of c =
xj

[xOPT]j
or c =

[xOPT]j
xj

is larger, and

the entrywise lower bounds on x and xOPT. For the third bound, we used

∥∥diag (yOPT) |A|>xOPT − diag (y) |A|>x
∥∥

1
≤

∑
i∈[m],j∈[n]

|A|ij
∣∣∣[xOPT]i [yOPT]j − xiyj

∣∣∣
≤

∑
i∈[m],j∈[n]

|A|ij
(∣∣∣[yOPT]j − yj

∣∣∣+ |[xOPT]i − xi|
)

≤ n(‖yOPT − y‖∞ + ‖xOPT − x‖1).

Plugging the bounds of (E.14) back in (E.13), we can thus conclude that for ρ ≥ 1, δ ≤ 1

〈γ + θ∇r(z), z − w〉 ≤
(
B +

8nρθ

δ

)
‖x− xOPT‖1 +

(
B +

8nθ

ρ

)
‖y − yOPT‖∞ ≤

ε

2
,

where for the last inequality we use conditions in (E.12).

We use this lemma to prove Corollary 18 formally below.

Proof of Corollary 18. We first bound f(x(1), y(0)) − f(xOPT, yOPT) ≤ maxz∈Z f(z) − f(zOPT) ≤
2 ‖γx‖∞ + 2 ‖γy‖1 + θ

(
ρ logm+ 2

ρ

)
≤ 4B + θ

(
ρ logm+ 2

ρ

)
where the last inequality uses `1-`∞

Hölder, the domain definitions X = ∆m, Y = [0, 1]n, and the definition of r = rµ,ε as in (6.18).

APPENDIX E. DEFERRED PROOFS FROM CHAPTER 6 698

Now applying Lemma 81, after O
(

log
(
ρ(B+mnθ)2

δεθ

))
iterations for a sufficiently large constant,

f(x(T+1), y(T))− f(xOPT, yOPT) ≤
(

1− 1

2κ

)T (
f(x(1), y(0))− f(xOPT, yOPT)

)
≤
(

1− 1

2κ

)T (
4B + θ

(
ρ logm+

2

ρ

))
≤ ε2δ2θ

64ρ(8nθ +B)2
,

which by Lemma 275 in turn implies it implements an approximate proximal oracle to ε
2 accuracy.

E.2.2 Proofs for Section 6.4.2

We give a helpful variant of the Cauchy-Schwarz inequality in appropriate “local norms” and a con-

sequence about approximating the Hessian of our regularizer. These find uses in proving Lemma 86.

Lemma 82 (Bounds on regularizer). Suppose A ∈ Rm×n has ‖A‖∞ ≤ 1. For any z = (x, y) ∈
∆m × [0, 1]n, r = rµ,ε defined as in (6.18), and x̄ ∈ Rm>0, 〈x,Ay〉 ≤ ‖x‖diag(1

x̄) ‖y‖diag(|A|>x̄) .

Further, if ρ ≥ 3, the matrix

D(x) :=

ρ
2diag

(
1
x

)
0

0 1
ρdiag

(
|A|> x

)
 (6.22)

satisfies the following relationship with the Hessian matrix of r(z):

D(x) � ∇2r(z) =

 ρ · diag
(

1
x

)
2
ρAdiag (y)

2
ρdiag (y) A> 2

ρdiag
(
|A|> x

)
 � 4D(x). (6.23)

Proof. For the first property, it suffices to square both sides and use Cauchy-Schwarz:∑
i∈[m]

∑
j∈[n]

|Aijuivj |

2

≤

∑
i∈[m]

∑
j∈[n]

|Aij |
[x̄]i

u2
i

∑
i∈[m]

∑
j∈[n]

|Aij | [x̄]iv
2
j

≤

∑
i∈[m]

‖A‖∞
[x̄]i

u2
i

∑
j∈[n]

[
|A|> x̄

]
j
v2
j

≤ ‖u‖2diag(1

x̄) ‖v‖
2
diag(|A|>x̄) .

APPENDIX E. DEFERRED PROOFS FROM CHAPTER 6 699

Next, given any w = (u, v), we have

w>∇2r(x, y)w = ρ ‖u‖2diag(1
x) +

2

ρ
‖v‖2diag(|A|>x) +

4

ρ
u>Adiag (y) v

≤ ρ ‖u‖2diag(1
x) +

2

ρ
‖v‖2diag(|A|>x) +

4

ρ
‖u‖diag(1

x) ‖diag (y) v‖diag(|A|>x)

≤
(
ρ+

2

ρ

)
‖u‖2diag(1

x) +
4

ρ
‖v‖2diag(|A|>x)

≤ 4

(
ρ

2
‖u‖2diag(1

x) +
1

ρ
‖v‖2diag(|A|>x)

)
= 4w>D(x)w.

Similarly, on the other side we have

w>∇2r(x, y)w = ρ ‖u‖2diag(1
x) +

2

ρ
‖v‖2diag(|A|>x) +

4

ρ
u>Adiag (y) v

≥ ρ ‖u‖2diag(1
x) +

2

ρ
‖v‖2diag(|A|>x) −

4

ρ
‖u‖diag(1

x) ‖diag (y) v‖diag(|A|>x)

≥
(
ρ− 4

ρ

)
‖u‖2diag(1

x) +

(
2

ρ
− 1

ρ

)
‖v‖2diag(|A|>x)

≥ ρ

2
‖u‖2diag(1

x) +
1

ρ
‖v‖2diag(|A|>x) = w>D(x)w.

Lemma 83 (Error of padding, cf. Lemma 6, [112]). For δ > 0 and z̄ = (x̄, y) ∈ ∆m × [0, 1]n

let z = (x, y) ∈ ∆m × [0, 1]n where x = Oδ(x̄) (Definition 26), then for r in (6.18), and any

w ∈ Z = ∆m × [0, 1]n, V rz (w)− V rz̄ (w) ≤
(
ρ+ 8

ρ

)
mδ.

Proof. We write r(x, y) = ρH(x) + 1
ρQ(x, y) where

H(x) =
∑
i∈[m]

xi log xi, Q(x, y) =
(
y2
)> |A|>x,

and bound the Bregman divergences induced by H and Q respectively.

First note that by definition of the padding oracle we have ‖xk − x̄k‖1 ≤ ‖xk − x̂k‖1+‖x̄k − x̂k‖1 ≤
2mδ, and that xk is a mδ-padding of x̄k by the definition of padding in [112] (cf. Definition 2). Thus

using Lemma 6 of [112], we have

V Hz (w)− V Hz̄ (w) ≤ mδ.

For the quadratic part, letting w = (u, v), we have

V Qz (w)− V Qz̄ (w) = Q(z̄)−Q(z) + 〈∇Q(z̄), w − z̄〉 − 〈∇Q(z), w − z〉

≤ ‖x− x̄‖1 +
〈
|A|y2, x− x̄

〉
+
〈
diag (y) |A|>(x̄− x), v − y

〉
≤ 4 ‖x− x̄‖1 ≤ 8mδ,

APPENDIX E. DEFERRED PROOFS FROM CHAPTER 6 700

where the first inequality used ȳ = y, and both the first and second used the assumed bounds

‖y‖∞ ≤ 1, ‖A‖∞ ≤ 1. Combining these bounds proves the statement.

Lemma 84 (Iterate stability in Algorithm 22). Suppose ε ≤ 1, ρ ≥ 6, and α ≥ 36
ρ (µ log 4

δ + 3Cmax).

Let (xk, yk) denote blocks of zk, the kth iterate of Algorithm 21. In any iteration k of Algo-

rithm 21, calling Algorithm 22 to implement Line 6, if xk−1 ≥ δ
2 entrywise, x(t+1) ∈ xk−1 ·[

exp
(
− 1

9

)
, exp

(
1
9

)]
, for all t ∈ [T]. Calling Algorithm 22 to implement Line 7, if xk−1/2 ≥ δ

4

entrywise, x(t+1) ∈ x
α
α+ν

k−1 ◦ x
ν

α+ν

k−1/2 ·
[
exp

(
− 1

9

)
, exp

(
1
9

)]
for all t ∈ [T].

Proof. We first handle the case of Line 6 in Algorithm 21. Using Algorithm 22 to implement this

step, we observe that the iterates satisfy

x(t+1) ←argminx∈∆m 〈γx, x〉+ θr(x, y(t)) where θ = α,

and γx = gx(xk−1, yk−1)− α∇xr(zk−1)

= Ayk−1 + c+ µ(1 + log(xk−1))− ε

2
|A| (y2

k−1)− αρ(1 + log xk−1)− α

ρ
|A|y2

k−1,

which implies

x(t+1) ∝ xk−1 ◦ exp

(
1

αρ

(
−α
ρ
|A|

(
y(t)
)2

−Ayk−1 − c+
ε

2
|A|y2

k−1 +
α

ρ
|A|y2

k−1 − µ log(xk−1)

))
.

Consequently, under the given assumptions on xk−1, ρ, and α, and using ‖c‖∞ ≤ Cmax,∣∣∣∣log

(
x(t+1)

xk−1

)∣∣∣∣ ≤ 1

αρ

(
1 + Cmax +

α

ρ
+
ε

2
+ µ log

2

δ

)
≤ 1

18

=⇒ x(t+1) ∈ xk−1 ·
[
exp

(
−1

9

)
, exp

(
1

9

)]
.

Next, we handle the case of Line 7 in Algorithm 22. Here, the iterates of Algorithm 22 satisfy

x(t+1) ←argminx∈∆m 〈γx, x〉+ θr(x, y(t)) where θ = α+ ν,

and γx = gx(xk−1/2, yk−1/2)− α∇xr(zk−1)− ν∇xr(zk−1/2)

= Ayk−1/2 + c+ µ(1 + log(xk−1/2))− ε

2
|A| (y2

k−1/2)

− αρ(1 + log xk−1)− α

ρ
|A|y2

k−1 − νρ(1 + log xk−1/2)− ν

ρ
|A|y2

k−1/2.

APPENDIX E. DEFERRED PROOFS FROM CHAPTER 6 701

Hence,

x(t+1) ∝ x
α
α+ν

k−1 ◦ x
ν

α+ν

k−1/2 ◦ τ
x

where τ x = exp

(
1

(α+ ν)ρ

(
−α
ρ
|A|

(
y(t)
)2

− ν

ρ
|A|

(
y(t)
)2

−Ayk−1/2 − c

+
ε

2
|A|y2

k−1/2 +
α

ρ
|A|y2

k−1 +
ν

ρ
|A|y2

k−1/2 − µ log(xk−1/2)

))
.

Consequently, under a similar calculation as before,

exp

(
− 1

18

)
≤ τ x ≤ exp

(
1

18

)
entrywise

=⇒ x(k+1) ∈ x
α
α+ν

k−1 ◦ x
ν

α+ν

k−1/2 ·
[
exp

(
−1

9

)
, exp

(
1

9

)]
.

E.2.3 Proofs for Section 6.4.3

Lemma 85 (Strong monotonicity). Let µ ≥ ε
2 and ρ :=

√
2µ
ε . The gradient operator gµ,ε (6.17) is

ν := 1
2

√
µε
2 -strongly monotone (see (6.19)) with respect to rµ,ε defined in (6.18).

Proof. Throughout the proof, let g := gµ,ε, f := fµ,ε, and r := rµ,ε for notational simplicity. In

order to show the desired bound

〈g(w)− g(z), w − z〉 ≥ 1

3

√
µε

2
〈∇r(w)−∇r(z), w − z〉 , (E.15)

we begin by putting (E.15) into a more convenient form. Letting J(z) be the Jacobian of g at the

point z, we have by direct integration (where zt := (1− t)z + tw for all t ∈ [0, 1])

〈g(w)− g(z), w − z〉 =

∫ 1

0

(w − z)>J(zt)(w − z)dt.

Since quadratic forms through a square matrix M are preserved by replacing M with its symmetric

part 1
2 (M + M>), it suffices to understand the symmetric part of J(zt). The restriction of Jµ to the

xy and yx blocks is skew-symmetric, since the blocks are respectively ∇2
xyf(x, y) and −∇2

yxf(x, y).

APPENDIX E. DEFERRED PROOFS FROM CHAPTER 6 702

Similarly, its restrictions to its xx and yy blocks are symmetric. Hence, we have

〈g(w)− g(z), w − z〉 =

∫ 1

0

(w − z)>
∇2

xxf(zt) 0

0 −∇2
yyf(zt)

 (w − z)dt

=

∫ 1

0

(w − z)>
µ · diag

(
1
xt

)
0

0 ε · diag
(
|A|> xt

)
 (w − z)dt.

(E.16)

In the last line, we denoted zt := (xt, yt) for all t ∈ [0, 1]. Next, to bound the right hand side of

(E.15), integrating once more yields

〈∇r(w)−∇r(z), w − z〉 =

∫ 1

0

(w − z)>∇2r(zt)(w − z)dt

=

∫ 1

0

(w − z)>
 ρ · diag

(
1
xt

)
2
ρ |A|diag (yt)

2
ρdiag (yt) |A|> 2

ρdiag
(
|A|> xt

)
 (w − z)dt

≤
∫ 1

0

(w − z)>
2ρ · diag

(
1
xt

)
0

0 4
ρdiag

(
|A|> xt

)
 (w − z)dt.

(E.17)

The last line used Lemma 82 for all (xt, yt) ∈ ∆m× [0, 1]n. Combining the bounds (E.16) and (E.17)

yields the conclusion.

Corollary 19 (Iterate stability in Algorithm 23). Assume the same parameter bounds as Lemma 84,

and that δ ∈ (0,m−1). In the kth outer loop of Algorithm 23, xk−1 ≥ δ
2 entrywise. Further,

for all iterates x(t+1) computed in Line 7 to Line 8 and xOPT as defined in (6.21) with θ = α,
1
2xk−1 ≤ x(t+1), xOPT ≤ 2xk−1, and x(t+1), xOPT ≥ δ

4 , entrywise. Similarly, for all iterates x(t+1)

computed in Line 9 to Line 10 and xOPT as defined in (6.21) with θ = α+ν, 1
2xk−1/2 ≤ x(t+1), xOPT ≤

2xk−1/2 and x(t+1), xOPT ≥ δ
4 , entrywise.

Proof. It suffices to prove xk−1 ≥ δ
2 entrywise as all other conclusions are then immediate con-

sequences of Lemma 84 (the conclusions about xOPT follow from taking a limit). When k = 1,

xk−1 ≥ δ
2 holds by the assumption that δ ≤ 1

2m . When k > 1, xk−1 is the result of padding with

parameter δ. We note for any x ∈ ∆m we have the desired

1 ≤ ‖max (x, δ)‖1 ≤ 1 + δm =⇒ Oδ(x) ≥ δ

‖max (x, δ)‖1
≥ δ

1 + δm
≥ δ

2
.

Lemma 86 (Relative Lipschitzness). Assume the same parameter bounds as in Lemma 84. In

the kth outer loop of Algorithm 23, let z̄k ← (x(T+1), y(T)) from Line 10 be zk before the padding

APPENDIX E. DEFERRED PROOFS FROM CHAPTER 6 703

operation. Then, xk−1/2, x̄k ∈ [1
2xk−1, 2xk−1] elementwise and

〈
g(zk−1/2)− g(zk−1), zk−1/2 − z̄k

〉
≤ α

(
Vzk−1

(zk−1/2) + Vzk−1/2
(z̄k)

)
for α = 4 + 32

√
µε

2
.

Proof. The conclusion that xk−1/2, x̄k ∈ [1
2xk−1, 2xk−1] elementwise follows from Corollary 19. Next,

we have for zβ = zk−1 + β(zk−1/2 − zk−1), and ρ ≥ 6,

Vzk−1
(zk−1/2) =

∫ 1

0

(1− β)‖zk−1/2 − zk−1‖2∇2r(zk−1+β(zk−1/2−zk−1))dβ

≥ 1

4

∥∥zk−1/2 − zk−1

∥∥2

D(xk−1)
,

following the fact that ∇2r(zk−1 + β(zk−1/2 − zk−1)) � D(xk−1 + β(xk−1/2 − xk−1)) � 1
2D(xk−1)

from Lemma 82 and xk−1/2 ∈ [1
2xk−1, 2xk−1]. Similarly, we also have

Vzk−1/2
(z̄k) ≥ 1

4

∥∥zk−1/2 − z̄k
∥∥2

D(xk−1)
.

On the other hand, we directly compute

〈
g(zk−1/2)− g(zk−1), zk−1/2 − z̄k

〉
=

〈
A(yk−1/2 − yk−1), xk−1/2 − x̄k

〉
+

〈
−A>(xk−1/2 − xk−1), yk−1/2 − ȳk

〉

+

〈
µ log

(
xk−1/2

xk−1

)
− ε

2
|A|(y2

k−1/2 − y
2
k−1), xk−1/2 − x̄k

〉

+

〈
ε · diag

(
yk−1/2

)
|A|>xk−1/2 − ε · diag (yk−1) |A|>xk−1, yk−1/2 − ȳk

〉
.

(E.18)

We now bound the terms on the right-hand side of (E.18). By Lemma 82,〈
A(yk−1/2 − yk−1), xk−1/2 − x̄k

〉
≤ 1

2ρ
‖yk−1/2 − yk−1‖2diag(|A|>xk−1) +

ρ

2
‖xk−1/2 − x̄k‖2

diag
(

1
xk−1

),〈
A>(xk−1/2 − xk−1), ȳk − yk−1/2

〉
≤ 1

2ρ
‖yk−1/2 − ȳk‖2diag(|A|>xk−1) +

ρ

2
‖xk−1/2 − xk−1‖2

diag
(

1
xk−1

).

(E.19)

APPENDIX E. DEFERRED PROOFS FROM CHAPTER 6 704

For the rest of the terms we have, letting (xβ , yβ) = zβ = (1− β)zk−1 + βzk−1/2 for all β ∈ [0, 1],〈
µ log

(
xk−1/2

xk−1

)
− ε

2
|A|(y2

k−1/2 − y
2
k−1), xk−1/2 − x̄k

〉

+

〈
ε · diag

(
yk−1/2

)
|A|>xk−1/2 − ε · diag (yk−1) |A|>xk−1, yk−1/2 − ȳk

〉

=

∫ 1

0

(zk−1/2 − zk−1)>

 µ · diag
(

1
xβ

)
−ε |A|diag (yβ)

εdiag (yβ) |A|> εdiag
(
|A|> xβ

)
 (zk−1/2 − z̄k)dβ

=

√
µε

2

∫ 1

0

(zk−1/2 − zk−1)>

 ρ · diag
(

1
xβ

)
− 2
ρ |A|diag (yβ)

2
ρdiag (yβ) |A|> 2

ρdiag
(
|A|> xβ

)
 (zk−1/2 − z̄k)dt

≤8

√
µε

2

(
‖zk−1/2 − zk−1‖2D(xk−1) + ‖zk−1/2 − z̄k‖2D(xk−1)

)
,

(E.20)

where for the last inequality we use similar arguments as in Lemma 82 to bound the matrix by

4D(xβ) � 8D(xk−1) following the assumption that xk−1/2 ∈ [1
2xk−1, 2xk−1] elementwise. Putting (E.19)

and (E.20) into (E.18), we conclude that the relative Lipschitz condition (6.20) holds with the stated

α.

Corollary 20 (Inner loop convergence in Algorithm 23). Assume the same parameter bounds as in

Lemma 84. For γ defined in Line 7, suppose for an appropriate constant T = Ω
(

log mnBmaxαρ
δε

)
.

Then, for all k iterate zk−1/2 = (xk−1/2, yk−1/2) of Line 8 satisfies

〈
∇g(zk−1) + α∇Vzk−1

(zk−1/2), zk−1/2 − w
〉
≤ νε

4
, for all w ∈ Z.

Similarly, for γ defined in Line 9, iterate z̄k = (x(T+1), y(T)) of Line 10 satisfies

〈
∇g(zk−1) + α∇Vzk−1

(z̄k) + ν∇Vzk−1/2
(z̄k), z̄k − w

〉
≤ νε

4
, for all w ∈ Z.

Proof. We first claim Lemma 81 holds with κ = 8. This follows from the fact that for any x′ ∈ ∆m,

y′ ∈ [0, 1]n satyisfying x′ ≥ 1
2x, we have

∇2r(x′, y′) � D(x′) � 1

2
D(x) � 1

8
∇2r(x, y) � 1

8
∇2
yyr(x, y),

where we use both of the Hessian bounds from Lemma 82 and the fact that restrictions to blocks

only decrease a quadratic form.

For each γ = (γx, γy) defined in Algorithm 23 and the fact that xk−1, xk−1/2 ≥ δ
4 for all k ∈ [K],

APPENDIX E. DEFERRED PROOFS FROM CHAPTER 6 705

we have by the assumptions ‖A‖∞ ≤ 1, ‖c‖∞ ≤ Cmax, and ‖b‖1 ≤ nBmax that it suffices to take

B = max (‖γx‖∞ , ‖γy‖1) = O

(
(αρ+ µ) log

1

δ
+ nBmax

)
in Corollary 18. Hence, the stated number of iterations T suffices.

Proposition 20 (Convergence of Algorithm 23). Assume the same parameter bounds as in Lemma 84,

and that δ ≤ ε
4ραm . Algorithm 23 returns zK satisfying V rzK (z?) ≤ 3ε

ν , letting (for an appropriate

constant) K = Ω(αν log(ν logm
ε)).

Proof. Our proof is based on the proof of Proposition 19. Lemma 85 and Lemma 86 showed that our

operator-regularizer pair satisfies ν-strong monotonicity and α-relative Lipschitzness. Under these

conditions, and letting z̄k be the unpadded version of zk, recall that the proof of Proposition 19

showed that

(ν + α)Vz̄k(z?) ≤ αVzk−1
(z?) + ε.

Moreover, the padding guarantee of Lemma 83 shows

(ν + α) (Vzk(z?)− Vz̄k(z?)) ≤ (ν + α)

(
ρ+

8

ρ

)
mδ ≤ ε,

by the assumption on δ. Following the proof of Proposition 19, we conclude

VzK (z?) ≤
(

α

ν + α

)K
Θ +

2ε

ν
.

Since Θ = O(ρ logm) for our choice of regularizer, the claim follows.

Finally, we prove the main theorem in this section on the convergence of our regularized box-

simplex solver for (6.16). We first state two helper lemmas used to prove the theorem.

Lemma 276 (Entropy bounded by `1-distance). For any x, x̃ ∈ ∆m, defining H(x) =
∑
i∈[m] xi log xi,

H(x̃)−H(x) ≤ 33 log(m) ‖x̃− x‖1 +m−30.

Proof. We define a partition of the coordinates of x̃,

L :=
{
i ∈ [m] | x̃i ≥ m−32

}
and S :=

{
i ∈ [m] | x̃i < m−32

}
.

First, we have by convexity of entropy that, letting vL ∈ R|L| denote the |L|-dimensional restriction

APPENDIX E. DEFERRED PROOFS FROM CHAPTER 6 706

of a vector v ∈ Rm to the coordinates of L ⊆ [m],

∑
i∈L

x̃i log x̃i −
∑
i∈L

xi log xi ≤ 〈log x̃L + 1L, x̃L − xL〉

≤ ‖log x̃L + 1L‖∞ ‖x̃L − xL‖1
≤ (32 log(m) + 1) ‖x̃− x‖1 ≤ 33 log(m) ‖x̃L − xL‖1 ,

for sufficiently large m. In the second line, we used the `1-`∞ Hölder’s inequality. Moreover, let

S′ := {i ∈ [m] | xi < m−32} be the subset of [m] where x is small. By nonpositivity of entropy,

∑
i∈S

x̃i log x̃i −
∑
i∈S

xi log xi ≤ −
∑
i∈S

xi log xi = −
∑
i∈S′

xi log xi −
∑

i∈S\S′
xi log xi

≤ 32|S′| log(m)

m32
+ 32 log(m)

∑
i∈S\S′

xi

≤ 32|S| log(m)

m32
+ 32 log(m)

∑
i∈S\S′

(
xi −m−32

)
≤ m−30 + 32 log(m)

∑
i∈S\S′

(xi − x̃i) ≤ m−30 + 32 log(m) ‖x̃S − xS‖1 .

The second line used that −c log c is increasing in the range (0,m−32), and the fourth used that

m−32 > x̃i for all i ∈ S. We conclude by combining the above two displays.

Lemma 277. Let (x?, y?) be the optimizer to the regularized box-simplex game in (6.16). Suppose

ρ ≥ 6, µ ≤ 1, ε ≥ m−10 and that z = (x, y) satisfies Vz (z?) ≤ ε2

C2
max log4 m

. Then, x is an ε-

approximate minimizer to

f xµ,ε(x, y) := max
y∈[0,1]n

fµ,ε(x, y).

Proof. We first claim that the given divergence condition implies that

‖x− x?‖1 ≤
ε

Cmax log2m
. (E.21)

To see this, we observe that due to the Hessian bound in Lemma 82, the divergence induced by

r(x, y)− ρ
2H(x) is nonnegative, and hence

‖x? − x‖21 ≤ 2V Hx (x?) ≤ ρ

2
V Hx (x?) ≤ V rz (z?).

The first inequality above was by Pinsker, the second used ρ ≥ 6, and the last followed by nonneg-

ativity of divergence. This implies (E.21) by the assumed divergence bound. We next show that

APPENDIX E. DEFERRED PROOFS FROM CHAPTER 6 707

(E.21) implies that x is an approximate minimizer of f xµ,ε, which we recall means

max
y′∈Y

fµ,ε(x, y
′)− fµ,ε(x?, y?) ≤ ε. (E.22)

To this end, we compute

max
y∈Y

y>
(
A>x− b

)
−max

y∈Y
y>
(
A>x? − b

)
≤
∥∥A> (x− x?)

∥∥
1
≤ ‖x− x?‖1 ≤

ε

4
,

〈c, x〉 − 〈c, x?〉 ≤ Cmax ‖x− x?‖1 ≤
ε

4
,

µ (H(x)−H(x?)) ≤ 33µ log(m) ‖x− x?‖1 + µm−30 ≤ ε

4
,

max
y∈Y

(
y2
)> |A|> x−max

y∈Y

(
y2
)> |A|> x? ≤ ∥∥A> (x− x?)

∥∥
1
≤ ‖x− x?‖1 ≤

ε

4
.

The third line used Lemma 276. Combining these pieces proves the claim.

We are now ready to prove Theorem 41.

Theorem 41 (Regularized box-simplex solver). Given regularized box-simplex game (6.16) with

72ε ≤ µ ≤ 1 and optimizer (x?, y?), and letting ε ∈ (m−10, 1), RegularizedBS (Algorithm 23) returns

xK satisfying
∥∥xK − x?∥∥

1
≤ ε

Cmax log2 m
and maxy∈[0,1]n fµ,ε(x

K , y) − fµ,ε(x
?, y?) ≤ ε. The total

runtime of the algorithm is O(nnz(A) · (Cmax√
µε + log(mσε)) · log(Cmax logm

ε) log(mnBmax

ε)).

Proof. We handle correctness and runtime separately.

Correctness. Let (x?, y?) be the minimax optimal solution of fµ,ε in (6.16). By applying Propo-

sition 20 and Lemma 277, shifting the definition of ε appropriately so that 3ε
ν ←

ε2

C2
max log4 m

, we have

with the choice of parameters our returned xK satisfies the desired bounds.

Runtime. It is immediate to see each line of Algorithm 23 runs in time O(nnz(A)). Then, the

total runtime follows from combining Proposition 20 and Corollary 20.

We now apply Theorem 41 to prove Corollary 21.

Corollary 21 (Half-regularized approximate solver). Given regularized box-simplex game (6.24)

with regularization parameters 72ε ≤ µ ≤ 1 and optimizer (x?, y?), and letting ε ∈ (m−10, 1),

Algorithm 23 with ε ← ε
2 returns xK satisfying maxy∈[0,1]n fµ(xK , y) − fµ(x?, y?) ≤ ε. The total

runtime of the algorithm is O
(

nnz(A) · (Cmax√
µε + log

(
m
ε

)
) · log

(
Cmax logm

ε

)
log
(
mnBmax

ε

))
.

Proof. We apply Theorem 41 with ε ← ε
2 and the same value of µ as in the regularized objective

(6.24). Note that the additive range of the quadratic regularizer is ε
2 , and hence

fµ,ε(x, y) ≤ fµ(x, y) ≤ fµ,ε(x, y) +
ε

2
, for all (x, y) ∈ ∆m × [0, 1]n.

It thus suffices to obtain a ε
2 error guarantee from Theorem 41, which yields the runtime guarantee.

APPENDIX E. DEFERRED PROOFS FROM CHAPTER 6 708

E.3 Approximating Sinkhorn distances

In this section, we consider the problem of approximating Sinkhorn distances [151], a common

computational task in the theory and practice of optimal transport. In this problem, we are given

a product domain on two discrete supports L× R, along with demands d ∈ RL+R
≥0 (with marginals

‖dL‖1 = ‖dR‖1 = 1) and a cost matrix c ∈ RL×R≥0 . Letting m = |L||R| and n = |L|+ |R|, the optimal

transport (OT) problem asks to find a feasible transport plan x ∈ ∆m minimizing 〈c, x〉, concisely

described as

min
x∈∆m|B>x=d

〈c, x〉 , (E.23)

where B is the unsigned incidence matrix of the complete bipartite graph on L × R. Prior work

by [151] proposed Sinkhorn distances as an efficiently computable, differentiable alternative to (E.23),

where for µ > 0, the Sinkhorn distance asks for an optimal regularized transport plan:

x?µ solves min
x∈∆m|B>x=d

〈c, x〉+ µH(x), where H(x) =
∑
i∈[m]

xi log xi. (E.24)

We use the notion of function error in terms of the regularized objective 〈c, x〉 + µH(x) as the

approximation criterion for developing our approximate solvers in this section, and we aim to find

an ε-approximate solution xµ ∈ U(dL, dR) := {x ∈ ∆m | B>x = d} satisfying

〈c, xµ〉+ µH(xµ) ≤
〈
c, x?µ

〉
+ µH(x?µ) + ε. (E.25)

We call such an xµ an ε-approximate minimizer to (E.24). One reason for choosing this definition

of an approximate solution is that function error bounds the error in transportation cost and `1

distances, i.e.

µ

2

∥∥xµ − x?µ∥∥2

1
≤ 〈c, xµ〉+ µH(xµ)−

(〈
c, x?µ

〉
+ µH(x?µ)

)
,

and 〈c, xµ〉 −
〈
c, x?µ

〉
≤ ‖c‖∞

∥∥xµ − x?µ∥∥1
.

The first inequality follows from the first-order optimality condition of x?µ and Pinsker’s inequality,

which shows the objective minimized by x?µ is µ-strongly convex in `1. The second is `1-`∞ Hölder.

We present three different approaches to approximate Sinkhorn distances (E.24).

1. In Section E.3.1, we develop a first-order method that uses our regularized box-simplex solver,

which finds an ε-approximate minimizer to (E.24) in Õ(1√
µε) time for µ = Ω(ε) (Theorem 85).

2. In Section E.3.2, we present a high-accuracy solver for the problem by building upon recent

near-linear time box-constrained Newton’s method for matrix scaling problems [145], which

finds an ε-approximate minimizer in an improved Õ(1
µ) time (Theorem 86).

APPENDIX E. DEFERRED PROOFS FROM CHAPTER 6 709

3. Lastly, we provide in Appendix E.3.3 an unaccelerated Sinkhorn distance solver with runtime

Õ(1
µε) using the classical Sinkhorn method [208] (Corollary 63).

E.3.1 Regularized box-simplex solver for computing Sinkhorn distances:

Theorem 85

In this section, we summarize our application of Theorem 41 in approximating the Sinkhorn distance

(E.24). We first show approximating (E.24) can be reduced to solving a regularized box-simplex game:

min
x∈∆m

max
y∈[0,1]2n

1

4C
〈c, x〉+

µ

4C
H(x) + y>A>x− 〈b, y〉 ,

where A :=
1

4

(
B,−B

)
, b :=

1

4

(
d,−d

)
,

(E.26)

for some C := 2 (‖c‖∞ + 33µ log(m)). This characterization, which is key to our approach, follows

by first replacing the equality constraints B>x = d with inequality constraints B>x ≤ d,B>x ≥ d,

and then developing an analogous reduction to the one used by [293] for solving the standard OT

objective (E.23). In particular, by maximizing over y, problem (E.26) is equivalent to the following

regularized `1-regression problem:

min
x∈∆m

1

4C
〈c, x〉+

µ

4C
H(x) +

1

4

∥∥B>x− d∥∥
1
. (E.27)

The quantity
∥∥B>x− d∥∥

1
is naturally interpreted as the deviation of the x marginals from the

demands d. We further require one simple helper fact, which shows that any transport plan x can

be “fixed” to be feasible for demands d at a cost depending on its deviation
∥∥B>x− d∥∥

1
.

Lemma 278 (Lemma 7, [25]). There is an algorithm, OTRound (Algorithm 2, [25]), which takes

as input any x ∈ Rm≥0 and produces x̃ ∈ ∆m such that ‖x̃− x‖1 ≤ 2
∥∥B>x− d∥∥

1
and B>x̃ = d. The

algorithm runs in O(m) time.

The guarantees of OTRound (cf. Lemma 278) give an algorithmic proof of equivalence between

(E.27) and (E.24) by relating their approximate solutions: Lemma 279 gives a formal statement.

Lemma 279. Let x be a 1
4C∆-approximate minimizer to (E.27). Then, letting x̃ be the result of

OTRound(x) (cf. Lemma 278), x̃ is a ∆ + µm−30-approximate minimizer to (E.24).

Proof. Define OPTSinkhorn to be the value of the Sinkhorn objective (E.24), and OPTSinkhorn-Pen to

be the value of (E.27). It is immediate that OPTSinkhorn-Pen ≤ 1
4COPTSinkhorn, since any feasible

point for (E.24) (in particular the minimizer) is also feasible for (E.27) and obtains the same function

value. Hence, we have

〈c, x〉+ µH(x) + C
∥∥B>x− d∥∥

1
≤ 4C ·OPTSinkhorn-Pen + ∆ ≤ OPTSinkhorn + ∆.

APPENDIX E. DEFERRED PROOFS FROM CHAPTER 6 710

Moreover, we bound the objective value of x̃:

〈c, x̃〉+ µH(x̃) = 〈c, x〉+ µH(x) + 〈c, x̃− x〉+ µ (H(x̃)−H(x))

≤ 〈c, x〉+ µH(x) + (‖c‖∞ + 33µ log(m)) ‖x̃− x‖1 + µm−30

≤ 〈c, x〉+ µH(x) + 2 (‖c‖∞ + 33µ log(m))
∥∥B>x− d∥∥

1
+ µm−30

= 〈c, x〉+ µH(x) + C
∥∥B>x− d∥∥

1
+ µm−30.

In the second line, we applied `1-`∞ Hölder and Lemma 276, in the third we used Lemma 278, and

in the last we used the definition of C. Combining the above displays, we have the desired

〈c, x̃〉+ µH(x̃) ≤ OPTSinkhorn + ∆ + µm−30.

Lemma 279 shows that to obtain an ε ≥ 2µm−30-approximate minimizer of (E.24), it suffices to

solve (E.27) to 1
8C · ε additive accuracy. Applying Corollary 21 in Section 6.4.3, we thus develop a

solver for minimizing the Sinkhorn distance objective (E.24) with the following guarantees.

Theorem 85 (Regularized box-simplex solver for Sinkhorn distances). Consider the Sinkhorn dis-

tance objective (E.24) on an instance with n = |L|+ |R| vertices and m = |L||R| edges, and suppose

ε ∈ [m−5 ‖c‖∞ , ‖c‖∞] , µ ∈ [36ε, ‖c‖∞]. Using OTRound on the result of Corollary 21 applied to

(E.26) obtains an ε-approximate minimizer to (E.24) in time

O

(
m

(√
µ

ε
log(m) +

‖c‖∞√
µε

)
log(m) log

(
‖c‖∞ logm

ε

))
.

Proof. Note that the deviation between the regularized Sinkhorn objective (E.26) and the actual

Sinkhorn objective (E.24) at an approximate minimizer is at most µm−30 ≤ ε
2 =: ∆ by Lemma 279.

Thus, it suffices to find a ε-approximate minimizer to (E.26) with the choice of parameters

µ′ ← µ

4C
=

µ

8 (‖c‖∞ + 33µ log(m))
, and ε← ε

8C
=

ε

16 (‖c‖∞ + 33µ log(m))
.

It is straightforward to verify that the assumptions at the start of Section 6.4 on ‖A‖∞, ‖b‖1,

and ‖c‖∞ are all met for this problem and the desired accuracy parameter. Thus, by applying

Corollary 21, we obtain the desired runtime.

APPENDIX E. DEFERRED PROOFS FROM CHAPTER 6 711

E.3.2 Box-constrained Newton for computing Sinkhorn distances: The-

orem 86

In this section, we show how to apply the recent matrix scaling solvers developed in [145] to obtain

second-order high-accuracy solvers for approximating Sinkhorn distances. Our approach follows

from a direct connection to the scaling problem via the well-known correspondence of matrix scaling

and computing Sinkhorn distances: we provide the following results to make this reduction from

matrix scaling rigorous for completeness, and to prove our claimed runtime in Theorem 86.

We first define the matrix scaling problem.

Definition 55 (Matrix scaling). Given a nonnegative matrix K ∈ Rn1×n2

≥0 , the (r, c)-matrix scaling

problem asks to find the vectors u ∈ Rn1 , v ∈ Rn2 such that

diag (exp(u)) ·K · diag (exp(v)) 1 = r, 1>diag (exp(u)) ·K · diag (exp(v)) = c>.

In other words, it asks to rescale K by nonnegative diagonal matrices to obtain the specified row

and column marginals. Prior work by [145] gives a near-linear time matrix scaling solver by using a

box-constrained Newton’s method, which we restate in Proposition 63 for our use.

Proposition 63 (Theorem 4.6, [145]). Given K ∈ Rn1×n2

≥0 with sK :=
∑
i∈[n1],j∈[n2] Kij, define

PK(u, v) :=
∑

i∈[n1],j∈[n2]

Kij exp(ui − vj)− 〈r, u〉+ 〈c, v〉. (E.28)

Suppose there is an approximate (r, c)-scaling (u, v) satisfying PK(u, v) ≤ infu′,v′ PK(u′, v′) + ε2

n1+n2

and ‖u‖∞ , ‖v‖∞ ≤ B. Then we can compute an approximate (r, c) scaling (u, v) of K satisfying

‖diag (exp(u)) ·K · diag (exp(v)) 1− r‖22 +
∥∥diag (exp(v)) ·K> · diag (exp(u)) 1− c

∥∥2

2
≤ ε,

in time Õ(nnz (K) ·B log2(sKε)).

It is well-known that computing Sinkhorn distances is equivalent to finding the optimal matrix

scaling for K := exp(− 1
µC) ∈ RL×R, where C = (cij)i∈L,j∈R comes from reshaping the cost vector

(see e.g. Lemma 2, [151]). Consequently, we can apply Proposition 63 with ε := ε2

8‖c‖2∞m
and

OTRound (Lemma 278) to obtain a high-precision solver for the Sinkhorn distance.

Theorem 86 (Box-constrained Newton solver for Sinkhorn distances). Consider the Sinkhorn dis-

tance objective (E.24) on an instance with n = |L|+ |R| vertices and m = |L||R| edges, and suppose

ε ∈ [m−5 ‖c‖∞ , ‖c‖∞] and µ ∈ (0, ‖c‖∞]. The algorithm in Proposition 63 obtains an ε-approximate

minimizer to (E.24) in time

Õ

(
m ‖c‖∞

µ

)
.

APPENDIX E. DEFERRED PROOFS FROM CHAPTER 6 712

To prove the theorem, we first require one helper lemma.

Lemma 280. Let dL ∈ ∆L, dR ∈ ∆R be demands, let C ∈ RL×R≥0 be costs, and define K :=

exp(− 1
µC) for some µ ≥ 0. Let x ∈ Rm≥0 be X ∈ RL×R appropriately vectorized, such that X =

diag (u) ·K · diag (v) for some u ∈ RL≥0, v ∈ RR≥0. Assume that

‖X1− dL‖1 +
∥∥X>1− dR

∥∥
1
≤ ∆.

Then, x̂ := x
‖x‖1

is a 3C∆ + µm−30-approximate minimizer to (E.24) with demands d, where C :=

2(‖c‖∞ + 33µ log(m)).

Proof. Clearly, x̂ is also a diagonal scaling of K, by multiplying u or v by appropriate scalars, and

‖x− x̂‖1 = |‖x‖1 − 1| =
∣∣1>X1− 1>dL

∣∣ ≤ ‖X1− dL‖1 ≤ ∆.

This along with Lemma 2 of [151] implies that x̂, as a diagonal scaling of K, is the optimal solution

to (E.24) for some demands d̂L = X̂1, d̂R = X̂>1 such that∥∥∥d̂− d∥∥∥
1

= ‖X1− dL‖1 +
∥∥X>1− dR

∥∥
1
≤ ∆ +

∥∥∥(X− X̂)1
∥∥∥

1
+
∥∥∥(X− X̂)>1

∥∥∥
1
≤ 3∆.

The remainder of the proof follows from Lemma 281.

Next, Lemma 280 is key to proving Theorem 86 below.

Proof of Theorem 86. Let C := 2 (‖c‖∞ + 33µ log(m)). We first do a preprocessing step to pad the

demands dL, dR to the modified demands d̃L = Oδ(dL) and d̃R = Oδ(dR) (see Definition 26), where

δ := ε
48mC . Next, suppose for ε := ε2

288C2m , we find a ε-approximate (d̃L, d̃R)-scaling (u, v) in the

sense of Proposition 63, such that X := diag (u) ·K · diag (v) satisfies

∥∥∥X1− d̃L
∥∥∥

1
+
∥∥∥X>1− d̃R

∥∥∥
1
≤
√

2m

√∥∥∥X1− d̃L
∥∥∥2

2
+
∥∥∥X>1− d̃R

∥∥∥2

2
≤
√

2mε =
ε

12C
.

Recalling that the guarantees of padding imply∥∥∥dL − d̃L∥∥∥
1

+
∥∥∥dR − d̃R∥∥∥

1
≤ 2mδ + 2mδ =

ε

12C
,

we have by the triangle inequality, letting x ∈ Rm≥0 be the appropriately vectorized X, and x̂ := x
‖x‖1

,

∥∥B>x̂− d∥∥
1
≤
∥∥∥X1− d̃L

∥∥∥
1

+
∥∥∥dL − d̃L∥∥∥

1
+
∥∥∥X>1− d̃R

∥∥∥
1

+
∥∥∥dR − d̃R∥∥∥

1
+ 2 ‖x̂− x‖1

≤ ε

3C
.

APPENDIX E. DEFERRED PROOFS FROM CHAPTER 6 713

In the last inequality, we bound (see the proof of Lemma 280) ‖x− x̂‖1 ≤
ε

12C . Next, let x′ be the

plan which results after applying OTRound for x̂ and demands d, and let x̃ be the resulting plan

when applying OTRound for x?µ and demands d̃, where x?µ is optimal for (E.24) with demands d. By

a similar argument as used in the proof of Lemma 279, we have

〈c, x̃〉+ µH(x̃) ≤
〈
c, x?µ

〉
+ µH(x?µ) + C

∥∥∥B>x?µ − d̃∥∥∥
1

+ µm−30,

〈c, x′〉+ µH(x′) ≤ 〈c, x̂〉+ µH(x̂) + C
∥∥B>x̂− d∥∥

1
+ µm−30.

(E.29)

Moreover, letting x̃?µ be optimal for (E.24) with demands d̃, applying Lemma 280 with d ← d̃ and

∆← ε
12C , we obtain

〈c, x̂〉+ µH(x̂) ≤
〈
c, x̃?µ

〉
+ µH(x̃?µ) +

ε

4
+ µm−30 ≤ 〈c, x̃〉+ µH(x̃) +

ε

4
+ µm−30, (E.30)

since x̃ is feasible for (E.24) with demands d̃. Finally,∥∥∥B>x?µ − d̃∥∥∥
1

=
∥∥∥d− d̃∥∥∥

1
≤ ε

12C
. (E.31)

Combining (E.29), (E.30), and (E.31), as well as our assumed ranges on ε and µ, we obtain

〈c, x′〉+ µH(x′) ≤
〈
c, x?µ

〉
+ µH(x?µ) + C

∥∥∥B>x?µ − d̃∥∥∥
1

+ C
∥∥B>x̂− d∥∥

1
+
ε

4
+ 3µm−30

≤
〈
c, x?µ

〉
+ µH(x?µ) +

ε

12
+
ε

3
+
ε

4
+ 3µm−30 ≤

〈
c, x?µ

〉
+ µH(x?µ) + ε.

This proves the correctness of returning the transport plan x′.

The runtime is bounded by one call to the matrix scaling solver, and one call to OTRound

(which clearly does not dominate). To parameterize Proposition 63, the matrix scaling problem

with K = exp(− 1
µC) ∈ RL×R satisfies sK ≤ m since c ≥ 0 entrywise. Furthermore, there are

optimal (d̃L, d̃R)-scaling vectors (u?, v?) of K satisfying (see e.g. Lemma 10, [82]):

‖u?‖∞ , ‖v?‖∞ = O

‖c‖∞
µ

+ log
m

mini∈L,j∈R

(
[d̃L]i, [d̃R]j

)
 = O

(
‖c‖∞
µ

+ log
m ‖c‖∞

ε

)
.

Thus by applying Proposition 63 with ε = ε2

288C2m , the runtime is bounded as desired.

E.3.3 Unaccelerated rate of Sinkhorn’s algorithm

In this section, we demonstrate that Sinkhorn iteration obtains a complexity for approximately

optimizing (E.24) scaling as Õ(
‖c‖2∞
µε), the natural unaccelerated counterpart to Theorem 85. We

note that this rate for solving (E.24) (up to logarithmic factors) appeared as Theorem 5 of [24], and

APPENDIX E. DEFERRED PROOFS FROM CHAPTER 6 714

we provide a proof for completeness. We consider an algorithm and combine an analysis of Sinkhorn

due to [208] and a technical lemma developed in this paper (Lemma 276 from Appendix E.2.3), which

we use to reduce (E.24) to a regularized box-simplex game up to negligible (inverse-polynomial)

additive error.

Throughout, we assume ε ≤ µ ≤ ‖c‖∞, and further that
‖c‖∞
ε ≤ m5; otherwise, the runtime of

cutting-plane methods [296] subsume all runtimes claimed in this paper for approximately solving

(E.24). Finally, throughout this section we will fix the values of ε, µ, and c ∈ Rm≥0, and define for

demands d the optimal value of (E.24) by

OPTµ(d) := min
x∈∆m,B>x=d

〈c, x〉+ µH(x).

We first bound the difference between OPTµ(d) and OPTµ(d′) for “nearby” d and d′.

Lemma 281. For any demand vectors d, d′ ∈ RL+R
≥0 with blockwise restrictions in ∆L and ∆R,

OPTµ(d) ≤ OPTµ(d′) + (2 ‖c‖∞ + 66µ log(m)) ‖d− d′‖1 + µm−30.

Proof. Throughout the proof define ∆ := ‖d− d′‖1. Let x satisfying B>x = d achieve the value

OPTµ(d), and similarly let x′ with B>x = d′ achieve OPTµ(d′). By Lemma 278, there is a plan x̃

with B>x̃ = d′ and ‖x− x̃‖1 ≤ 2∆. Since x′ minimizes the Sinkhorn objective with demands d′,

〈c, x′〉+ µH(x′) = 〈c, x̃〉+ µH(x̃)

= 〈c, x〉+ µH(x) + (〈c, x̃− x〉+ µH(x̃)− µH(x))

≤ 〈c, x〉+ µH(x) + (2 ‖c‖∞ + 66µ log(m)) ∆ + µm−30.

The only inequality used `1-`∞ Hölder’s, and Lemma 276.

For the remainder of the section, we will fix a particular d which we wish to optimize the Sinkhorn

objective for (and refer to all other demands by d′, d̃, etc.). We begin by defining the “padded”

demand vector d̃ ∈ RL+R
≥0 obtained from modifying d as follows:

d̃L =
max(dL,m

−20)

‖max(dL,m−20)‖1
, d̃R =

max(dR,m
−20)

‖max(dR,m−20)‖1
. (E.32)

By observation, ‖d̃− d‖1 ≤ 2m−19. Next, we recall a result from the literature on the performance

of Sinkhorn’s algorithm.

Proposition 64 (Theorem 1, [208]). There is an algorithm, Sinkhorn, which given demand vector

d̃ entrywise at least m−21, returns x′ such that

x′ = argminx∈∆m,B>x=d′ 〈c, x〉+ µH(x)

APPENDIX E. DEFERRED PROOFS FROM CHAPTER 6 715

for some d′ with ‖d′ − d‖1 ≤ ∆, in time

O

(
m

(
‖c‖∞
µ∆

+
logm

∆

))
.

Finally, we give our main result on the performance of Sinkhorn’s algorithm for optimizing (E.24).

Corollary 63. For (E.24) on an instance with n vertices and m edges, suppose ε ≤ µ ≤ ‖c‖∞ and
‖c‖∞
ε ≤ m5. Using Sinkhorn (Proposition 64) on d̃ defined in (E.32) to accuracy

∆ :=
ε

10 ‖c‖∞ + 330µ log(m)

and then applying OTRound (Lemma 278) with demands d results in a vector x with B>x = d and

〈c, x〉+ µH(x) ≤ OPTµ(d) + ε

in time

O

(
‖c‖2∞
µε

+
µ log2m

ε

)
.

Proof. By Proposition 64, we obtain a vector x′ ∈ ∆m satisfying B>x′ = d′, 〈c, x〉 + µH(x), and

‖d′ − d‖1 ≤
∥∥∥d′ − d̃∥∥∥

1
+
∥∥∥d̃− d∥∥∥

1
≤ ∆ + 2m−19. Moreover, letting x ← OTRound(x′) for demands

d, we have by Lemma 278 that ‖x− x′‖1 ≤ 2∆ + 4m−19, implying

〈c, x〉+ µH(x) ≤ 〈c, x′〉+ µH(x′) + (‖c‖∞ + 33µ log(m))
(
2∆ + 4m−19

)
+ µm−30

≤ 〈c, x′〉+ µH(x′) +
ε

2
= OPTµ(d′) +

ε

2
.

Moreover, Lemma 281 implies that

OPTµ(d′) ≤ OPTµ(d) + (2 ‖c‖∞ + 66µ log(m))
(
2∆ + 4m−19

)
+ µm−30 ≤ OPTµ(d) +

ε

2
.

The conclusion follows from combining the above two displays.

Appendix F

Deferred proofs from Chapter 7

F.1 Deferred proofs from Section 7.2

F.1.1 Dual averaging regret bounds

Theorem 45. Let G1, . . . ,GT be any sequence of gain matrices in Sn and let X̄t = P̄(η
∑t−1
i=1 Gi)

as in Eq. (7.14). Then, for every T ∈ N,

λmax

(
T∑
t=1

Gt

)
−

T∑
t=1

〈
Gt, X̄t

〉
≤ log(4n)

η
+

3η

2
·
T∑
t=1

‖Gt‖2∞ . (7.16)

If additionally 0 � Gt � I for every t and η ≤ 1
6 ,

λmax

(
T∑
t=1

Gt

)
−

T∑
t=1

〈
Gt, X̄t

〉
≤ log (4n)

η
+ 3η · λmax

(
T∑
t=1

Gt

)
. (7.17)

Proof. We start with the well-known Bregman 3-point identity, valid for any Φ0,Φ1,Φ2 ∈ Sn,

〈
Φ2 − Φ1, P̄(Φ0)− P̄(Φ1)

〉
= V̄Φ0

(Φ1)− V̄Φ0
(Φ2) + V̄Φ1

(Φ2); (F.1)

the identity follows from the definition (7.15) of V̄ by direct substitution. Fix some S ∈ relint∆n

and S ∈ Sn such that S = P̄(Ψ) (which exists by Proposition 21.4). Let Yt = η
∑t−1
i=1 Gi so that

X̄t = P̄(Yt). For a given t, we use the 3-point identity with Φ0 = Ψ,Φ1 = Yt and Φ2 = Yt+1,

yielding

η
〈
Gt,S− X̄t

〉
=
〈
Yt+1 −Yt, P̄(Ψ)− P̄(Yt)

〉
= V̄Ψ(Yt)− V̄Ψ(Yt+1) + V̄Yt

(Yt+1).

716

APPENDIX F. DEFERRED PROOFS FROM CHAPTER 7 717

Summing these equalities over t = 1, . . . , T and dividing by η gives〈
T∑
t=1

Gt,S

〉
−

T∑
t=1

〈
Gt, X̄t

〉
=
V̄Ψ(Y1)− V̄Ψ(YT+1)

η
+

1

η

T∑
t=1

V̄Yt(Yt+1) (F.2)

≤ log 4n

η
+

3η

2

T∑
t=1

‖Gt‖2∞ . (F.3)

Above, we used V̄Yt(Yt+1) = V̄Yt(Yt + ηGt) ≤ 3
2η

2 ‖Gt‖2∞ (Proposition 21.1) along with Y1 = 0

and V̄Ψ(0)− V̄Ψ(YT+1) ≤ log 4n (Proposition 21.3).

Since the bound (F.3) is valid for any S ∈ relint∆n, we may supremize it over S. The result (7.16)

follows from noting that supS∈relint∆n

〈∑T
t=1 Gt,S

〉
= λmax

(∑T
i=1 Gt

)
.

To see the second bound (7.17), we return to the identity (F.2) and note that the assumptions

0 � Gt � I and η ≤ 1
6 imply ‖ηGt‖∞ ≤

1
6 . Therefore we may use Proposition 21.2 to obtain

V̄Yt(Yt+1) = V̄Yt
(Yt + ηGt) ≤ 3 ‖ηGt‖∞

〈
ηGt, P̄(Yt)

〉
= 3η2

〈
Gt, X̄t

〉
.

Substituting back into (F.2), rearranging and taking the supremum over S as before, we obtain

λmax

(
T∑
i=1

Gt

)
≤ (1 + 3η)

T∑
t=1

〈
Gt, X̄t

〉
+

log(4n)

η
. (F.4)

Dividing through by (1 + 3η) and noting that 1 − x ≤ 1
1+x ≤ 1 for every x ≥ 0, we obtain the

result (7.17), concluding the proof.

F.1.2 High probability regret bounds

Corollary 23. Let G1, . . . ,GT be symmetric gain matrices satisfying Assumption 5 and let Xt be

generated according to Eq. (7.13). If ‖Gt‖∞ ≤ 1 for every t, then for every T ∈ N and δ ∈ (0, 1),

with probability at least 1− δ,

λmax

(
T∑
i=1

Gt

)
−

T∑
t=1

〈Gt,Xt〉 ≤
log(4n)

η
+

3η

2
T +

√
2T log 1

δ . (7.18)

If additionally 0 � Gt � I for every t and η ≤ 1
6 , then with probability at least 1− δ,

λmax

(
T∑
i=1

Gt

)
−

T∑
t=1

〈Gt,Xt〉 ≤
log (4n/δ)

η
+ 4η λmax

(
T∑
i=1

Gt

)
. (7.19)

Proof. We start with the first claim (7.18). Recall that a random processDt adapted to a filtration Ft
is σ2-sub-Gaussian if E[exp(λDt) | Ft−1] ≤ exp(λ2σ2/2) for all λ ∈ R. Then using the boundedness

APPENDIX F. DEFERRED PROOFS FROM CHAPTER 7 718

assumption that 〈Gt,Xt〉 ≤ ‖Gt‖∞ ≤ 1, Hoeffding’s lemma on bounded random variables implies

that the martingale difference sequence 〈Gt,Xt− X̄t〉 is 1-sub-Gaussian. Consequently, the Azuma-

Hoeffding inequality immediately implies that

T∑
t=1

〈Gt,Xt〉 ≥
T∑
t=1

〈Gt, X̄t〉 −
√

2T log 1
δ w.p. ≥ 1− δ.

The bound (7.16) in Theorem 45 thus gives the result (7.18).

For the multiplicative bound (7.19), we require a slightly different relative martingale convergence

guarantee.

Lemma 282 ([20], Lemma G.1). Let {Dt} be adapted to the filtration {Ft} and satisfy 0 ≤ Dt ≤ 1.

Then, for any δ, µ ∈ (0, 1), and any T ∈ N,

P

(
T∑
t=1

Dt ≥ (1− µ)

T∑
t=1

E [Dt | Ft−1]−
log 1

δ

µ

)
≥ 1− δ.

Similarly, the assumption 0 � Gt � I, along with Xt ∈ ∆n, imply 0 ≤ 〈Gt,Xt〉 ≤ 1. Therefore,

the conditions of Lemma 282 hold for Dt = 〈Gt,Xt〉, and we use it with µ = η ≤ 1, obtaining

T∑
t=1

〈Gt,Xt〉 ≥ (1− η)

T∑
t=1

〈
Gt, X̄t

〉
−

log 1
δ

η
w.p. ≥ 1− δ.

The bound (7.17) in Theorem 45 thus yields that with probability at least 1−δ over the randomness

in Xt and Gt,
T∑
t=1

〈Gt,Xt〉 ≥ (1− η)(1− 3η)λmax

(
T∑
t=1

Gt

)
− log(4n/δ)

η
.

Noting that (1− η)(1− 3η) ≥ 1− 4η completes the proof.

F.1.3 Proof of Lemma 7.2.2

For any Y,D ∈ Sn, ∇2pmw(Y)[D,D] ≤
〈
D2,Pmw(Y)

〉
.

Proof. While the result is evident from the development in [421], it is not stated there formally. We

therefore derive it here using our notation and one key lemma from [421]. First, note that

〈D,∇pmw(Y)〉 = 〈D,Pmw(Y)〉 =

〈
D, eY

〉
tr eY

,

where throughout ∇ denotes differentiation with respect to Y and D is viewed as fixed. Applying

APPENDIX F. DEFERRED PROOFS FROM CHAPTER 7 719

∇ again gives,

∇2pmw(Y)[D,D] =

〈
D,∇

(〈
D, eY

〉
tr eY

)〉
=

〈
D,∇

〈
D, eY

〉〉
tr eY

−

(〈
D, eY

〉
tr eY

)2

≤
〈
D,∇

〈
D, eY

〉〉
tr eY

.

Note that ∇
〈
D, eY

〉
6= DeY when D and Y do not commute. However, using the Taylor series for

the exponential and the formula ∇
〈
D,Yk

〉
=
∑k−1
i=0 YiDYk−1−i gives,

∇
〈
D, eY

〉
=

∞∑
k=0

1

k!
∇
〈
D,Yk

〉
=

∞∑
k=1

k−1∑
i=0

1

k!
YiDYk−1−i.

Consequently, we may write

〈
D,∇

〈
D, eY

〉〉
=

∞∑
k=1

k−1∑
i=0

1

k!

〈
D,YiDYk−1−i〉 =

∞∑
k=1

k−1∑
i=0

1

2(k!)

〈
D,YiDYk−1−i + Yk−1−iDYi

〉
.

Lemma 1 in [420] shows that, when Y � 0,

〈
D,YiDYk−1−i + Yk−1−iDYi

〉
≤ 2

〈
D2,Yk−1

〉
.

Substituting back, this gives

〈
D,∇

〈
D, eY

〉〉
≤
∞∑
k=1

1

(k − 1)!

〈
D2,Yk−1

〉
=
〈
D2, eY

〉
,

and consequently

∇2pmw(Y)[D,D] ≤
〈
D2, eY

〉
tr eY

=
〈
D2,Pmw(Y)

〉
=
〈
D2,∇pmw(Y)

〉
as required. Finally, note that the assumption Y � 0 is without loss of generality, as Pmw(Y) =

Pmw(Y + cI) for every c ∈ R, and therefore ∇2pmw is also invariant to scalar shifts.

F.1.4 Proof of Lemma 7.2.2

For any Y,D ∈ Sn, orthogonal eigenbasis Q for Y , and w ∼ Dirichlet(1
2 , . . . ,

1
2),

∇2p̄(Y)[D,D] ≤ 3 · Ew∇2pmw(Y + Q diag(logw)QT)[D,D] (7.24)

≤ 3
〈
D2, P̄(Y)

〉
. (7.25)

APPENDIX F. DEFERRED PROOFS FROM CHAPTER 7 720

Proof. Let D̃ = QTDQ, where as before Y = QΛQT is an eigen-decomposition and Λ = diag(λ).

Recall that lse : Rn → R denotes the vector softmax function, lse(y) := log(
∑n
i=1 e

yi) = pmw(diag y).

Similarly, define lse(y) := Ewlse(y+logw) for w ∼ Dirichlet(1
2 , . . . ,

1
2). By Lemma 87, p̄(Y) = lse(λ)

is a spectral function. Theorem 3.3 of [357] prove that

∇2p̄(Y)[D,D] = ∇2lse(λ)[diag D̃,diag D̃] +
〈
Ā(λ), D̃ ◦ D̃

〉
, (F.5)

where ◦ denotes elementwise multiplication, diag(D̃) is a vector comprised of the diagonal of D̃, and

the matrix Ā is given by

Āij(λ) =
∇ilse(λ)−∇j lse(λ)

λi − λj
= Ew

∇ilse(λ+ logw)−∇j lse(λ+ logw)

λi − λj︸ ︷︷ ︸
:=Aw

ij(λ)

for i 6= j and 0 otherwise, whenever λ has distinct elements. This distinctiveness assumption is

without loss of generality, as p̄ is C2 (Theorem 4.2, [357]) so we may otherwise consider an arbitrarily

small perturbation of λ and appeal to continuity of ∇2p̄.

We now use the spectral function Hessian formula to write down ∇2pmw(Y{w})[D,D] where

Y{w} := Y +Qdiag(logw)QT (noting that Y and Y{w} have the same eigenvectors),

∇2pmw(Y{w})[D,D] = ∇2lse(λ+ logw)[diag D̃,diag D̃] +
〈
Amw(λ+ logw), D̃ ◦ D̃

〉
, (F.6)

where

Amw
ij (λ) :=

∇ilse(λ)−∇j lse(λ)

λi − λj
= A1

ij(λ)

for i 6= j and 0 otherwise. Taking the expectation over w in (F.6) and recalling the definition

lse(λ) = Ewlse(λ+ logw) gives

Ew∇2pmw(Y{w})[D,D] = ∇2lse(λ)[diag D̃,diag D̃] +
〈
EwAmw(λ+ logw), D̃ ◦ D̃

〉
. (F.7)

Comparing Eq. (F.7) to (F.5) and the desired bound (7.24), we see that it remains to upper

bound Ā(λ) = EwAw(λ) in terms of EwAmw(λ + logw). Fix indices i, j ∈ [n] such that i 6= j, and

let

δ :=
λi − λj

2
and ρ :=

1

2
log

wi
wj
.

Since Ā and Amw are both symmetric matrices, we may assume that λi > λj and so δ > 0 (recall

we assumed λi 6= λj without loss of generality). Let wi↔j denote a vector identical to w except

coordinates i and j are swapped. With this notation, Lemma 283, which we prove in Section F.1.4,

APPENDIX F. DEFERRED PROOFS FROM CHAPTER 7 721

yields the bound

Awij(λ) +Aw
i↔j

ij (λ) ≤
(

1 +
|ρ| tanh(δ)

δ

)[
Amw
ij (λ+ logw) +Amw

ij (λ+ logwi↔j)
]
.

Taking the expectation over w and using the fact that Dirichlet(1
2 , . . . ,

1
2) is invariant to permuta-

tions, we have

Āij(λ) ≤ Ew
[(

1 +
|ρ| tanh(δ)

δ

)
Amw
ij (λ+ logw)

]
. (F.8)

We now focus on the term Ew |ρ| tanh(δ)
δ Amw

ij (λ+ logw). We have

Ew
|ρ| tanh(δ)

δ
Amw
ij (λ+ logw) = Ew

|ρ| tanh(δ)

δ
Amw
ij (λ+ logw)

[
I{|ρ|≤δ} + I{|ρ|>δ}

]
≤ (tanh δ)EwAmw

ij (λ+ logw)I{|ρ|≤δ} +
tanh δ

δ
Ew|ρ|Amw

ij (λ+ logw)I{|ρ|>δ}, (F.9)

where the final transition uses |ρ|I{|ρ|≤δ} ≤ δI{|ρ|≤δ} and Amw
ij (ζ) ≥ 0 for every ζ ∈ Rn. The latter

is a consequence of the convexity of lse and is also evident from Eq. (F.14) in Section F.1.4.

Since w ∼ Dirichlet(1
2 , . . . ,

1
2), ρ = 1

2 log wi
wj

is independent of w\ij := {wk}k 6=i,j . Moreover,

wi, wj are completely determined by ρ and w\ij (see explicit expression in Section F.1.4). Therefore,

conditional on w\ij , A
mw
ij (λ + logw) is a function of ρ. In Lemma 284 we prove that for every λ

and w\ij , this function is decreasing in ρ for ρ > δ. Hence, conditionally on w\ij and the event

ρ > δ, the random variables |ρ| and Amw
ij (λ + logw) are negatively correlated : the expectation of

their product at most the product of their expectations. Let Eρ denote expectation conditional on

w\ij . Lemma 285, with f(ρ) = |ρ|, g(ρ) = Amw
ij (λ+ logw), and S = {ρ | ρ > δ} gives that

Eρ|ρ|Amw
ij (λ+ logw)I{ρ>δ} ≤ (Eρ [|ρ| | ρ > δ])

(
EρAmw

ij (λ+ logw)I{ρ>δ}
)
. (F.10)

Similarly, Lemma 284 also gives that (conditional on w\ij) A
mw
ij (λ + logw) is increasing in ρ for

ρ < −δ, and therefore, by Lemma 285,

Eρ|ρ|Amw
ij (λ+ logw)I{ρ<−δ} ≤ (Eρ [|ρ| | ρ < −δ])

(
EρAmw

ij (λ+ logw)I{ρ<−δ}
)
. (F.11)

Let z ∼ Beta(1
2 ,

1
2). The random variable ρ = 1

2 log wi
wj

is symmetric and distributed as 1
2 log(1−z

z).

Therefore

Eρ [|ρ| | ρ < −δ] = Eρ [|ρ| | ρ > δ] =
1

2
E
[
log 1−z

z | log 1−z
z > 2δ

] (?)

≤ δ +
√

1 + e−2δ,

where we prove the inequality (?) in Lemma 288. Substituting this bound into inequalities (F.10)

APPENDIX F. DEFERRED PROOFS FROM CHAPTER 7 722

and (F.11) and summing them, we obtain

Eρ|ρ|Amw
ij (λ+ logw)I{|ρ|>δ} ≤

(
δ +

√
1 + e−2δ

)
EρAmw

ij (λ+ logw)I{|ρ|>δ}.

Taking expectation over w\ij and substituting back into (F.9) therefore gives,

Ew
|ρ| tanh(δ)

δ
Amw
ij (λ+ logw) ≤

(
tanh(δ) +

√
1 + e−2δ · tanh(δ)

δ

)
EwAmw

ij (λ+ logw),

where we used again Amw
ij (·) ≥ 0 in order to increase the multiplier of EwAmw

ij (λ + logw)I{|ρ|≤δ}.
Computation shows that tanh(δ) +

√
1 + e−2δ · tanh(δ)

δ ≤ 1.58 ≤ 2 for every δ ≥ 0. Therefore, by the

bound (F.8) we have

Āij (λ) ≤ 3 · EwAij (λ+ logw) . (F.12)

Returning to (F.5), we write

∇2p̄(Y)[D,D] ≤ ∇2lse(λ)[diag D̃,diag D̃] + 3
〈
EwAmw(λ+ logw), D̃ ◦ D̃

〉
≤ 3

[
∇2lse(λ)[diag D̃,diag D̃] +

〈
EwAmw(λ+ logw), D̃ ◦ D̃

〉]
.

In the first inequality above, we substituted the bound (F.12), using the fact that all the entries of

D̃◦D̃ are nonnegative. In the second inequality, we used that fact that ∇2lse(λ)[diag D̃,diag D̃] ≥ 0

since lse is convex. Recalling the expression (F.7) gives (7.24). The final bound (7.25) follows from

applying Lemma 7.2.2 to the right side of (7.24) and using the identity (7.21).

A pointwise bound for Lemma 7.2.2

In this section we prove an elementary inequality that plays a central role in the proof of Lemma 7.2.2.

Let i, j ∈ [n] be such that i 6= j. For λ ∈ Rn, we define

Nij(λ) := ∇ilse(λ)−∇j lse(λ) =
eλi − eλj∑n
k=1 e

λk
=

sinh
(
λi−λj

2

)
cosh

(
λi−λj

2

)
+ 1

2

∑
k 6=i,j e

λk−
λi+λj

2

(F.13)

and

Amw
ij (λ) =

Nij(λ)

λi − λj
and Awij(λ) =

Nij(λ+ logw)

λi − λj
. (F.14)

Additionally, for any vector w ∈ Rn, let wi↔j denote a vector identical to w except coordinates i

and j are swapped. With this notation in hand, we state and prove our bound.

APPENDIX F. DEFERRED PROOFS FROM CHAPTER 7 723

Lemma 283. Let λ ∈ Rn, w ∈ Rn+ and i, j ∈ [n], i 6= j. Set δ =
λi−λj

2 and ρ = 1
2 log wi

wj
. Then,

Awij(λ) +Aw
i↔j

ij (λ) ≤
(

1 +
|ρ| tanh(δ)

δ

)[
Amw
ij (λ+ logw) +Amw

ij (λ+ logwi↔j)
]
.

Proof. Define

r =
1

2

∑
k/∈{i,j}

eλk+logwk−
λi+logwi+λj+logwj

2 ≥ 0.

Observe that if we swap wi and wj , δ and r remain unchanged and the sign of ρ reverses. For x ∈ R,

let f(x) := sinh(x)
cosh(x)+r . Using (F.13), we may write

q1 := 2Awij(λ) + 2Aw
i↔j

ij (λ) =
f(δ + ρ)

δ
+
f(δ − ρ)

δ

and

q2 := 2Amw
ij (λ+ logw) + 2Amw

ij (λ+ logwi↔j) =
f(δ + ρ)

δ + ρ
+
f(δ − ρ)

δ − ρ
.

With these definitions, our goal is to prove that q1−q2
q2
≤ |ρ| tanh(δ)

δ . Since f(x) is an odd function of

x, the terms q1 and q2 are invariant to sign flips in either δ or ρ. Therefore, we may assume both

δ ≥ 0 and ρ ≥ 0

without loss of generality.

Substituting back the expressions for q1, q2 and using that |ρ| = ρ by assumption yields

q1 − q2

q2
=
ρ

δ
·
f(δ+ρ)
δ+ρ −

f(δ−ρ)
δ−ρ

f(δ+ρ)
δ+ρ + f(δ−ρ)

δ−ρ

=
ρ

δ
· g(δ + ρ)− g(δ − ρ)

g(δ + ρ) + g(δ − ρ)
, (F.15)

where

g(x) :=
f(x)

x
=

tanh(x)

x
· cosh(x)

cosh(x) + r
.

Note that tanh(x)
x is decreasing in |x|. Since |δ − ρ| ≤ |δ + ρ| by the assumption ρ, δ ≥ 0, we have

g(δ − ρ) ≥ tanh(δ + ρ)

δ + ρ
· cosh(δ − ρ)

cosh(δ − ρ) + r
.

and therefore

g(δ + ρ)− g(δ − ρ) ≤ tanh(δ + ρ)

δ + ρ

(
cosh(δ + ρ)

cosh(δ + ρ) + r
− cosh(δ − ρ)

cosh(δ − ρ) + r

)

APPENDIX F. DEFERRED PROOFS FROM CHAPTER 7 724

and similarly,

g(δ + ρ) + g(δ − ρ) ≥ tanh(δ + ρ)

δ + ρ

(
cosh(δ + ρ)

cosh(δ + ρ) + r
+

cosh(δ − ρ)

cosh(δ − ρ) + r

)
.

As g(x) > 0 for every x, we may divide these bounds and obtain via elementary manipulation,

g(δ + ρ)− g(δ − ρ)

g(δ + ρ) + g(δ − ρ)
≤

cosh(δ+ρ)
cosh(δ+ρ)+r −

cosh(δ−ρ)
cosh(δ−ρ)+r

cosh(δ+ρ)
cosh(δ+ρ)+r + cosh(δ−ρ)

cosh(δ−ρ)+r

=
r [cosh (δ + ρ)− cosh (δ − ρ)]

2 cosh (δ + ρ) cosh (δ − ρ) + r [cosh (δ + ρ) + cosh (δ − ρ)]

≤ cosh(δ + ρ)− cosh(δ − ρ)

cosh(δ + ρ) + cosh(δ − ρ)
= tanh(ρ) tanh(δ) ≤ tanh(δ).

Substituting back into (F.15) establishes the desired bound. Examining the proof, we see that the

bound is tight for large values of r and |ρ|.

Piecewise monotonicity of Amw

Lemma 284. Let λ ∈ Rn, w ∈ σn (the simplex in Rn), and i, j ∈ [n] such that δ := 1
2 (λi−λj) > 0,

and set ρ := 1
2 log wi

wj
. When λ and {wk}k 6=i,j are held fixed, Amw

ij (λ + logw) is increasing in ρ for

ρ < −δ, and decreasing in ρ for ρ > δ.

Proof. First, we write Amw
ij (λ + logw) explicitly as a function of ρ, with λ and {wk}k 6=i,j as fixed

parameters. By (F.14) we have

Amw
ij (λ+ logw) =

sinh(ρ+ δ)

2(ρ+ δ)
[
cosh(ρ+ δ) + 1

2

∑
k/∈{i,j}

wk√
wiwj

eλk−
λi+λj

2

] .
Let m = wi + wj = 1 −

∑
k 6=i,j wk. Since wi

wj
= e2ρ and w ∈ σn, we have that wi = m

1+e−2ρ and

wj = m
1+e2ρ . Therefore,

1
√
wiwj

=
1

m

√
(1 + e−2ρ)(1 + e2ρ) =

2

m
cosh(ρ).

Thus,

Amw
ij (λ+ logw) =

sinh(ρ+ δ)

2(ρ+ δ) [cosh(ρ+ δ) + r0 cosh(ρ)]
,

where r0 =
∑
k/∈{i,j}

wk
m eλk−

λi+λj
2 is a function of only λ and {wk}k 6=i,j , and therefore Amw

ij (λ+logw)

can be viewed as a function of ρ as claimed.

APPENDIX F. DEFERRED PROOFS FROM CHAPTER 7 725

Writing x = ρ+ δ, showing the desired monotonicity properties is equivalent to showing that

b(x) :=
sinh(x)

x (cosh(x) + r0 cosh(x− δ))

is decreasing for x > 2δ and increasing for x < 0. The derivative of b(x) is

b′(x) =
cosh(x)− 1

x sinh(x)

x (cosh(x) + r0 cosh(x− δ))
− sinh(x) [sinh(x) + r0 sinh(x− δ)]

x [cosh(x) + r0 cosh(x− δ)]2
,

and has, for all x ∈ R, the same sign as

s :=
x [cosh(x) + r0 cosh(x− δ)]

sinh(x)
b′(x) = coth(x)− 1

x
− sinh(x) + r0 sinh(x− δ)

cosh(x) + r0 cosh(x− δ)
. (F.16)

For x > 2δ, we have by Dan’s favorite inequality (a1+a2

b1+b2
≥ min{a1

b1
, a2

b2
} for all a1, a2, b1, b2 ≥ 0),

sinh(x) + r0 sinh(x− δ)
cosh(x) + r0 cosh(x− δ)

≥ min {tanh(x), tanh(x− δ)} = tanh(x− δ) > tanh(x/2),

where in the last transition we used the fact that x > 2δ implies x− δ > x/2. Therefore, for x > 2δ

we have the following bound for s,

s ≤ coth(x)− 1

x
− tanh(x/2) =

1

sinh(x)
− 1

x
< 0,

so we have that b(x) is decreasing for x > 2δ as required, since s has the same sign as b′(x).

Similarly, for x < 0, we have by Dan’s favorite inequality,

− sinh(x)− r0 sinh(x− δ)
cosh(x) + r0 cosh(x− δ)

≥ min {− tanh(x),− tanh(x− δ)} = − tanh(x).

Therefore, for x < 0 we have

s ≥ coth(x)− 1

x
− tanh(x) =

1

−x
− 2

sinh(−2x)
> 0,

which shows that b(x) is increasing for x < 0, concluding the proof.

The following Lemma proves the intuitive fact that decreasing and increasing functions of the

same random variable are negatively correlated.

Lemma 285. Let ρ be a real-valued random variable, let f, g be functions from R to R and let S ⊂ R
be an interval. If f(x) is non-decreasing in x for x ∈ S and g(x) is non-increasing in x for x ∈ S,

then

Ef(ρ)g(ρ)I{ρ∈S} ≤ (E [f(ρ) | ρ ∈ S]) ·
(
Eg(ρ)I{ρ∈S}

)
.

APPENDIX F. DEFERRED PROOFS FROM CHAPTER 7 726

Proof. For every x, x′ ∈ S we have (f(x) − f(x′)) · (g(x) − g(x′)) ≤ 0. Hence, for every x, x′ ∈ R,

the bound (f(x)− f(x′)) · (g(x)− g(x′)) · I{x∈S}I{x′∈S} ≤ 0 holds as well. Let ρ′ be an independent

copy of ρ, then

E
[
(f(ρ)− f(ρ′)) · (g(ρ)− g(ρ′)) · I{ρ∈S}I{ρ′∈S}

]
≤ 0.

Rearranging and using the fact that ρ, ρ′ are i.i.d., we have

(
Ef(ρ)g(ρ)I{ρ∈S}

)
·
(
EI{ρ′∈S}

)
≤
(
E
[
f(ρ)I{ρ∈S}

])
·
(
E
[
g(ρ′)I{ρ′∈S}

])
.

Dividing by EI{ρ′∈S} = P(ρ ∈ S) yields the desired bound.

F.1.5 Facts about the Beta distribution

Here we collect properties of Beta-distributed random variables, which we use in our development.

Lemma 286. Let n ∈ N and let z ∼ Beta(1
2 ,

n−1
2). Then

E log 1
z = ψ

(
n
2

)
− ψ

(
1
2

)
≤ log(n) + log(2) + γ ≤ log(4n),

where ψ(x) = d
dx log Γ(x) is the digamma function, and γ is the Euler-Mascheroni constant.

Proof. E log 1
z = ψ

(
n
2

)
−ψ

(
1
2

)
by the well-known formula for expectation of the logarithm of a Beta

random variable. We have ψ(x) ≤ log(x) and ψ(1
2) = − log(4)− γ. Moreover, γ ≤ log 2, giving the

final bound.

Lemma 287. Let z ∼ Beta
(

1
2 ,

1
2

)
and ` ≥ 0. Then

2

π

e−`/2√
1 + e−`

≤ P
(

log
1− z
z
≥ `
)
≤ 2

π
e−`/2.

Proof. The distribution Beta
(

1
2 ,

1
2

)
has density 1

πx
−1/2 (1− x)

−1/2
. Therefore

P
(

log
1− z
z
≥ `
)

= P
(
z ≤ 1

1 + e`

)
=

1

π

∫ (1+e`)
−1

0

x−1/2 (1− x)
−1/2

dx.

To obtain a lower bound, we use (1− x)−1/2 ≥ 1 for every x ∈ [0, 1], and therefore,

P
(

log
1− z
z
≥ `
)
≥ 1

π

∫ (1+e`)
−1

0

x−1/2dx =
2

π
√

1 + e`
=

2

π

e−`/2√
1 + e−`

.

APPENDIX F. DEFERRED PROOFS FROM CHAPTER 7 727

For the upper bound, we use (1− x)
−1/2 ≤

(
1− 1

1+e`

)−1/2

for every 0 ≤ x ≤ (1 + e`)−1, giving

P
(

log
1− z
z
≥ `
)
≤ 1

π

√
1 + e`

e`

∫ (1+e`)
−1

0

x−1/2dx =
2

π
e−`/2.

Lemma 288. Let z ∼ Beta
(

1
2 ,

1
2

)
and ` ≥ 0. Then

E
[
log

1− z
z
| log

1− z
z
≥ `
]
≤ `+ 2

√
1 + e−`.

Proof. Conditional on log 1−z
z ≥ `, log 1−z

z is a nonnegative random variable, and we may therefore

write

E
[
log

1− z
z
| log

1− z
z
≥ `
]

=

∫ ∞
x=0

P
(

log
1− z
z
≥ x

∣∣∣∣ log
1− z
z
≥ `
)
dx

= `+

∫ ∞
x=`

P
(
log 1−z

z ≥ x
)

P
(
log 1−z

z ≥ `
) dx.

By Lemma 287,
P
(
log 1−z

z ≥ x
)

P
(
log 1−z

z ≥ `
) ≤√1 + e−` · e−(x−`)/2.

Integrating, we obtain the desired bound.

Lemma 289. Let 3 ≤ n ∈ N and let z ∼ Beta(1
2 ,

n−1
2). For every δ ∈ (0, 1),

P
(
z ≥ δ2

n

)
> 1− δ.

Proof. The random variable z has density

Γ(n2)

Γ(1
2)Γ(n−1

2)
x−1/2(1− x)(n−3)/2 ≤

√
n

2πx
,

where we used Γ(1
2) =

√
π and Gautschi’s inequality Γ(m+1)/Γ(m+s) ≤ (m+1)1−s with m = n

2 −1

and s = 1
2 . Integrating the upper bound on the density, we find P(z ≤ δ2/n) ≤

√
2
π δ < δ.

F.1.6 Efficient computation of matrix exponential-vector products

In this section we give a more detailed discussion of matrix exponential-vector product approxi-

mation using the Lanczos method, and prove the results stated in Section 7.2.3. We first formally

state the Lanczos method. In Next, we survey known approximation guarantees and derive simple

APPENDIX F. DEFERRED PROOFS FROM CHAPTER 7 728

corollaries. We then show that we can apply the matrix exponential to a random vector with a

multiplicative error guarantee, and then we prove it implies Proposition 22. We next discuss some

possible improvement to our guarantees via modifications and alternatives to the Lanczos method.

Finally, we prove Corollary 24.

Throughout this section we use mv(A) to denote the time required to multiply the matrix A

with any vector.

F.1.7 Description of the Lanczos method

Algorithm 75: Lanczos method for computing matrix exponential vector product
ẽxpk(A, b)

input : A ∈ Sn, number of iterations k, vector b ∈ Rn

1 q0 ← 0 ∈ Rn, q1 ← b/ ‖b‖2, β1 ← 1

2 for i = 1 to k do
3 qi+1 ← Aqi − βqi−1 and αi ← qTi+1qi

4 qi+1 ← qi+1 − αqi and βi+1 = ‖qi+1‖2
5 if βi+1 = 0 then break else qi+1 ← qi+1/βi+1

6 end

7 Let

Q = [q1 · · · qk] and T =

α1 β2 0

β2 α2
. . .

. . .
. . . βk

0 βk αk

8 Compute tridiagonal eigen-decomposition T = V ΛV T

return : ẽxpk(A, b) = ‖b‖2 ·QV exp(Λ)V T e1

Ignoring numerical precision issues, each iteration in the for loop requires O(mv(A)) time, and

that for a k-by-k tridiagonal matrix, eigen-decomposition requires O(k2) time [256], and so the total

complexity is O(mv(A)k + k2). In practical settings k � n ≤ mv(A) and the cost of the eigen-

decomposition is negligible. Nevertheless, there are ways to avoid performing it, which we discuss

briefly.

Known approximation results, and some corollaries

We begin with a result on uniform polynomial approximation of the exponential due to [466].

Theorem 87 ([466], Theorem 4.1 Restated). For every b > 0 and every ε ∈ (0, 1] there exists

APPENDIX F. DEFERRED PROOFS FROM CHAPTER 7 729

polynomial p : R→ R of degree O(
√

max{b, log(1/ε)} log(1/ε)) such that

sup
x∈[0,b]

| exp(−x)− p(x)| ≤ ε .

As an immediate corollary of this we obtain the following bounds for approximating exp(x) over

arbitrary values

Corollary 64. For every a < b ∈ R and every ε ∈ (0, 1] there exists polynomial p : R→ R of degree

O(
√

max{b− a, log(1/ε)} log(1/ε)) polynomial such that

sup
x∈[a,b]

| exp(x)− p(x)| ≤ ε exp(b) .

Proof. For all x ∈ [a, b] we have b − x ∈ [0, b − a] and therefore by Theorem 87 there is a degree

O(
√

max{b− a, log(1/ε)} log(1/ε)) polynomial q : R→ R such that

sup
x∈[a,b]

| exp(−(b− x))− q(b− x)| ≤ ε .

Since exp(−(b− x)) = exp(−b) exp(x), the polynomial p(x) = exp(b)q(b− x) is as desired.

The classical theory on the Lanczos method tells us that its error is bounded by twice that of

any uniform polynomial approximation. However, this theory does not account for finite precision.

A recent result [405] ties polynomial approximation to the error of the Lanczos method using finite

bitwidth floating point operations.

Theorem 88 ([405], Theorem 1). Let A ∈ Sn, u ∈ Rn, and f : R → R. Suppose k ∈ N,

η ∈ (0, ‖A‖op] and a polynomial p for degree < k satisfy,

sup
x∈[λmin(A)−η,λmax(A)+η]

|f(x)− p(x)| ≤ εk and sup
x∈[λmin(A)−η,λmax(A)+η]

|f(x)| ≤ C.

For any µ ∈ (0, 1), let yk,µ be the output of k iterations of the Lanczos method for approximating

f(A)v, using floating point operations with B ≥ c log(
nk‖A‖op

µη) bits precision (for numerical constant

c <∞). Then yk,µ satisfies

‖f(A)u− yk,µ‖2 ≤ (7k · εk + µ · C) ‖u‖2 .

If arithmetic operations with B bits of precision can be performed in O(1) time then the method can

be implemented in time O(mv(A)k + kBmax{k,B}).

Specializing to the matrix exponential and using the uniform approximation guarantee of Corol-

lary 64, we immediately obtain the following.

APPENDIX F. DEFERRED PROOFS FROM CHAPTER 7 730

Corollary 65. Let A ∈ Sn, u ∈ Rn, and ε > 0, and set M = max{‖A‖op , log(1/ε), 1}. There exists

numerical constants c, c′ < ∞ such that, for k ≥ c
√
M log(M/ε) and B ≥ c′ log(nMε), computing

y = ẽxpk(A, u) with B bits of floating point precision guarantees

‖exp(A)u− y‖2 ≤ ε exp(λmax(A)) ‖u‖2 .

The computation takes time

O
(

mv(A)
√
M log(M/ε) +M log2(nM/ε)

)
provided Θ(log(nMε)) bit arithmetic operations can be performed in time O(1).

Proof. Let η = 1. Using λmax(A)−λmin(A) ≤ 2 ‖A‖, Corollary 64 yields that for all α ∈ (0, 1] there

exists a degree O
(√

max{1 + ‖A‖op , log(1
α)} log(1

α)
)

polynomial p : R→ R such that

sup
x∈[λmin(A)−η,λmax(A)+η]

| exp(x)− p(x)| ≤ α exp(η) exp(λmax(A)) .

Further, since | exp(x)| ≤ exp(η) exp(λmax(A)) for all x ∈ [λmin(A) − η, λmax(A) + η], Theo-

rem 88 with f(x) = ex and η = 1 implies that for all µ ∈ (0, 1), after applying Lanczos for

k = O(
√

max{‖A‖op , log(1/α)} log(1/α)) iterations on a floating point machine with Θ(B) bits of

precision for B = log(nk‖A‖µ) returns y with

‖f(A)u− y‖2 ≤
(
µ+ α ·O(

√
max{‖A‖op , log(1/α)} log(1/α))

)
exp(η) exp(λmax(A)))

in time O((mv(A) + n)k + kBmax{k,B}). Choosing, α = O(ε/(M log(M/ε))) and µ = O(ε) yields

the result.

Multiplicative approximation for random vectors

We now combine the known results cited in the previous section with the randomness of the vector

fed to the matrix exponential, to obtain a multiplicative guarantee that holds with high-probability

over the choice of u, but not for all u ∈ Sn−1.

Proposition 65. Let ε ∈ (0, 1), δ ∈ (0, 1), and A ∈ Sn. If u is sampled uniformly at random from

the unit sphere and for k = Ω(
√
M log(nM/(εδ)) ∈ N for M = max{‖A‖op , log(n/(εδ)), 1} we let

y = ẽxpk(A, u) (See Algorithm 75) then

‖exp(A)u− y‖2 ≤ ε ‖exp(A)u‖2 with probability ≥ 1− δ.

This can be implemented in time O
(

mv(A)
√
M log(nM/(εδ) +M log2(nM/(εδ))

)
on a floating

point machine with O(log(nM/(εδ))) bits of precision where arithmetic operations take O(1) time.

APPENDIX F. DEFERRED PROOFS FROM CHAPTER 7 731

Proof. Consider an application of Corollary 65 to compute y such that

‖exp(A)u− y‖2 ≤ ε
′ exp(λmax(A)) ‖u‖2 .

Now let v be a unit eigenvector of A with eigenvalue λmax(A). Since v is an eigenvector or the PSD

matrix exp(A) with eigenvalue exp(λmax(A)) we have that ‖exp(A)u‖ ≥ exp(λmax)
∣∣vTu∣∣. However,

since u is a random unit vector we have that |vTu|2/ ‖u‖22 ∼ Beta(1
2 ,

n−1
2). Lemma 289 therefore

gives that |vTu|2/ ‖u‖22 ≥
δ2

n with probability at least 1 − δ. Consequently, exp(λmax(A)) ‖u‖2 ≤√
n
δ ‖exp(A)u‖2 with the same probability. Choosing ε′ = εδ/

√
n and invoking Corollary 65 yields

the result.

Proof of Proposition 22

The following lemma relates the multiplicative approximation error for matrix exponential vector

products with the additive approximation error for Pu(Y) under trace norm. Combining it with

Proposition 65 immediately yields Proposition 22.

Lemma 290. Let Y ∈ Sn, u, y ∈ Rn and ε ∈ [0, 1). If y ∈ Rn satisfies

‖exp(Y/2)u− y‖2 ≤
ε√
8
‖exp(Y/2)u‖2

then ∥∥∥∥∥Pu(Y)− yyT

‖y‖22

∥∥∥∥∥
1

≤ ε .

Proof. Let z := exp(Y/2)u so that by assumption ‖z − y‖2 ≤ ε ‖z‖2. Further, let z̄ := z/ ‖z‖2 and

ȳ := y/ ‖y‖2. Direct calculation (see e.g. Lemma 27 of [143]) yields that the eigenvalues of z̄z̄T − ȳȳT

are ±
√

1− (z̄T ȳ)2 = ± 1
2 ‖z̄ + ȳ‖2 ‖z̄ − ȳ‖2 and therefore the definition of Pu(Y) yields∥∥∥∥∥Pu(Y)− yyT

‖y‖22

∥∥∥∥∥
1

=
∥∥z̄z̄T − ȳȳT∥∥

1
= ‖z̄ + ȳ‖2 · ‖z̄ − ȳ‖2 ≤

√
2 ‖z̄ − ȳ‖2 , (F.17)

where in the last inequality we used that z̄ and ȳ are unit vectors. Further, by the triangle inequality

and the definitions of ȳ and z̄ we have

‖z̄ − ȳ‖2 ≤
∥∥∥∥ z

‖z‖2
− y

‖z‖2

∥∥∥∥
2

+

∥∥∥∥ y

‖z‖2
− y

‖y‖2

∥∥∥∥
2

=
‖z − y‖2
‖z‖2

+
| ‖y‖2 − ‖z‖2 |

‖z‖2
≤ 2
‖z − y‖2
‖z‖2

(F.18)

APPENDIX F. DEFERRED PROOFS FROM CHAPTER 7 732

Combining (F.17) and (F.18) with the fact that ‖z − y‖2 ≤ (ε/
√

8) ‖z‖2 then yields∥∥∥∥∥Pu(Y)− yyT

‖y‖22

∥∥∥∥∥
1

≤
√

2 · 2 · (ε/
√

8) = ε.

Therefore, Proposition 22 follows immediately by invoking 65 with slightly smaller ε.

Improvements to the Lanczos method

In this chapter we focused on the Lanczos method for approximating matrix exponential vector

products because of its excellent practicality and clean analysis. However, there are several modi-

fications to the method with appealing features, which we now describe briefly. A common theme

among these modifications is the use of rational approximations to the exponential, which converge

far faster than polynomial approximations [429, 466]. Consequently, it suffices to perform Õ (1)

Lanczos iterations on a carefully shifted and inverted version of the matrix. Each of these iterations

then involves solving a linear system, and the efficacy of the shift-invert scheme will depend on how

quickly they are solved.

One basic approach to solving these systems is via standard iterative methods, e.g. conjugate

gradient. We expect such approach to offer little to no advantage over applying the Lanczos ap-

proximation directly, as both methods produce vectors in the same Krylov subspace. However, the

approach renders the number of Lanczos iterations k logarithmic in ‖A‖op, and therefore the cost

k2 will never dominate the cost of the matrix-vector products [429, 405]

There is, however, a simpler way of avoiding the eigen-decomposition—simply use the rational

approximation on the tridiagonal matrix formed by running the ordinary Lanczos method, as [465]

proposes. With an appropriate rational function, computing a highly accurate approximation to

exp(T)e1 requires Õ (1) tridiagonal system solves, each costing O(k) time. We leave the derivation

of explicit error bounds for this technique (similar to Corollary 64) to future work. In practice,

the cost O(k2) of tridiagonal eigen-decomposition will often be very small compared to the cost

O(mv(A)k) of the matrix-vector products.

More significant improvements are possible if the linear system solving routine is able to exploit

information beyond matrix-vector products. For example, consider the case where the matrix to be

exponentiated is a sum of very sparse matrices—this will happen for our sketch whenever the Gt

matrices are much sparser than their cumulative sum. Then, it is possible to use stochastic variance

reduced optimization methods to solve the linear system, as [20] describe. Another scenario of

interest is when the input matrix has a Laplacian/SDD structure and in this case the performance of

specialized linear system solvers implies approximation guarantees where the polynomial dependence

on ‖A‖op is removed altogether [429]. A final useful structure is a chordal sparsity pattern, which

APPENDIX F. DEFERRED PROOFS FROM CHAPTER 7 733

enables efficient linear system solving through fast Cholesky decomposition.

Proof of Corollary 24

Corollary 24. Let G1, . . . ,GT be symmetric gain matrices satisfying ‖Gt‖∞ ≤ 1 for every t. There

exists a numerical constant k0 <∞, such that for every T ∈ N and δ ∈ (0, 1), X̃t;kt defined in (7.29)

with kt =
⌈
k0(
√

1 + ηt) log(nTδ)
⌉
, and Xt defined in (7.13) satisfy

T∑
t=1

〈
Gt, X̃t;kt

〉
≥ −1 +

T∑
t=1

〈Gt,Xt〉 w.p. ≥ 1− δ/2. (7.30)

Let ε ∈ (0, 1], T = 16 log(4en/δ)
ε2 and η =

√
2 log(4en)

3T . If Assumption 5 holds with respect to the actions

X̃t;kt , then with probability at least 1− δ, 1
T λmax

(∑T
i=1 Gt

)
− 1

T

∑T
t=1

〈
Gt, X̃t;kt

〉
≤ ε. Computing

the actions X̃1;k1
, . . . , X̃T ;kT requires O(ε−2.5 log2.5(nεδ)) matrix-vector products.

Proof. To obtain the bound (7.30) we use Proposition 22 with ε ← 1
T and δ ← δ/(2T) (since we

will use a union bound). At iteration t, ‖Gi‖∞ ≤ 1 for all i < t, the quantity M appearing in

Proposition 22 can be bounded as

M ≤

(
1 +

∥∥∥∥∥η2
t−1∑
i=1

Gi

∥∥∥∥∥
∞

)
log

nT 2

δ
≤ O(1)(1 + ηt) log

nT

δ
.

Therefore, our choice of kt suffices to guarantee, for Yt = η
∑t−1
i=1 Gi,

‖Put(Yt)− P̃ut;kt(Yt)‖1 ≤
1

T
with probability ≥ 1− δ

2T
,

and so by the union bound the inequality above holds for all t = 1, . . . , T with probability at least

1− (δ/2). Note that when using Proposition 22 we use the fact that ut is independent of Yt. Thus,

we have

T∑
t=1

〈
Gt,Xt − X̃t;kt

〉
≤

T∑
t=1

‖Gt‖∞ ‖Xt − X̃t;kt‖1 ≤
T∑
t=1

‖Put(Yt)− P̃ut;kt(Yt)‖1 = 1,

giving (7.30), where we have used ‖Gt‖∞ ≤ 1 for every t.

Note that if Assumption 5 holds with respect to the actions X̃t;kt then we have Gt ⊥ ut | Ft−1

and therefore E [〈Gt,Xt〉 |Ft−1] =
〈
Gt, X̄t

〉
so that Corollary 23 holds. Thus, to obtain the second

part of the corollary, we use the bound (7.18) with δ ← δ/2 and η and T as specified; using a union

bound again we have that (7.30) and (7.18) hold together with probability at least 1− δ. Note that

APPENDIX F. DEFERRED PROOFS FROM CHAPTER 7 734

η ≤ ε ≤ 1 and therefore 1/T ≤ 1/(ηT). This gives,

1

T
λmax

(
T∑
i=1

Gt

)
− 1

T

T∑
t=1

〈
Gt, X̃t;kt

〉
≤ 1

T
+

3η

2
+

log(4n)

ηT
+

√
2 log 2

δ

T

≤ 3η

2
+

log(4en)

ηT
+

√
2 log 2

δ

T
=

√
6 log(4en)

T
+

√
2 log 2

δ

T
≤ ε,

as required. Finally note that 1 + ηT = O(ε−1 log(nδ)) and consequently

kT = O
(
ε−1/2 log1/2(nδ) log1/2(nTδ)

)
= O

(
ε−1/2 log1.5(nεδ)

)
.

Since k1 ≤ k2 ≤ · · · kT , the total number of matrix-vector products is bounded by T · kT =

O(ε−2.5 log2.5(nεδ)), which concludes the proof.

F.2 Deferred proofs from Sections 7.4

F.2.1 Proof of Proposition 26

We give a proof of Proposition 26 in this section. First, we recall an algorithm for the testing variant

of a pure packing SDP problem given in Section 7.5.

Proposition 66 (Restatement of Theorem 48). There is an algorithm, Atest, which given matrices

{Mi}i∈[n] and a parameter C, is an ε-tolerant tester for the decision problem

does there exist w ∈ ∆n such that
∑
i∈[n]

wiMi � CI? (F.19)

The algorithm Atest succeeds with probability ≥ 1− δ and runs in time

O

(
Tmv

(
{Mi}i∈[n]

)
· log2(nd(δε)−1) log2 d

ε5

)
.

Proof of Proposition 26. As an immediate result of Proposition 66, we can solve (7.59) to multi-

plicative accuracy ε using a binary search. This reduction is derived as Lemma A.1 of [285], but we

give a brief summary here. We subdivide the range [?−,
?
+] into K buckets of multiplicative range

1 + ε
3 , i.e. with endpoints ?− · (1 + ε

3)k for 0 ≤ k ≤ K and

K = O

(
1

ε
· log

(?
+
?
−

))
.

We then binary search over 0 ≤ k ≤ K to determine the value of ?(v) to ε-multiplicative accuracy,

returning the largest endpoint for which the decision variant in Proposition 66 returns feasible (with

APPENDIX F. DEFERRED PROOFS FROM CHAPTER 7 735

accuracy ε
3). By the guarantees of Proposition 66, the feasible point returned by Proposition 66 for

this endpoint will attain an ε-multiplicative approximation to the optimization variant (7.59), and

the runtime is that of Proposition 66 with an overhead of O(logK).

F.3 Deferred proofs from Section 7.5

F.3.1 Proofs from Section 7.5.2

Since our notion of approximation is multiplicative, we can assume without more than constant loss

that A has bounded entries. This observation is standard, and formalized in the following lemma.

Lemma 291 (Entrywise bounds on A). Feasibility of Problem 3 is unaffected (up to constants in

ε) by removing columns of A with entries larger than nε−1.

Proof. If Aji > nε−1 for any entry, then xi ≤ ε(1+ε)
n , else ‖Ax‖p is already larger than 1+ε. Ignoring

all such entries of x and rescaling can only change the objective by a 1 +O(ε) factor.

Lemma 110. In all iterations t of Algorithm 31, defining Φt := ‖Awt‖p − ‖wt‖1, Φt+1 ≤ Φt.

Proof. Fix an iteration t. Define δ = ηgt, and note wt+1 = wt + δ ◦ wt; henceforth in this proof, we

will drop subscripts t when clear. Observe that

‖Awt+1‖p = ‖A((1 + δ) ◦ w)‖p =

∑
j∈[d]

[Aw]pj

(
1 +

[A(δ ◦ wt)]j
[Awt]j

)p1/p

.

As g ≤ 1 =⇒ δ ≤ p−11, A(δ◦wt)
Awt

≤ p−1 entrywise. Via (1 + x)p ≤ exp(px) ≤ 1 + px + p2x2 for

x ≤ p−1, it follows that

‖A((1 + δ) ◦ w)‖p ≤

∑
j∈[d]

[Aw]pj

(
1 +

p[A(δ ◦ w)]j
[Aw]j

+

(
p[A(δ ◦ w)]j

[Aw]j

)2
)1/p

.

APPENDIX F. DEFERRED PROOFS FROM CHAPTER 7 736

By direct manipulation of the above quantity, and recalling we defined v = Aw
‖Aw‖p

,

∑
j∈[d]

(
[Aw]pj + p[Aw]p−1

j [A(δ ◦ w)]j + p2[Aw]p−2
j [A(δ ◦ w)]2j

)1/p

=

‖Aw‖pp ∑
j∈[d]

vpj + pvp−1
j

[A(δ ◦ w)]j
‖Aw‖p

+ p2vp−2
j

(
[A(δ ◦ w)]j
‖Aw‖p

)2
1/p

= ‖Aw‖p

1 +
∑
j∈[d]

(
pvp−1
j

[A(δ ◦ w)]j
‖Aw‖p

+ p2vp−2
j

(
[A(δ ◦ w)]j
‖Aw‖p

))2
1/p

.

Using (1 + x)p > 1 + px, i.e. (1 + px)1/p < 1 + x, we thus obtain

‖A((1 + δ) ◦ w)‖p ≤ ‖Aw‖p +
〈
vp−1,A(δ ◦ w)

〉
+ p

〈
vp−1,

(A(δ ◦ w))2

Aw

〉
.

Cauchy-Schwarz yields that [A(δ ◦ w)]2j ≤ [A(δ2 ◦ w)]j [Aw]j , ∀j ∈ [d]. Substituting into the above,

‖A((1 + δ) ◦ w)‖p ≤ ‖Aw‖p +
〈
vp−1,A(δ ◦ w)

〉
+ p

〈
vp−1,A(δ2 ◦ w)

〉
= ‖Aw‖p +

∑
j∈[d]

[
A>vp−1

]
j
δjwj(1 + pδj).

(F.20)

Finally, to bound this latter quantity, since δ = ηg, we observe that for all j either δj = 0 or

1 + pδj = 1 + gj = 2− [A>vp−1]j , in which case

[
A>vp−1

]
j

(1 + pδj) =
[
A>vp−1

]
j

(
2−

[
A>vp−1

]
j

)
≤ 1.

Thus, plugging this bound into (F.20) entrywise,

‖A((1 + δ) ◦ w)‖p − ‖Aw‖p ≤
∑
j∈[d]

δjwj
[
A>vp−1

]
j

(1 + pδj) ≤
∑
j∈[d]

δjwj = ‖wt+1‖1 − ‖wt‖1 .

Rearranging yields the desired claim.

F.3.2 Proofs from Section 7.5.3

Our analysis of Algorithm 32 will use the following helper fact.

Lemma 292 (Spectral bounds on {Ai}i∈[n]). Feasibility of Problem 4 is unaffected (up to constants

in ε) by removing matrices Ai with an eigenvalue larger than nε−1.

Proof. The proof is identical to Lemma 291; we also require the additional fact that the Schatten

APPENDIX F. DEFERRED PROOFS FROM CHAPTER 7 737

norm ‖·‖p is monotone in the Loewner order, forcing the constraint xi ≤ ε(1+ε)
n .

We remark that we can perform this preprocessing procedure via power iteration on each Ai.

Lemma 111. In all iterations t of Algorithm 32, defining Φt :=
∥∥∥∑i∈[n][wt]iAi

∥∥∥
p
−‖wt‖1, Φt+1 ≤

Φt.

Proof. Drop t and define δ = ηg. For simplicity, define the matrices

M0 :=
∑
i∈[n]

wiAi, M1 :=
∑
i∈[n]

δiwiAi, M2 :=
∑
i∈[n]

δ2
iwiAi.

We recall the Lieb-Thirring inequality Tr((ABA)p) ≤ Tr(A2pBp). Applying this, we have

‖M0 + M1‖pp = Tr ((M0 + M1)
p
) ≤ Tr

(
Mp

0

(
I + M

− 1
2

0 M1M
− 1

2
0

)p)
.

As g ≤ 1, we have M
− 1

2
0 M1M

− 1
2

0 � p−1I. Applying the bounds (I + M)p � exp(pM) � I + pM +

p2M2 for M = M
− 1

2
0 M1M

− 1
2

0 , where we use that I commutes with all M, it follows that

‖M0 + M1‖pp ≤ Tr
(
Mp

0 + pMp−1
0 M1 + p2Mp−1

0 M1M
−1
0 M1

)
.

Definitions of M0, M1, M2, and preservation of positiveness under Schur complements implyM0 M1

M1 M2

 � 0 =⇒ M2 −M1M
−1
0 M1 � 0.

Thus, M1M
−1
0 M1 �M2. Applying this and recalling V = M0

‖M0‖p
,

‖M0 + M1‖pp ≤ Tr
(
Mp

0 + pMp−1
0 M1 + p2Mp−1

0 M2

)
= ‖M0‖pp

(
1 + p

〈
Vp−1,

M1

‖M0‖p
+

pM2

‖M0‖p

〉)
.

By (1 + px)1/p < 1 + x, taking pth roots we thus have

‖M0 + M1‖p ≤ ‖M0‖p +
〈
Vp−1,M1 + pM2

〉
.

Finally, the conclusion follows as in Lemma 110; by linearity of trace and g = pδ,

〈
Vp−1,M1 + pM2

〉
=
∑
i∈[n]

〈
Vp−1,Ai

〉
δiwi(1 + pδi) ≤

∑
i∈[n]

δiwi.

APPENDIX F. DEFERRED PROOFS FROM CHAPTER 7 738

Here, we used the inequality for all nonzero gi,

〈
Vp−1,Ai

〉
(1 + pδi) =

〈
Vp−1,Ai

〉 (
2−

〈
Vp−1,Ai

〉)
≤ 1.

Theorem 48. Let p be odd. Algorithm 32 runs in O(p log(nd/ε)
ε) iterations, and its output solves

Problem 4. Each iteration is implementable in O(nnz · p log(nd/ε)
ε2), where nnz is the number of

nonzero entries amongst all {Ai}i∈[n], losing O(ε) in the quality of Problem 4 with probability 1 −
poly((nd/ε)−1).

Proof. The proof is analogous to that of Theorem 47; we sketch the main differences here. By

applying Lemma 292 and monotonicity of Schatten norms in the Loewner order, we again have

Φ0 ≤ 1, implying correctness whenever the algorithm terminates on Line 4. Correctness of dual

certification again follows from lack of termination and the choice of T , as well as setting u to

indicate each coordinate. Finally, the returned matrix in Line 8 is correct by convexity of the

Schatten-q norm, and the fact that all Vp−1
t have unit Schatten-q norm.

We now discuss issues regearding computing gt in Line 5 of the algorithm, the bottleneck step;

these techniques are standard in the approximate SDP literature, and we defer a more formal

discussion to e.g. [285]. First, note that each coordinate of gt requires us to compute

1∥∥∥∑i∈[n][wt]iAi

∥∥∥p−1

p

·

〈
Ai,

∑
i∈[n]

[wt]iAi

p−1〉
. (F.21)

We estimate the two quantities in the above expression each to 1 + ε multiplicative error with

high probability. Union bounding over iterations, and modifying Lemma 111 to use the potential∥∥∥∑i∈[n][wt]iAi

∥∥∥
p
− (1 + O(ε)) ‖wt‖1, the analysis remains valid up to constants in ε with this

multiplicative approximation quality. We now discuss our approximation strategies.

For shorthand, denote M =
∑
i∈[n][wt]iAi. To estimate the denominator of (F.21), it suffices to

multiplicatively approximate ‖M‖pp = Tr[Mp] within a 1 + ε factor, as raising to the p−1
p power can

only improve this. To do so, we use the well-known fact (e.g. [160]) that letting Q be a k× d matrix

with independent entries ∼ N (0, 1
k), for k = O(

log(ndε)

ε2), with probability 1− poly((ndε)−1),

Tr[Mp] ≈
∑
`∈[k]

Q>`:M
pQ`:

to a 1 + ε factor. To read this from the standard Johnson-Lindestrauss guarantee, it suffices to

factorize Mp and use that each row of the square root’s `2 norm is preserved with high probability

under multiplication by Q, and then apply the cyclic definition of trace. Similarly, for each i ∈ [n],

APPENDIX F. DEFERRED PROOFS FROM CHAPTER 7 739

we can approximate the numerators via

Tr
(
QM

p−1
2 AiM

p−1
2 Q>

)
.

We can simultaneously compute all such quantities by first applying O(p) matrix-vector multi-

plications through M to each row of Q, and then computing all quadratic forms. In total, the

computational cost per iteration of all approximations is O(nnz · p log(ndε)

ε2) as desired.

F.3.3 Proof of Proposition 30

In this section, following our prior developments, we prove the following claim.

Proposition 30. Following Theorem 48’s notation, let p be odd, {Ai}i∈[n] ∈ Sd≥0, 0 < ε = O(α),

and

min
x∈∆n

‖x‖∞≤
1+α
n

‖A(x)‖p = OPT. (7.74)

for A(x) :=
∑
i∈[n] xiAi. Given estimate of OPT exponentially bounded in nd

ε , there is a procedure

calling Algorithm 76 O(log nd
ε) times giving x ∈ ∆n with ‖x‖∞ ≤

(1+α)(1+ε)
n , ‖A(x)‖p ≤ (1 + ε)?.

Algorithm 76 runs in O(log(nd/ε) logn
ε2) iterations, each implementable in time O(nnz · p log(nd/ε)

ε2).

Reduction to a decision problem

Given access to an oracle for the following approximate decision problem, we can implement an

efficient binary search for estimating ?. Specifically, letting the range of ? be (µlower, µupper), we can

subdivide the range into O(1
ε log

µupper

µlower
) multiplicative intervals of range 1 + ε, and then compute a

binary search using our decision oracle. This incurs a multiplicative log(ndε) overhead in the setting

of Proposition 30 (see Appendix A, [285], for a more formal treatment).

Problem 5. Given {Ai}i∈[n] ∈ Sd≥0, either find primal solution x ∈ ∆n with ‖A(x)‖p ≤ 1 + ε,

‖x‖∞ ≤
(1+ε)(1+α)

n , or conclude no x ∈ ∆n satisfies ‖A(x)‖p ≤ 1− ε, ‖x‖∞ ≤
(1−ε)(1+α)

n .

The hard constraint ‖x‖∞ ≤
1+α
n in the definition (7.74) can be adjusted by constant factors to

admit the `∞ bound in Problem 5, since we assumed ε = O(α) is sufficiently small.

Preliminaries

We use the shorthand S := n
1+αI, and p′ := logn

ε , so `p′ and `∞ are interchangeable up to 1 +O(ε)

factors. In other words, Problem 5 asks to certify whether there exists x ∈ ∆n with

max
(
‖A(x)‖p , ‖Sx‖p′

)
≤ 1, (F.22)

APPENDIX F. DEFERRED PROOFS FROM CHAPTER 7 740

up to multiplicative 1 + ε tolerance on either side. Consider the potential function

Φ(w) := log
(

exp
(
‖A(w)‖p

)
+ exp

(
‖Sw‖p′

))
− ‖w‖1 . (F.23)

It is clear that the first term of Φ(w) approximates the left hand side of (F.22) up to a log 2 additive

factor, so if any of ‖A(w)‖p, ‖A(w)‖p′ , or ‖w‖1 reaches the scale 3ε−1 and Φ(w) is bounded by 1,

we can safely terminate. and conclude primal feasibility for Problem 5. Next, we compute

∇iΦ(w) = 1−
exp

(
‖A(w)‖p

)
〈Ai,Y(w)〉+ exp

(
‖Sw‖p′

)
[Sz(w)]i

exp
(
‖A(w)‖p

)
+ exp

(
‖Sw‖p′

) for all i ∈ [n],

where Y(w) :=

(
A(w)

‖A(w)‖p

)p−1

, z(w) :=

(
Sw

‖Sw‖p′

)p′−1
(F.24)

The following helper lemma will be useful in concluding dual infeasibility of Problem 5.

Lemma 293. In the setting of Problem 5, suppose there exists x∗ ∈ ∆n with

‖A(x∗)‖p ≤ 1− ε, ‖Sx∗‖p′ ≤ 1− ε.

Then, for any w,

〈∇Φ(w), x∗〉 ≥ ε.

Proof. From the definitions in (F.24), it is clear that ‖Y(w)‖q = ‖z(w)‖q′ = 1, where q, q′ are the

dual norms of p, p′ respectively. Moreover, by the definition of x∗, we have for all ‖Y‖q = ‖z‖q′ = 1,

〈Y,A(x)〉 ≤ 1− ε, 〈z,Sx〉 ≤ 1− ε.

This follows from the dual definition of the `p norm. Now, note that for some nonnegative α(w),

β(w) summing to 1, using the above claim and (F.24),

〈∇Φ(w), x∗〉 = 1− (α(w) 〈Y(w),A(x∗)〉+ β(w) 〈z(w),Sx∗〉) ≥ ε,

as desired (here, we used positivity of all relevant quantities).

Potential monotonicity

We prove a monotonicity property regarding the potential Φ in (F.23).

Lemma 294. Let w ∈ Rn≥0 satisfy ‖A(w)‖p ≤ 3ε−1, ‖Sw‖p′ ≤ 3ε−1, let g = max(0,∇Φ(w))

entrywise, and let w′ = (1 + ηg) ◦ w, where η = (4p′)−1. Then, Φ(w′) ≤ Φ(w).

APPENDIX F. DEFERRED PROOFS FROM CHAPTER 7 741

Proof. Denote for simplicity the threshold K = 3ε−1 and the step vector δ = ηg. First, by prior

calculations in Lemma 110 and Lemma 111, it follows that

‖A(w′)‖p ≤ ‖A(w)‖p + ∆A, ‖Sw′‖p′ ≤ ‖Sw‖p′ + ∆S,

where ∆A :=
∑
i∈[n]

〈Ai,Y(w)〉 δiwi(1 + pδi), ∆S :=
∑
i∈[n]

[Sz(w)]iδiwi(1 + p′δi).

Next, note that by δ ≤ η entrywise and lack of termination (i.e. the threshold K),

∆A ≤ (1 + pη)η 〈Y(w),A(w)〉 ≤ 2η ‖A(w)‖p ≤ 1.

Therefore, by exp(x) ≤ 1 + x+ x2 for x ≤ 1,

exp
(
‖A(w′)‖p

)
≤ exp

(
‖A(w)‖p

) (
1 + ∆A + ∆2

A
)
. (F.25)

Moreover, by applying Cauchy-Schwarz and the threshold ‖A(w)‖p ≤ K once more,

∆2
A ≤ (1 + pη)2

∑
i∈[n]

〈Ai,Y(w)〉 δiwi

2

≤ 2

∑
i∈[n]

〈Ai,Y(w)〉 δ2
iwi

 〈Y(w),A(w)〉 ≤ 2K

∑
i∈[n]

〈Ai,Y(w)〉 δ2
iwi

 .

(F.26)

Combining (F.25) and (F.26) (and applying similar reasoning to the term ∆S), we conclude

exp
(
‖A(w′)‖p

)
≤ exp

(
‖A(w)‖p

)1 +
∑
i∈[n]

〈Ai,Y(w)〉 δiwi(1 + (p+ 2K)δi)

 ,

exp
(
‖Sw′‖p′

)
≤ exp

(
‖Sw‖p′

)1 +
∑
i∈[n]

[Sz(w)]iδiwi(1 + (p′ + 2K)δi)

 .

Recall the inequality log(1 + x) ≤ x for nonnegative x. Expanding the definition of Φ and ∇Φ (cf.

APPENDIX F. DEFERRED PROOFS FROM CHAPTER 7 742

(F.23)), and plugging in the above bounds, we conclude that

Φ(w′)− Φ(w) = log

exp
(
‖A(w′)‖p

)
+ exp

(
‖Sw′‖p′

)
exp

(
‖A(w)‖p

)
+ exp

(
‖Sw‖p′

)
− 〈δ, w〉

≤
∑
i∈[n]

(1−∇iΦ(w))δiwi(1 + (p′ + 2K)δi)− 〈δ, w〉

=
∑
i∈[n]

((1−∇iΦ(w))(1 + (p′ + 2K)δi)− 1) δiwi.

As before, we show that this sum is entrywise nonpositive. For any i ∈ [n] with δi 6= 0, we have

(1−∇iΦ(w))(1 + (p′ + 2K)δi)− 1 = (1−∇iΦ(w))(1 + (p′ + 2K)η∇iΦ(w))− 1

≤ (1−∇iΦ(w))(1 +∇iΦ(w))− 1 ≤ 0,

as desired, where we used that η−1 ≥ p′ + 2K. This yields the conclusion Φ(w′) ≤ Φ(w).

Algorithm and analysis

Finally, we state Algorithm 76 and prove Proposition 30.

Algorithm 76: BoxedSchattenPacking({Ai}i∈[n], ε, p, α)

1 Input: {Ai}i∈[n] ∈ Sd≥0, ε ∈ [0, 1
2], p ≥ 2, α ∈ [0, n− 1];

2 p′ ← logn
ε , S← n

1+αI;

3 η ← (4p′)−1, K ← 3ε−1, T ← 6 log(ndε)

ηε ;

4 [w0]i ← ε
n2d for all i ∈ [n], t← 0;

5 while ‖A(wt)‖p , ‖Swt‖p′ , ‖wt‖1 ≤ K do

6 gt ← max (0,∇Φ(wt)) entrywise, where we use the definition (F.23);
7 wt+1 ← wt ◦ (1 + ηgt), t← t+ 1;
8 if t ≥ T then
9 Return: Infeasible;

10 Return: x = wt
‖wt‖1

;

Proof of Proposition 30. Correctness of the reduction to deciding Problem 5 follows from the discus-

sion in Section F.3.3. Moreover, by the given Algorithm 76, it is clear (following e.g. the preprocessing

of Lemma 292) that Φ(wt) ≤ 1 throughout the algorithm, so whenever the algorithm terminates we

have primal feasibility. It suffices to prove that whenever the problem admits x∗ with

‖A(x∗)‖p ≤ 1− ε, ‖Sx∗‖p′ ≤ 1− ε,

APPENDIX F. DEFERRED PROOFS FROM CHAPTER 7 743

then the algorithm terminates on Line 5 in T iterations. Analogously to Theorem 47, we have

η(1− η)
∑

0≤t<T

〈gt, x∗〉 ≤ log n− log ‖w0‖1 + log ‖wT ‖1 ≤ 2 log

(
nd

ε

)
+ log ‖wT ‖1 .

Next, since gt is an upwards truncation of ∇Φ(wt), applying Lemma 293 implies that

‖wT ‖1 ≥ exp

(
ηεT

2
− 2 log

(
nd

ε

))
.

The conclusion follows by the definition of T , as desired. Finally, the iteration complexity follows

analogously to the discussion in Theorem 48’s proof, where the only expensive cost is estimating

coordinates of the A component of ∇Φ(wt) every iteration.

Finally, we remark that by opening up the dual certificates Y(w), Z(w) of our mirror descent

analysis, we can in fact implement a stronger version of the decision Problem 5 which returns

a feasible dual certificate whenever the primal problem is infeasible. We omit this extension for

brevity, as it is unnecessary for our applications, but it is analogous to the analysis of Theorem 48.

Appendix G

Deferred proofs from Chapter 8

G.1 List-decodable mean estimation for α−1 = Ω(d)

We give a simple algorithm for list-decodable mean estimation in the regime α−1 = Ω(d).

Algorithm 77: SamplePostProcess(T, δ)

1 Input: T ⊂ Rd with |T | = n satisfying Assumption 13, α ≤ 1
Cd for a universal constant C,

δ ∈ (0, 1);

2 Output: L ⊂ Rd with |L| ≤ 3
α satisfying (G.2) with probability ≥ 1− δ;

3 N ←
⌈

36 log(2/δ)
α

⌉
;

4 L̃← {Xi}i∈[N], where each Xi is an independent uniform sample from T ;

5 G ∈ Rd×c ← entrywise ± 1√
c

uniformly at random, for c = Θ(log(1
αδ));

6 Let L be a maximal subset of L̃ such that for each Xi ∈ L,
∥∥G>(Xi −Xj)

∥∥2

2
≤ 8.8d for at

least αN
3 of the Xj ∈ L̃, and

∥∥G>(Xi −Xj)
∥∥2

2
≥ 35.2d, ∀Xj ∈ L;

7 L;

Proposition 67. Algorithm 77, SamplePostProcess, meets its output specifications in runtime

O

(
1

α2
log4

(
1

αδ

))
.

Proof. It is straightforward by Assumption 13 (cf. correctness proof of Theorem 89) that at least
αn
2 of the points Xi ∈ T satisfy

‖Xi − µ∗‖22 ≤ 2d. (G.1)

For each i ∈ [N] indexing the set L̃, let Ei be the event that Xi satisfies the bound (G.1); each

of these events is an independent Bernoulli variable with mean at least α
2 . Thus, by applying a

Chernoff bound, with probability at least 1− δ
2 , at least αN

3 of the points in L̃ satisfy (G.1). Next,

744

APPENDIX G. DEFERRED PROOFS FROM CHAPTER 8 745

by the Johnson-Lindenstrauss lemma of [6], for a sufficiently large dimensionality c, with probability

at least 1− δ
2 , all of the

∥∥G>(Xi −Xj)
∥∥2

2
are within a 1.1 factor of the corresponding ‖Xi −Xj‖22.

Condition on both of these events for the remainder of the proof.

By definition of the greedy process in Line 6, we have the output size guarantee, since each

element of L̃ is associated with a (disjoint) cluster of αN
3 points, by the separation property. So, for

correctness, it suffices to prove that (G.2) is met for a universal constant (depending on C). Call S̃

the set of points in T satisfying (G.1). If any point in S̃ is chosen in L, then indeed

‖Xi − µ∗‖22 ≤ 2d ≤ 2

Cα
,

so (G.2) is met with constant
√

2
C . Further, observe that the only thing preventing any point in S̃

from being chosen is the separation condition for L. This is because by triangle inequality and the

definition (G.1), any pair of points Xi, Xj ∈ S̃ satisfies ‖Xi −Xj‖22 ≤ 8d, so after multiplication by

G> they pass the clustering requirement. Thus, suppose no point in S̃ is in L. For any Xi ∈ S̃ ∪ L̃,

this implies there exists a Xj ∈ L̃ with

∥∥G> (Xi −Xj)
∥∥2

2
≤ 35.2d =⇒ ‖Xi −Xj‖22 ≤ 40d.

By triangle inequality, this implies that (G.2) is met with constant
√

84
C , via

‖Xj − µ∗‖22 ≤ 84d ≤ 84

Cα
.

Finally, the runtime is dominated by the cost of multiplying all points in L̃ by G>, and performing all

pairwise distance comparisons of the {G>Xi}i∈[N]. Both of these fit in the allotted time budget.

We make a final remark that up to logarithmic factors, the runtime in Proposition 67 is not

larger than nd
α asymptotically, since we take sample size n ≥ α−1. Thus, in the regime α−1 = Ω(d),

we obtain the correct list size and error bound up to constants, in time Õ(ndα) as desired.

G.2 Filtering in k dimensions: SIFT

In this section, we develop a simple, polynomial-time algorithm for solving the list-decodable mean

estimation problem based on a “soft downweighting” approach. We outline some preliminary notions

and bounds used in our algorithms and analysis in Sections G.2.1 and G.2.2, which will also be

used in Sections G.3 and G.4. We then use these tools to analyze our “slow” algorithm, SIFT, in

Section G.2.3.

APPENDIX G. DEFERRED PROOFS FROM CHAPTER 8 746

G.2.1 General preliminaries

We will frequently use the following well-known facts throughout the chapter. In both, w ∈ ∆n is a

weight vector corresponding to a set of points T ⊆ Rd.

Fact 38. We have that

0 �
∑
i∈T

wi(Xi − µw(T))(Xi − µw(T))> =⇒ µw(T)µw(T)> �
∑
i∈T

wi
‖w‖1

XiX
>
i .

Thus, for any vector v ∈ Rd,

(µw(T)− v)(µw(T)− v)> �
∑
i∈T

wi
‖w‖1

(Xi − v)(Xi − v)>.

Fact 39. For any vector v ∈ Rd,

∑
i∈[n]

wi(Xi − v)(Xi − v)> =
∑
i∈[n]

wi(Xi − µw(T))(Xi − µw(T))> + ‖w‖1 (µw(T)− v)(µw(T)− v)>

�
∑
i∈[n]

wi(Xi − µw(T))(Xi − µw(T))>.

In the list-decodable mean estimation problem, we are given a set T of n points {Xi}i∈T in Rd.1

For some known α ∈ (0, 1
2], there is a subset S ⊆ T of size αn such that all {Xi}i∈S are independent

draws from distribution D with mean µ∗, where the covariance of D is identity-bounded:

Ex∼D
[
(x− µ∗) (x− µ∗)>

]
� I.

It is clear that by scaling the space, this assumption appropriately generalizes to the case when the

covariance bound is σ2I. The goal of list-decodable mean estimation is to output a list L, such that

one of the elements of the list is close to the “true mean” µ∗. Our aim will be to output a list of size

|L| = O(1
α), which is necessary simply by identifiability of the subset S; it was shown as Proposition

5.4(ii) of [186] that for such a list size, the minimax optimal error for the problem scales as

min
µ∈L
‖µ− µ∗‖2 = Θ

(
1√
α

)
. (G.2)

Regarding the sample size n, we additionally recall the following (note in Assumption 13 that the

matrix of interest is not the covariance of S, as it is centered at the true mean µ∗).

Proposition 68 (Proposition B.1, [118]). For any constant ε ∈ (0, 1), there are constants c, C > 0

1In an abuse of notation, we will both let T denote the set of points itself, as well as an index set for the points.
Correspondingly, we will interchangeably use Xi ∈ T and i ∈ T .

APPENDIX G. DEFERRED PROOFS FROM CHAPTER 8 747

such that with probability at least 1 − exp(−Ω(n)), for n = Cd
α , if an (1 + ε)α fraction of points in

{Xi}i∈T ⊆ Rd is drawn from D with covariance bounded by cI, then Assumption 13 holds.

Assumption 13. There is a subset S ⊆ {Xi}i∈T ⊆ Rd of size αn = Θ(d) satisfying

1

|S|
∑
i∈S

(Xi − µ∗) (Xi − µ∗)> � I.

In the remainder of Sections G.2, G.3, and G.4, we will operate under Assumption 13. We will

also explicitly assume that 1
α = o(d), and d ≤ n = Θ(dα), for simplicity. The latter assumption is

without loss of generality for any failure probability larger than exp(−Ω(d)); for any smaller failure

probability, Proposition 68 implies that the assumption still holds by adjusting the sample size by a

logarithmic factor. It is also fairly straightforward to see that the former assumption is also without

loss of generality, since in the case 1
α � d, it suffices to sample O(1

α log 1
δ) random points and apply

a variant of the post-processing procedure of Section G.4.1 to obtain the correct list size and error

guarantee; we give a formal treatment of this case in Section G.1.

Finally, throughout the variable k will be reserved for values which are Θ(1
α) for explicitly stated

constants. In particular, many of our algorithms will rely on performing operations such as principal

components analysis in Θ(1
α) dimensions. As discussed earlier, this is because a substantial portion

of the challenge in the estimation problem is reducing to the problem of learning the mean in Θ(1
α)

dimensions, at which point näıve random sampling solves the problem up to logarithmic factors.

G.2.2 Filtering preliminaries

We define two concepts which will be useful in stating guarantees of our downweighting methods.

Definition 56 (Saturated weights). We call weights w ∈ ∆n “saturated” if w ≤ 1
n1 entrywise, and

‖wS‖1 ≥ α
√
‖w‖1.

Definition 57 (Safe scores). We call scores {τi}i∈T ∈ Rn≥0 “safe with respect to w ∈ ∆n” if

∑
i∈S

wi
‖wS‖1

τi ≤
1

2

∑
i∈T

wi
‖w‖1

τi.

When the weights w are clear from context, we will simply call the scores τ “safe”.

In algorithms based on soft filtering in the presence of a small amount of adversarial noise (see

e.g. [177, 360, 492]), a typical goal is to remove more “good weight” than “bad weight” from an

iteratively updated weight vector. However, when the overwhelming majority of the initial weight is

bad, clearly this is too strong of a goal. The intuition for Definition 56 is that a weaker goal suffices

for the guarantees of our methods; while the amount of good weight is decreasing throughout,

APPENDIX G. DEFERRED PROOFS FROM CHAPTER 8 748

Definition 56 requires that the good weight becomes more saturated in the weight vector when more

weight is removed. We now make the connection between these definitions formal.

Lemma 295. Consider a set of saturated (cf. Definition 56) weights w(0), and updates of the form:

1. For 0 ≤ t < N :

(a) Let
{
τ

(t)
i

}
i∈T

be safe (cf. Definition 57) with respect to w(t).

(b) Update for all i ∈ T :

w
(t+1)
i ←

(
1− τ

(t)
i

τ
(t)
max

)
w

(t)
i , where τ (t)

max := max
i∈T |w(t)

i 6=0

τ
(t)
i . (G.3)

Then, the result of the updates w(N) is also saturated.

Proof. First, fix some iteration t, and let w := w(t), τ := τ (t), and w′ := w(t+1). Define

δS :=
∑
i∈S

wi − w′i
‖wS‖1

, δT :=
∑
i∈T

wi − w′i
‖w‖1

.

Note that by the assumption that τ is safe and the iteration (G.3),

δS =
1

τmax

∑
i∈S

wi
‖wS‖1

τi ≤
1

2τmax

∑
i∈T

wi
‖w‖1

τi =
1

2
δT .

Hence, using 1− 1
2δT ≥

√
1− δT for all δT ∈ [0, 1], we have

∥∥∥w(t+1)
S

∥∥∥
1∥∥∥w(t)

S

∥∥∥
1

= 1− δS ≥
√

1− δT =

√√√√√
∥∥∥w(t+1)

T

∥∥∥
1∥∥∥w(t)

T

∥∥∥
1

. (G.4)

Inductively telescoping (G.4), using that w(0) was assumed to be saturated, and finally comparing

with Definition 56, yields the desired conclusion that w(N) is saturated.

We next give three helper lemmas which help reason about how the quality of empirical estimates

based on S deteriorate, as the amount of weight allocated to S is reduced. The first shows how the

quality of the empirical mean is related to the empirical covariance and proportion of weight in S

(and is essentially a rephrasing of Fact A.3 in [136]).

Lemma 296. Let w ∈ ∆n have w ≤ 1
n1 entrywise. Then,

‖µw(T)− µ∗‖2 ≤

√
2 ‖Covw(T)‖op

‖w‖1
‖wS‖1

+
2α

‖w‖1
.

APPENDIX G. DEFERRED PROOFS FROM CHAPTER 8 749

Proof. Let w∗ ∈ ∆n be the weight vector which is 1
|S| on coordinates in S, and zero elsewhere. Note

that by definition 〈w,w∗〉 =
‖wS‖1
αn . Next,

‖µw(T)− µ∗‖22 = max
‖u‖2=1

〈(∑
i∈T

wiw
∗
i

〈w,w∗〉
(Xi − µw(T))

)
−

(∑
i∈T

wiw
∗
i

〈w,w∗〉
(Xi − µ∗)

)
, u

〉2

≤ 2 max
‖u‖2=1

〈∑
i∈T

wiw
∗
i

〈w,w∗〉
(Xi − µw(T)), u

〉2

+ 2 max
‖u‖2=1

〈∑
i∈T

wiw
∗
i

〈w,w∗〉
(Xi − µ∗), u

〉2

.

We bound these two terms separately. First, by applying a quadratic form in u to Fact 38,

max
‖u‖2=1

〈∑
i∈T

wiw
∗
i

〈w,w∗〉
(Xi − µw(T)), u

〉2

≤ max
‖u‖2=1

∑
i∈T

wiw
∗
i

〈w,w∗〉
〈Xi − µw(T), u〉2

=
‖w‖1

αn 〈w,w∗〉
max
‖u‖2=1

∑
i∈T

wi
‖w‖1

〈Xi − µw(T), u〉2

= ‖Covw(T)‖op

‖w‖1
‖wS‖1

.

Next, by again applying Fact 38, and recalling Assumption 13,

max
‖u‖2=1

〈∑
i∈T

wiw
∗
i

〈w,w∗〉
(Xi − µ∗), u

〉2

≤ max
‖u‖2=1

∑
i∈T

wiw
∗
i

〈w,w∗〉
〈Xi − µ∗, u〉2

≤
‖w‖∞
〈w,w∗〉

max
‖u‖2=1

∑
i∈T

w∗i 〈Xi − µ∗, u〉2 ≤
αn ‖w‖∞
‖w‖1

.

The second shows how the empirical covariance of S grows relative to how much of S is kept.

Lemma 297. Let w ∈ ∆n have w ≤ 1
n1 entrywise. Then Covw(S) � α

‖wS‖1
I.

Proof. For any vector u with ‖u‖2 = 1,

u>Covw(S)u =
∑
i∈S

wi
‖wS‖1

〈u,Xi − µw(S)〉2

≤
∑
i∈S

αw∗i
‖wS‖1

〈u,Xi − µ∗〉2 ≤
α

‖wS‖1

∥∥∥∥∥∑
i∈S

w∗i (Xi − µ∗)(Xi − µ∗)>
∥∥∥∥∥

op

.

In the second line we used Fact 39. Using Assumption 13 yields the conclusion.

The third shows how a bound on the saturation of S in a weight vector can be used to bound

the distance between empirical means in S and T via the empirical covariance matrix.

APPENDIX G. DEFERRED PROOFS FROM CHAPTER 8 750

Lemma 298. We have that

(µw(S)− µw(T))(µw(S)− µw(T))> �
‖w‖1
‖wS‖1

Covw(T).

Proof. This follows from the following observations (via Fact 38)

(µw(S)− µw(T))(µw(S)− µw(T))> �
∑
i∈S

wi
‖wS‖1

(Xi − µw(T))(Xi − µw(T))>

�
‖w‖1
‖wS‖1

∑
i∈T

wi
‖w‖1

(Xi − µw(T))(Xi − µw(T))>

=
‖w‖1
‖wS‖1

Covw(T).

G.2.3 Analysis of SIFT

We now present SIFT as Algorithm 78. It requires calls to an approximate k-PCA subroutine Power,

the classical simultaneous power iteration method, which is stated as Algorithm 26 in Section 7.3.3,

where we present an improved analysis of its guarantees. However, for analysis in this section it

suffices to use the following guarantee. For simplicity in this section we drop the arguments λmax

and λmin as inputs to Power, which do not play a role in Proposition 69.

Proposition 69 (Theorem 1, [404]). For any δ ∈ (0, 1) and k ∈ [d], there is an algorithm, Power,

which takes as input k, δ, A ∈ Sd≥0 and ε ∈ (0, 1), and returns with probability 1 − δ a set of

orthonormal vectors V ∈ Rd×k such that if V:i is column i of V,

〈V:i,AV:i〉 ∈ [1− ε, 1 + ε]λi (A) for all i ∈ [k],

and
∥∥(I−VV>

)
A
(
I−VV>

)∥∥
op
≤ (1 + ε)λk+1 (A) .

When A is given in the form M>M for some M ∈ Rn×d, the runtime of Power is

O

(
ndk

ε
log

(
d

δε

))
.

Note that Lines 6 through 10 of Algorithm 78 exactly constitute a weight removal method of the

form given in Lemma 295. Consequently, to use Lemma 295 it suffices to prove that the weights τi

used in each iteration are safe with respect to the current set of weights, which we now demonstrate.

Lemma 299. In each iteration t of Algorithm 78 until termination, τ (t) is safe with respect to w(t).

Proof. Throughout this proof, let w := w(t) and τ := τ (t). Furthermore, let V, Σ, and β correspond

to the weights w at the iteration’s start. We will inductively prove that τ is safe with respect to w,

APPENDIX G. DEFERRED PROOFS FROM CHAPTER 8 751

Algorithm 78: SIFT(T, δ)

1 Input: T ⊂ Rd with |T | = n satisfying Assumption 13, δ ∈ (0, 1);

2 w(0) ← 1
n1T , t← 0, β ← 1, k ← d 4

αe;
3 V← Power(Covw(t)(T), k, 0.2, δ2n);

4 Σ← V>Covw(t)(T)V;

5 while λk(Σ) ≥ 4√
β

do

6 τ
(t)
i ←

∥∥∥Σ− 1
2 V> (Xi − µw(T))

∥∥∥2

2
for all i ∈ T ;

7 w
(t+1)
i ←

(
1− τ

(t)
i

τ
(t)
max

)
w

(t)
i for all i ∈ T , where τ

(t)
max := max

i∈T |w(t)
i 6=0

τ
(t)
i ;

8 t← t+ 1, β ←
∥∥w(t)

∥∥
1
;

9 V← Power(Covw(t)(T), k, 0.2, δ2n);

10 Σ← V>Covw(t)(T)V;

11 Return:

L := {VV>Xi +
(
I−VV>

)
µw(t)(T) where i ∈ T is sampled uniformly at random}, with

list size |L| = d 2
α log 2

δ e

which by applying Lemma 295 implies that at the start of the iteration, w is saturated (since clearly

w(0) is saturated). We first compute the average score in S:

∑
i∈S

wi
‖wS‖1

τi =
∑
i∈S

wi
‖wS‖1

∥∥∥Σ− 1
2 V> (Xi − µw(T))

∥∥∥2

2

=
∑
i∈S

wi
‖wS‖1

(∥∥∥Σ− 1
2 V> (Xi − µw(S))

∥∥∥2

2
+
∥∥∥Σ− 1

2 V> (µw(S)− µw(T))
∥∥∥2

2

)
=
〈
Σ−1,V>Covw(S)V

〉
+
∥∥∥Σ− 1

2 V> (µw(S)− µw(T))
∥∥∥2

2

≤
〈

Σ−1,
α

‖wS‖1
I

〉
+
‖w‖1
‖wS‖1

≤ 1

4

〈√
βI,

1√
β

I

〉
+

√
β

α
≤ k

2
.

The first three equalities follow by expanding definitions; the first inequality is by Lemmas 297

and 298, as well as the definition of Σ. The second inequality is by using the definition of saturated

weights (Definition 56) twice, which implies that ‖wS‖1 ≥ α
√
β, as well as the exit condition in Line

5. The third inequality follows from the definition of k. Finally, we conclude that τ is indeed safe,

since the average score in T is exactly k by design:

∑
i∈T

wi
‖w‖1

τi =
∑
i∈T

wi
‖w‖1

∥∥∥Σ− 1
2 V> (Xi − µw(T))

∥∥∥2

2

=

〈
Σ−1,V>

(∑
i∈T

wi
‖w‖1

(Xi − µw(T)) (Xi − µw(T))
>

)
V

〉
=
〈
Σ−1,Σ

〉
= k.

APPENDIX G. DEFERRED PROOFS FROM CHAPTER 8 752

Finally, we prove a runtime and correctness guarantee on Algorithm 78.

Theorem 89. Under Assumption 13, with probability 1− δ, the output of Algorithm 78 satisfies

min
µ∈L
‖µ− µ∗‖22 ≤

22

α
.

The overall runtime of Algorithm 78 is

O

(
n2dk log

(
d

δ

))
.

Proof. We will show correctness and complexity of Algorithm 78 separately.

Complexity guarantee. It is clear that there are at most n iterations in Algorithm 78, since at least

one weight is zeroed out in Line 7 each iteration. Further, the bottleneck operation in each iteration

is clearly the complexity of Power, since an eigendecomposition of Σ takes time O(k3) = O(ndk).

Since ε is a constant in Proposition 69 and n = O(d2), this yields the complexity bound. Using a

union bound, with probability 1− δ
2 , the conclusion of Proposition 69 applies in every iteration; we

will condition on this event for the remainder of the proof.

We finally note that the algorithm must terminate the while loop before removing all the weight.

This is because throughout the algorithm since w is saturated (by Lemmas 295 and 299), ‖w‖1 ≥ α2

holds directly by using Definition 56 and ‖w‖1 ≥ ‖wS‖1.

Correctness guarantee. As in Lemma 299, we let w denote the weights on the last iteration of

the algorithm (after exiting on Line 12). Denote P := VV> and Yi := PXi for all i ∈ T . Since

∑
i∈S

1

αn
(Yi −Pµ∗) (Yi −Pµ∗)

>
= P

(∑
i∈S

1

αn
(Xi − µ∗) (Xi − µ∗)>

)
P � P,

by Assumption 13, the expectation of ‖Yi −Pµ∗‖22 for a uniformly random sample i ∈ S is 4
α by lin-

earity of trace. Hence, by Markov with probability at least 1
2 a sample from S has ‖Yi −Pµ∗‖22 ≤

8
α ,

so with probability at least 1− δ
2 , one of the random samples in L will have an Xi with ‖Yi −Pµ∗‖22 ≤

8
α . For this value of i, we expand via the Pythagorean theorem

‖(PXi + (I−P)µw(T))− µ∗‖22 = ‖Yi −Pµ∗‖22 + ‖(I−P) (µw(T)− µ∗)‖22

≤ 8

α
+ ‖(I−P) (µw(T)− µ∗)‖22 .

APPENDIX G. DEFERRED PROOFS FROM CHAPTER 8 753

To bound this second term, we apply Lemma 296 on the set of points {(I−P)Xi}i∈T . This implies

‖(I−P) (µw(T)− µ∗)‖22 ≤
2β

‖wS‖1
‖(I−P)Covw(T)(I−P)‖op +

2α

β

≤ 12
√
β

‖wS‖1
+

2α

β
≤ 14

α
.

Here, the last inequality used the definition of saturation, which also implies that β ≥ α2. The

second inequality used that the guarantees of Power and the termination condition imply that

‖(I−P) Covw(T) (I−P)‖op ≤ 1.2λk(Covw(T)) ≤ 1.5λk(Σ) ≤ 6√
β
.

Here, we use that the eigenvalues of Σ are the same as those of VV>Covw(T)VV>; this calculation is

given in the correctness proof of Proposition 25. Combining the above bounds yields the conclusion.

While Theorem 89 achieves the desired error guarantee (G.2), it unfortunately has a quadratic

dependence on the sample complexity n, as well as a suboptimal list size by a factor of O(log 1
δ).

We address the latter issue with a post-processing step in Section G.4.1; regarding the former issue,

Algorithm 78 will play a role in our final “fast” algorithm in the following Section G.3, which obtains

a runtime with a linear dependence on n via more sophisticated weight removal.

G.3 Fast filtering in k dimensions under a diameter bound

We now give an algorithm, FastSIFT, with an improved dependence on the sample size n compared

to the method SIFT developed in Section G.2. We use the following assumption in this section.

Assumption 14. All data points in T lie in a Euclidean ball of radius R.

We eventually show how to reduce the more general mean estimation problem to mean estimation

on datasets satisfying Assumption 14 in Section G.4.2 to obtain our final algorithm. The primary

goal of this section is to develop a method for quickly finding a “good” tuple (B, w), defined as

follows.

Definition 58 (Good tuple). We call (B, w) “good” if it obeys the following conditions.

1. B ∈ Rd×k′ has orthogonal columns, for some k′ = O(logR
α), and w ∈ ∆n is saturated.

2. Let PB := BB>. The restriction of Covw(T) to the complement of PB, denoted by

CovP⊥B
w (T) := (I−PB) Covw(T) (I−PB)

APPENDIX G. DEFERRED PROOFS FROM CHAPTER 8 754

satisfies for a universal constant c,∥∥∥CovP⊥B
w (T)

∥∥∥
op
≤ c√

‖w‖1
.

Intuitively, a good tuple signifies that in all but O(logR
α) dimensions, we have learned the mean

via the guarantee of Lemma 296. However, in the remaining dimensions we can simply run the

algorithm of Section G.2, which obtains an additive poly(k) runtime dependence. We now make this

rigorous.

Algorithm 79: FastSIFT(T, δ,ProduceGoodTuple)

1 Input: T = Tfast ∪ Tslow ⊂ Rd with |Tfast| = n satisfying Assumptions 13 and 14,

|Tslow| = O(logR
α2) satisfying Assumption 13 for a fixed O(logR

α)-dimensional subspace,
δ ∈ (0, 1), subroutine ProduceGoodTuple which returns a good tuple with specified failure
probability;

2 (B, w)← ProduceGoodTuple(Tfast,
δ
2);

3 µfast ← (I−BB>)µw(T);

4 Lslow ← SIFT({BB>Xi | Xi ∈ Tslow}, δ2);
5 Return: L← {µslow + µfast | µslow ∈ Lslow}

Lemma 300. With probability 1− δ, some µ̂ ∈ L outputted by Algorithm 79 satisfies

‖µ̂− µ∗‖22 ≤
48 + 4c

α
.

The overall runtime of Algorithm 79 is the cost of running ProduceGoodTuple(Tfast,
δ
2) plus

O

(
d

α3
log(R) log

(
dR

δ

)
+

1

α6
log3(R) log

(
d

δ

))
additional runtime overhead.

Proof. By the proof of Theorem 89 and the second part of Definition 58, it is immediate that

‖(I−PB)(µw(T)− µ∗)‖22 ≤
2c+ 2

α
.

Moreover, since the size of Tslow is large enough for Proposition 68 to apply, it satisfies Assumption 13

on the k′-dimensional subspace whose projection matrix is PB = BB>. Thus, Theorem 89 shows

‖µslow −PBµ
∗‖22 ≤

22

α
for some µslow ∈ Lslow.

Combining these two bounds and the Pythagorean theorem yields the correctness guarantee. For

the runtime overhead guarantee, it is clear the bottleneck operation is Line 4 since Line 3 can be

implemented in time O(dα logR). For Line 4, we run Algorithm 78 entirely in the coordinate system

APPENDIX G. DEFERRED PROOFS FROM CHAPTER 8 755

of the columns of B, which is isomorphic to Rk′ , and then left-multiply the resulting list by B.

Forming the input set {B>Xi | Xi ∈ Tslow} takes time O(|Tslow|k′d) = O(d
α3 log2R); multiplying

the resulting output list by B cannot be the dominant cost by more than a log 1
δ factor.

Here, we note that because we take n = Ω(dα−1) = Ω(α−2) in accordance with Proposition 68,

the cost of O(dα−3 logR log dR
δ) incurred by Lemma 300 is no more than the cost of logarithmically

many k-PCAs on the original dataset. Regarding the separation of the original dataset into Tfast

and Tslow, which appropriately satisfy Assumption 13, we make the following comment.

Remark 14. We can form a partitioned dataset T = Tfast∪Tslow of the form required by Algorithm 79

by independently drawing n samples to form Tfast, O(logR
α2) samples to form Tslow, and applying

Assumption 13 to Tfast and the projection of Tslow into a k′-dimensional subspace. Up to a log 1
δ

factor in the sample complexity (for error probabilities which are smaller than exp(−Ω(α−1))), these

are valid applications of Assumption 13 because of independence; in particular, the draws Tslow are

independent of the k′-dimensional subspace learned by running ProduceGoodTuple on Tfast, which

only depends on randomness used in Step 2 of FastSIFT.

We now state our strategy for the implementation of ProduceGoodTuple. Roughly speaking,

ProduceGoodTuple is a composition of three subroutines at different levels, named BicriteriaFilter,

DecreaseKFNorm, and KFMMW. Each subroutine is associated with one or more potential functions

which show that the subroutine “one level down” is called O(log d) times.

1. ProduceGoodTuple iteratively calls BicriteriaFilter, an algorithm which takes as input saturated

weights w and either produces saturated weights ‖w′‖1 ≤
1
2 ‖w‖1, or a good tuple.

2. BicriteriaFilter iteratively calls DecreaseKFNorm, an algorithm which takes as input saturated

weights w and maintains an updated set of orthogonal vectors B. Each call to DecreaseKFNorm

either (1) halves the `1 norm of w, (2) halves the Ky Fan k norm of the covariance matrix,

or (3) decreases the operator norm of the covariance matrix by a constant factor and adds k

vectors to B, for some k = Θ(1
α).

3. DecreaseKFNorm is based on a “win-win-win” analysis of the fine-grained guarantees of a Ky

Fan norm matrix multiplicative weights procedure, developed in Section 7.3. We will show

that in O(log d) iterations of KFMMW, either the Ky Fan k norm has halved, or one of the

other two “exit conditions” required by DecreaseKFNorm has been certifiably met.

Given the guarantees of DecreaseKFNorm, correctness of ProduceGoodTuple and BicriteriaFilter

follow straightforwardly. Thus, in Section G.3.1, we state and prove a performance guarantee on

DecreaseKFNorm, which we use to give a simple analysis of ProduceGoodTuple in Section G.3.2. Com-

bining our analysis of ProduceGoodTuple with Lemma 300 gives the main export from this section.

Finally, we note that in the following development of ProduceGoodTuple and its subroutines, we will

overload the input set T to be Tfast in Algorithm 79, because it is the input to ProduceGoodTuple.

APPENDIX G. DEFERRED PROOFS FROM CHAPTER 8 756

G.3.1 Analysis of DecreaseKFNorm

We first state a guarantee for ApproxKFMMW as Proposition 70, which is a computationally efficient

variant of KFMMW (these methods are both given and analyzed in Section 7.3). Proposition 70 is

a restatement of Corollary 26 and Lemma 95 from Section 7.3 with ∆ = 1
200 .

Proposition 70. There is an algorithm, ApproxKFMMW (Algorithm 28), which takes as input a

sequence of matrices {Gt}t≥0 ⊂ Sd≥0 each in the form M>
t Mt for Mt ∈ Rn×d for explicitly given

Mt, and k ∈ [d]. Suppose that the matrices {Gt}t≥0 are weakly decreasing in Loewner order, and let

η ≤ 1
2‖G0‖op

. For any N ≥ 1, with probability 1− δ′, ApproxKFMMW defines a sequence of matrices

{Ŷt}0≤t<N , where Ŷt only depends on {Gs}0≤s<t, such that

‖GN‖k ≤
2

T

N−1∑
t=0

〈
Gt, Ŷt

〉
+
k log d

ηN
+

k

200η
.

Each Ŷt satisfies
∥∥∥Ŷt

∥∥∥
op
≤ 1.01 and

∥∥∥Ŷt

∥∥∥
tr
≤ 1.01k. The cost of the algorithm is

O

(
ndkN2 log2

(
dN

δ′

))
.

Furthermore, for any set of n fixed vectors {vi}i∈[n] ⊂ Rd and any iteration t, 1.05-approximations

to all v>i Ŷtvi can be computed in time

O

(
ndN log

(
nd

δ′

))
with probability at least 1− δ′.

We are now ready to state the algorithm DecreaseKFNorm as Algorithm 80. At a high level, the

goal of DecreaseKFNorm is to implement Proposition 70 in a way so that each of the inner products〈
Gt, Ŷt

〉
is sufficiently small, via decreasing weights defined in terms of the matrix Ŷt. We will

be able to successfully do this as long as the `1 norm of the weight remains stable, and the top

eigenvalue of the covariance matrix is not too much larger than the kth largest. When either of these

conditions fail, we will exit the algorithm via a different termination condition.

The first step in the analysis of Algorithm 80 is to guarantee that any time a weight removal

procedure is performed, it is with respect to safe scores, and hence the weights remain saturated

throughout the course of the algorithm. We give this proof of safe weight removal as Lemma 301,

and then an overall correctness and runtime guarantee in Proposition 71.

Lemma 301. Throughout the course of Algorithm 80, any time weight removal is performed in Line

12, it is with respect to safe scores, and thus w(t) is saturated for all 0 ≤ t < N .

Proof. With probability 1 − δ, all executions of Lines 5 and 10 throughout the algorithm succeed,

so we will condition on this event for the remainder of this proof. We also note that in any iteration

APPENDIX G. DEFERRED PROOFS FROM CHAPTER 8 757

Algorithm 80: DecreaseKFNorm(T,w, γ, δ)

1 Input: T ⊂ Rd with |T | = n satisfying Assumptions 13 and 14, saturated w, γ ←
1.05-approximation to ‖Covw(T)‖k with probability at least 1− δ

3(N+1) for k := d 612
α e

satisfying γ ≥ 110k√
‖w‖1

, δ ∈ (0, 1);

2 Output: Saturated w′, satisfying one of the following possibilities with probability ≥ 1− δ:
w′ has ‖w′‖1 ≤

1
2 ‖w‖1 (marked “Case 1”), V ∈ Rd×k is also outputted, and∥∥∥Cov

P⊥V
w′ (T)

∥∥∥
op
≤ 2

3 ‖Covw(T)‖op (marked “Case 2”), w′ has ‖Covw′(T)‖k ≤
1
2 ‖Covw(T)‖k

(marked “Case 3”);

3 N ← d425 log de, w(0) ← w, β̄ ←
∥∥w(0)

∥∥
1
, η ← 1

2.1ρ , where ρ is a 1.05-approximation of∥∥∥C̃ovw(0)(T)
∥∥∥

op
with probability at least 1− δ

3(N+1) ;

4 for 0 ≤ t < N do
5 V← Power(Covw(t)(T), k, 0.05, δ

3(N+1));

6 λ̃1 ← 〈V:1,Covw(t)(T)V:1〉, λ̃k ← 〈V:k,Covw(t)(T)V:k〉;
7 if λ̃1 ≥ 3.5λ̃k then
8 Return: (w(t),V, “Case 2”);

9 τ
(t)
i ← 1.05-approximation to

〈
(Xi − µw(t)(T)), Ŷt(Xi − µw(t)(T))

〉
for all i ∈ T , with

probability at least 1− δ
3(N+1) ;

10 if
∑
i∈T w

(t)
i τ

(t)
i > γβ̄

12 then
11 w(t+1) ← w(t,K), where K ← smallest natural number such that

either
∥∥∥w(t,K)

∥∥∥
1
≤ β̄

2
, or

∑
i∈T

w
(t,K)
i τ

(t)
i ≤

γβ̄

12
,

where w
(t,K)
i :=

(
1− τ

(t)
i

τ
(t)
max

)K
w

(t)
i , and τ (t)

max := max
i∈T |w(t)

i 6=0

τ
(t)
i

(G.5)

;

12 if
∥∥w(t+1)

∥∥
1
≤ β̄

2 then

13 Return: (w(t+1), “Case 1”);

14 else
15 w(t+1) ← w(t);

16 Feed Gt ← C̃ovw(t+1)(T) into the routine ApproxKFMMW with step size η and δ′ ← δ
3 ;

17 Return: (w(N), “Case 3”);

t where Line 12 is reached, Line 7 did not pass, and thus

λ1 (Covw(t)(T)) ≤ 1.05λ̃1 < 3.675λ̃k ≤ 4λk (Covw(t)(T)) =⇒ ‖Covw(t)(T)‖k ≥
k

4
‖Covw(t)(T)‖op

(G.6)

by the guarantees of Power in Proposition 69. Consider now a single iteration 0 ≤ t < N , and

APPENDIX G. DEFERRED PROOFS FROM CHAPTER 8 758

suppose inductively that w(t) is saturated before Line 12 is executed. In every round of weight

removal 0 ≤ ` < K, assuming that the `1 norm has not halved, we can lower bound the average

score in T by the definition of K:

∑
i∈T

w
(t,`)
i∥∥w(t,`)
∥∥

1

τ
(t)
i ≥

1

β̄

∑
i∈T

w
(t,`)
i τ

(t)
i ≥

γ

12
.

Hence, to prove that the scores are safe in iteration `, it suffices to show that the average score in

S is at most γ
24 . Because the weights w(t,`) are monotone in `, and the `1 norm of w

(t,`)
S inductively

does not change by more than a factor of
√

2 by the following Lemma 301, it suffices to show that

∑
i∈S

w
(t,0)
i∥∥∥w(t,0)
S

∥∥∥
1

τ
(t)
i ≤

γ

34
=⇒

∑
i∈S

w
(t,`)
i∥∥∥w(t,`)
S

∥∥∥
1

τ
(t)
i ≤

γ
√

2

34
<

γ

24
.

We now prove this bound on the average score in S with respect to w(t,0) = w(t), which will conclude

the proof. To see this bound, we have

∑
i∈S

w
(t)
i∥∥∥w(t)
S

∥∥∥
1

τ
(t)
i ≤ 1.05

〈
Ŷt,

∑
i∈S

w
(t)
i∥∥∥w(t)
S

∥∥∥
1

(Xi − µw(t)(T)) (Xi − µw(t)(T))
>

〉

= 1.05
〈
Ŷt,Covw(t)(S)

〉
+ 1.05

〈
Ŷt, (µw(t)(S)− µw(t)(T)) (µw(t)(S)− µw(t)(T))

>
〉

≤ 1.07k ‖Covw(t)(S)‖op + 1.07
∥∥∥(µw(t)(S)− µw(t)(T)) (µw(t)(S)− µw(t)(T))

>
∥∥∥

op

≤ 1.07kα∥∥∥w(t)
S

∥∥∥
1

+
9γ

kα
≤ 1.6k√

β̄
+

9γ

kα
≤ γ

34
.

Here, the first inequality is by the approximation guarantees on the scores τ
(t)
i . The second inequality

used matrix Hölder twice, as well as trace and operator norm bounds on Ŷt due to Proposition 70,

and finally the fact that the trace and operator norm agree for any rank-1 matrix. The fourth

inequality is by the helper Lemma 301 and saturation of w(0), and the fifth is by our choices of k

and lower bound on γ ≥ 110k√
β̄

. The third inequality used Lemmas 297 and 298, the latter of which

implies

∥∥∥(µw(t)(S)− µw(t)(T)) (µw(t)(S)− µw(t)(T))
>
∥∥∥

op
≤
∥∥w(t)

∥∥
1∥∥∥w(t)

S

∥∥∥
1

‖Covw(t)(T)‖op

≤ 1

α
· 4

k
‖Covw(t)(T)‖k ≤

8.4γ

kα
.

The second inequality used our assumption (G.6), and the last used that C̃ovw(t)(T) is monotonically

decreasing in the Loewner order, and thus since until termination, the normalization factor
∥∥w(t)

∥∥
1

APPENDIX G. DEFERRED PROOFS FROM CHAPTER 8 759

does not change by more than a factor of two, and γ is a 1.05-approximation to ‖Covw(0)(T)‖k,

‖Covw(t)(T)‖k =
1∥∥w(t)
∥∥

1

∥∥∥C̃ovw(t)(T)
∥∥∥
k
≤ 2

β̄

∥∥∥C̃ovw(0)(T)
∥∥∥
k
≤ 2.1γ.

In proving Lemma 301, we used the following helper lemma.

Lemma 302. Consider any algorithm of the form in Lemma 295. Suppose in some iteration t,∥∥w(t)
∥∥

1
≥ 1

2

∥∥w(0)
∥∥

1
. Then,

∥∥∥w(t)
S

∥∥∥
1
≥ 1√

2

∥∥∥w(0)
S

∥∥∥
1
.

Proof. This is immediate from telescoping (G.4), which was used in the proof of Lemma 295.

Finally, we prove overall correctness of Algorithm 80.

Proposition 71. Algorithm 80 succeeds with probability at least 1 − δ, in the sense that each of

Cases 1-3 returns correctly. The overall complexity is bounded by

O

(
ndk log2(d) log2

(
dR

δ

))
.

Proof. We will show correctness and complexity of Algorithm 80 separately.

Correctness guarantee. As argued in the proof of Lemma 301, with probability 1 − δ every

weight removal is safe, so Lemma 301 shows that w(t) is saturated throughout the algorithm. By

a union bound, we also assume that all approximations are correct in the remainder of the proof.

It is obvious that if the algorithm terminates in Line 14, the requirement of Case 1 is met. If the

algorithm terminates in Line 8, the guarantees of Power (Proposition 69) imply that

λ1 (Covw(t)(T)) ≥ 1

1.05
λ̃1 ≥

3.5

1.05
λ̃k ≥

3.5

1.052
λk (Covw(t)(T))

≥ 3.5

1.053

∥∥(I−VV>)Covw(t)(T)(I−VV>)
∥∥

op
≥ 3

∥∥∥Cov
P⊥V
w(t)(T)

∥∥∥
op
.

(G.7)

However, since the algorithm did not terminate on Line 14 in the previous iteration, we also have

λ1 (Covw(t)(T)) =
1∥∥w(t)
∥∥

1

λ1

(
C̃ovw(t)(T)

)
≤ 2

β̄
λ1

(
C̃ovw(0)(T)

)
= 2λ1 (Covw(0)(T)) .

Combining the above two calculations gives the correctness proof for Case 2, as∥∥∥Cov
P⊥V
w(t)(T)

∥∥∥
op
≤ 1

3
λ1 (Covw(t)(T)) ≤ 2

3
λ1 (Covw(0)(T)) .

Finally, we show correctness in Case 3, where N iterations of the algorithm have passed without

terminating on either of Lines 8 (which halves operator norm) or 14 (which halves weight). In

APPENDIX G. DEFERRED PROOFS FROM CHAPTER 8 760

this case, we apply Proposition 70, which is valid since the Gt are monotonically decreasing, and

ηG0 � 1
2I by the approximation guarantee on ρ. Here, we also note that all our matrices Gt are

covariance matrices with known weights, so they can be expressed in the form M>
t Mt for explicitly

given Mt ∈ Rn×d. Proposition 70 additionally requires a bound on each
〈
Gt, Ŷt

〉
; to this end,

〈
Gt, Ŷt

〉
=
∑
i∈T

w
(t+1)
i

〈
(Xi − µw(t+1)(T)) , Ŷt (Xi − µw(t+1)(T))

〉
≤
∑
i∈T

w
(t+1)
i

〈
(Xi − µw(t)(T)) , Ŷt (Xi − µw(t)(T))

〉
≤ 1.05

∑
i∈T

w
(t+1)
i τ

(t)
i ≤

1.05γβ̄

12
.

In the first inequality, we used Fact 39; in the second, we used the assumption on the scores τ (t);

and in the third, we used the second guarantee in (G.5) since we did not terminate on Line 14. Now,

applying this bound in every iteration 0 ≤ t < N in Proposition 70, and defining GN = GN−1,

‖GN‖k ≤
1.05γβ̄

6
+

2.1kρ log d

N
+

2.1kρ

200

≤ 1.05γβ̄

6
+

2.21k
∥∥∥C̃ovw(0)(T)

∥∥∥
op

log d

N
+

2.21k
∥∥∥C̃ovw(0)(T)

∥∥∥
op

200

≤ 1.05γβ̄

6
+

9
∥∥∥C̃ovw(0)(T)

∥∥∥
k

log d

N
+

9
∥∥∥C̃ovw(0)(T)

∥∥∥
k

200

≤
1.052 ‖Covw(0)(T)‖k β̄

6
+

9
∥∥∥C̃ovw(0)(T)

∥∥∥
k

log d

N
+

9
∥∥∥C̃ovw(0)(T)

∥∥∥
k

200
.

The first inequality was by Proposition 70 and the definition of η; the second was by the approxi-

mation guarantee on ρ; the third was by the fact that the first iteration did not terminate on Line

8, so we can apply the bound (G.6); and the fourth was by the definition of γ. Next, dividing both

sides by β̄ and using that termination on Line 14 has not occurred,

1

2
‖Covw(N)(T)‖k =

1

2
∥∥w(N)

∥∥
1

∥∥∥C̃ovw(N)(T)
∥∥∥
k

≤ 1

β̄
‖GN‖k ≤ ‖Covw(0)(T)‖k

(
1.052

6
+

9 log d

N
+

9

200

)
.

Here, we used that 1
β̄

∥∥∥C̃ovw(0)(T)
∥∥∥
k

= ‖Covw(0)(T)‖k twice, by definition of β̄. Rearranging and

using the definition of N ≥ 425 log d then yields correctness of Case 3.

Complexity guarantee. For N = O(log d), the total cost of running ApproxKFMMW is

O

(
ndk log2(d) log2

(
d

δ

))
,

as given by Proposition 70. It is straightforward to check that the costs of Lines 5 and 10, given by

APPENDIX G. DEFERRED PROOFS FROM CHAPTER 8 761

Propositions 69 and 70, do not dominate this. Finally, since the cost of checking (G.5) for a value

of K is linear in n, it suffices to provide an upper bound on K and then binary search. For this, we

have ∑
i∈T

w
(t,K)
i τ

(t)
i ≤

∑
i∈T

exp

(
−Kτ

(t)
i

τ
(t)
max

)
w

(t)
i τ

(t)
i ≤

1

eK

∑
i∈T

w
(t)
i τ (t)

max ≤
τ

(t)
max

eK
.

Here, the first inequality used the definition of w
(t,K)
i , the second used that x exp(−Cx) ≤ 1

eC for

all nonnegative x, where we chose C = K

τ
(t)
max

, and the third used w(t) ∈ ∆n. Since the definition of

saturated weights implies that
√
β̄ ≥ α, it follows that the threshold in Line 11 satisfies

γβ̄

12
≥ 110kα

12
≥ 5000.

Also, Assumption 14 and
∥∥∥Ŷt

∥∥∥
op
≤ 1.01 imply that all scores are bounded by 1.01R2, so we conclude

K ≤ R2. Thus, the complexity of the binary search is O(n logR) and does not dominate.

G.3.2 Analysis of ProduceGoodTuple

At this point, the statements and analyses of both BicriteriaFilter and ProduceGoodTuple are straight-

forward, as we have done most of the heavy lifting in proving Proposition 71. We state both here

and prove their correctness and a runtime guarantee in Proposition 72.

Proposition 72. Algorithm 82, ProduceGoodTuple, correctly outputs a good tuple with probability

at least 1− δ. Its overall complexity is

O

(
nd

α
log2(d) log2

(
dR

δ

)
log(R) log

(
1

α

))
.

Proof. We will show correctness and complexity of Algorithm 82 separately.

Correctness guarantee. We first claim that if BicriteriaFilter meets its specifications, then so does

ProduceGoodTuple. This is since every time BicriteriaFilter returns in Case 1, the `1 norm of w is

halved, but it can never be smaller than α2 since w is always saturated, so Case 1 occurs ≤ 2 log 1
α

times. Finally, note that Case 2 of BicriteriaFilter indeed constitutes a good tuple, with c = 128.

It remains to prove that BicriteriaFilter meets its specifications. We first claim that the while loop

of Lines 5-23 is not run more than M times. To see this, whenever DecreaseKFNorm returns in Case

1, the loop immediately terminates, so it suffices to bound the number of times DecreaseKFNorm

returns in Case 2 or Case 3 before exiting on Line 13. Observe that every time Case 2 occurs, the

operator norm of Covw(T) is decreased by 1
3 , but by Assumption 14 it is bounded by R2 initially,

and as soon as it is smaller than 100, then the algorithm will exit on Line 13. Thus, the number of

times Case 2 occurs is at most 3 log(R
2

100); similarly, Case 3 occurs at most 2 log(R
2

100) times since it

halves the Ky Fan norm each time. Combining these yields the claimed bound of M loops.

APPENDIX G. DEFERRED PROOFS FROM CHAPTER 8 762

Algorithm 81: BicriteriaFilter(T, δ, w)

1 Input: T ⊂ Rd with |T | = n satisfying Assumptions 13 and 14, δ ∈ (0, 1), saturated w
Output: Saturated w′, satisfying one of the following possibilities with probability ≥ 1− δ:

1. w′ has ‖w′‖1 ≤
1
2 ‖w‖1 (marked “Case 1”)

2. B ∈ Rd×k′ is also outputted, for k′ = O(logR
α), and∥∥∥Cov

P⊥B
w′ (T)

∥∥∥
op
≤ 128√

‖w′‖1
(marked “Case 2”)

;

B← [], k ← d 612
α e, β̄ ← ‖w‖1;

δ′ ← δ
M , for M = 5 log(R

2

100);
while true do

if ‖w‖1 ≤
1
2 β̄ then

Return: (w, “Case 1”);

T ← projection of T into orthogonal complement of BB>;

γ ← 1.05-approximation to ‖Covw(T)‖k with probability ≥ 1− δ′

3(N+1) , for

N = d150 log de;
if γ < 110k√

‖w‖1
then

Append the columns of Power(Covw(T), k, 0.05, δ′

3(N+1)) to B;

Return: (w,B, “Case 2”);

if DecreaseKFNorm(T,w, γ, δ′) returns “Case 1” then
Return: (DecreaseKFNorm(T,w, γ, δ′), “Case 1”)

else if DecreaseKFNorm(T,w, γ, δ′) returns “Case 2” then
(w,V)← DecreaseKFNorm(T,w, γ, δ′);
Append the columns of V to B;

else
w ← DecreaseKFNorm(T,w, γ, δ′);

Algorithm 82: ProduceGoodTuple(T, δ)

1 Input: T ⊂ Rd with |T | = n satisfying Assumptions 13 and 14, δ ∈ (0, 1);
2 Output: Good tuple (B, w) (cf. Definition 58) with probability ≥ 1− δ;
3 w ← 1

n1;
4 while true do

5 if BicriteriaFilter
(
T, δ

2 log 1
α

, w
)

returns “Case 1” then

6 w ← BicriteriaFilter
(
T, δ

2 log 1
α

, w
)

7 ;
8 else

9 Return: BicriteriaFilter
(
T, δ

2 log 1
α

, w
)

;

APPENDIX G. DEFERRED PROOFS FROM CHAPTER 8 763

Thus, the failure probability of BicriteriaFilter is met; it remains to prove that in each case, it

returns correctly. If the algorithm returns on Line 7, this is clear. If the algorithm returns on

Line 16, note that its input w has ‖w‖1 ≤ β̄ by monotonicity of filtering, so it must be that the

output of DecreaseKFNorm has `1 norm at most 1
2 β̄ by Case 1 of DecreaseKFNorm. The only other

place the algorithm can return is in Line 13. However, in this case it is clear that B has at most

k · (3 log(R
2

100) + 1) = O(logR
α) columns, since every time Line 18 is executed only k columns are

appended, and we earlier bounded the number of times Line 18 can occur. Finally, by combining

the definition of γ, the fact that we always project T into the orthogonal complement of BB> in Line

9, and the fact that Proposition 69 implies that λk+1(Covw(T)) ≤ (1.05)2 γ
k (see e.g. the calculation

(G.7)), we see that when (w,B) is returned,

∥∥∥CovP⊥B
w (T)

∥∥∥
op
≤ (1.05)3γ

k
≤ 128√

‖w‖1
.

In the above equation, we overload T to mean the original dataset (rather than after projection in

Line 9). This proves correctness of BicriteriaFilter in all cases. Finally, we remark that all parts of

DecreaseKFNorm operate correctly after the projection in Line 9. The only place this may cause

difficulty is in dependences on smallest eigenvalues in implementing ApproxKFMMW, because the

gain matrices are not full rank. However, it is straightforward to check that the guarantees of the

subroutines ApproxProject and Power as given in Section 7.3 will depend on the smallest eigenvalues

of gain matrices restricted to Span(I−BB>), if all operations are performed in this space.

Complexity guarantee. By our earlier analysis, ProduceGoodTuple incurs a multiplicative O(log 1
α)

overhead on the cost of BicriteriaFilter, so it suffices to understand this latter complexity. The

dominant cost is clearly the (at most M) calls to DecreaseKFNorm, and the projection steps in Line

9. Line 9 involves orthogonalizing each of n vectors against O(k logR) vectors in d dimensions, so

its complexity is O(ndk logR ·M), which does not dominate. The overall cost bound follows from

combining Proposition 71 with a multiplicative O(M log 1
α) overhead factor.

By combining Lemma 300 with Proposition 72, we have the following guarantee on FastSIFT.

Corollary 66. With probability 1− δ, some µ̂ ∈ L outputted by Algorithm 79 satisfies

‖µ̂− µ∗‖22 ≤
560

α
.

The overall runtime of Algorithm 79 is

O

(
nd

α
log2(d) log2

(
dR

δ

)
log(R) log

(
1

α

)
+

1

α6
log3(R) log

(
dR

δ

))
.

APPENDIX G. DEFERRED PROOFS FROM CHAPTER 8 764

G.4 Cleanup

In this section, we give implementations of pre-processing and post-processing procedures on the

dataset which will be used in attaining our final guarantees. In particular, Section G.4.1 shows

how to reduce the size of our final output list, and Section G.4.2 shows how to näıvely cluster the

dataset to have diameter polynomially bounded in problem parameters. Finally, we put all the

pieces together in giving our final result on list decodable mean estimation in Section G.4.3, as well

as a variant on this procedure which obtains a slight runtime-accuracy tradeoff, in Section G.4.4.

G.4.1 Merging candidate means

We give a simple greedy algorithm for taking the output of Algorithm 79 (FastSIFT) and reducing its

size to be O(1
α), without affecting the guarantee (G.2) by more than a constant factor. The algorithm

and analysis bear some resemblance to the strategy in [179], but we include it for completeness. In

this section, denote k := d 4
αe as in Algorithm 78. We recall from the description of SIFT that the

output L of FastSIFT has the property that elementwise, all µ̂ ∈ L are of the form

µfixed + VV>BB>Xi = µfixed + PXi, where Xi ∈ Tslow, P := VV>, (G.8)

since columns of V ∈ Rd×k are contained in Span(B), and µfixed lies in the orthogonal complement

of Span(V).2 To see this, note that all input points to SIFT are of the form BB>Xi (Line 4 of

FastSIFT), and because SIFT then works in the coordinate system of B, every element of the output

list will have this form. In particular, µfixed is the sum of µfast (Line 3, Algorithm 79) and the

empirical mean in the last iteration of SIFT projected into (I−P) (Line 12, Algorithm 78).

Because the proof of Lemma 300 (with c = 128, cf. Proposition 72) shows that

‖µfixed − (I−P)µ∗‖22 ≤
512 + 28

α
=

540

α
, ‖P(Xi − µ∗)‖22 ≤

8

α
for some µ̂ ∈ L, (G.9)

it suffices to reduce the number of PXi while maintaining one with squared `2 distance O(1
α) from

Pµ∗. We now give our post-processing procedure. In the following, define n′ := |Tslow| = O(logR
α2).

Lemma 303. The output of Algorithm 83 has |L̃| ≤ 2
α , and at least one µ̂ ∈ L̃ has

‖µ̂− µ∗‖22 ≤
1052

α
.

The overall runtime of the algorithm is

O

(
1

α4
log(R) log

(
1

δ

))
.

2In the implementation, we will have V ∈ Rk′×k where k′ is the column dimensionality of B since it is expressed
in the coordinate system of B, but we write it this way for consistency with the whole algorithm.

APPENDIX G. DEFERRED PROOFS FROM CHAPTER 8 765

Algorithm 83: PostProcess(L,α)

1 Input: L, the output of Algorithm 79 (FastSIFT) decomposed as (G.8), satisfying (G.9);

2 Output: L̃, a subset of L with |L̃| ≤ 2
α ;

3 L̃← ∅;
4 Let L̃ be a maximal subset of L of points µ̂ = µfixed + PXi, such that ‖P(Xi −Xj)‖22 ≤

32
α

for at least n′α
2 of the Xj ∈ Tslow, and ‖µ̂− µ̂′‖22 ≥

128
α , ∀µ̂′ ∈ L̃;

5 Return: L̃;

Proof. We first prove the bound on the list size. Note that every element µ̂ ∈ L̃ is associated with

at least n′α
2 elements in Tslow; call this the “cluster” of µ̂. By the separation assumption on pairs in

L̃, the clusters of all µ̂, µ̂′ ∈ L̃ are distinct, so there can only be at most 2
α clusters as desired.

We now show the error guarantee. By the decomposition (G.8), the assumption (G.9), and the

Pythagorean theorem, it suffices to show that for some µ̂ = PXj + µfixed in the output list,

‖P(Xj − µ∗)‖22 ≤
512

α
. (G.10)

By assumption, there is a particular µ̂ = PXi + µfixed ∈ L which satisfies the bound (G.9). We

will designate this µ̂ as µ̂good throughout the proof, and fix the index i to be associated with µ̂good.

Next, we recall that at least n′α
2 of the points Xj ∈ Tslow have

‖P(Xj − µ∗)‖22 ≤
8

α
.

This was shown in the first part of Theorem 89, and is a straightforward application of Markov and

Assumption 13. By triangle inequality to µ∗ and the definition of µ̂good, Xi satisfies

‖P(Xi −Xj)‖22 ≤
32

α
for at least

n′α

2
of the Xj ∈ Tslow.

Now, assume that (G.10) does not occur; this clearly also means that µ̂good cannot belong to L̃.

However, this is a contradiction, since triangle inequality implies that if no point in L̃ satisfies (G.10),

then µ̂good would be added to the list by maximality of the subset.

Finally, we show the complexity guarantee. Throughout, we use the assumption that L has

already been decomposed as (G.8), and all components in P are expressed in the coordinate system

of V, so all distance comparisons take time O(k). We can first eliminate all points which do not meet

the clustering criteria (e.g. do not have enough points nearby) in one pass, in time O(|L||Tslow|k).

Afterwards, a näıve greedy algorithm suffices for forming a list L̃ in Line 4, e.g. iteratively looping

over L and performing the check against points in |L̃| sequentially until a loop adds no elements to

L̃. This costs O(|L||L̃|2k), which yields the runtime since we argued |L̃| = O(k).

APPENDIX G. DEFERRED PROOFS FROM CHAPTER 8 766

G.4.2 Bounding dataset diameter

In Section G.3, we developed an algorithm for list-decodable mean estimation under Assumption 14.

We now demonstrate how to reduce a general dataset satisfying Assumption 13 to this case. Our

strategy will be to divide the original dataset into multiple portions of bounded diameter, such that

with high probability all of the points in S satisfying Assumption 13 lie in the same set. To do

so, we perform a random one-dimensional projection, which is likely to preserve distances up to a

polynomial factor, and then use an equivalence class partition as our clustering. We state two simple

facts which are helpful in the analysis.

Lemma 304. No two points Xi, Xj ∈ S have ‖Xi −Xj‖2 ≥ 2
√
n.

Proof. It suffices to show that every point in S has distance at most
√
n from µ∗. If this were not

the case, it is clear Assumption 13 cannot hold by virtue of the corresponding rank-one term.

Lemma 305. Let T be a set of n points in Rd, and sample g ∼ N (0, I). With probability at least

1− δ, for every pair of distinct points Xi, Xj ∈ T ,

1

4 log n
δ

(〈g,Xi −Xj〉)2 ≤ ‖Xi −Xj‖22 ≤
n4

δ2
(〈g,Xi −Xj〉)2

. (G.11)

Proof. Fix a pair Xi, Xj ∈ T ; we show that each of the bounds in (G.11) holds with probability at

least 1− δ
n2 , and then the conclusion holds by a union bound over both tails and all pairs. Since the

distribution of 〈g,Xi −Xj〉 is N (0, ‖Xi −Xj‖22), the lower bound in (G.11) is a straightforward ap-

plication of sub-Gaussian concentration. The upper bound comes from the fact that the probability

mass of N (0, 1) in the range [−
√
ε,
√
ε] is bounded by

1√
2π

∫ √ε
−
√
ε

exp

(
−1

2
t2
)
dt ≤

√
ε.

Hence, the probability that Z ∼ N (0, ‖Xi −Xj‖22) has Z2 ≤ δ2

n4 is bounded by δ
n2 .

At this point, we are ready to give our pre-processing procedure.

Lemma 306. PreProcess meets its output specifications. The overall runtime is

O (nd+ n log n) .

Proof. The runtime bound is immediate; Lines 3 and 4 clearly take time O(nd), and Line 5 can be

performed by sorting the values {vi}i∈T and greedily forming clusters, creating disjoint paths from

the smallest value to the largest. To show correctness, condition on the conclusion of Lemma 305

occuring (giving the failure probability). We begin with the claim that all of S is contained in a

APPENDIX G. DEFERRED PROOFS FROM CHAPTER 8 767

Algorithm 84: PreProcess(T, δ)

1 Input: T ⊂ Rd with |T | = n satisfying Assumption 13, δ ∈ (0, 1);
2 Output: Partition of T into disjoint clusters {Tj}j∈[m], such that all of S is contained in a

single cluster, and every cluster has radius ≤ 4n4

δ2 , with probability 1− δ;
3 g ∼ N (0, I);
4 vi ← 〈g,Xi〉 for all Xi ∈ T ;
5 Partition T into equivalence classes {Tj}j∈[m], where indices i, i′ are in the same Tj if there

is a path of distinct i1 = i, i2, . . . i` = i′ so that each consecutive |via − via+1
| ≤ 4

√
n log n

δ ;

6 Return: Clusters in {Tj}j∈[m] with at least αn points;

single cluster; to see this, if Xi, Xj ∈ S, then combining Lemma 304 and Lemma 305 implies that

(vi − vj)2 ≤
(

4 log
n

δ

)
(4n) =⇒ |vi − vj | ≤ 4

√
n log

n

δ
.

Furthermore, suppose two points Xi, Xi′ are in the same cluster, witnessed by a path of length

` ≤ n starting at i1 = i and ending at i` = i′. Then, by triangle inequality

|vi − vi′ | ≤
`−1∑
a=1

|via − via+1
| ≤ 4

√
n3 log

n

δ

=⇒ (〈g,Xi −Xi′〉)2 ≤ 16n3 log
n

δ
=⇒ ‖Xi −Xi′‖22 ≤

16n7

δ2
log

n

δ
≤ 16n8

δ4
.

In the last implication, we used the upper bound in Lemma 305.

G.4.3 Putting it all together

Finally, we put together the pieces we have developed to give our final algorithm.

Algorithm 85: ListDecodableMeanEstimation(T, δ)

1 Input: T ⊂ Rd with |T | = n satisfying Assumption 13, Tslow ⊂ Rd with |Tslow| = O(log d/δ
α2)

satisfying Assumption 13 for 1
α fixed O(log d/δ

α)-dimensional subspaces (cf. Remark 14,
where we use R = poly(d, δ−1) as below, where n = poly(d)), δ ∈ (0, 1);

2 Output: L ⊂ Rd with |L| ≤ 2
α satisfying (G.2) with probability ≥ 1− δ;

3 {Tj}j∈[m] ← PreProcess(T, δ2);

4 Lj ← FastSIFT(Tj ,
δα
2 ,ProduceGoodTuple), for all j ∈ [m], with R = 4n4

δ2 , and αj = α|T |
|Tj | ,

reusing the same datapoints Tslow for each call to FastSIFT;
5 Lj ← PostProcess(Lj , αj), for all j ∈ [m];

6 Return: L←
⋃
j∈P Lj , where P = {j ∈ [m] | |Lj | ≤ 2

αj
};

Theorem 90. Under Assumption 13, with probability at least 1 − δ, ListDecodableMeanEstimation

APPENDIX G. DEFERRED PROOFS FROM CHAPTER 8 768

outputs a list of size at most 2
α , and attains error

min
µ∈L
‖µ− µ∗‖2 = O

(
1√
α

)
.

The overall runtime is

O

(
nd

α
log2(d) log3

(
d

δ

)
log

(
1

α

)
+

1

α6
log4

(
d

δ

))
.

Proof. We will show correctness and complexity of Algorithm 85 separately.

Correctness guarantee. First, note there are at most α−1 clusters outputted by PreProcess, so by

a union bound, with probability at least 1− δ, both PreProcess and all FastSIFT calls succeed. Note

that whichever cluster Tj that contains all of S indeed satisfies Assumption 13, with |S| = αj |Tj |,
by definition of αj . Thus, Corollary 66 and Lemma 303 imply that index j will belong to the output

set P , and an element of Lj will meet the error guarantee (G.2). The list size follows from

|L| ≤
∑
j∈[m]

2

αj
=

2

α
.

Finally, we remark that we can reuse the same slow dataset Tslow for each of the at most 1
α runs of

FastSIFT in Line 4, corresponding to different clusters, up to a 1
α factor in the failure probability

of Proposition 68. This is because (as in Remark 14), the low-dimensional subspaces produced by

ProduceGoodTuple are each independent of any randomness used in generating the set Tslow.

Complexity guarantee. The cost of PostProcess given in Lemma 303 never dominates the cost of

FastSIFT given in Corollary 66; similarly, it is clear that the cost of PreProcess given in Lemma 306

never dominates. Thus, it suffices to bound the costs of all calls to FastSIFT in Line 4. To this end,

we bound contributions of the two terms in the runtime of Corollary 66. Because each αj ≥ α and

the sum of the sizes of the {Tj}j∈[m] is n,

∑
j∈[m]

|Tj |d
αj
≤ |T |d

α
=
nd

α
.

Similarly, denoting kj = 1
αj

and k = 1
α , since

∑
j∈[m] kj = k by design,

∑
j∈[m]

k6
j ≤

∑
j∈[m]

kj

6

=
1

α6
.

APPENDIX G. DEFERRED PROOFS FROM CHAPTER 8 769

G.4.4 Trading off accuracy for runtime

In this section, we give a simple alternative to the algorithm ListDecodableMeanEstimation which

removes the lower-order term in the runtime (so that the complexity is just the cost of polylogarith-

mically many calls to a k-PCA routine), at the cost of a slight loss in the accuracy term. We first

note that unless α−1 = ω
(√

d
)

, the term with dependence α−6 will not dominate the complexity

of Theorem 90. This is because we choose our sample complexity (following Assumption 13) to be

on the order of d
α , so that asymptotically,

1

α6
>
nd

α
=⇒ d2 <

1

α4
.

We now give the main result of this section, which shows in this regime of α−1, it suffices to randomly

sample in the last stage of each run of FastSIFT rather than apply SIFT. The following Algorithm 86

(FasterSIFT) is a simple modification of FastSIFT, which is the same for the first three lines, as well

as the last. The only difference is that in Line 4, the list Lslow is formed by random sampling points

from Tslow and projecting into the subspace BB>.

Algorithm 86: FasterSIFT(T, δ,ProduceGoodTuple)

1 Input: T = Tfast ∪ Tslow ⊂ Rd with |Tfast| = n satisfying Assumptions 13 and 14,

|Tslow| = O(logR
α2) satisfying Assumption 13 for a fixed O(logR

α)-dimensional subspace,
δ ∈ (0, 1), subroutine ProduceGoodTuple which returns a good tuple with specified failure
probability;

2 (B, w)← ProduceGoodTuple(Tfast,
δ
2);

3 µfast ← (I−BB>)µw(T);

4 Lslow ← {BB>Xi where i ∈ Tslow is sampled uniformly at random}, with list size

|Lslow| = d 2
α log 4

δαe;
5 Return: L← {µslow + µfast | µslow ∈ Lslow};

Corollary 67. Consider running ListDecodableMeanEstimation with a modification: in Line 4, use

FasterSIFT (Algorithm 86) in place of FastSIFT (Algorithm 79). The resulting list has size at most
2
α . Under Assumption 13, with probability at least 1− δ, the overall runtime is

O

(
nd

α
log2(d) log3

(
d

δ

)
log

(
1

α

))
,

and the error guarantee is

min
µ∈L
‖µ− µ∗‖2 = O

√ log 1
δα

α

 .

Proof. We first discuss list size and error guarantee. It suffices to show that for the cluster Tj

containing all of S, we can modify Lemma 303 to obtain a list size 2
αj

and error guarantee on

APPENDIX G. DEFERRED PROOFS FROM CHAPTER 8 770

the order of
√

log(1/δα)/α. To see this, all arguments in Lemma 303 follow identically, except

that the random sampling occured in a O(logR
αj

)-dimensional space. Hence, the error guarantee is

correspondingly amplified, where we recall R = poly(d, δ−1), but the list size argument is the same

(e.g. we only keep means which contain at least O(|Tj |αj) points within their cluster, and all clusters

are disjoint).

We now discuss runtime. The cost of all runs of FastSIFT remains the same, up until the step

where SIFT is run; clearly, the cost of random sampling is cheaper than running ProduceGoodTuple,

once the projections into the coordinate system of B have already been formed. Finally, the only

place that we can lose runtime due to working in a larger-dimensional subspace is in the complexity of

PostProcess, where operations are done in O(logR
α) dimensions. Mirroring the proof of Lemma 303,

this only adds a logR overhead, and it is straightforward to check that the cost of all runs of

PostProcess do not dominate, since for d ≥ α−1 and our choice of n, nd
α ≥

1
α4 .

G.5 Warmup: fast Gaussian multifilter

As a warmup to our (stronger) developments in Section 8.4, we give a complete algorithm for list-

decodable mean estimation in the Gaussian case, i.e. where the “true” distribution D is drawn

from a Gaussian with covariance bounded by I. We encourage the interested reader to read this

section before Section 8.4. Conceptually, the types of statements Gaussian concentration (rather

than heavy-tailed concentration) allow us to make let us simplify several of the technical difficulties

alluded to at the end of Section 8.3.3, in particular the following.

1. Instead of a “covariance bound” statement such as (8.3) to use in our potential proof, we will

simply guarantee that the multifilter returns sets of points which lie in short intervals along a

number of random directions given by a Johnson-Lindenstrauss sketch.

2. Instead of a randomly subsampled filtering step to remove outliers without soft downweighting

(to preserve truly small subsets), it will be enough to deterministically set thresholds along

1-dimensional projections to safely remove the outliers.

3. The definition of the Gaussian multifilter (see Section G.5.2) will be substantially simpler,

since we have more explicit tail bounds to check for outliers.

The strength of the error guarantees of the simpler algorithm in this section are somewhat weaker

than those of Section 8.4 even when specialized to the Gaussian case, but we include this section

as an introductory exposition of our techniques. We will use the stronger Gaussian concentration

assumption in this section, a tightening of Assumption 13.

Throughout this section, we will assume that α ∈ [1/d, 1/ logC d], for some constant C > 0

without loss of generality, as discussed in Section 8.5.

We now formally define the regularity condition which we will use throughout this section.

APPENDIX G. DEFERRED PROOFS FROM CHAPTER 8 771

Assumption 15. There is a subset S ⊆ T ⊂ Rd of size αn = Θ(d · polylog(d)), and a vector

µ∗ ∈ Rd, such that for all unit vectors v ∈ Rd and thresholds t ∈ R≥0,

Pr
i∼unifS

[〈Xi − µ∗, v〉 > t] ≤ exp(−Ω(t2)) +
1

Ω
(
log3 d

) .
Here, the notation i ∼unif S means that i is a uniformly random sampled index from S.

This assumption is standard in the literature, and follows when the true distribution which S

is sampled from is Gaussian with identity-bounded covariance (see e.g. Definition A.4, Lemma A.5

[177]). We remark that the sample complexity of Assumption 15 is worse than that of Assumption 13

by a polylogarithmic factor. This lossiness is just to simplify exposition in this warmup section, and

indeed in the following Section 8.4 we give an algorithm which recovers stronger guarantees than

Theorem 91, this section’s main export, under only Assumption 13.

In Section G.5.1, we first give our main subroutine, GaussianPartition, which takes a candidate

set and produces a number of children candidate sets which each satisfy a progress guarantee similar

to (8.3). The main difficulty will be in guaranteeing that the children sets are sufficiently small, and

that if the parent set was “good” (had large overlap with S), then at least one child set will as well.

We reduce GaussianPartition to a number of one-dimensional clustering steps, which we implement as

GaussianSplitOrCluster in Section G.5.2. Finally, we use the guarantees of GaussianPartition within our

potential-based framework outlined in Section 8.3.3, giving our final algorithm FastGaussianMultifilter

in Section G.5.3. Throughout, sets S and T are fixed and satisfy Assumptions 13 and 15.

G.5.1 Reducing GaussianPartition to GaussianSplitOrCluster

Our final algorithm creates a tree of candidate sets. Every node p in the tree is associated with a

subset Tp. In order to progress down the tree, at a given node p we form children {c`}`∈[k] with

associated sets {Tc`}`∈[k]; we call the procedure which produces the children node GaussianPartition,

and develop it in this section. There are three key properties of GaussianPartition which we need.

1. The sum of the cardinalities of {Tc`}`∈[k] is not too large compared to |Tp|. This is to guarantee

that at each layer of the tree, we perform about the same amount of work, namely Õ(nd).

We formalize this with a parameter β ∈ (0, 1] throughout the rest of this section, and will

guarantee that every time GaussianPartition is called on a parent node p,

∑
`∈[k]

|Tc` |
1+β ≤ |Tp|1+β . (G.12)

2. If the parent vertex p has substantial overlap with S (at least 1
2 |S| points), then at least one

of the produced children continues to retain all but a small fraction of points in S.

APPENDIX G. DEFERRED PROOFS FROM CHAPTER 8 772

3. Defining the matrices

Mp := C̃ov 1
n1 (Tp) , Yp := Mlog d

p ,

Mc` := C̃ov 1
n1 (Tc`) , Yc` := Mlog d

c`
for all ` ∈ [k],

(G.13)

every Mc` satisfies the bound

〈
Y2
p,Mc`

〉
≤ R2Tr

(
Y2
p

)
, (G.14)

for some (polylogarithmic) value R we will specify. Note the similarity between this and (8.3);

this will be used in a potential analysis to bound progress on covariance operator norms.

We are now ready to state the algorithm GaussianPartition.

Algorithm 87: GaussianPartition(Tp, α, β, C,R)

1 Input: Tp ⊆ T , α ∈ (0, 1
2), β ∈ (0, 1], C,R ∈ R≥0 satisfying (for sufficiently large constants)

R = Ω

(√
log (C) ·

log log
(
Cα−1

)
β

)
, C = Ω

(
log2 d

)
.

;

2 Output: With failure probability ≤ 1
d3 : subsets {Tc`}`∈[k] of Tp, satisfying (G.12). Every

child satisfies (G.14) (using notation (G.13)). If |Tp ∩ S| ≥ (1
2 + 1

C)|S|, at least one child
Tc` satisfies

|Tc` ∩ S| ≥ |Tp ∩ S| −
1

C
|S|. (G.15)

;

3 Sample Ndir = Θ(log d) vectors {uj}j∈[Ndir] ∈ Rd each with independent entries ±1.
Following notation (G.13), let vj ← Ypuj for all j ∈ [Ndir].;

4 S0 ← Tp;
5 for j ∈ [Ndir] do
6 Sj ← ∅;
7 for T ′ ∈ Sj−1 do
8 T ← Gaussian1DPartition(T ′, α, vj , β, CNdir, R);
9 Sj ← Sj ∪ T ;

10 Return: SNdir
;

It heavily relies on a subroutine, Gaussian1DPartition(T ′, v) which takes a subset T ′ and a vector

v ∈ Rd, and produces children subsets of T ′ satisfying the first two conditions above, and also

guarantees that along the direction v, each child subset is contained in a relatively short interval.

Once again, Gaussian1DPartition heavily relies on a subroutine, GaussianSplitOrCluster, which we

implement in Section G.5.2. It takes as input a set T ′′ and either produces one or two subsets of T ′′

APPENDIX G. DEFERRED PROOFS FROM CHAPTER 8 773

Algorithm 88: Gaussian1DPartition(T ′, α, v, β, C,R)

1 Input: T ′ ⊆ T , α ∈ (0, 1
2), v ∈ Rd, β ∈ (0, 1], C,R ∈ R≥0 satisfying (for sufficiently large

constants)

R = Ω

(√
log (C) ·

log log
(
Cα−1

)
β

)
, C = Ω

(
log3 d

)
.

;
2 Output: Subsets {T ′′` }`∈[k] ⊆ T ′, such that∑

`∈[k]

|T ′′` |
1+β ≤ |T ′|1+β . (G.16)

If |T ′ ∩ S| ≥ (1
2 + 1

C)|S|, at least one child T ′′` satisfies

|T ′′` ∩ S| ≥ |T ′ ∩ S| −
1

C
|S|.

Every child has all values {〈v,Xi〉 | i ∈ T ′′` } contained in an interval of length R ‖v‖2.;
3 Sin ← {T ′}, Sout ← ∅;
4 while Sin 6= ∅ do
5 T ′′ ← the first element of Sin;
6 Sin ← Sin \ T ′′;
7 if GaussianSplitOrCluster(T ′′, α, β,R, 1

Cn) returns one set T
(0)
out then

8 Sout ← Sout ∪
{
T

(0)
out

}
;

9 else

10 T
(1)
out, T

(2)
out ← GaussianSplitOrCluster(T ′′, α, β,R, 1

Cn);

11 Sin ← Sin ∪
{
T

(1)
out, T

(2)
out

}
;

APPENDIX G. DEFERRED PROOFS FROM CHAPTER 8 774

as output. If it outputs one set, that set has length at most R ‖v‖2 in the direction v; otherwise,

Gaussian1DPartition simply recurses on the additional two sets. Crucially, GaussianSplitOrCluster

guarantees that if T ′′ has substantial overlap with S, then so does at least one child; moreover,

when GaussianSplitOrCluster returns two sets, they satisfy a size potential such as (G.16). We now

demonstrate correctness of GaussianPartition, assuming that Gaussian1DPartition is correct.

Lemma 307. The output of GaussianPartition satisfies the guarantees given in Line 2 of Algo-

rithm 87, assuming correctness of Gaussian1DPartition.

Proof. First, to demonstrate that the subsets satisfy (G.12), we observe that we can view GaussianPartition

as always maintaining a set of subsets, Sj (in the beginning, S0 = Tp). The set Sj is formed

by calling Gaussian1DPartition on elements of Sj−1, each of which satisfy (G.16), so inductively

SNdir
= {Tcl}l∈[k] will satisfy (G.12) with respect to S0 = Tp as desired.

Next, by recursively using the guarantee of Gaussian1DPartition, every Tcl ∈ SNdir
will satisfy

all values {〈vj , Xi〉 | i ∈ Tcl} are contained in an interval of length R ‖vj‖2 , for all j ∈ [Ndir].

In other words, this set is short along all the directions {Ypuj = vj}j∈[Ndir]. This lets us conclude

〈
Y2
p,Mcl

〉
=

1

2n |Tcl |

〈
Y2
p,
∑

i,i′∈Tcl

(Xi −Xi′)(Xi −Xi′)
>

〉

=
1

2n |Tcl |
∑

i,i′∈Tcl

‖Yp(Xi −Xi′)‖22

≤ 1.4

2n |Tcl |Ndir

∑
i,i′∈Tcl

∑
j∈[Ndir]

〈Ypuj , Xi −Xi′〉2

≤ 1.4

2n |Tcl |Ndir

∑
i,i′∈Tcl

∑
j∈[Ndir]

R2 ‖Ypuj‖22

≤ 1.4

2Ndir

∑
j∈[Ndir]

R2 ‖Ypuj‖22 ≤ R
2Tr

(
Y2
p

)
,

with probability at least 1 − 1
2d3 . Here, we used Fact 16 in the first line and linearity of trace

in the second line. The third line used the Johnson-Lindenstrauss lemma of [6] which says that

for any vector v, 1
Ndir

∑
j∈[Ndir]

〈uj , v〉2 ∈ [0.6, 1.4] ‖v‖22 for a sufficiently large Ndir = Θ(log(d))

with probability at least 1 − 1
2d6 , which we union bound over all |Tcl |2 ≤ n2 ≤ d4 pairs of points.

The fourth line used the radius guarantee of Gaussian1DPartition, and the fifth used |Tcl | ≤ n and

the Johnson-Lindenstrauss lemma guarantee that 1
Ndir

∑
j∈[Ndir]

‖Ypuj‖22 ∈ [0.6, 1.4]Tr(Y2
p) with

probability at least 1− 1
2d3 , which can be deduced by the guarantee of [6] applied to the rows of Yp.

Union bounding over the two applications of [6] yields the claim.

Finally, to demonstrate that at least one child satisfies (G.15), suppose p satisfies |Tp∩S| ≥ (1
2 +

APPENDIX G. DEFERRED PROOFS FROM CHAPTER 8 775

1
C)|S| (i.e. it has substantial overlap with S). Then by applying the guarantee of Gaussian1DPartition

inductively, every Sj will have at least one element T ′ satisfying |T ′ ∩ S| ≥ 1
2 |S|. Every call to

Gaussian1DPartition only removes 1
CNdir

|S| points in S, so overall only 1
C |S| points are removed.

G.5.2 Implementation of GaussianSplitOrCluster

In this section, we first state GaussianSplitOrCluster and analyze its correctness. We conclude with

a full runtime analysis of Gaussian1DPartition, using our GaussianSplitOrCluster implementation.

Algorithm 89: GaussianSplitOrCluster(Tin, α, v, β,R,∆)

1 Input: Tin ⊆ T , α ∈ (0, 1
2), v ∈ Rd, β ∈ (0, 1], R ∈ R≥0, ∆ ∈ (0, 1);

2 Output: Either one subset T
(0)
out ⊂ Tin, or two subsets T

(1)
out, T

(2)
out ⊂ Tin. In the one subset

case, T
(0)
out has

{
〈v,Xi〉 | i ∈ T (0)

out

}
contained in an interval of length R ‖v‖2. In the two

subsets case, they take the form, for some threshold value τ ∈ R and

r := R
4kmax

, kmax = Θ
(

log log(1
α∆)

β

)
T

(1)
out := {Xi | 〈v,Xi〉 ≤ τ + r ‖v‖2}, T

(2)
out := {Xi | 〈v,Xi〉 ≥ τ − r ‖v‖2}, (G.17)

and satisfy ∣∣∣T (1)
out

∣∣∣1+β

+
∣∣∣T (2)

out

∣∣∣1+β

< |Tin|1+β
. (G.18)

;
3 Yi ← 〈v,Xi〉 for all i ∈ Tin;

4 T
(0)
out ← indices in the middle 1− α∆ quantiles of {Yi}i∈Tin

;

5 if
{
Yi | i ∈ T (0)

out

}
is contained in an interval of length R ‖v‖2 then

6 Return: T
(0)
out;

7 else
8 τmed ← med ({Yi | i ∈ Tin}), where med returns the median;
9 τk ← τmed + 2kr ‖v‖2 for all integers −kmax ≤ k ≤ kmax;

10 Return: T
(1)
out, T

(2)
out defined in (G.17) for any threshold τk inducing sets satisfying

(G.18);

To analyze Algorithm 89 we first demonstrate that it always returns in at least one case. In

particular, we demonstrate that whenever the set T
(0)
out is not sufficiently short, then there will be a

threshold parameter k such that the induced sets in (G.17) satisfy the size bound (G.18).

Lemma 308. Suppose Algorithm 89 does not return on Line 6. Then, there exists a k ∈ Z in the

range −kmax ≤ k ≤ kmax such that Algorithm 89 is able to return on Line 10.

Proof. We instead prove that if there is no such k, then we will have a contradiction on the length

of the set T
(0)
out in the direction v. We first lower bound the length of the [1

2 , 1 −
α∆
2] quantiles

APPENDIX G. DEFERRED PROOFS FROM CHAPTER 8 776

of {Yi | i ∈ Tin} by 1
2R ‖v‖2; the lower bound for the [α∆

2 , 1
2] quantiles will follow analogously.

Combining shows that if no threshold works, then the algorithm should have returned T
(0)
out.

For any threshold τ , define g(τ) ∈ [0, 1] to be the proportion of {Yi | i ∈ Tin} which are ≥ τ .

Moreover, define for all 1 ≤ k ≤ kmax,

γk := g(τk − r ‖v‖2) = g(τmed + (2k − 1)r ‖v‖2),

and note that γ1 ≤ 1
2 by definition, since τmed was the median. Now, for each 1 ≤ k ≤ kmax, since

τk was not a valid threshold, the sets

T
(1)
k := {Xi | Yi ≤ τmed + (2k + 1)r ‖v‖2}, T

(2)
k := {Xi | Yi ≥ τmed + (2k − 1)r ‖v‖2}

do not satisfy the size bound (G.18). Normalizing both sides of (G.18) by |Tin|1+β and using the

definitions of {γk}, we obtain the following recursion:

(1− γk+1)1+β + γ1+β
k =

∣∣∣T (1)
k

∣∣∣
|Tin|

1+β

+

∣∣∣T (2)
k

∣∣∣
|Tin|

1+β

≥ 1 =⇒ γk+1 ≤ γ1+β
k . (G.19)

To obtain the above implication, we used 1− (1− x)1+β > x1+β for all x, β ∈ [0, 1]. By repeatedly

applying the recursion (G.19), we have

γkmax
≤ γ(1+β)(kmax−1)

1 ≤
(

1

2

)(1+β)(kmax−1)

≤ α∆

2
,

where we use the definition of kmax and γ1 ≤ 1
2 . Thus, the [1

2 , 1 −
α∆
2] quantiles are contained

between τmed and τmed + (2kmax − 1)r ‖v‖2 ≤ τmed + 1
2R ‖v‖2. By repeating this argument in the

range −kmax ≤ k ≤ −1, we obtain a contradiction (as Algorithm 89 should have returned T
(0)
out).

We next prove that if the input T ′ to Gaussian1DPartition has large overlap with S, then the

algorithm always returns some child T ′′ which removes at most 1
C |S| points from this overlap. This

proof uses the implementation of GaussianSplitOrCluster in a white-box way, as well as Assumption 15.

Lemma 309. Whenever Gaussian1DPartition is called on T ′ with |T ′ ∩ S| ≥
(

1
2 + 1

C

)
|S| with pa-

rameters R,C satisfying (for sufficiently large constants)

R = Ω

(√
log(C) · log log(Cd)

β

)
, C = Ω

(
log3 d

)
,

it produces some child T ′′ satisfying |T ′′ ∩ S| ≥ |T ′ ∩ S| − 1
C |S|.

Proof. We first discuss the structure of Gaussian1DPartition. We say a call to GaussianSplitOrCluster

is a “split step” if it produces two sets, and otherwise we call it a “cluster step.” Every output

APPENDIX G. DEFERRED PROOFS FROM CHAPTER 8 777

child of Gaussian1DPartition is the result of a consecutive number of split steps, and then one cluster

step. Also, every split step replaces an interval with its intersections with two half-lines which

overlap by 2r ‖v‖2 = Ω(
√

log(C) ‖v‖2). Assume for simplicity that ‖v‖2 = 1 in this proof; analogous

arguments hold for all v by scaling everything appropriately. Finally, we recall that all calls to

GaussianSplitOrCluster in Gaussian1DPartition are with ∆ = 1
Cn .

Our key technical claim is that after any number of split steps forming a partition of the real

line, there is always some interval such that 〈v, µ∗〉 is r away from both endpoints (in this proof,

we allow intervals to have endpoints at ±∞). This is clearly true at the beginning, since the only

interval is (−∞,∞). Next, we induct and assume that on the current partition, after some number

of split steps, there is an interval [a, b] in the partition such that 〈v, µ∗〉 ∈ [a + r, b − r]. Consider

the intersection of this interval with any split step, parameterized by the half-lines (−∞, τ + r] and

[τ − r,∞) for some τ ∈ R. If 〈v, µ∗〉 ≥ τ , then one of the resulting intervals is

[max (a, τ − r) , b]

where we note that this interval is non-degenerate by assumption; τ ≤ 〈v, µ∗〉 ≤ b−r =⇒ τ−r ≤ b.
If the result of the max is [a, b], then the claim holds; otherwise, the interval is [τ − r, b] and the

claim holds by induction (〈v, µ∗〉 ≤ b − r) and the assumption 〈v, µ∗〉 ≥ τ . The other case when

〈v, µ∗〉 ≤ τ follows symmetrically by considering the interval [a,min(b, τ + r)].

Now, consider the partition of the real line which is induced by the eventual children outputted

by Gaussian1DPartition, right before the last cluster step is applied to them (in other words, this

partition is formed only by split steps). Using the above argument, there is some element of this

partition [a, b] so that 〈v, µ∗〉 ∈ [a + r, b − r]. Applying Assumption 15 shows that if we consider

the effects of truncating the set {Yi | i ∈ S} at the endpoints of this interval, we remove at most a
1

2C fraction of the points from S. Finally, the interval that is returned is the result of a cluster step

applied to this interval. This can only remove at most an α∆ ≤ α
2C fraction of the overall points,

which is at most 1
2C |S|. Combining these two bounds yields the claim.

Finally, we conclude with a runtime analysis of Gaussian1DPartition.

Lemma 310. Let n′ := |T ′| for some T ′ ⊆ T . Gaussian1DPartition called on input T ′ with parameter

C can be implemented to run in time

O

(
n′d+ (n′)1+β log n′ · log log(Cd)

β

)
.

Proof. We begin by forming all of the one-dimensional projections 〈v,Xi〉 for all i ∈ T ′, and sorting

these values. We also store the quantile of each point (i.e. the number of points larger than it). The

total cost of these operations is O(n′d+ n′ log n′).

Next, given this total ordering, observe that the structure of Gaussian1DPartition means that every

APPENDIX G. DEFERRED PROOFS FROM CHAPTER 8 778

set in Sin is a subinterval of T ′, since this is inductively preserved by calls to GaussianSplitOrCluster;

hence, we can represent every set implicitly by its endpoints. Moreover, given access to the initial

quantile information we can implement every call to GaussianSplitOrCluster in time O(kmax log n′) =

O(log n′ · log log(Cd)
β), since the cost of checking the length of T

(0)
out is constant, and the cost of checking

each candidiate τk is dominated by determining the thresholds of the corresponding induced sets

T
(1)
out and T

(2)
out. These can be performed via binary searches in O(log n′) time.

It remains to bound the number of calls to GaussianSplitOrCluster throughout the execution of

Gaussian1DPartition. To this end, we bound the number of times GaussianSplitOrCluster can return

one set, and the number of times it can return two sets. Every time GaussianSplitOrCluster returns

one set, it adds it to Sout, and by using the guarantee (G.18) recursively, there can only ever be

(n′)1+β such sets. Similarly, every time it returns two sets it increases |Sin| + |Sout| by one, but

we know at termination this is at most (n′)1+β , and this potential never decreases. Thus, the total

number of calls to GaussianSplitOrCluster is bounded by O((n′)1+β), as desired.

As an immediate corollary, we obtain a runtime bound on GaussianPartition.

Corollary 68. Let np := |Tp| for some Tp ⊆ T . GaussianPartition called on input Tp with parameter

C can be implemented to run in time

O

(
n1+β
p d log2(d) + n1+β

p log2(d) · log log(Cd))

β

)
.

Proof. First, consider the cost of computing all vectors Ypuj . It is straightforward to implement

matrix-vector multiplications through Mp in time O(npd), so this cost is O(npd log2(d)).

We next require a bound on the cost of Ndir = Θ(log d) consecutive calls to Gaussian1DPartition.

The cost of each is given by Lemma 310, and the result follows by summing this cost over all elements

of each Sj , which can be bounded since for all j ∈ [Ndir], the cardinalities of all sets contained in Sj
have 1 + β powers bounded by n1+β

p by repeatedly using the guarantee (G.16).

G.5.3 Full Gaussian algorithm

Finally, we are ready to give our full algorithm for list-decodable mean estimation under Assump-

tions 13 and 15. We begin by reducing the original problem to a number of subproblems of bounded

diameter (following Section G.4), and then showing that for each of these subproblems, polyloga-

rithmic calls to GaussianPartition yield subsets of bounded covariance operator norm. We conclude

by recalling that a covariance operator norm bound suffices to yield guarantees on mean estimation.

We begin by restating the guarantees of NaiveCluster, used in Line 3 of FastGaussianMultifilter.

Lemma 311 (Restatement, Lemma 306). There is a randomized algorithm, NaiveCluster, which

takes as input T ⊂ Rd satisfying Assumption 13 and partitions it into disjoint subsets {T ′i}i∈[k] such

APPENDIX G. DEFERRED PROOFS FROM CHAPTER 8 779

Algorithm 90: FastGaussianMultifilter(T, α)

1 Input: T ⊂ Rd, |T | = n satisfying Assumptions 13 and 15 with parameter α ∈ (0, 1
2);

2 Output: With failure probability ≤ 1
d : L with |L| = O(1

α) such that some µ̂ ∈ L satisfies

‖µ̂− µ∗‖2 = O

(
log(d) log log1.5(d)√

α

)
. (G.20)

;
3 {T ′i}i∈[k] ← NaiveCluster(T);

4 αi ← |T |
|T ′i |

α for all i ∈ [k];

5 Return:
⋃
i∈[k] FastGaussianMultifilterBoundedDiameter(T ′i , αi);

Algorithm 91: FastGaussianMultifilterBoundedDiameter(T, α)

1 Input: T ⊂ Rd, |T | = n satisfying Assumptions 13 and 15 with parameter α ∈ (0, 1
2);

2 Output: With failure probability ≤ 1
d : Lout with |Lout| = O(1

α) such that some µ̂ ∈ Lout

satisfies

‖µ̂− µ∗‖2 = O

(
log(d) log log1.5(d)√

α

)
.

;

3 L(0) ← {T}, Lout ← ∅;
4 For sufficiently large constants,

R← Θ
(
log(d) log log1.5(d)

)
, C ← Θ(log2 d), D ← Θ(log2 d)

;
5 for ` ∈ [D] do
6 L(`) ← ∅;
7 for T ′ ∈ L(`−1) do
8 Append all elements of GaussianPartition(T ′, α, 1

log d , C,R) to L(`) with size at least
αn
2 ;

9 Return: List of empirical means of all sets in L(D);

APPENDIX G. DEFERRED PROOFS FROM CHAPTER 8 780

that with probability at least 1 − 1
d2 , all of S is contained in the same subset, and every subset has

diameter bounded by O(d12). The runtime of NaiveCluster is O(nd+ n log n).

We next demonstrate that if the operator norm of the (unnormalized) covariance matrix of a set

of points T ′ is bounded, and T ′ has sufficient overlap with S, then its empirical mean is close to µ∗.

Lemma 312. For T ′ ⊂ T with empirical mean µ̂, if |T ′ ∩ S| ≥ 1
2 |S| and C̃ov 1

n1
(T ′) ≤ R2,

‖µ̂− µ∗‖2 = O

(
(1 +R) · 1√

α

)
.

Proof. Let w place weight 1
n on coordinates in T ′, and 0 on all other coordinates. Clearly this w

satisfies the assumption of Lemma 113, since its `1 norm is simply |T
′|
|T | ≥

1
2α. The conclusion follows

by applying Lemma 113, where we use ‖w‖1 Covw(T) = C̃ov 1
n1

(T ′), and the assumed bound.

We now give a full analysis of FastGaussianMultifilterBoundedDiameter.

Proposition 73. FastGaussianMultifilterBoundedDiameter meets its output specifications with prob-

ability at least 1− 1
d , within runtime

O
(
nd log4(d) + n log5(d) log log(d)

)
.

Proof. Throughout, we denote β := 1
log d . There are three main guarantees of the algorithm: that

the list size is O(1
α), that some list element satisfies (G.20), and that the runtime is as claimed.

We first bound the list size. We can view FastGaussianMultifilterBoundedDiameter as producing a

tree of subsets, of depth D. Each layer of the tree is composed by the sets in L(`) where 0 ≤ ` ≤ D,

and L(0) is the root node. The children of each node are the results of calling GaussianPartition on

the associated subset. Moreover, by repeatedly using the guarantee (G.12) inductively, the total

cardinality of all sets at layer ` is bounded by n1+β = O(n). Since we only return means from sets

with size at least αn
2 on layer D, there can only be O(1

α) such sets.

Next, we bound error rate. Consider some leaf node, and its path to the root; call the sets

associated with these vertices T0, T1, . . . TD, where TD is the leaf node and T0 = T is the original

set. Define the potential function at each layer 0 ≤ ` ≤ D,

Φ` := Tr
(
M2 log d

`

)
, where M` := C̃ov 1

n1 (T`) .

Note that every parent-child pair along this path satisfies the guarantee (G.14). We thus conclude

APPENDIX G. DEFERRED PROOFS FROM CHAPTER 8 781

that for each 0 ≤ ` < D, we have the recurrence (analogously to (8.4))

Φ`+1 = Tr
(
M2 log d

`+1

)
≤ 1

2R2
Tr
(
M2 log d+1

`+1

)
+ d(2R2)2 log d

≤ 1

2R2
Tr
(
M2 log d

` M`+1

)
+ d(2R2)2 log d

≤ 1

2
Tr
(
M2 log d

`

)
+ d(2R2)2 log d =

1

2
Φ` + d(2R2)2 log d.

The first line used Fact 18 with γ = 2R2, the second used Fact 17, and the third used the guarantee

(G.14). Thus, as long as at a layer ` we have

Φ` > 4d(2R2)2 log d,

we have Φ`+1 ≤ 3
4Φ`, and so the potential is decreasing by at least a constant factor. The potential

Φ0 is bounded by dO(log d), because we assumed the input set has polynomially bounded diameter,

so within D = Ω(log2 d) layers, every node on layer D must have ΦD ≤ 4d(2R2)2 log d. This implies

that the operator norm of C̃ov 1
n1(T ′) for every node T ′ on layer D is O(R2).

We next show at least one node T ′ on every layer has |T ′∩S| ≥ 1
2 |S|. By inductively using (G.15)

with our chosen value of C, summing over the O(log2 d) layers guarantees that we only remove at

most 1
2 |S| points from the intersection throughout the root-to-leaf path, for some path. We can

now apply Lemma 312 to guarantee (G.20). To obtain the high-probability bound, note that the

number of times we call GaussianPartition is bounded by O(1
α log2 d), since at each layer we prune

every node with less than αn
2 points; there can only be O(1

α) surviving nodes per layer (since the

total cardinalities of the layer is bounded by n1+β = O(n)), and taking a union bound over all calls

to GaussianPartition shows the failure probability is at most 1
d .

Finally, we discuss runtime. We simply apply Corollary 68 to each layer, which bounds the

runtime of each layer by O(nd log(d)+n log3(d) log log(d)), since the sets on that layer satisfy (G.12)

inductively. Summing over all layers yields the desired runtime guarantee.

Theorem 91. FastGaussianMultifilter meets its output specifications with probability at least 1− 1
d ,

within runtime

O
(
nd log4(d) + n log5(d) log log(d)

)
.

Proof. We apply Proposition 73 to the relevant call of FastGaussianMultifilterBoundedDiameter. Note

that all αi ≥ α, giving the error guarantee (G.20), and

∑
i∈[k]

1

αi
=

1

α
,

giving the list size guarantee. The runtime follows from
∑
i∈[k] |T ′i | = |T |.

APPENDIX G. DEFERRED PROOFS FROM CHAPTER 8 782

G.6 Deferred proofs from Section 3.2

G.6.1 Proof of Proposition 33

In this section, we prove Proposition 33, restated here for convenience.

Proposition 33. Let α ≥ 1 and let ε > 0 be sufficiently small. Let {(Xi, yi)}i∈[n] ⊂ Rd × R be an

ε-corrupted set of samples from a distribution DXy as in Model 3. Then, if

n = O

(
dα2 log d

ε4
+
d2α1.5 log(d/ε)

ε3

)
,

the set {(Xi, yi)}i∈[n] is (2ε, ε
2

α)-good for linear regression with probability at least 9
10 .

Before we prove this lemma, we need the following useful technical lemmata. The first shows

that given a large enough sample of points from a distribution with bounded second moment, there

is a large subset of points with bounded second moment.

Lemma 313 (Lemma A.20 in [177]). Let X1, . . . , Xn be independent samples from a distribution D
with second moment matrix Σ?, and let ε > 0 be sufficiently small. There exists a universal constant

c > 0 so that if n ≥ cd log d
ε , we have that with probability 0.99, there exists a subset S of size (1− ε)n

satisfying
1

|S|
∑
i∈S

XiX
>
i �

3

2
Σ? .

We note that Lemma A.20 is stated for covariance as opposed to second moment, but the same

proof immediately implies the same result for second moment.

We also require the following bound.

Lemma 314 (Lemma 5.1 in [134]). Let X1, . . . , Xn be independent samples from a distribution D
with second moment Σ?, and let ε > 0 be sufficiently small. Assume D is 2-to-4 hypercontractive

with parameter C = O(1). There exists a universal constant c > 0 so that if n ≥ cd log(d/ε)
ε , then

with probability 1− 1
d2 , we have that for any S ⊂ [n] of size (1− ε)n,

1

|S|
∑
i∈S

XiX
>
i � (1−

√
ε)Σ? .

Finally, we show our main helper lemma, which is used to prove Assumption 7.2 holds.

Lemma 315. Let ε > 0 be sufficiently small. Let X1, . . . , Xn be n samples from a 2-to-4 hyper-

contractive distribution D with parameter C and second moment Σ?. Then, there exist universal

constants c, Cest > 0 so that if

n ≥ c
(
d log d

ε4
+
d2 log(d/ε)

ε3

)
,

APPENDIX G. DEFERRED PROOFS FROM CHAPTER 8 783

then with probability 0.99, for every u ∈ Rd, there exists an G ⊆ [n] satisfying |G| ≥ (1− ε2)n, and∥∥∥∥∥ 1

|G|
∑
i∈G
〈Xi, u〉2XiX

>
i

∥∥∥∥∥
op

≤ CestL ‖u‖2Σ? .

Proof. Without loss of generality (by scale invariance), it suffices to prove this for all u with ‖u‖Σ? =

1. First, by Markov’s inequality with EX∼D[‖X‖22] = Tr[Σ?] ≤ Ld, we have that

Pr
X∼D

[
‖X‖22 ≥

20Ld

ε2

]
≤ ε2

20
.

Hence, by Bernstein’s inequality, we have that with probability 0.999,

|{i : ‖Xi‖22 ≥ 20Ldε−2}|
n

≤ ε2

10
. (G.21)

Condition on this event holding for the rest of the proof.

For any vector u ∈ Rd with ‖u‖Σ? = 1, let Hu ⊂ Rd be the set given by

Hu =

{
x ∈ Rd : 〈x, u〉2 ≥ 10C

1/2
2→4

ε

}
.

Note that by Chebyshev’s inequality, since EX∼D[〈x, u〉4] ≤ C2→4 ‖u‖4Σ? ≤ C2→4, PrX∼D[X ∈
Hu] ≤ ε2

100 . Furthermore, the collection of sets {Hu}‖u‖Σ?=1 has VC dimension O(d), as each

Hu can be expressed as a restricted intersection of parallel halfspaces, and it is well-known that

VC dimension is additive under intersection. Therefore, by the VC inequality, we know that if

n ≥ cd log d
ε4 for sufficiently large constant c, with probability 0.999, we have that

sup
Hu

|{i : Xi ∈ Hu}|
n

≤ ε2

50
. (G.22)

Condition on this event holding for the rest of the proof. All expectations throughout the remainder

of the proof are taken with respect to X ∼ D for notational simplicity.

For any fixed u, we define the truncated fourth moment (contracted in the direction u) by

Ai = Ai(u) = 〈Xi, u〉2XiX
>
i 1

[
〈Xi, u〉2 ≤

20C
1/2
2→4

ε
and ‖Xi‖22 ≤

20Ld

ε2

]
.

Note that

‖E [Ai]‖op ≤
∥∥∥E [〈Xi, u〉2XiX

>
i

]∥∥∥
op

= sup
‖v‖2=1

E
[
〈Xi, u〉2 〈Xi, v〉2

]
≤ C2→4L ‖u‖2Σ? ,

APPENDIX G. DEFERRED PROOFS FROM CHAPTER 8 784

by Cauchy-Schwarz and hypercontractivity. Moreover, by construction, the spectral norm of Ai

is bounded almost surely by
400LC

1/2
2→4d

ε3 . Hence, by a matrix Chernoff bound, we get that if n ≥
cd

2 log(d/ε)
ε3 for a sufficiently large constant c, then with probability 0.999, we have that∥∥∥∥∥ 1

n

n∑
i=1

Ai(u)

∥∥∥∥∥
op

≤ 2C2→4L ‖u‖2Σ? . (G.23)

for all u in a poly(εd)-net of the unit sphere in the Σ? norm (which has cardinality (dε)O(d) by

Theorem 1.13 of [456]). Because we are union bounding over poly(d, ε−1) samples, we have with

high probability that all ‖Xi‖(Σ?)−1 = poly(d, ε−1). Hence, it is straightforward to show that the

bound (G.23) over our net implies for all ‖u‖Σ? = 1,∥∥∥∥∥ 1

n

n∑
i=1

〈Xi, u〉2XiX
>
i 1

[
Xi 6∈ Hu and ‖Xi‖22 ≤

10C
1/2
2→4Ld

ε

]∥∥∥∥∥
op

≤ 2C2→4L , (G.24)

Combining (G.21), (G.22), and (G.24) implies that for every u, the setG = {i : Xi ∈ Hu and ‖Xi‖22 ≤
20Ld
ε2 } satisfies the conditions of the lemma.

We are now ready to prove Proposition 33.

Proof of Proposition 33. Condition 3 of Assumption 7 follows directly from Markov’s inequality,

since it is asking about the empirical average over G of δ2 ∼ Dδ; the adversary removing points can

only affect this upper bound by a constant factor (due to renormalization).

Next, let [n] = G ∪ B be the canonical decomposition of the corrupted set of samples. By

two applications of Lemma 313, with probability at least 0.99, there exists a set G′ ⊂ G of size

|G′| ≥ (1− ε)|G| ≥ (1− 2ε)n so that

1

|G′|
∑
i∈G′

XiX
>
i �

3

2
Σ? , (G.25)

1

|G′|
∑
i∈G′

δ2
iXiX

>
i �

3

2
σ2Σ? . (G.26)

Condition on the event that such a G′ exists for the remainder of the proof, and also condition on the

event that Lemma 315 is satisfied. By a union bound, these events happen together with probability

at least 0.9. We will show that this G′ will satisfy the conditions of the lemma. The upper bound in

Condition 1 of Assumption 7 is immediate, and similarly, the lower bound follows from Lemma 314

and a standard convexity argument (since the vertices of the polytope defining saturated weights

are subsets of cardinality (1−O(ε))|G|).
It thus remains to prove Condition 2 of Assumption 7. To do so, we will first prove (8.39) is

satisfied with high probability. By Lemma 315 (adjusting by a factor of α in the definition of ε2),

APPENDIX G. DEFERRED PROOFS FROM CHAPTER 8 785

there exists a set G′′ ⊆ G′ so that |G′′| ≥ (1− ε2

α)|G′| so that∥∥∥∥∥ 1

|G′′|
∑
i∈G′′

〈Xi, θ − θ?〉2XiX
>
i

∥∥∥∥∥
op

≤ CestL ‖θ − θ?‖2Σ? .

Hence, for this choice of G′′, we have

Covw̃
(
{gi(θ)}i∈G′′

)
=
∑
i∈G′′

w̃i (〈Xi, θ − θ?〉+ δi)
2
XiX

>
i

� 2
∑
i∈G′′

w̃i 〈Xi, θ − θ?〉2XiX
>
i + 2

∑
i∈G

w̃iδ
2
iXiX

>
i

� 2(1 + 2ε)

|G′′|
∑
i∈G′′

〈Xi, θ − θ?〉2XiX
>
i +

2(1 + 2ε)

|G′|
∑
i∈G′

δ2
iXiX

>
i

� 2(1 + 2ε)

|G′|
∑
i∈G′′

〈Xi, θ − θ?〉2XiX
>
i + 3σ2Σ?

� 2(1 + 2ε)CestL
(
‖θ − θ?‖2Σ? + σ2

)
I .

where the last line follows from (G.26). By suitably adjusting the choice of Cest, this proves

that (8.39) is satisfied for this choice of G′′. Finally, we claim that (8.39) implies (8.38) via standard

techniques from the robust mean estimation literature, e.g. in the proof of Lemma 3.2 in [194].

G.6.2 Proof of Proposition 36

In this section, we state FastCovFilter and prove Proposition 36, restated for convenience.

Proposition 36. There is an algorithm, FastCovFilter (Algorithm 92), taking inputs V := {vi}i∈[n] ∈
Rn×d, saturated weights w ∈ ∆n with respect to bipartition [n] = G ∪ B with |B| = εn, δ ∈ (0, 1],

and R ≥ 0 with the promise that ∥∥∥∥∥∑
i∈G

1

|G|
viv
>
i

∥∥∥∥∥
op

≤ R.

Then, with probability at least 1− δ, FastCovFilter returns saturated w′ ∈ ∆n such that∥∥∥∥∥∥
∑
i∈[n]

w′iviv
>
i

∥∥∥∥∥∥
op

≤ 5R.

The runtime of FastCovFilter is

O
(
nd log3(n) log

(n
δ

))
.

Before proving Proposition 36, we require three helper facts.

APPENDIX G. DEFERRED PROOFS FROM CHAPTER 8 786

Algorithm 92: FastCovFilter(V, w, δ, R)

1 Input: V := {vi}i∈[n] ∈ Rn×d, saturated weights w ∈ ∆n with respect to bipartition

[n] = G ∪B with |B| = εn for sufficiently small ε, δ ∈ (0, 1), R ≥
∥∥∥∑i∈G

1
|G|viv

>
i

∥∥∥
op

;

2 Output: With probability ≥ 1− δ, saturated w′ with respect to bipartition G ∪B, with∥∥∥∥∥∥
∑
i∈[n]

w′iviv
>
i

∥∥∥∥∥∥
op

≤ 5R.

;

3 Remove all i ∈ [n] with ‖vi‖22 ≥ nR, n← new dataset size;

4 T ← O(log2 n) (for a sufficiently large constant), t← 0, w(0) ← w;

5 while t < T and Power
(∑

i∈[n] w
(t)
i viv

>
i ,

δ
2T

)
> 2R do

6 Mt ←
∑
i∈[n] w

(t)
i viv

>
i , Yt ←Mlog d

t ;

7 Sample Ndir = O(log n
δ) (for a sufficiently large constant) vectors {uj}j∈[Ndir] ∈ Rd each

with independent entries ±1. Let ũj ← Ytuj for all j ∈ [Ndir].;
8 for j ∈ [Ndir] do

9 τi ← 〈vi, ũj〉2 for all i ∈ [n];
10 τmax ← maxi∈[n]|wi 6=0 τi;

11 while
∑
i∈[n] w

(t)
i τi ≥ 2R ‖ũj‖22 do

12 w
(t)
i ←

(
1− τi

τmax

)
w

(t)
i for all i ∈ [n];

13 w(t+1) ← w(t), t← t+ 1;

14 Return: w(t);

Fact 40 (Theorem 1, [404]). For any δ ∈ (0, 1] and M ∈ Sd≥0, there is an algorithm, Power(M, δ),

which returns with probability at least 1− δ a value V such that λmax(M) ≥ V ≥ 0.9λmax(M). The

algorithm costs O(log d
δ) matrix-vector products through M plus O(d log d

δ) additional runtime.

Fact 41 (Lemma 7, [289]). Let A,B ∈ Sd≥0 with A � B, and p ∈ N. Then Tr(Ap−1B) ≥ Tr(Bp).

Fact 42. For any α ≥ 0 and A ∈ Sd≥0,

αTr(A2 log d) ≤ Tr(A2 log d+1) + dα2 log d+1.

Proof. Every eigenvalue λ of A is either at least α (and hence λ2 log d+1 ≥ αλ2 log d) or not (and

hence α2 log d+1 ≥ αλ2 log d). Both of these cases are accounted for by the right hand side.

Proof of Proposition 36. We discuss correctness, runtime, and the failure probability separately.

Correctness. First, Line 3 is correct because these indices cannot belong to G as they would

certify a violation to the operator norm bound in the direction of v, so this preserves saturation.

Next, it is clear by Fact 40 that if the algorithm ever ends because Power returns too small a

APPENDIX G. DEFERRED PROOFS FROM CHAPTER 8 787

number, the output is correct, so it suffices to handle the other case. Define the potential function

Φt := Tr(Y2
t). Our main goal is to show that in every iteration the algorithm runs, Φt decreases

substantially. To this end, we claim that after all runs of Lines 8-14 of FastCovFilter have finished,

we have in all randomly sampled directions j ∈ [Ndir] the guarantee〈
ũj ũ
>
j ,
∑
i∈[n]

w
(t)
i viv

>
i

〉
≤ 2R ‖ũj‖22 . (G.27)

This is immediate from the termination condition on Line 11 for each j ∈ [Ndir], the fact that weights

are monotone nonincreasing throughout the whole algorithm, and that the left hand side of (G.27)

is monotone nonincreasing as a function of the weights. Next, by the Johnson-Lindenstrauss lemma

of [6], for a sufficiently large Ndir with probability at least 1− δ
4T ,

1

Ndir

∑
j∈[Ndir]

〈vi, ũj〉2 =
1

Ndir

∑
j∈[Ndir]

v>i Ytũj ũ
>
j Ytvi ∈ [0.95, 1.05]

〈
viv
>
i ,Y

2
t

〉
for all i ∈ [n].

Condition on this event for all runs of Lines 8-14 throughout the algorithm for the remainder of the

proof. Combining this guarantee with (G.27), we have that after Lines 8-14 terminate,〈
Y2
t ,
∑
i∈[n]

w
(t)
i viv

>
i

〉
=
∑
i∈[n]

w
(t)
i

〈
viv
>
i ,Y

2
t

〉
≤ 1.1

Ndir

∑
j∈[Ndir]

∑
i∈[n]

w
(t)
i

〈
vi, ũ

2
j

〉
=

1.1

Ndir

∑
j∈[Ndir]

〈
ũj ũ
>
j ,
∑
i∈[n]

w
(t)
i viv

>
i

〉
≤ 2.2R

Ndir

∑
j∈[Ndir]

‖ũj‖22 .

Next, by the Johnson-Lindenstrauss lemma of [6], since all {uj}j∈[Ndir] were sampled independently

of Mt, we have with probability at least 1− δ
4T that

1

Ndir

∑
j∈[Ndir]

‖ũj‖22 =
1

Ndir

∑
j∈[Ndir]

u>j Y2
t uj ≤ 1.1Tr(Y2

t).

Conditioning on this event in every iteration, at the start of the next iteration, we will have

〈
Y2
t ,Mt+1

〉
≤ 2.5RTr(Y2

t). (G.28)

APPENDIX G. DEFERRED PROOFS FROM CHAPTER 8 788

We now show how (G.28) implies a rapid potential decrease:

Φt+1 = Tr
(
M2 log d

t+1

)
≤ 1

2.8R
Tr
(
M2 log d+1

t+1

)
+ d(2.8R)2 log d

≤ 1

2.8R
Tr
(
Y2
tMt+1

)
+ d(2.8R)2 log d ≤ 0.9Φt + d(2.8R)2 log d.

In the first inequality, we used Lemma 42 with α = 2.8R; in the second, we used Fact 41 with A =

Mt, B = Mt+1, and p = 2 log d+ 1. The last inequality applied (G.28). The above display implies

that until Φt ≤ 20d(2.8R)2 log d, the potential is decreasing by a constant factor every iteration, and

Φ0 ≤ dλmax(M0)2 log d ≤ d(nR)2 log d, so within O(log2 n) iterations we will have

Φt = Tr(M2 log d
t) ≤ 20d(2.8R)2 log d.

At this point, it is clear the operator norm of Mt achieves the desired bound of 5R. It remains

to show that all weight removals in Lines 11-13 were safe throughout the algorithm. Here we use

Lemma 130: it suffices to show that throughout the algorithm,

∑
i∈G

w
(t)
i τi ≤ R ‖ũj‖22 , (G.29)

because then whenever Line 11 fails, the scores are safe with respect to the weights and Lemma 130

applies. However, (G.29) follows from the assumption on
∥∥∥∑i∈G

1
|G|viv

>
i

∥∥∥
op

, yielding

∑
i∈G

w
(t)
i τi ≤

∑
i∈G

1

|G|
τi =

〈
ũj ũ
>
j ,
∑
i∈G

1

|G|
viv
>
i

〉
≤ R ‖ũj‖22 .

Runtime. The cost of all lines other than Lines 6-7 and the repeated loops of Lines 11-13 clearly

fall within the budget. To implement Lines 6-7, we never need to form the matrices Mt or Yt, and

instead form all {ũj}j∈[Ndir] in time

O
(
nd log d log

n

δ

)
implicitly through matrix-vector multiplications with Mt, each of which take time O(nd). To im-

plement Lines 11-13, let w̄ denote the value of w(t) right after an execution of Line 10. We wish to

determine the smallest value K such that

∑
i∈[n]

(
1− τi

τmax

)K
w̄iτi ≤ 2R ‖ũj‖22 .

Checking if the above display holds for a particular guess of K clearly takes O(n) time, and we can

APPENDIX G. DEFERRED PROOFS FROM CHAPTER 8 789

upper bound K by the following inequality:

∑
i∈[n]

(
1− τi

τmax

)K
w̄iτi ≤

∑
i∈[n]

exp

(
− Kτi
τmax

)
w̄iτi ≤

1

eK

∑
i∈[n]

w̄iτmax ≤
τmax

K
.

Here the second inequality used x exp(−Cx) ≤ 1
eC for all nonnegative x, C, where we chose C = K

τmax

and x = τi. Now since τmax ≤ ‖ũj‖22 ‖vi‖
2
2 ≤ nR ‖ũj‖

2
2 by Cauchy-Schwarz, we have that K = O(n)

as desired. At this point, a binary search on K suffices, so all loops take time O(n log n).

Failure probability. The only randomness used in the algorithm appears in the guarantees of

Power and the guarantees of the Johnson-Lindenstrauss projections. Taking a union bound over T

iterations shows these all succeed with probability at least 1− δ.

G.7 Concentration

G.7.1 Sub-Gaussian concentration

We use the following concentration facts on sub-Gaussian distributions following from standard

techniques, and give an application bounding Schatten-norm deviations.

Lemma 316. Under Assumption 10, there are universal constants C1, C2 such that

Pr

 sup
v∈Rd
‖v‖2=1

∣∣∣∣∣v>
(

1

n

∑
i∈G′

XiX
>
i −Σ

)
v

∣∣∣∣∣− tv>Σv > 0

 ≤ exp
(
C1d− C2nmin(t, t2)

)
.

Proof. By observing (8.71), it is clear that the random vector X̃ = Σ−
1
2X for X ∼ D has covariance

I and sub-Gaussian proxy cI. For any fixed unit vector u, by Lemma 1.12 of [456], the random

variable (u>X̃)2 − 1 is sub-exponential with parameter 16c, so by Bernstein’s inequality (Theorem

1.13, [456]), defining X̃i = Σ−
1
2Xi for each Xi ∼ D,

Pr

[∣∣∣∣∣u>
(

1

n

∑
i∈G′

X̃iX̃
>
i − I

)
u

∣∣∣∣∣ > t

2

]
≤ exp

(
− n

211c2
min(t, t2)

)
.

For shorthand define M := 1
n

∑
i∈G′ X̃iX̃

>
i , and let N be a maximal 1

4 -net of the unit ball (as

measured in `2 distance). By Lemma 1.18 of [456], |N | ≤ 12d, so by a union bound,

Pr

[
sup
u∈N

∣∣u>(M− I)u
∣∣ > t

2

]
≤ exp

(
3d− n

211c2
min(t, t2)

)
.

APPENDIX G. DEFERRED PROOFS FROM CHAPTER 8 790

Next, by a standard application of the triangle inequality (see e.g. Exercise 4.3.3, [522])

sup
v∈Rd
‖v‖2=1

∣∣v>(M− I)v
∣∣ ≤ 2 sup

u∈N

∣∣u>(M− I)u
∣∣ ≤ t

with probability at least 1 − exp
(
C1d− C2nmin(t, t2)

)
for appropriate C1, C2. The conclusion

follows since its statement is scale invariant, so it suffices to show as we have that

Pr

 sup
v∈Rd
‖v‖Σ=1

∣∣∣∣∣v>
(

1

n

∑
i∈G′

XiX
>
i −Σ

)
v

∣∣∣∣∣− tv>Σv > 0

 ≤ exp
(
C1d− C2nmin(t, t2)

)
.

Corollary 69. Let p ≥ 2. Under Assumption 10, there are universal constants C1, C2 with

Pr

∥∥∥∥∥ 1

n

∑
i∈G′

XiX
>
i −Σ

∥∥∥∥∥
p

> t ‖Σ‖p

 ≤ exp
(
C1d− C2nmin(t, t2)

)
.

Proof. Suppose the event in Lemma 316 does not hold, which happens with probability at least

1 − exp(C1d − C2nmin(t, t2)). Define for shorthand M := 1
n

∑
i∈G′ XiX

>
i −Σ and let its spectral

decomposition be
∑
j∈[d] λjvjv

>
j . By the triangle inequality and Fact 22,

‖M‖p ≤
∑
j∈[d]

|λj |p−1

‖M‖p−1
p

∣∣∣∣∣v>j
(

1

n

∑
i∈G′

XiX
>
i −Σ

)
vj

∣∣∣∣∣
≤ t

∑
j∈[d]

|λj |p−1

‖M‖p−1
p

v>j Σvj = t

〈∑
j∈[d]

|λj |p−1

‖M‖p−1
p

vjv
>
j ,Σ

〉
≤ t ‖Σ‖p .

In the last inequality, we used that
∑
j∈[d]

|λj |p−1

‖M‖p−1
p

vjv
>
j has unit `q norm, and applied Fact 22.

G.7.2 Concentration under weightings in Sn
ε

We consider concentration of the empirical covariance under weightings which are not far from

uniform, in spectral and Schatten senses.

Lemma 317. Under Assumption 10, let δ ∈ [0, 1], p ≥ 2, and n = Ω
(
d+log δ−1

(ε log ε−1)2

)
for a sufficiently

large constant. Then for a universal constant C3,

Pr

∃w ∈ Sn
ε

∣∣∣∣∣
∥∥∥∥∥∑
i∈G′

wiXiX
>
i −Σ

∥∥∥∥∥
p

> C3 · ε log ε−1 ‖Σ‖p

 ≤ δ

2
.

APPENDIX G. DEFERRED PROOFS FROM CHAPTER 8 791

Proof. Because the vertices of Sn
ε are uniform over sets S ⊆ G′ with |S| = (1− ε)n (see e.g. Section

4.1, [175]), by convexity of the Schatten-p norm it suffices to prove

Pr

∃S with |S| = (1− ε)n

∣∣∣∣∣
∥∥∥∥∥ 1

(1− ε)n
∑
i∈S

XiX
>
i −Σ

∥∥∥∥∥
p

> C3 · ε log ε−1 ‖Σ‖p

 ≤ δ

4
.

For any fixed S, and recalling |Sc| = εn, we can decompose this sum as

1

(1− ε)n
∑
i∈S

XiX
>
i =

1

1− ε

(
1

n

∑
i∈G′

XiX
>
i

)
− ε

1− ε

(
1

|Sc|
∑
i∈Sc

XiX
>
i

)
. (G.30)

By applying Corollary 69, it follows that by setting t = 1−ε
2 · ε log ε−1 and our choice of n that

Pr

∥∥∥∥∥ 1

n

∑
i∈G′

XiX
>
i −Σ

∥∥∥∥∥
p

>
1− ε

2
· ε log ε−1 ‖Σ‖p

 ≤ δ

4
. (G.31)

Moreover, for any fixed Sc, setting t = 1−ε
2 · C3 log ε−1 where C3 is a sufficiently large constant, so

that for sufficiently small ε, t = min(t, t2),

Pr

∥∥∥∥∥ 1

εn

∑
i∈Sc

XiX
>
i −Σ

∥∥∥∥∥
p

>
1− ε

2
· C3 · log ε−1 ‖Σ‖p

 ≤ exp (C1d− C2εnt)

≤ exp
(
−
(
log δ−1 + nε log ε−1

))
≤ δ

4
(
n
εn

) .
(G.32)

Here, we used that log
(
n
εn

)
= O

(
nε log ε−1

)
. Finally, union bounding over all possible sets Sc imply

that with probability at least 1− δ
2 , the following events hold:∥∥∥∥∥ 1

n

∑
i∈G′

XiX
>
i −Σ

∥∥∥∥∥
p

<
1− ε

2
· ε log ε−1 ‖Σ‖p ,∥∥∥∥∥ 1

|Sc|
∑
i∈Sc

XiX
>
i −Σ

∥∥∥∥∥
p

<
1− ε

2
· C3 · log ε−1 ‖Σ‖p for all S with |S| = (1− ε)n.

Combining these bounds in the context of (G.30) after applying the triangle inequality, we have

with probability at least 1− δ
2 for all S the desired conclusion,∥∥∥∥∥ 1

(1− ε)n
∑
i∈S

XiX
>
i −Σ

∥∥∥∥∥
p

< C3 · ε log ε−1 ‖Σ‖p .

APPENDIX G. DEFERRED PROOFS FROM CHAPTER 8 792

Corollary 70. Under Assumption 10, let n = Ω
(
d+log δ−1

(ε log ε−1)2

)
for a sufficiently large constant. For

universal C3 and all w ∈ Sn
ε , with probability at least 1− δ

2 ,

C3 · ε log ε−1Σ �
∑
i∈G′

wiXiX
>
i −Σ � −C3 · ε log ε−1Σ.

Proof. Consider any unit vector v ∈ Rd. By similar arguments as in (G.31), (G.32), and applying a

union bound over all S with |S| = (1−ε)n, with probability at least 1− δ
2 , it follows from Lemma 316

that ∣∣∣∣∣v>
(

1

n

∑
i∈G′

XiX
>
i −Σ

)
v

∣∣∣∣∣ < 1− ε
2
· ε log ε−1v>Σv, (G.33)∣∣∣∣∣v>

(
1

|Sc|
∑
i∈Sc

XiX
>
i −Σ

)
v

∣∣∣∣∣ < 1− ε
2
· C3 · log ε−1v>Σv . (G.34)

Therefore, again using the formula (G.30) and the triangle inequality yields the desired conclusion

for all directions v, which is equivalent to the spectral bound of the lemma statement.

G.8 Deferred proofs from Section 8.11.1

G.8.1 Robust univariate variance estimation

In this section, we prove Lemma 147, which allows us to robustly estimate the quadratic form of

a vector in the covariance of a sub-Gaussian distribution from corrupted samples. Algorithm 93 is

folklore, and intuitively very simple; it projects all samples onto u, throws away the 2ε fraction of

points with largest magnitude in this direction, and takes the mean of the remaining set.

Algorithm 93: Univariate variance estimation: 1DRobustVariance({Xi}i∈[n], ε, u)

1 Input: {Xi}i∈[n], ε > 0, and a unit vector u;

2 Let ai = 〈Xi, u〉2 for i = 1, . . . , n ;
3 Sort the ai in increasing order. WLOG assume a1 ≤ a2 ≤ . . . ≤ an.;

4 Return: σ2
u = 1

(1−2ε)n

∑(1−2ε)n
i=1 ai;

We require the following helper fact.

Fact 43. Let Z be a sub-exponential random variable with parameter at most λ3, and let ε ∈ [0, 1].

Then, for any event E with Pr[Z ∈ E] ≤ ε, |E [Z ·1,1 [Z ∈ E]] | ≤ 2λε log ε−1.

3We say mean-zero Z is sub-exponential with parameter λ if ∀|s| ≤ λ−1, E[exp(sZ)] ≤ exp(s
2λ2

2
).

APPENDIX G. DEFERRED PROOFS FROM CHAPTER 8 793

Proof. We have by Hölder’s inequality that for any p, q ≥ 1 with p−1 + q−1 = 1,

|E [Z ·1,1 [Z ∈ E]]| ≤ E[|Z|p]1/p · ε1/q ≤ 2λp · ε1/q.

The second inequality is Lemma 1.10 [456]. Setting p = log ε−1 yields the result.

Lemma 147. Under Assumption 10, let δ ∈ [0, 1], n = Ω
(

log δ−1

(ε log ε−1)2

)
, and u ∈ Rd be a fixed

unit vector. Algorithm 93, 1DRobustVariance, takes input {Xi}i∈[n], u, and ε, and outputs σ2
u with

|u>Σu − σ2
u| < Cu>Σu · ε log ε−1 with probability at least 1 − δ, and runs in time O(nd + n log n),

for C a fixed multiple of the parameter c in Assumption 10.

Proof. The runtime claim is immediate; we now turn our attention to correctness. We follow notation

of Assumption 10, and in a slight abuse of notation, also define ai = 〈Xi, u〉2 for i ∈ G′. First, for

X ∼ D, then 〈u,X〉2 − u>Σu is sub-exponential with parameter at most 16cu>Σu (Lemma 1.12,

[456]). By Bernstein’s inequality, we have that if X ∼ D, then for all t ≥ 1,

Pr
[
〈X,u〉2 > 32ctu>Σu

]
≤ exp(−t) . (G.35)

Using this in a standard Chernoff bound, we have that with probability 1− δ
2 ,∣∣{i ∈ G′ : ai > 64c log ε−1 · u>Σu}

∣∣
n

≤ ε . (G.36)

Let T = 64c log ε−1 · u>Σu, and let Y be distributed as (〈u,X〉2 − u>Σu) ·1,1 [〈u,X〉2 ≤ T], where

X ∼ D. We observe Y −E[Y] is also sub-exponential with parameter 16cu>Σu, and that by Fact 43,

|E[Y]| ≤ 32cu>Σuε log ε−1. (G.37)

Define the interval I = [0, T] and let S be the set of points in [n] that survive the truncation

procedure, so that σ2
u = 1

|S|
∑
i∈S ai. Given event (G.36), ai ∈ I for all i ∈ S, since there are at

most εn points in G outside I, and |B| ≤ εn. We decompose the deviation as follows:∑
i∈S

ai − |S|u>Σu =
∑

i∈G∩S
(ai − u>Σu) +

∑
i∈B∩S

(ai − u>Σu)

=
∑

i∈G′∩I
(ai − u>Σu) +

∑
i∈B∩S

(ai − u>Σu)

−
∑

i∈(G′\G)∩I

(ai − u>Σu)−
∑

i∈(G∩I)\S

(ai − u>Σu).

(G.38)

Here we overloaded i ∈ I to mean that ai lies in the interval I, and conditioned on S lying entirely

in I. We bound each of these terms individually. First, for all i ∈ G′ ∩ I, conditioning on (G.36)

(i.e. all ai ∈ I), ai − u>Σu is an independent sample from Y . Thus, by (G.37) and Bernstein’s

APPENDIX G. DEFERRED PROOFS FROM CHAPTER 8 794

inequality,∣∣∣∣∣ 1

|G′ ∩ I|
∑

i∈G′∩I
(ai − u>Σu)

∣∣∣∣∣ ≤
∣∣∣∣∣ 1

|G′ ∩ I|
∑

i∈G′∩I
(ai − u>Σu)− E[Y]

∣∣∣∣∣+ 32cu>Σuε log ε−1

≤ 64c · u>Σuε log ε−1,

(G.39)

with (conditional) probability at least 1− δ
2 . By a union bound, both events occur with probability

at least 1 − δ; condition on this for the remainder of the proof. Under this assumption, we control

the other three terms of (G.38). Observe that |B∩S| ≤ εn, |(G′\G)∩I| ≤ εn, and |(G∩I)\S| ≤ εn.

Further, by definition of I, every summand is at most 64c log ε−1 · u>Σu. Thus,∣∣∣∣∣ ∑
i∈B∩S

(ai − u>Σu)

∣∣∣∣∣ ≤ 64cεn log ε−1 · u>Σu, (G.40)∣∣∣∣∣∣
∑

i∈(G′\G)∩I

(ai − u>Σu)

∣∣∣∣∣∣ ≤ 64cεn log ε−1 · u>Σu. (G.41)

∣∣∣∣∣∣
∑

i∈(G′∩I)\S

(ai − u>Σu)

∣∣∣∣∣∣ ≤ 64cεn log ε−1 · u>Σu. (G.42)

Combining (G.39), (G.40), (G.41), and (G.42) in derivation (G.38) and dividing by |S| yields the

claim.

Finally, we also give an alternative set of conditions under which we can certify correctness of

1DRobustVariance. Specifically, this assumption will be useful in lifting indpendence assumptions

between u and our samples {Xi}i∈[n] in repeated calls within Algorithm 94.

Assumption 16. Under Assumption 10, let the following conditions hold for universal constant

C4:

C4ε log ε−1 ·Σ � 1

n

∑
i∈G′

XiX
>
i −Σ � −C4ε log ε−1 ·Σ, (G.43)

C4 log ε−1 ·Σ �
∑
i∈G′

wi
(
XiX

>
i −Σ

)
� −C4 log ε−1 ·Σ for all w ∈ Sn

1−ε. (G.44)

Note that (G.44) is a factor ε weaker in its guarantee than Corollary 70, and is over weights in a

different set Sn
1−ε. Standard sub-Gaussian concentration (i.e. an unweighted variant of Corollary 70)

and modifying the proof of Corollary 70 to take the constraint set Sn
1−ε and normalizing over vertex

sets of size εn yield the following conclusion.

Lemma 318. Let n = Ω
(
d+log δ−1

(ε log ε−1)2

)
for a sufficiently large constant. Assumption 16 holds with

probability at least 1− δ
2 .

APPENDIX G. DEFERRED PROOFS FROM CHAPTER 8 795

We give a variant of Lemma 147 with slightly stronger guarantees for 1DRobustVariance; specifi-

cally, it holds for all u simultaneously for a fixed set of samples satisfying Assumption 16.

Corollary 71. Under Assumption 16, Algorithm 93 outputs σ2
u with |u>Σu − σ2

u| < Cu>Σu ·
ε log ε−1, for C a fixed multiple of the parameter c in Assumption 10, and runs in time O(nd+n log n).

Proof. We discuss how to modify the derivations from Lemma 147 appropriately in the absence of

applications of Bernstein’s inequality. First, note that appropriately combining (G.43) and (G.44)

in a derivation such as (G.30) yields the following bound (deterministically under Assumption 16):

C4ε log ε−1 ·Σ �
∑
i∈G′

wi
(
XiX

>
i −Σ

)
� −C4ε log ε−1Σ for all w ∈ Sn

3ε. (G.45)

Now, consider the decomposition (G.38). We claim first that similarly to (G.40), (G.41), (G.42) we

can bound each summand in the latter three terms by O(u>Σu log ε−1); to prove this, it suffices to

show that at least one filtered ai attains this bound, as then by definition of the algorithm, each

non-filtered ai will as well. Note that a fraction between ε and 2ε of points in G ⊂ G′ is filtered (since

there are only εn points from B). The assumption (G.44) then implies precisely the desired bound

on some filtered ai by placing uniform mass on filtered points from G, and applying pigeonhole.

So, all non-filtered ai are bounded by O(u>Σu log ε−1), yielding analogous statements to (G.40),

(G.41), (G.42).

Finally, an analogous derivation to (G.39) follows via an application of the bound (G.45), where

we place uniform mass on the set G′∩I and adjust constants appropriately, since the above argument

shows that under the assumption (G.44), we have that at most 2εn indices i ∈ G′ have ai 6∈ I.

G.8.2 Preliminaries

For convenience, we give the following preliminaries before embarking on our proof of Theorem 60

and giving guarantees on Algorithm 94. First, we state a set of assumptions which augments

Assumption 16 with one additional condition, used in bounding the iteration count of our algorithm.

Assumption 17. Under Assumption 10, let Assumption 16 hold, as well as the following additional

condition for the same universal constant C4:

‖Xi‖22 ≤ C4 log
n

δ
· Tr(Σ) for all i ∈ G. (G.46)

Standard sub-Gaussian concentration inequalities and a union bound, combined with our earlier

claim Lemma 318, then yield the following guarantee.

Lemma 319. Let n = Ω
(
d+log δ−1

(ε log ε−1)2

)
for a sufficiently large constant. Assumption 17 holds with

probability at least 1− δ.

APPENDIX G. DEFERRED PROOFS FROM CHAPTER 8 796

G.8.3 Analysis of PCAFilter

For this section, for any nonnegative weights w, define M(w) :=
∑
i∈[n] wiXiX

>
i . We now state

our algorithm, PCAFilter. At all iterations t, it maintains a current nonnegative weight vector w(t)

(initialized to be the uniform distribution on [n]), preserving the following invariants for all t:

w
(t−1)
i ≥ w(t)

i for all i ∈ [n],
∑
i∈B

w
(t−1)
i − w(t)

i ≥
∑
i∈G

w
(t−1)
i − w(t)

i . (G.47)

We now state our method as Algorithm 94; note that the update to w(t) is of the form in

Lemma 148.

Algorithm 94: PCAFilter({Xi}i∈[n], ε)

1 Remove all points i ∈ [n] with ‖Xi‖22 > c log(nδ) · Tr(Σ);

2 w
(0)
i ← 1

n for all i ∈ [n], t← 1;

3 u1 ← approximate top eigenvector of M(w(0));

4 σ2
1 ← 1DRobustVariance({Xi}i∈[n], ε, u1);

5 while u>t M(w(t−1))ut > (1 + 5C5ε log ε−1)σ2
t , where C5 = max(C,C4) from constants in

Assumption 16, Corollary 71 do

6 ai ← 〈ut, Xi〉2 for all i ∈ [n];

7 Sort (permute) the indices [n] so the ai are in increasing order (with a1 smallest, an

largest);

8 Let ` be the largest index with
∑n
i=` wi ≥ 2ε;

9 Define

w
(t)
i ←

(

1− ai
an

)
w

(t−1)
i ` ≤ i ≤ n

w
(t−1)
i i < `

;

10 ut ← approximate top eigenvector of M(w(t));

11 σ2
t ← 1DRobustVariance({Xi}i∈[n], ut, ε);

12 t← t+ 1;

13 Return: ut;

We assume that in Line 8, we also have
∑n
i=` wi ≤ 3ε, as we can assume at least one point is

corrupted i.e. ε ≥ 1
n (else standard algorithms suffice for our setting), so adding an additional wi

can only change the sum by ε. We first prove invariants (G.47) are preserved; at a high level, we

simply demonstrate that Lemma 148 holds via concentration on G and lack of termination.

Lemma 320. Under Assumption 16, for any iteration t of Algorithm 94, suppose (G.47) held for

all iterations t′ ≤ t− 1. Then, (G.47) holds at iteration t.

Proof. The first part of (G.47) is immediate by observing the update in Line 9, so we show the

APPENDIX G. DEFERRED PROOFS FROM CHAPTER 8 797

second. We drop subscripts and superscripts for conciseness and focus on a single iteration t. Let

IB = {`, . . . , n} ∩B, and IG = {`, . . . , n} ∩G. By Lemma 148, it suffices to demonstrate that

∑
i∈IB

wiai >
∑
i∈IG

wiai. (G.48)

First,
∑
i∈IB wi ≤ ε, so by definition of index `, we have ε ≤

∑
i∈IG wi ≤ 2ε. Define w̃i = wi∑

i∈IG
wi

if

i ∈ IG, and 0 otherwise, and observe w̃ ∈ Sn
1−2ε. By modifying constants appropriately from (G.44),

it follows from definition of ai = u>XiX
>
i u that

∑
i∈IG

wiai ≤

(∑
i∈IG

wi

)
· C4 log ε−1 · u>Σu ≤ 2C4ε log ε−1 · u>Σu. (G.49)

On the other hand, by (G.45) we know that the total quadratic form over G is bounded as

∑
i∈G

wiai <

(∑
i∈G

wi

)(
1 + C4ε log ε−1

)
u>Σu <

(
1 + C4ε log ε−1

)
u>Σu. (G.50)

Here, we applied the observation that the normalized wi restricted to G are in Sn
1−3ε (e.g. using

Lemma 321 inductively). However, since we did not terminate (Line 5), we must have by ut being

a top eigenvector and Corollary 71 (we defer discussions of inexactness to Theorem 60) that

∑
i∈[n]

wiai ≥ (1 + 5C5ε log ε−1)σ2
t ≥ (1 + 4C4ε log ε−1) · u>Σu

=⇒
∑
i∈B

wiai > 3C4ε log ε−1 · u>Σu.

To obtain the last conclusion, we used (G.50). Finally, note that for all i ∈ B \ IB ,

ai ≤ a` ≤
∑
i∈IG

w̃iai ≤ C4 log ε−1 · u>Σu

by rearranging (G.49). This implies that

∑
i∈B\IB

wiai ≤

 ∑
i∈B\IB

wi

 · C4 log ε−1 · u>Σu ≤ C4ε log ε−1 · u>Σu.

Thus, the desired inequality (G.48) follows from combining the above derivations, e.g. using (G.49)

and ∑
i∈IB

wiai =
∑
i∈B

wiai −
∑

i∈B\IB

wiai > 2C4ε log ε−1 · u>Σu.

APPENDIX G. DEFERRED PROOFS FROM CHAPTER 8 798

Lemma 320 yields for all t that
∑
i∈B w

(0)
i − w

(t)
i ≥

∑
i∈G w

(0)
i − w

(t)
i by telescoping. Note that

we can only remove at most 2ε mass from w total, as
∑
i∈B w

(0)
i − w

(t)
i ≤ ε. Denote for shorthand

normalized weights v(t) := w(t)

‖w(t)‖
1

. Then, the following is immediate by
∥∥w(t)

∥∥
1
≥ 1− 2ε.

Lemma 321. Under Assumption 16, in all iterations t of Algorithm 94, v(t) ∈ Sn
2ε.

Using Lemma 321, we show that the output has the desired quality of being a large eigenvector.

Lemma 322. Under Assumption 16, let the output of Algorithm 94 be uT . Then for a universal

constant C?, u>TΣuT ≥ (1− C?ε log ε−1)‖Σ‖∞.

Proof. We assume for now that uT is an exact top eigenvector, and discuss inexactness while proving

Theorem 60. By (G.45) and Lemma 321, as then the normalized restriction of w(T) to G is in Sn
3ε,

M(w(T)) �
∑
i∈G

w
(T)
i XiX

>
i �

(
1− 2C4ε log ε−1

)
Σ

=⇒ u>TM(w(T))uT ≥
(
1− 2C4ε log ε−1

)
‖Σ‖∞ .

We used the Courant-Fischer characterization of eigenvalues, and that uT is a top eigenvector of

M(w(T)). Moreover, by termination conditions and Corollary 71 (correctness of 1DRobustVariance),

(1 + Cε log ε−1)u>TΣuT ≥ σ2
T ≥ (1 + 5C5ε log ε−1)−1u>TM(w(T))uT .

Combining these two bounds and rescaling yields the conclusion.

Finally, we prove our main guarantee about Algorithm 94.

Theorem 60. Under Assumption 10, let δ ∈ [0, 1], and n = Ω
(
d+log δ−1

(ε log ε−1)2

)
. Algorithm 94 runs in

time O(nd
2

ε log n
δε log n

δ), and outputs u with u>Σu > (1−C?ε log ε−1)‖Σ‖∞, for C? a fixed multiple

of parameter c in Assumption 10, with probability at least 1− δ.

Proof. First, we will operate under Assumption 17, which holds with probability at least 1− δ. It is

clear that the analyses of Lemma 320 and 322 hold with 1−Θ(ε log ε−1) multiplicative approximations

of top eigenvector computation, which the power method approximates with high probability. Thus,

each iteration takes time O
(
nd
ε log n

δε

)
, where we will union bound over the number of iterations.

APPENDIX G. DEFERRED PROOFS FROM CHAPTER 8 799

We now give an iteration bound: in any iteration where we do not terminate, Lemma 148 implies

n∑
i=1

w
(t−1)
i − w(t)

i ≥
1

2 maxi∈[n] 〈ut, Xi〉2
n∑
i=`

wiai

≥ 1

2C4 log n
δ · Tr(Σ)

n∑
i=`

wiai

≥ 1

2C4 log n
δ · Tr(Σ)

(∑n
i=` wi∑
i∈[n] wi

)∑
i∈[n]

wiai

= Ω

(
ε ·

‖Σ‖∞
log n

δ · Tr(Σ)

)
= Ω

(
ε

d log n
δ

)
.

Here, the second line used Assumption 17, the third used that the ai are in sorted order, and the last

used the definition of ` as well as the derivations of Lemma 322 (specifically, that M(w) spectrally

dominates (1−O(ε log ε−1))Σ for roughly uniform w). The conclusion follows since there can be at

most O(d log n
δ) iterations, as the algorithm terminates when a 2ε fraction of the mass is removed,

giving the overall runtime claim.

G.9 Deferred proofs from Section 8.11.2

G.9.1 Proof of Proposition 40

Proposition 40. There is an algorithm Power (Algorithm 1, [404]), parameterized by t ∈ [d],

tolerance ε̃ > 0, p ≥ 1, and A ∈ Sd≥0, which outputs orthonormal {zj}j∈[t] with the guarantee

∣∣z>j Apzj − λpj (A)

∣∣ ≤ ε̃λpj (A)∣∣∣z>j Ap−1zj − λp−1
j (A)

∣∣∣ ≤ ε̃λp−1
j (A)

for all j ∈ [t]. (8.73)

Here, λj(A) is the jth largest eigenvalue of A. The total time required by the method is O(nnz(A) tp log d
ε).

Proof. We claim that Algorithm 1 in [404] applied to the matrix Ap with a careful choice of exponent

q in their Algorithm 1 yields this guarantee. Specifically, we choose q1, q2, both of which satisfy the

criteria in their main theorem, such that the iterates produced by simultaneous power iteration Mp

with exponent q1 and Mp−1 with exponent q2 are identical; it suffices to choose q a multiple of

p(p− 1). Thus, we can also apply their guarantees to Ap−1 and apply a union bound. Notice that

their Algorithm 1 also contains some postprocessing to ensure that they obtain singular values in

the right space, which is unnecessary for us, as our matrices are Hermitian.

APPENDIX G. DEFERRED PROOFS FROM CHAPTER 8 800

G.9.2 Proof of Lemma 149

Lemma 149. Let n = Ω
(
d+log δ−1

(ε log ε−1)2

)
. With probability 1 − δ

2 , the uniform distribution over G

attains value (1+ ε̃
2)‖Σ‖p for objective (8.72), where ε̃ = C ′ε log ε−1 for a universal constant C ′ > 0.

Proof. Lemma 317 implies that letting w∗ be the uniform distribution over the uncorrupted samples

amongst X1, . . . , Xn, we have with probability at least 1− δ
2 , and denoting ε̃ := 2C3 · ε log ε−1,∥∥∥∥∥∥

∑
i∈[n]

w∗iXiX
>
i

∥∥∥∥∥∥
p

≤
(

1 +
ε̃

2

)
‖Σ‖p .

Therefore, the mixed `∞-`p packing semidefinite program

∃w∗ ∈ ∆n with ‖w∗‖∞ ≤
1

(1− ε)n
,

∥∥∥∥∥∥
∑
i∈[n]

w∗iXiX
>
i

∥∥∥∥∥∥
p

≤
(

1 +
ε̃

2

)
‖Σ‖p

is feasible. This completes the proof.

G.9.3 Proof of Lemma 150

Lemma 150. Let n = Ω
(
d+log δ−1

(ε log ε−1)2

)
. With probability at least 1− δ

2 , (1 + ε̃)Σ �MG � (1− ε̃)Σ.

Proof. We follow the notation of (8.74). First, by the guarantees of Corollary 40,

wG = 1− wB ≥ 1− εn

(1− 2ε)n
=

1− 3ε

1− 2ε
≥ 1− 2ε.

Therefore, again applying Corollary 40, for all i ∈ G,

wi
wG
≤ 1

(1− 2ε)n
· 1− 2ε

1− 3ε
=

1

(1− 3ε)n
.

We conclude that the set of weights { wiwG }i∈G belong to S
(1−ε)n
3ε . By applying Corollary 70 to these

weights and adjusting the definition of C3 by a constant, we conclude with probability at least 1− δ
2(

1 + C3 · ε log ε−1
)
Σ �

∑
i∈G

wi
wG

XiX
>
i �

(
1− C3 · ε log ε−1

)
Σ.

The conclusion follows by multiplying through by wG, and using the definition ε̃ = 2C3 ·ε log ε−1.

Appendix H

Deferred proofs from Chapter 9

H.1 Deferred proofs from Section 9.2

H.1.1 Polynomial approximation to the square root

We give a proof of Fact 23.

Fact 23 (Polynomial approximation of
√
·). Let M ∈ Sd�0 have µI �M � κµI where µ is known.

Then for any δ ∈ (0, 1), there is an explicit polynomial p of degree O(
√
κ log κ

δ) with

(1− δ)M 1
2 � p(M) � (1 + δ)M

1
2 .

Proof. We will instead prove the following fact: for any ε ∈ (0, 1), there is an explicit degree-

O
(√
κ log κ

ε

)
polynomial p satisfying

max
x∈[1

κ ,1]
|p(x)−

√
x| ≤ ε.

The conclusion for arbitrary scalars with multiplicative range [µ, κµ] will then follow from setting

ε = δκ−
1
2 (giving a multiplicative error guarantee), and the fact that rescaling the range [1

κ , 1] will

preserve this multiplicative guarantee (adjusting the coefficients of the polynomial as necessary, since

µ is known). Finally, the conclusion for matrices follows since p(M) and M
1
2 commute.

Denote γ = 1
κ for convenience. We first shift and scale the function

√
x to adjust the region of

approximation from [γ, 1] to [−1, 1]. In particular, let h(x) =
√

1−γ
2 x+ γ+1

2 . If we can find some

degree-∆ polynomial g(x) with |g(x)− h(x)| ≤ ε for all x ∈ [−1, 1], then

p(x) = g

(
2

1− γ
x − 1 + γ

1− γ

)

801

APPENDIX H. DEFERRED PROOFS FROM CHAPTER 9 802

provides the required approximation to
√
x.

To construct g, we take the Chebyshev interpolant of h(x) on the interval [−1, 1]. Since h is

analytic on [−1, 1], we can apply standard results on the approximation of analytic functions by

polynomials, and specifically Chebyshev interpolants. Specifically, by Theorem 8.2 in [509], if h(z)

is analytic in an open Bernstein ellipse with parameter ρ in the complex plane, then:

max
x∈[−1,1]

|g(x)− h(x)| ≤ 4M

ρ− 1
ρ−∆,

where M is the maximum of |h(z)| for z in the ellipse. It can be checked that h(x) is analytic on

an open Bernstein ellipse with parameter ρ =
1+
√
γ

1−√γ — i.e. with major axis length ρ+ ρ−1 = 2 1+γ
1−γ .

We can then check that M =
√

1 + γ ≤
√

2 and ρ− 1 ≥ 2
√
γ. Since for all γ < 1,

(
1−√γ
1 +
√
γ

)1/2γ

≤ 1

e
,

we conclude that 4M
ρ−1ρ

−∆ ≤ ε as long as ∆ ≥ 1
2γ log

(
ε√
2γ

)
, which completes the proof.

H.1.2 Deferred proofs from Section 9.2.2

Lemma 153. Let B ∈ Rd×d and let A ∈ Sd�0. Then min (‖AB‖2 , ‖BA‖2) ≥ 1
κ(A) ‖B‖2 ‖A‖2.

Proof. We begin with the first entry in the above minimum. Let v be the unit vector with ‖Bv‖2 =

‖B‖∞, and note ‖ABv‖2 ≥
1

κ(A) ‖A‖∞ ‖Bv‖2 by definition of κ(A). Hence,

‖AB‖∞ ≥ ‖ABv‖2 ≥
1

κ(A)
‖A‖∞ ‖Bv‖2 =

1

κ(A)
‖A‖∞ ‖B‖∞ .

We move onto the second entry. Let v be a vector such that ‖Av‖2 and ‖BAv‖2 = ‖B‖∞; note

that ‖v‖2 ≤
κ(A)
‖A‖∞

. The conclusion follows from rearranging the following display:

κ(A) ‖BA‖∞
‖A‖∞

≥ ‖BA‖∞ ‖v‖2 ≥ ‖BAv‖2 = ‖B‖∞ .

Lemma 161. For any matrix K ∈ Sd�0 and λ ≥ 0, κ?o(K + λI) ≤ κ?o(K).

Proof. By scaling K by λ appropriately (since κ?o is invariant under scalar multiplication), it suffices

to take λ = 1. The definition of κ?o implies there exists a diagonal matrix W such that

I �W
1
2 KW

1
2 � κ?o(K)I ⇐⇒ W−1 � K � κ?o(K)W−1. (H.1)

APPENDIX H. DEFERRED PROOFS FROM CHAPTER 9 803

Thus, to demonstrate κ?o(K + I) ≤ κ?o(K) it suffices to exhibit a diagonal W̃ such that

W̃ � K + I � κ?o(K)W̃.

We choose W̃ = W−1 + I; then, the above display follows from (H.1) and I � I � κ?o(K)I.

Lemma 162. Let K ∈ Sd�0. Then, for λ ≥ 1
ελmax(K), κ(K+λI) ≤ 1+ε. Moreover, given a diagonal

W ∈ Sd≥0 such that κ(W
1
2 (K+λI)W

1
2) ≤ κscale for 0 ≤ λ ≤ ελmin(K)

1+ε , κ(W
1
2 KW

1
2) ≤ (1+ ε)κscale.

Proof. To see the first claim, the largest eigenvalue of K+λI is at most λ+λmax(K) and the smallest

is at least λ, so the condition number is at most 1 + ε as desired.

To see the second claim, it follows from the fact that outer rescalings preserve Loewner order,

and then combining

K � K + λI =⇒ λmax

(
W

1
2 KW

1
2

)
≤ λmax

(
W

1
2 (K + λI) W

1
2

)
,

K � 1

1 + ε
(K + λI) =⇒ λmin

(
W

1
2 KW

1
2

)
≥ 1

1 + ε
λmin

(
W

1
2 (K + λI) W

1
2

)
.

Lemma 163. Let K ∈ Sd�0, and let W ∈ Sd≥0 be diagonal. Then for any λ > 0,

κ
(
W

1
2 (K + λI) W

1
2

)
≤ 2κ

(
W

1
2

(
K +

λ

2
I

)
W

1
2

)
.

Proof. First, because outer rescalings preserve Loewner order, it is immediate that

K +
λ

2
I � K + λI =⇒ λmax

(
W

1
2

(
K +

λ

2

)
W

1
2 I

)
≤ λmax

(
W

1
2 (K + λI) W

1
2

)
.

Moreover, the same argument shows that

1

2
K +

λ

2
I � K +

λ

2
I =⇒ λmin

(
W

1
2

(
K +

λ

2
I

)
W

1
2

)
≥ 1

2
λmin

(
W

1
2 (K + I) W

1
2

)
.

Combining the above two displays yields the conclusion.

H.1.3 Normalizing the diagonal

In this section, we analyze a popular heuristic for computing diagonal preconditioners. Given a

positive definite matrix K ∈ Sd�0, consider applying the outer scaling

W
1
2 KW

1
2 , where W = diag (w) and wi := K−1

ii for all i ∈ [d]. (H.2)

APPENDIX H. DEFERRED PROOFS FROM CHAPTER 9 804

In other words, the result of this scaling is to simply normalize the diagonal of K to be all ones;

we remark W has strictly positive diagonal entries, else K is not positive definite. Also called the

Jacobi preconditioner, a result of Van de Sluis [251, 518] proves that for any matrix this scaling

leads to a condition number that is within an m factor of optimal, where m ≤ d is the maximum

number of non-zeros in any row of K. For completeness, we state a generalization of Van de Sluis’s

result below. We also require a simple fact; both are proven at the end of this section.

Fact 44. For any A,B ∈ Sd�0, κ(A
1
2 BA

1
2) ≤ κ(A)κ(B).

Proposition 74. Let W be defined as in (H.2) and let m denote the maximum number of non-zero’s

in any row of K. Then,

κ
(
W

1
2 KW

1
2

)
≤ min

(
m,
√

nnz(K)
)
· κ?o (K) .

Note that m and
√

nnz(K) are both ≤ d, so it follows that κ(W
1
2 KW

1
2) ≤ d ·κ?o (K). While the

approximation factor in Proposition 74 depends on the dimension or sparsity of K, we show that

a similar analysis actually yields a dimension-independent approximation. Specifically, the Jacobi

preconditioner always obtains condition number no worse than the optimal squared. To the best of

our knowledge, this simple but powerful bound has been observed in prior work.

Proposition 75. Let W be defined as in (H.2). Then,

κ
(
W

1
2 KW

1
2

)
≤ (κ?o (K))

2
.

Proof. Let W? attain the minimum in the definition of κ?o, i.e. κ(K?) = κ?o(K) for K? := W
1
2
? KW

1
2
? .

Note that since [W
1
2 KW

1
2]ii = 1 by definition of W it follows that for all i

[W?W
−1]ii = [W?W

−1]ii · [W
1
2 KW

1
2]ii = [K?]ii = e>i K?ei ∈ [λmin(K?), λmax(K?)]

where the last step used that λmin(K?)I � K? � λmax(K?)I. Consequently, for W̃ := W−1
? W it

follows that κ(W̃) = κ(W̃−1) ≤ λmax(K?)/λmin(K?) = κ(K?). The result follows from Fact 44 as

κ
(
W

1
2 KW

1
2

)
= κ

(
W̃

1
2 K?W̃

1
2

)
≤ κ

(
W̃
)
κ (K?) ≤ (κ?o)

2
.

Next, we demonstrate that Proposition 75 is essentially tight by exhibiting a family of matrices

which attain the bound of Proposition 75 up to a constant factor. At a high level, our strategy is

to create two blocks where the “scales” of the diagonal normalizing rescaling are at odds, whereas a

simple rescaling of one of the blocks would result in a quadratic savings in conditioning.

APPENDIX H. DEFERRED PROOFS FROM CHAPTER 9 805

Proposition 76. Consider a 2d× 2d matrix M such that

K =

A 0

0 B

 , A =
√
dI + 11>, B = I− 1√

d+ d
11>,

where A and B are d× d. Then, defining W as in (H.2),

κ
(
W

1
2 KW

1
2

)
= Θ(d), κ?o (K) = Θ

(√
d
)
.

Proof. Because W
1
2 KW

1
2 is blockwise separable, to understand its eigenvalue distribution it suffices

to understand the eigenvalues of the two blocks. First, the upper-left block (the rescaling of the

matrix A) is multiplied by 1√
d+1

. It is straightforward to see that the resulting eigenvalues are

√
d√

d+ 1
with multiplicity d− 1,

√
d with multiplicity 1.

Similarly, the bottom-right block is multiplied by d+
√
d

d+
√
d−1

, and hence its rescaled eigenvalues are

d+
√
d

d+
√
d− 1

with multiplicity d− 1,

√
d

d+
√
d− 1

with multiplicity 1.

Hence, the condition number of W
1
2 KW

1
2 is d +

√
d − 1 = Θ(d). However, had we rescaled the

top-left block to be a
√
d factor smaller, it is straightforward to see the resulting condition number

is O(
√
d). On the other hand, since the condition number of K is O(d), Proposition 75 shows that

the optimal condition number κ?o(K) is Ω(
√
d), and combining yields the claim. We remark that as

d→∞, the constants in the upper and lower bounds agree up to a low-order term.

Finally, we provide the requisite proofs of Fact 44 and Proposition 74.

Fact 44. For any A,B ∈ Sd�0, κ(A
1
2 BA

1
2) ≤ κ(A)κ(B).

Proof. It is straightforward from λmin(A)I � A � λmax(A)I that

√
λmin(A) ‖u‖2 ≤

∥∥∥A 1
2u
∥∥∥

2
≤
√
λmax(A) ‖u‖2 ,

and an analogous fact holds for B. Hence, we can bound the eigenvalues of A
1
2 BA

1
2 :

λmax

(
A

1
2 BA

1
2

)
= max
‖u‖2=1

u>A
1
2 BA

1
2 Bu ≤ λmax(A) max

‖v‖2=1
v>Bv = λmax(A)λmax(B),

λmin

(
A

1
2 BA

1
2

)
= min
‖u‖2=1

u>A
1
2 BA

1
2 Bu ≥ λmin(A) min

‖v‖2=1
v>Bv = λmin(A)λmin(B).

Dividing the above two equations yields the claim.

APPENDIX H. DEFERRED PROOFS FROM CHAPTER 9 806

Proposition 74. Let W be defined as in (H.2) and let m denote the maximum number of non-zero’s

in any row of K. Then,

κ
(
W

1
2 KW

1
2

)
≤ min

(
m,
√

nnz(K)
)
· κ?o (K) .

Proof. Throughout let κ?o := κ?o(K) for notational convenience. Let W? obtain the minimum in

the definition of κ?o and let B = W
1
2
? KW

1
2
? . Also let WB be the inverse of a diagonal matrix with

the same entries as B’s diagonal. Note that κ(B) = κ?o and W
1
2

BBW
1
2

B = W
1
2 KW

1
2 . So, to prove

Proposition 74, it suffices to prove that

κ
(
W

1
2

BBW
1
2

B

)
≤ min

(
m,
√

nnz(K)
)
· κ?o.

Let dmax denote the largest entry in W−1
B . We have that dmax ≤ λmax(B). Then let M =

(dmaxWB)
1
2 B(dmaxWB)

1
2 and note that all of M’s diagonal entries are equal to dmax and κ (M) =

κ(W
1
2

BBW
1
2

B). Moreover, since dmaxWB has all entries ≥ 1, λmin(M) ≥ λmin(B). Additionally, since

a PSD matrix must have its largest entry on the diagonal, we have that ‖M‖2F ≤ nnz(M)d2
max ≤

nnz(M)λmax(B)2. Accordingly, λmax(M) = ‖M‖2 ≤ ‖M‖F ≤
√

nnz(M)λmax(B).

From this lower bound on λmin(M) and upper bound on λmax(M), we have that

κ
(
W

1
2 KW

1
2

)
= κ (M) ≤

√
nnz(M)λmax(B)

λmin(B)
=
√

nnz(M) · κ(B).

This proves one part of the minimum in Proposition 74. The second, which was already proven

in [518] follows similarly. In particular, by the Gershgorin circle theorem we have that λmax(M) ≤
maxi∈[d] ‖Mi:‖1, where Mi: denotes the ith row for M. Since all entries in M are bounded by

dmax ≤ λmax(B), we have that maxi∈[d] ‖Mi:‖1 ≤ mλmax(B), and thus

κ
(
W

1
2 KW

1
2

)
= κ (M) ≤ mλmax(B)

λmin(B)
= m · κ(B).

H.1.4 Faster scalings with a conjectured subroutine

In this section, we demonstrate algorithms which achieve runtimes which scale as Õ(
√
κ?)1 matrix-

vector multiplies for computing approximately optimal scalings, assuming the existence of a suffi-

ciently general width-independent mixed packing and covering (MPC) SDP solver. Such runtimes

(which improve each of Theorems 62 and 63 by roughly a κ? factor) would nearly match the cost

of the fastest solvers after rescaling, e.g. conjugate gradient methods. We also demonstrate that we

1Throughout this section for brevity, we use κ? to interchangeably refer to the quantities κ?i or κ?o of a particular
appropriate inner or outer rescaling problem.

APPENDIX H. DEFERRED PROOFS FROM CHAPTER 9 807

can achieve near-optimal algorithms for computing constant-factor optimal scalings for average-case

notions of conditioning under this assumption.

We first recall the definition of the general MPC SDP feasibility problem.

Definition 59 (MPC feasibility problem). Given sets of matrices {Pi}i∈[n] ∈ Sdp≥0 and {Ci}i∈[n] ∈
Sdc≥0, and error tolerance ε ∈ (0, 1), the mixed packing-covering (MPC) feasibility problem asks to

return weights w ∈ Rn≥0 such that

λmax

∑
i∈[n]

wiPi

 ≤ (1 + ε)λmin

∑
i∈[n]

wiCi

 , (H.3)

or conclude that the following is infeasible for w ∈ Rn≥0:

λmax

∑
i∈[n]

wiPi

 ≤ λmin

∑
i∈[n]

wiCi

 . (H.4)

If both (H.3) is feasible and (H.4) is infeasible, either answer is acceptable.

Throughout this section, we provide efficient algorithms under Assumption 18: namely, that

there exists a solver for the MPC feasibility problem at constant ε with polylogarithmic iteration

complexity and sufficient approximation tolerance. Such a solver would improve upon our algorithm

in Section 7.4 both in generality (i.e. without the restriction that the constraint matrices are multiples

of each other) and in the number of iterations.

Assumption 18. There is an algorithm MPC which takes inputs {Pi}i∈[n] ∈ Sdp≥0, {Ci}i∈[n] ∈ Sdc≥0,

and error tolerance ε, and solves problem (H.3), (H.4), in poly(log(ndρ), ε−1) iterations, where

d := max(dp, dc), ρ := maxi∈[n]
λmax(Ci)
λmax(Pi)

. Each iteration uses O(1) n-dimensional vector operations,

and for ε′ = Θ(ε) with an appropriate constant, additionally requires computation of

ε′-multiplicative approximations to

〈
Pi,

exp
(∑

i∈[n] wiPi

)
Tr exp

(∑
i∈[n] wiPi

)〉 ∀i ∈ [n],

(
ε′, e

− log(ndρ)

ε′ Tr(Ci)
)

-approximations to

〈
Ci,

exp
(
−
∑
i∈[n] wiCi

)
Tr exp

(
−
∑
i∈[n] wiCi

)〉 ∀i ∈ [n],

(H.5)

for w ∈ Rn≥0 with λmax

(∑
i∈[n] wiPi

)
, λmin

(∑
i∈[n] wiCi

)
≤ R for R = O(log(ndρ)

ε).

In particular, we observe that the number of iterations of this conjectured subroutine depends

polylogarithmically on ρ, i.e. the runtime is width-independent.2 In our settings computing optimal

2The literature on approximate solvers for positive linear programs and semidefinite programs refer to logarithmic
dependences on ρ as width-independent, and we follow this convention in our exposition.

APPENDIX H. DEFERRED PROOFS FROM CHAPTER 9 808

rescaled condition numbers, ρ = Θ(κ?); our solver in Section 7.4 has an iteration count depending

linearly on ρ. Such runtimes are known for MPC linear programs [379], however, such rates have

been elusive in the SDP setting. While the form of requirements in (H.5) may seem somewhat

unnatural at first glance, we observe that this is the natural generalization of the error tolerance

of known width-independent MPC LP solvers [379]. Moreover, these approximations mirror the

tolerances of our width-dependent solver in Section 7.4 (see Line 6 and Corollary 43).

We first record the following technical lemma, which we will repeatedly use.

Lemma 323. Given a matrix 0 � M � RI for some R > 0, sufficiently small constant ε, and

δ ∈ (0, 1), we can compute ε-multiplicative approximations to the quantities

〈
aia
>
i , exp(M)

〉
for all i ∈ [n], and Tr exp(M)

in time O((Tmv(M)R+ nnz(A)) log n
δ), with probability at least 1− δ.

Proof. We discuss both parts separately. Regarding computing the inner products, equivalently,

the goal is to compute approximations to all
∥∥exp(1

2M)ai
∥∥2

2
for i ∈ [n]. First, by an application of

Fact 12 with δ = ε
8 exp(−2R), and then multiplying all sides of the inequality by exp(R), there is a

degree-O(R) polynomial such that

(
1− ε

8

)
exp

(
1

2
M

)
� exp

(
1

2
M

)
− ε

8
I � p

(
1

2
M

)
� exp

(
1

2
M

)
+
ε

8
I �

(
1 +

ε

8

)
exp

(
1

2
M

)
=⇒

(
1− ε

3

)
exp(M) � p

(
1

2
M

)2

�
(

1 +
ε

3

)
exp(M).

This implies that
∥∥p(1

2M)ai
∥∥2

2
approximates

∥∥exp(1
2M)ai

∥∥2

2
to a multiplicative ε

3 by the definition of

Loewner order. Moreover, applying Fact 11 with a sufficiently large k = O(log n
δ) implies by a union

bound that for all i ∈ [n],
∥∥Qp(1

2M)ai
∥∥2

2
is a ε-multiplicative approximation to

∥∥exp(1
2M)ai

∥∥2

2
. To

compute all the vectors Qp(1
2M)ai, it suffices to first apply p(1

2M) to all rows of Q, which takes

time O(Tmv(M) · kR) since p is a degree-O(R) polynomial. Next, once we have the explicit k × d
matrix Qp(1

2M), we can apply it to all {ai}i∈[n] in time O(nnz(A) · k).

Next, consider computing Tr exp(M), which by definition has

Tr exp(M) =
∑
j∈[d]

∥∥∥∥∥
[
exp

(
1

2
M

)]
j:

∥∥∥∥∥
2

2

.

APPENDIX H. DEFERRED PROOFS FROM CHAPTER 9 809

Applying the same Q and p as before, we have by the following sequence of equalities

∑
j∈[d]

∥∥∥∥∥Q
[
exp

(
1

2
M

)]
j:

∥∥∥∥∥
2

2

= Tr

(
exp

(
1

2
M

)
Q>Q exp

(
1

2
M

))

= Tr
(
Q exp (M) Q>

)
=
∑
`∈[k]

∥∥∥∥exp

(
1

2
M

)
Q`:

∥∥∥∥2

2

,

that for the desired approximation, it instead suffices to compute

∑
`∈[k]

∥∥∥∥p(1

2
M

)
Q`:

∥∥∥∥2

2

.

This can be performed in time O(Tmv(M) · kR) as previously argued.

A straightforward modification of this proof alongside Lemma 154 also implies that we can

compute these same quantities to p(AWA), when we are only given K = A2, assuming that K

is reasonably well-conditioned. We omit the proof, as it follows almost identically to the proofs of

Lemmas 323, 157, and 158, the latter two demonstrating how to appropriately apply Lemma 154.

Corollary 72. Let K ∈ Sd�0 such that K = A2 and κ(K) ≤ κscale. Let W be a diagonal matrix

such that λmax(AWA) ≤ R. For δ, ε ∈ (0, 1), we can compute ε-multiplicative approximations to

〈
aia
>
i , exp(AWA)

〉
for all i ∈ [n], and Tr exp(AWA)

with probability ≥ 1− δ in time O
(
Tmv(K) ·R ·

(
R+
√
κscale log dκscale

δ

)
log n

δ

)
.

Approximating κ? under Assumption 18

We show that, given Assumption 18, we obtain improved runtimes for all three types of diagonal

scaling problems, roughly improving Theorems 62 and 63 by a κ? factor.

Inner scalings. We first demonstrate this improvement for inner scalings.

Theorem 92. Under Assumption 18, there is an algorithm which, given full-rank A ∈ Rn×d for

n ≥ d computes w ∈ Rn≥0 such that κ(A>WA) ≤ (1 + ε)κ?i (A) for arbitrarily small ε = Θ(1), with

probability ≥ 1− δ in time

O

(
nnz(A) ·

√
κ?i (A) · poly log

nκ?i (A)

δ

)
.

Proof. For now, assume we know κ?i (A) exactly, which we denote as κ?i for brevity. Let {ai}i∈[n]

denote the rows of A, and assume that ‖ai‖2 = 1 for all i ∈ [n]. By scale invariance, this assumption

is without loss of generality. We instantiate Assumption 18 with Pi = aia
>
i and Ci = κ?i aia

>
i , for

APPENDIX H. DEFERRED PROOFS FROM CHAPTER 9 810

i ∈ [n]. It is immediate that a solution yields an inner scaling with the same quality up to a 1 + ε

factor, because by assumption (H.4) is feasible so MPC cannot return “infeasible.”

We now instantiate the primitives in (H.5) needed by Assumption 18. Throughout, note that ρ =

κ?i in this setting. Since we run MPC for poly(log nκ?i) iterations, we will set δ′ ← δ · (poly(nκ?i))
−1

for the failure probability of each of our computations in (H.5), such that by a union bound all of

these computations are correct.

By Lemma 323, we can instantiate the packing gradients to the desired approximation quality

in time O(nnz(A) · poly log
nκ?i
δ) with probability 1− δ′. By Lemmas 97 and 98, we can instantiate

the covering gradients in time O(nnz(A)
√
κ?i · poly log

nκ?i
δ) with probability 1 − δ′. In applying

these lemmas, we use the assumption that λmin(
∑
i∈[n] wiCi) = O(log nκ?i) as in Assumption 18,

and that the covering matrices are a κ?i multiple of the packing matrices so λmax(
∑
i∈[n] wiCi) =

O(κ?i log nκ?i). Thus, the overall runtime of all iterations is

O

(
nnz(A) ·

√
κ?i · poly log

nκ?i
δ

)
for ε = Θ(1). To remove the assumption that we know κ?i (A), we can use an incremental search on

the scaling multiple between {Ci}i∈[n] and {Pi}i∈[n], starting from 1 and increasing by factors of

1 + ε, adding a constant overhead to the runtime. Our width will never be larger than O(κ?i (A)) in

any run, since MPC must conclude feasible when the width is sufficiently large.

Outer scalings. We next discuss the case where we wish to symmetrically outer scale a matrix

K ∈ Sd�0 near-optimally (i.e. demonstrating an improvement to Theorem 62 under Assumption 18).

Theorem 93. Under Assumption 18, there is an algorithm which, given K ∈ Sd�0 computes w ∈ Rd≥0

such that κ(W
1
2 KW

1
2) ≤ (1 + ε)κ?o(K) for arbitrarily small ε ∈ Θ(1), with probability ≥ 1 − δ in

time

O

(
Tmv(K) ·

√
κ?o(K) · poly log

dκ?o(K)

δ

)
.

Proof. Throughout we denote κ?o := κ?o(K) for brevity. Our proof follows that of Theorem 62, which

demonstrates that it suffices to reduce to the case where we have a K ∈ Sd�0 with κ(K) ≤ κscale :=

3κ?o, and we wish to find an outer diagonal scaling W ∈ Sd�0 such that κ(W
1
2 KW

1
2) ≤ (1 + ε)κ?o.

We incur a polylogarithmic overhead on the runtime of this subproblem, by using it to solve all

phases of the homotopy method in Theorem 62, and the cost of an incremental search on κ?o.

To solve this problem, we again instantiate Assumption 18 with Pi = aia
>
i and Ci = κ?oaia

>
i ,

where {ai}i∈[d] are rows of A := K
1
2 . As in the proof of Theorem 62, the main difficulty is to

implement the gradients in (H.5) with only implicit access to A , which we again will perform

to probability 1 − δ′ for some δ′ = δ · (poly(nκ?o))
−1 which suffices by a union bound. Applying

Lemmas 157 and 158 with the same parameters as in the proof of Theorem 62 (up to constants)

APPENDIX H. DEFERRED PROOFS FROM CHAPTER 9 811

implies that we can approximate the covering gradients in (H.5) to the desired quality within time

O

(
Tmv(K) ·

√
κ?o · poly log

nκ?o
δ

)
.

Similarly, Corollary 72 implies we can compute the necessary approximate packing gradients in the

same time. Multiplying by the overhead of the homotopy method in Theorem 62 gives the result.

Average-case conditioning under Assumption 18

A number of recent linear system solvers depend on average notions of conditioning, namely the

ratio between the average eigenvalue and smallest [497, 347, 300, 168, 553, 17, 10]. Normalized by

dimension, we define this average conditioning as follows: for M ∈ Sd�0,

τ (M) :=
Tr(M)

λmin(M)
.

Observe that since Tr(M) is the sum of eigenvalues, the following inequalities always hold:

d ≤ τ (M) ≤ dκ (M) . (H.6)

In analogy with κ?i and κ?o, we define for full-rank A ∈ Rn×d for n ≥ d, and K ∈ Sd�0,

τ?i (A) := min
diagonal W�0

τ
(
A>WA

)
, τ?o (K) := min

diagonal W�0
τ
(
W

1
2 KW

1
2

)
. (H.7)

We give an informal discussion on how to use Assumption 18 to develop a solver for approximating

τ?i to a constant factor, which has a runtime nearly-matching the fastest linear system solvers

depending on τ?i after applying the appropriate rescalings.3 Qualitatively, this may be thought of

as the average-case variant of Theorem 92. We defer an analogous result on approximating τ?o (with

or without a factorization) to future work for brevity.

To develop our algorithm for approximating τ?i , we require several tools. The first is the rational

approximation analog of the polynomial approximation in Fact 12.

Fact 45 (Rational approximation of exp [466], Theorem 7.1). Let M ∈ Sd≥0 and δ > 0. There is an

explicit polynomial p of degree ∆ = Θ(log(δ−1)) with absolute coefficients at most ∆O(∆) with

exp(−M)− δI � p

((
I +

M

∆

)−1
)
� exp(−M) + δI.

We also use the runtime of the fastest-known solver for linear systems based on row subsampling,

3We remark that these problems may be solved to high precision by casting them as an appropriate SDP and
applying general SDP solvers, but in this section we focus on fast runtimes.

APPENDIX H. DEFERRED PROOFS FROM CHAPTER 9 812

with a runtime dependent on the average conditioning τ . Our goal is to compute reweightings W

which approximately attain the minimums in (H.7), with runtimes comparable to that of Fact 46.

Fact 46 ([10]). There is an algorithm which given M ∈ Sd�0, b ∈ Rd, and δ, ε ∈ (0, 1) returns v ∈ Rd

such that
∥∥v −M−1b

∥∥
2
≤ ε

∥∥M−1b
∥∥

2
with probability ≥ 1− δ in time

O

((
n+

√
dτ(M)

)
· d · poly log

nτ(K)

δε

)
.

Remark. The runtime of Fact 46 applies more broadly to quadratic optimization problems in M,

e.g. regression problems of the form ‖Ax− b‖22 where A>A = M. Moreover, Fact 46 enjoys runtime

improvements when the rows of M (or the factorization component A) are sparse; our methods in

the following discussion do as well as they are directly based on Fact 46, and we omit this discussion

for simplicity. Finally, [10] demonstrates how to improve the dependence on
√
dτ(M) to a more

fine-grained quantity in the case of non-uniform eigenvalue distributions. We defer obtaining similar

improvements for approximating optimal rescalings to interesting future work.

We now give a sketch of how to use Facts 45 and 46 to obtain near-optimal runtimes for computing

a rescaling approximating τ?i under Assumption 18. Let A ∈ Rn×d for n ≥ d be full rank, and assume

that we known τ?i := τ?i (A) for simplicity, which we can approximate using an incremental search

with a logarithmic overhead. Denote the rows of A by {ai}i∈[n]. We instantiate Assumption 18 with

Pi = ‖ai‖22 , Ci = τ?i aia
>
i , for all i ∈ [n], (H.8)

from which it follows that (H.4) is feasible using the reweighting W = diag (w) attaining τ?i :

λmax

∑
i∈[n]

wiPi

 = λmax

∑
i∈[n]

wi ‖ai‖22

 = Tr
(
A>WA

)
,

λmin

∑
i∈[n]

wiCi

 = τ?i λmin

∑
i∈[n]

wiaia
>
i

 = τ?i λmin

(
A>WA

)
.

(H.9)

Hence, if we can efficiently implement each step of MPC with these matrices, it will return a reweight-

ing satisfying (H.3), which yields a trace-to-bottom eigenvalue ratio approximating τ?i to a 1 + ε

factor. We remark that in the algorithm parameterization, we have ρ = τ?i . Moreover, all of the

packing gradient computations in (H.5) are one-dimensional and hence amount to vector operations,

so we will only discuss the computation of covering gradients.

Next, observe that Assumption 18 guarantees that for all intermediate reweightings W computed

by the algorithm and R = O(log nτ?i), λmax(
∑
i∈[n] wiPi) = Tr(A>WA) ≤ R. This implies that

APPENDIX H. DEFERRED PROOFS FROM CHAPTER 9 813

the trace of the matrix involved in covering gradient computations is always bounded:

Tr

∑
i∈[n]

wiCi

 = τ?i Tr
(
A>WA

)
≤ τ?i R. (H.10)

To implement the covering gradient computations, we appropriately modify Lemmas 97 and 98 to

use the rational approximation in Fact 45 instead of the polynomial approximation in Fact 12. It is

straightforward to check that the degree of the rational approximation required is ∆ = O(log nτ?i).

Moreover, each of the ∆ linear systems which Fact 45 requires us to solve is in the matrix

M := I +

∑
i∈[n] wiCi

∆
,

which by (H.10) and the fact that I has all eigenvalues 1, has τ(M) = O(τ?i). Thus, we can apply

Fact 46 to solve these linear systems in time

O

((
n+

√
dτ?i

)
· d · poly log

nτ?i
δ

)
.

Here, we noted that the main fact that e.g. Lemmas 97 and 98 use is that the rational approximation

approximates the exponential up to a poly(n−1, (τ?i)−1) multiple of the identity. Since all coefficients

of the polynomial in Fact 45 are bounded by ∆O(∆), the precision to which we need to apply Fact 46 to

satisfy the requisite approximations is ε = ∆−O(∆), which only affects the runtime by polylogarithmic

factors. Combining the cost of computing (H.5) with the iteration bound of Assumption 18, the

overall runtime of our method for approximating τ?i is

O

((
n+

√
dτ?i (A)

)
· d · poly log

nτ?i (A)

δ

)
,

which matches Fact 46’s runtime after rescaling in all parameters up to logarithmic factors.

H.2 Greedy and non-convex methods fail in the semi-random

setting

In this section, we show how a few standard, commonly-used non-convex or greedy methods can fail

(potentially quite drastically) in the semi-random adversary setting. The two algorithms that we

examine are Iterative Hard Thresholding and Orthogonal Matching Pursuit [86, 510]. We believe it

is likely that similar counterexamples can be constructed for other, more complex algorithms such

as CoSaMP [410]. For simplicity in this section, we will only discuss the specific semi-random model

introduced in Definition 37, where A is pRIP, i.e. it contains an unknown RIP matrix G as a subset

APPENDIX H. DEFERRED PROOFS FROM CHAPTER 9 814

of its rows.

H.2.1 Iterative hard thresholding

The iterative hard thresholding algorithm [86] involves initializing x0 = 0 and taking

xt+1 = Hs

(
xt −

1

n
A>(b−Axt)

)
where Hs zeroes out all but the s largest entries in magnitude (ties broken lexicographically). We

can break this algorithm in the semi-random setting by simply duplicating one row many times.

Hard semi-random adversary. Let n = Cm for some sufficiently large constant C. The first m

rows of A are drawn independently from N (0, I). Now draw v ∼ N (0, I), except set the first entry

of v to 1. We set the last (C − 1)m rows of A all equal to v. We will set the sparsity parameter

s = 1 and let x? = (1, 0, . . . , 0). We let b = Ax?.

Proposition 77. With A, b generated as above, with high probability, iterative hard thresholding

does not converge.

Proof. With high probability, some coordinate of v is Ω(
√

log d). We then have that some entry of

A>b has magnitude at least Ω(n
√

log d) with high probability. Thus, the next iterate x1 must have

exactly one nonzero entry that has magnitude at least Ω(
√

log d) and furthermore, this entry must

correspond to some coordinate of v that has magnitude at least Ω(
√

log d). However, this means

that the residuals in all of the rows that are copies of v are at least Ω(log d). In the next step, by the

same argument, we get that the residuals blow up even more and clearly this algorithm will never

converge. In fact, xt will never have the right support because its support will always be on one of

the entries where v is large.

H.2.2 Orthogonal matching pursuit

The orthogonal matching pursuit algorithm [510] involves initializing x0 = 0 and keeping track of a

set S (that corresponds to our guess of the support of x?). Each iteration, we choose a column cj of

A that maximizes
|〈cj ,rt〉|
‖cj‖22

and then add j to S (where rt = Axt − b is the residual). We then add

j to S and project the residual onto the orthogonal complement of all coordinates in S. We show

that we can again very easily break this algorithm in the semi-random setting.

Hard semi-random adversary. Let n = 3m. First, we draw all rows of A independently from

N (0, I). Next, we modify some of the entries in the last 2m rows. Let s be the sparsity parameter.

Let x? = (s−
1
2 , . . . , s−

1
2 , 0, . . . , 0) be supported on the first s coordinates and set b = Ax?. Now we

modify the columns of A (aside from the first s so Ax? is not affected). We set the last 2m entries

of one of these columns cj to match those of b.

APPENDIX H. DEFERRED PROOFS FROM CHAPTER 9 815

Proposition 78. With A, b generated as above, with high probability, orthogonal matching pursuit

does not recover x?.

Proof. With high probability (as long as s ≥ 10), the column cj is the one that maximizes
|〈cj ,b〉|
‖cj‖22

because its last 2m entries exactly match those of b. However, j is not in the support of x? so the

algorithm has already failed.

We further make the following observation.

Remark 15. By modifying other columns of A as well, the semi-random adversary can actually

make the algorithm pick all of the wrong columns in the support.

H.2.3 Convex methods

Now we briefly comment on how convex methods are robust, in the sense that they can still be used

in the semi-random setting (but may have substantially slower rates than their fast counterparts).

In the noiseless observations case, this is clear because the additional rows of A are simply additional

constraints that are added to the standard `1 minimization convex program.

In the noisy case, let the target error be θ =
∥∥ξ(m)

∥∥
2
. We then solve the modified problem

min ‖x‖1
subject to

∥∥[Ax− b](m)

∥∥
2
≤ θ.

Note that the above is a convex program and thus can be solved in polynomial time by e.g. cutting

plane methods [255]. Also, note that x? is indeed feasible for the second constraint. Now for the

solution x̂ that we obtain, we must have ‖x̂‖1 ≤ ‖x?‖1 and

∥∥[A(x? − x̂)](m)

∥∥
2
≤ 2θ.

Let G be the set of m randomly generated rows of A under our semi-random adversarial model.

The previous two conditions imply

• ‖x̂− x?‖1 ≤ 2
√
s ‖x? − x̂‖2

• ‖G(x? − x̂)‖2 ≤ 2θ

which now by restricted strong convexity of G (see [9]) implies that ‖x? − x̂‖2 = O(θ√
m

). We can

furthermore round x̂ to s-sparse to obtain the sparse vector x′, and the above bound only worsens

by a factor of 2 for x′ (see Lemma 170 for this argument).

APPENDIX H. DEFERRED PROOFS FROM CHAPTER 9 816

H.3 Proof of Lemma 171

Lemma 171. Let δ > 0 and θ ≥ 0. For any vector γ ∈ Rd, we can solve the optimization problem

min
‖p‖2≤θ

sqmaxµ(γ − p)

to additive accuracy δ in time

O

(
d log2

(
‖γ‖22
µ
√
δ

))
.

Proof. Let P ⊂ Rd be the set of p such that p has the same sign as γ entrywise and |pj | ≤ |γj | for

all j ∈ [d]. By symmetry of the sqmax and the `2 norm under negation, the optimal p lies in P.

Next we claim that the function smaxµ(γ− p) is 2 ‖γ‖2-Lipschitz in the `2 norm as a function of

p, over P. To see this, the gradient is directly computable as

2(p− γ) ◦ x where x ∈ ∆d with xi =
exp([γi − pi]2/µ2)∑

j∈[n] exp([γj − pj]2/µ2)
for all i ∈ [n]

where ◦ denotes entrywise multiplication. Thus, the `2 norm of the derivative is bounded by 2 ‖γ‖2
over P. In the remainder of the proof, we show how to find p ∈ P which has `2 error δ

2‖γ‖2
to the

optimal, which implies by Lipschitzness that the function value is within additive δ of optimal.

Next, since 0 ∈ P, we may assume without loss of generality that

θ >
δ

2 ‖γ‖2
. (H.11)

else we may just output 0, which achieves optimality gap at most 2 ‖γ‖2 θ.
Now, by monotonicity of ln it suffices to approximately minimize

∑
j∈[d]

exp

(
[γ − p]2j
µ2

)
.

The sum above is always at least d. First we check if ‖γ‖2 ≤ θ +
√
δ. If this is true then clearly we

can set p so that all entries of γ − p have magnitude at most
√
δ. This gives a solution such that

sqmaxµ(γ − p) ≤ µ2 log

(
d exp

(
δ

µ2

))
= µ2 log d+ δ

and since the value of sqmax is always at least µ2 log d, this solution is optimal up to additive error

δ. Thus, we can assume ‖γ‖2 ≥ θ+
√
δ in the remainder of the proof. We also assume all entries of γ

are nonzero since if an entry of γ is 0 then the corresponding entry of p should also be 0. Finally by

symmetry of the problem under negation we will assume all entries of γ are positive in the remainder

APPENDIX H. DEFERRED PROOFS FROM CHAPTER 9 817

of the proof, such that each entry of p is also positive.

By monotonicity of sqmax in each coordinate (as long as signs are preserved) and the assumption

that ‖γ‖2 ≥ θ +
√
δ, the optimal solution must have ‖p‖2 = θ. By using Lagrange multipliers, for

some scalar ζ and all j,

pj = exp(ζ) · [γ − p]j exp

(
[γ − p]2j
µ2

)
. (H.12)

For the optimal ζ by taking `2 norms of the quantity above, we have

θ = ‖p‖2 = ζ ‖γ − p‖2 · C for some C ∈

[
0, exp

(
‖γ‖22
µ2

)]
.

Hence taking logarithms of both sides and using both the bounds (H.11) and ‖γ − p‖2 ≥
√
δ at the

optimum, which follows from the previous discussion, we obtain

log
θ

‖γ − p‖2
− ζ ∈

[
0,
‖γ‖22
µ2

]
=⇒ ζ ∈

[
−
‖γ‖22
µ2
− log

(
2 ‖γ‖22
δ

)
, log

(
‖γ‖2√
δ

)]
.

We next show how to compute p to high accuracy given a guess on ζ. Observe that if γj > 0, then

the right-hand side of (H.12) is decreasing in pj and hence by the intermediate value theorem, there

is a unique solution strictly between 0 and γj for any ζ. Also, note that the location of this solution

increases with ζ. Let p(ζ) be the solution obtained by exactly solving (H.12) for some given ζ. We

have shown for all ζ that 0 ≤ [p(ζ)]j ≤ γj entrywise and hence ‖p(ζ)‖2 ≤ ‖γ‖2 for all ζ.

For a fixed ζ, we claim we can estimate p(ζ) to `2 error β in time O(d log
‖γ‖2
β). To see this, fix

some ζ, µ, and γj , and consider solving (H.12) for the fixed point pj . We can discretize [0, γj] into

intervals of length
γjβ
‖γ‖2

and perform a binary search. The right-hand side is decreasing in pj and

the left-hand side is increasing so the binary search yields some interval of length
γjβ
‖γ‖2

containing

the fixed point pj via the intermediate value theorem. The resulting `2 error along all coordinates is

then β. We also round this approximate p(ζ) entrywise down in the above search to form a vector

p̃(ζ, β) such that p̃(ζ, β) ≤ p(ζ) entrywise and ‖p̃(ζ, β)− p(ζ)‖2 ≤ β. We use this notation and it is

well-defined as the search is deterministic.

In the remainder of the proof we choose the constants

α :=
δ2

192 ‖γ‖42
, β := min

(
δ2

192 ‖γ‖32
,

δ

4 ‖γ‖2

)
.

We define p̃(ζ) := p̃(ζ, β) for short as β will be fixed. Discretize the range [−‖γ‖
2
2

µ2 −log
2‖γ‖22
δ , log

‖γ‖2√
δ

]

into a grid of uniform intervals of length α. Consider the ζ such that ζ ≤ ζ? < ζ + α. Because

p(ζ?) is entrywise larger than p(ζ) and hence the logarithmic term on the right-hand side of (H.12)

APPENDIX H. DEFERRED PROOFS FROM CHAPTER 9 818

is smaller for p(ζ?) than p(ζ), we have

[p(ζ)]j ≤ [p (ζ?)]j ≤ exp (α) [p (ζ)]j .

Moreover the optimal p(ζ?) has `2 norm θ, so |ζ − ζ?| ≤ α and exp(α)− 1 ≤ 2α imply

‖p(ζ)− p(ζ?)‖2 ≤ 2α ‖p(ζ?)‖2 ≤ 2α ‖γ‖2 ≤ ∆ :=
δ2

96 ‖γ‖32
.

Consider the algorithm which returns the ζalg on the search grid which minimizes |‖p̃(ζalg)‖2 − θ|
(we will discuss computational issues at the end of the proof). As we have argued above, there is a

choice which yields ‖p(ζ)‖2 ∈ [θ −∆, θ + ∆] and hence

‖p̃(ζalg)‖2 ∈ [θ −∆− β, θ + ∆ + β] . (H.13)

We next claim that

‖p(ζalg)− p(ζ?)‖2 ≤
δ

4 ‖γ‖2
. (H.14)

Suppose (H.14) is false and ζalg > ζ?. Then letting u := p(ζalg) and v := p(ζ?), note that u, v, and

u− v are all entrywise nonnegative and hence

‖u‖22 ≥ ‖v‖
2
2 +

∑
i∈[n]

2ui(ui − vi) + (ui − vi)2 > ‖v‖22 +

(
δ

4 ‖γ‖2

)2

.

Hence, we have by
√
x2 + y2 ≥ x+ y2

3x for 0 ≤ y ≤ x, (H.11), and θ ≤ ‖γ‖2,

‖p(ζalg)‖2 = ‖u‖2 > ‖v‖2 +

(
δ

4‖γ‖2

)2

3 ‖v‖2
≥ θ +

δ2

48 ‖γ‖32
≥ θ + ∆ + 2β.

So, by triangle inequality ‖p̃(ζalg)‖2 > θ + ∆ + β and hence we reach a contradiction with (H.13).

Similarly, suppose (H.14) is false and ζalg < ζ?. Then for the same definitions of u, v, and using

the inequality
√
x2 − y2 ≤ x− y2

3x for 0 ≤ y ≤ x, we conclude

‖v‖22 > ‖u‖
2
2 +

(
δ

4 ‖γ‖2

)2

=⇒ ‖u‖2 ≤

√
‖v‖22 −

(
δ

4 ‖γ‖2

)2

< θ −∆− 2β.

So we reach a contradiction with (H.13) in this case as well.

In conclusion, (H.14) is true and we obtain by triangle inequality the desired

‖p̃(ζalg)− p(ζ?)‖2 ≤
δ

4 ‖γ‖2
+ β
√
d ≤ δ

2 ‖γ‖2
.

APPENDIX H. DEFERRED PROOFS FROM CHAPTER 9 819

The complexity of the algorithm is bottlenecked by the cost of finding p̃(ζalg). For each ζ on the grid

the cost of evaluating p̃(ζ) induces a multiplicative d log(
‖γ‖22
δ) overhead. The cost of performing the

binary search on the ζ grid is a multiplicative log(
‖γ‖22
µ
√
δ

) overhead; note that a binary search suffices

because ‖p̃(ζalg)‖2 is monotonic by our consistent choice of rounding down, and hence | ‖p̃(ζalg)‖2−θ|
is unimodal.

Appendix I

Deferred proofs from Chapter 10

I.1 Discussion of inexactness tolerance

We briefly discuss the tolerance of our algorithm to approximation error in two places: computation

of minimizers, and implementation of RGOs in the methods of Sections 10.3 and 10.5.

Inexact minimization. For all function classes considered in this work, there exist efficient opti-

mization methods converging to a minimizer with logarithmic dependence on the target accuracy.

Specifically, for negative log-densities with condition number κ, accelerated gradient descent [417]

converges at a rate O(
√
κ) with logarithmic dependence on initial error and target accuracy (we

implicitly assumed in stating our runtimes that one can attain initial error polynomial in problem

parameters for negative log-densities; otherwise, there is additional logarithmic overhead in the

quality of the initial point to optimization procedures). For composite functions fwc + foracle where

fwc has condition number κ, the FISTA method of [66] converges at the same rate with each iteration

querying ∇fwc and a proximal oracle for foracle once; typically, access to a proximal oracle is a

weaker assumption than access to a restricted Gaussian oracle, so this is not restrictive. Finally, for

minimizing finite sums with condition number κ, the algorithm of [17] obtains a convergence rate

linearly dependent on n +
√
nκ ≤ n + κ; alternatively, [300] has a dependence on n + κ. In all our

final runtimes, these optimization rates do not constitute the bottleneck for oracle complexities.

The only additional difficulty our algorithms may present is if the function requiring minimiza-

tion, say of the form foracle(x)+ 1
2η ‖x− y‖

2
2 for some y ∈ Rd where we have computed the minimizer

x∗ to foracle, has ‖y − x∗‖22 very large (so the initial function error is bad). However, in all our set-

tings y is drawn from a distribution with sub-Gaussian tails, so ‖y − x∗‖22 decays exponentially

(whereas the complexity of first-order methods increases only logarithmically), negligibly affecting

the expected oracle query complexity for our methods.

Finally, by solving the relevant optimization problems to high accuracy as a subroutine in each of

our methods, and adjusting various distance bounds to the minimizer by constants (e.g. by expanding

820

APPENDIX I. DEFERRED PROOFS FROM CHAPTER 10 821

the radius in the definition of the sets Ω in Algorithm 62 and Section 10.6.2), this accomodates

tolerance to inexact minimization and only affects all bounds throughout the paper by constants.

The only other place that x∗ is used in our algorithms is in initializing warm starts; tolerance to

inexactness in our warmness calculations follows essentially identically to Section 3.2.1 of [210].

Inexact oracle implementation. Our algorithms based on restricted Gaussian oracle access are

tolerant to total variation error inverse polynomial in problem parameters for the restricted Gaussian

oracle for g. We discussed this at the end of Section 10.3, in the case of RGO use for our reduction

framework. To see this in the case of the composite sampler in Section 10.5, we pessimistically

handled the case where the sampler Y-Oracle for a quadratic restriction of f resulted in total

variation error in the proof of Proposition 46, assuming that the error was incurred in every iteration.

By accounting for similar amounts of error in calls to O (on the order of ε
T , where T is the number

of times an RGO was used), the bounds in our algorithm are only affected by constants.

I.2 Deferred proofs from Section 10.5

I.2.1 Deferred proofs from Section 10.5.2

Approximate rejection sampling

We first define the rejection sampling framework we will use, and prove various properties.

Definition 60 (Approximate rejection sampling). Let π be a distribution, with dπ
dx (x) ∝ p(x).

Suppose set Ω has π(Ω) = 1− ε′, and distribution π̂ with dπ̂
dx (x) ∝ p̂(x) has for some C ≥ 1,

p(x)

p̂(x)
≤ C for all x ∈ Ω, and

∫
p̂(x)dx∫
p(x)dx

≤ 1.

Suppose there is an algorithm A which draws samples from a distribution π̂′, such that ‖π̂′ − π̂‖TV ≤
1− δ. We call the following scheme approximate rejection sampling: repeat independent runs of the

following procedure until a point is outputted.

1. Draw x via A until x ∈ Ω.

2. With probability p(x)
Cp̂(x) , output x.

Lemma 324. Consider an approximate rejection sampling scheme with relevant parameters defined

as in Definition 60, with 2δ ≤ 1−ε′
C . The algorithm terminates in at most

1
1−ε′
C − 2δ

(I.1)

calls to A in expectation, and outputs a point from a distribution π′ with ‖π′ − π‖TV ≤ ε′ +
2δC
1−ε′ .

APPENDIX I. DEFERRED PROOFS FROM CHAPTER 10 822

Proof. Define for notational simplicity normalization constants Z :=
∫
p(x)dx and Ẑ :=

∫
p̂(x)dx.

First, we bound the probability any particular call to A returns in the scheme:∫
x∈Ω

p(x)

Cp̂(x)
dπ̂′(x) ≥

∫
x∈Ω

p(x)

Cp̂(x)
dπ̂(x)−

∣∣∣∣∫
x∈Ω

p(x)

Cp̂(x)
(dπ̂′(x)− dπ̂(x))

∣∣∣∣
=

∫
x∈Ω

Z

CẐ
dπ(x)−

∣∣∣∣∫
x∈Ω

p(x)

Cp̂(x)
(dπ̂′(x)− dπ̂(x))

∣∣∣∣
≥ 1− ε′

C
−
∫
x∈Ω

|dπ̂′(x)− dπ̂(x)| ≥ 1− ε′

C
− 2δ.

(I.2)

The second line followed by the definitions of Z and Ẑ, and the third followed by triangle inequality,

the assumed lower bound on Z/Ẑ, and the total variation distance between π̂′ and π̂. By linearity

of expectation and independence, this proves the first claim.

Next, we claim the output distribution is close in total variation distance to the conditional

distribution of π restricted to Ω. The derivation of (I.2) implies∫
x∈Ω

p(x)

Cp̂(x)
dπ̂(x) ≥ 1− ε′

C
,

∣∣∣∣∫
x∈Ω

p(x)

Cp̂(x)
(dπ̂′(x)− dπ̂(x))

∣∣∣∣ ≤ 2δ,

=⇒ 1− 2δC

1− ε′
≤

∫
x∈Ω

p(x)
Cp̂(x)dπ̂

′(x)∫
x∈Ω

p(x)
Cp̂(x)dπ̂(x)

≤ 1 +
2δC

1− ε′
.

(I.3)

Thus, the total variation of the true output distribution from π restricted to Ω is

1

2

∫
x∈Ω

∣∣∣∣∣∣dπ(x)

1− ε′
−

p(x)
Cp̂(x)dπ̂

′(x)∫
x∈Ω

p(x)
Cp̂(x)dπ̂

′(x)

∣∣∣∣∣∣
≤ 1

2

∫
x∈Ω

∣∣∣∣∣∣dπ(x)

1− ε′
−

p(x)
Cp̂(x)dπ̂

′(x)∫
x∈Ω

p(x)
Cp̂(x)dπ̂(x)

∣∣∣∣∣∣+
1

2

∫
x∈Ω

∣∣∣∣∣∣
p(x)
Cp̂(x)dπ̂

′(x)∫
x∈Ω

p(x)
Cp̂(x)dπ̂(x)

−
p(x)
Cp̂(x)dπ̂

′(x)∫
x∈Ω

p(x)
Cp̂(x)dπ̂

′(x)

∣∣∣∣∣∣
≤ 1

2

∫
x∈Ω

∣∣∣∣∣∣dπ(x)

1− ε′
−

p(x)
Cp̂(x)dπ̂

′(x)∫
x∈Ω

p(x)
Cp̂(x)dπ̂(x)

∣∣∣∣∣∣+
δC

1− ε′
=

1

2

∫
x∈Ω

dπ(x)

1− ε′

∣∣∣∣1− dπ̂′

dπ̂
(x)

∣∣∣∣+
δC

1− ε′
.

The first inequality was triangle inequality, and we bounded the second term by (I.3). To obtain

the final equality, we used ∫
x∈Ω

p(x)

Cp̂(x)
dπ̂(x) =

∫
x∈Ω

Z

CẐ
dπ(x) =

(1− ε′)Z
CẐ

=⇒
p(x)
Cp̂(x)dπ̂

′(x)∫
x∈Ω

p(x)
Cp̂(x)dπ̂(x)

=
p(x)

Z
· Ẑ

p̂(x)
· 1

1− ε′
· dπ̂′(x) =

dπ(x)

1− ε′
· dπ̂

′

dπ̂
(x).

We now bound this final term. Observe that the given conditions imply that dπ
dπ̂ (x) is bounded by

APPENDIX I. DEFERRED PROOFS FROM CHAPTER 10 823

C everywhere in Ω. Thus, expanding we have

1

2

∫
x∈Ω

dπ(x)

1− ε′

∣∣∣∣1− dπ̂′

dπ̂
(x)

∣∣∣∣ ≤ C

2(1− ε′)

∫
x∈Ω

|dπ̂(x)− dπ̂′(x)| ≤ δC

1− ε′
.

Finally, combining these guarantees, and the fact that restricting π to Ω loses ε′ in total variation

distance, yields the desired conclusion by triangle inequality.

Corollary 73. Let θ̂(x) be an unbiased estimator for p(x)
p̂(x) , and suppose θ̂(x) ≤ C with probability

1 for all x ∈ Ω. Then, implementing the procedure of Definition 60 with acceptance probability θ̂(x)
C

has the same runtime bound and total variation guarantee as given by Lemma 324.

Proof. It suffices to take expectations over the randomness of θ̂ everywhere in the proof of Lemma 324.

Distribution ratio bounds

We next show two bounds relating the densities of distributions π and π̂. We first define the

normalization constants of (10.20), (10.22) for shorthand, and then tightly bound their ratio.

Definition 61 (Normalization constants). We denote normalization constants of π and π̂ by

Zπ :=

∫
x

exp (−f(x)− g(x)) dx,

Zπ̂ :=

∫
x,y

exp

(
−f(y)− g(x)− 1

2η
‖y − x‖22 −

ηL2

2
‖x− x∗‖22

)
dxdy.

Lemma 325 (Normalization constant bounds). Let Zπ and Zπ̂ be as in Definition 61. Then,

(
2πη

1 + ηL

) d
2
(

1 +
ηL2

µ

)− d2
≤ Zπ̂
Zπ
≤ (2πη)

d
2 .

Proof. For each x, by convexity we have∫
y

exp

(
−f(y)− g(x)− 1

2η
‖y − x‖22 −

ηL2

2
‖x− x∗‖22

)
dy

≤ exp

(
−g(x)− ηL2

2
‖x− x∗‖22

)∫
y

exp

(
−f(x)− 〈∇f(x), y − x〉 − 1

2η
‖y − x‖22

)
dy

= exp

(
−f(x)− g(x)− ηL2

2
‖x− x∗‖22

)∫
y

exp

(
η

2
‖∇f(x)‖22 −

1

2η
‖y − x+ η∇f(x)‖22

)
dy

= (2πη)
d
2 exp (−f(x)− g(x)) exp

(
η

2
‖∇f(x)‖22 −

ηL2

2
‖x− x∗‖22

)
≤ (2πη)

d
2 exp (−f(x)− g(x)) .

(I.4)

APPENDIX I. DEFERRED PROOFS FROM CHAPTER 10 824

Integrating both sides over x yields the upper bound on Zπ̂
Zπ

. Next, for the lower bound we have a

similar derivation. For each x, by smoothness∫
y

exp

(
−f(y)− g(x)− 1

2η
‖y − x‖22 −

ηL2

2
‖x− x∗‖22

)
dy

≥ exp

(
−f(x)− g(x)− ηL2

2
‖x− x∗‖22

)∫
y

exp

(
〈∇f(x), x− y〉 − 1 + ηL

2η
‖y − x‖22

)
dy

= exp

(
−f(x)− g(x)− ηL2

2
‖x− x∗‖2 +

η

2(1 + ηL)
‖∇f(x)‖2

)(
2πη

1 + ηL

) d
2

≥ exp

(
−f(x)− g(x)− ηL2

2
‖x− x∗‖22

)(
2πη

1 + ηL

) d
2

.

Integrating both sides over x yields

Zπ̂
Zπ
≥
(

2πη

1 + ηL

) d
2

∫
x

exp
(
−f(x)− g(x)− ηL2

2 ‖x− x
∗‖22
)
dx∫

x
exp (−f(x)− g(x)) dx

≥
(

2πη

1 + ηL

) d
2
(

1 +
ηL2

µ

)− d2
.

The last inequality followed from Proposition 82, where we used f + g is µ-strongly convex.

Lemma 326 (Relative density bounds). Let η = 1
32Lκd log(288κ/ε) . For all x ∈ Ω, as defined in

(10.21), dπ
dπ̂ (x) ≤ 2. Here, dπ̂

dx (x) denotes the marginal density of π̂. Moreover, for all x ∈ Rd,
dπ
dπ̂ (x) ≥ 1

2 .

Proof. We first show the upper bound. By Lemma 325,

dπ

dπ̂
(x) =

exp (−f(x)− g(x))∫
y

exp
(
−f(y)− g(x)− 1

2η ‖y − x‖
2
2 −

ηL2

2 ‖x− x∗‖
2
2

)
dy
· Zπ̂
Zπ

≤ exp (−f(x)− g(x))∫
y

exp
(
−f(y)− g(x)− 1

2η ‖y − x‖
2
2 −

ηL2

2 ‖x− x∗‖
2
2

)
dy
· (2πη)

d
2 .

(I.5)

We now bound the first term, for x ∈ Ω. By smoothness, we have

exp (−f(y)− g(x))

exp (−f(x)− g(x))
≥ exp

(
〈∇f(x), x− y〉 − L

2
‖y − x‖22

)
,

APPENDIX I. DEFERRED PROOFS FROM CHAPTER 10 825

so applying this for each y,

∫
y

exp
(
−f(y)− g(x)− 1

2η ‖y − x‖
2
2 −

ηL2

2 ‖x− x
∗‖22
)
dy

exp (−f(x)− g(x))

≥ exp

(
−ηL

2

2
‖x− x∗‖22

)∫
y

exp

(
〈∇f(x), x− y〉 − 1 + ηL

2η
‖y − x‖22

)
dy

= exp

(
−ηL

2

2
‖x− x∗‖22 +

η

2(1 + ηL)
‖∇f(x)‖22

)∫
y

exp

(
−1 + ηL

2η

∥∥∥∥x− y − η

1 + ηL
∇f(x)

∥∥∥∥2

2

)
dy

≥ exp

(
−ηL

2

2
· 16d log(288κ/ε)

µ

)(
2πη

1 + ηL

) d
2

≥ 3

4

(
2πη

1 + ηL

) d
2

.

In the last line, we used that x ∈ Ω implies ‖x− x∗‖22 ≤
16d log(288κ/ε)

µ , and the definition of η.

Combining this bound with (I.5), we have the desired

dπ

dπ̂
(x) ≤ 4

3
(1 + ηL)

d
2 ≤ 2.

Next, we consider the lower bound. By combining (I.4) with Lemma 325, we have the desired

dπ

dπ̂
(x) =

exp (−f(x)− g(x))∫
y

exp
(
−f(y)− g(x)− 1

2η ‖y − x‖
2
2 −

ηL2

2 ‖x− x∗‖
2
2

)
dy
· Zπ̂
Zπ

≥ (2πη)−
d
2 ·
(

2πη

1 + ηL

) d
2
(

1 +
ηL2

µ

)− d2
=

(
1

1 + ηL

) d
2

(1 + ηLκ)
− d2 ≥ 1

2
.

Correctness of Composite-Sample-Shared-Min

Proposition 45. Let η = 1
32Lκd log(288κ/ε) , and assume Sample-Joint-Dist(f, g, x∗,O, δ) samples

within δ total variation of the x-marginal on (10.22). Composite-Sample-Shared-Min outputs a

sample within total variation ε of (10.20) in an expected O(1) calls to Sample-Joint-Dist.

Proof. We remark that η = 1
32Lκd log(288κ/ε) is precisely the choice of η in Sample-Joint-Dist where

δ = ε/18, as in Composite-Sample-Shared-Min. First, we may apply Fact 28 to conclude that the

measure of set Ω with respect to the µ-strongly logconcave density π is at least 1 − ε/3. The

conclusion of correctness will follow from an appeal to Corollary 73, with parameters

C = 4, ε′ =
ε

3
, δ =

ε

18
.

Note that indeed we have ε′ + 2δC
1−ε′ is bounded by ε, as 1− ε′ ≥ 2

3 . Moreover, the expected number

of calls (I.1) is clearly bounded by a constant as well.

APPENDIX I. DEFERRED PROOFS FROM CHAPTER 10 826

We now show that these parameters satisfy the requirements of Corollary 73. Define the functions

p(x) := exp(−f(x)− g(x)),

p̂(x) := (2πη)−
d
2

∫
y

exp

(
−f(y)− g(x)− 1

2η
‖y − x‖22 −

ηL2

2
‖x− x∗‖22

)
dy,

and observe that clearly the densities of π and π̂ are respectively proportional to p and p̂. Moreover,

define Z =
∫
p(x)dx and Ẑ =

∫
p̂(x)dx. By comparing these definitions with Lemma 325, we have

Z = Zπ and Ẑ = (2πη)−
d
2Zπ̂, so by the upper bound in Lemma 325, Ẑ/Z ≤ 1. Next, we claim that

the following procedure produces an unbiased estimator for p(x)
p̂(x) .

1. Sample y ∼ πx, where dπx(y)
dy ∝ exp

(
−f(y)− 1

2η ‖y − x‖
2
2

)
2. α← exp

(
f(y)− 〈∇f(x), y − x〉 − L

2 ‖y − x‖
2
2 + g(x) + ηL2

2 ‖x− x
∗‖22
)

3. Output θ̂(x)← exp
(
−f(x)− g(x) + η

2(1+ηL) ‖∇f(x)‖22
)

(1 + ηL)
d
2α

To prove correctness of this estimator θ̂, define for simplicity

Zx :=

∫
y

exp

(
−f(y)− g(x)− 1

2η
‖y − x‖22 −

ηL2

2
‖x− x∗‖22

)
dy.

We compute, using dπx(y)
dy =

exp(−f(y)−g(x)− 1
2η ‖y−x‖

2
2−

ηL2

2 ‖x−x
∗‖22)

Zx
, that

Eπx [α] =

∫
y

exp

(
f(y)− 〈∇f(x), y − x〉 − L

2
‖y − x‖22 + g(x) +

ηL2

2
‖x− x∗‖22

)
dπx(y)

=
1

Zx

∫
y

exp

(
−〈∇f(x), y − x〉 − L

2
‖y − x‖22 −

1

2η
‖y − x‖22

)
dy

=
1

Zx
exp

(
− η

2(1 + ηL)
‖∇f(x)‖22

)(
2πη

1 + ηL

) d
2

.

This implies that the output quantity

θ̂(x) = exp

(
−f(x)− g(x) +

η

2(1 + ηL)
‖∇f(x)‖22

)
(1 + ηL)

d
2α

is unbiased for p(x)
p̂(x) = exp(−f(x) − g(x))Z−1

x (2πη)
d
2 . Finally, note that for any y used in the

APPENDIX I. DEFERRED PROOFS FROM CHAPTER 10 827

definition of θ̂(x), by using f(y)− f(x)− 〈∇f(x), y − x〉 − L
2 ‖y − x‖

2
2 ≤ 0 via smoothness, we have

θ̂(x) = exp

(
−f(x)− g(x) +

η

2(1 + ηL)
‖∇f(x)‖22

)
(1 + ηL)

d
2α

≤ (1 + ηL)
d
2 exp

(
η

2(1 + ηL)
‖∇f(x)‖22 +

ηL2

2
‖x− x∗‖22

)
≤ (1 + ηL)

d
2 exp

(
ηL2 ‖x− x∗‖22

)
≤ 4.

Here, we used the definition of η and L2 ‖x− x∗‖22 ≤ 16Lκd log(288κ/ε) by the definition of Ω.

I.2.2 Deferred proofs from Section 10.5.3

Throughout this section, for error tolerance δ ∈ [0, 1] which parameterizes Sample-Joint-Dist, we

denote for shorthand a high-probability region Ωδ and its radius Rδ by

Ωδ := {x | ‖x− x∗‖2 ≤ Rδ} , for Rδ := 4

√
d log(16κ/δ)

µ
. (I.6)

The following density ratio bounds hold within this region, by simply modifying Lemma 326.

Corollary 74. Let η = 1
32Lκd log(16κ/δ) , and let π̂ be parameterized by this choice of η in (10.22).

For all x ∈ Ωδ, as defined in (I.6), dπ
dπ̂ (x) ≤ 2. Moreover, for all x ∈ Rd, dπ

dπ̂ (x) ≥ 1
2 .

The following claim follows immediately from applying Fact 28.

Lemma 327. With probability at least 1− δ2

8(1+κ)d
, x ∼ π̂ lies in Ωδ.

Finally, when clear from context, we overload π̂ as a distribution on x ∈ Rd to be the x component

marginal of the distribution (10.22), i.e. with density

dπ̂

dx
(x) ∝

∫
y

exp

(
−f(y)− g(x)− 1

2η
‖y − x‖22 −

ηL2

2
‖x− x∗‖22

)
dy.

We first note that π̂ is stationary for Sample-Joint-Dist; this follows immediately from Lemma 181.

In Section I.2.2, we bound the conductance of the walk. We then use this bound in Section I.2.2 to

bound the mixing time and overall complexity of Sample-Joint-Dist.

Conductance of Sample-Joint-Dist

We bound the conductance of this random walk, as a process on the iterates {xk}, to show the final

point has distribution close to the marginal of π̂ on x. To do so, we break Proposition 48 into two

pieces, which we will use in a more white-box manner to prove our conductance bound.

APPENDIX I. DEFERRED PROOFS FROM CHAPTER 10 828

Definition 62 (Restricted conductance). Let a random walk with stationary distribution π̂ on x ∈
Rd have transition densities Tx, and let Ω ⊆ Rd. The Ω-restricted conductance, for v ∈ (0, 1

2 π̂(Ω)),

is

ΦΩ(v) = inf
π̂(S∩Ω)∈(0,v]

TS(Sc)

π̂(S ∩ Ω)
, where TS(Sc) :=

∫
x∈S

∫
x′∈Sc

Tx(x′)dπ̂(x)dx′.

Proposition 79 (Lemma 1, [128]). Let πstart be a β-warm start for π̂, and let x0 ∼ πstart. For some

δ > 0, let Ω ⊆ Rd have π̂(Ω) ≥ 1− δ2

2β2 . Suppose that a random walk with stationary distribution π̂

satisfies the Ω-restricted conductance bound

ΦΩ(v) ≥

√
B log

(
1

v

)
, for all v ∈

[
4

β
,

1

2

]
.

Let xK be the result of K steps of this random walk, starting from x0. Then, for

K ≥ 64

B
log

(
log β

2δ

)
,

the resulting distribution of xK has total variation at most δ
2 from π̂.

We state a well-known strategy for lower bounding conductance, via showing the stationary

distribution has good isoperimetry and that transition distributions of nearby points have large

overlap.

Proposition 80 (Lemma 2, [128]). Let a random walk with stationary distribution π̂ on x ∈ Rd

have transition distribution densities Tx, and let Ω ⊆ Rd, and let π̂Ω be the conditional distribution

of π̂ on Ω. Suppose for any x, x′ ∈ Ω with ‖x− x′‖2 ≤ ∆,

‖Tx − Tx′‖TV ≤
1

2
.

Also, suppose π̂Ω satisfies, for any partition S1, S2, S3 of Ω, where d(S1, S2) is the minimum

Euclidean distance between points in S1, S2, the log-isoperimetric inequality

π̂Ω(S3) ≥ 1

2ψ
d(S1, S2) ·min (π̂Ω(S1), π̂Ω(S2)) ·

√
log

(
1 +

1

min (π̂Ω(S1), π̂Ω(S2))

)
. (I.7)

Then, we have the bound for all v ∈ (0, 1
2]

ΦΩ(v) ≥ min

(
1,

∆

128ψ

√
log

(
1

v

))
.

To utilize Propositions 79 and 80, we prove the following bounds in Appendices I.3.1, I.3.2,

and I.3.3.

APPENDIX I. DEFERRED PROOFS FROM CHAPTER 10 829

Lemma 328 (Warm start). For η ≤ 1
Lκd , πstart defined in (10.23) is a 2(1 +κ)

d
2 -warm start for π̂.

Lemma 329 (Transitions of nearby points). Suppose ηL ≤ 1, ηL2R2
δ ≤ 1

2 , and 400d2η ≤ R2
δ . For a

point x, let Tx be the density of xk after sampling according to Lines 6 and 7 of Algorithm 63 from

xk−1 = x. For x, x′ ∈ Ωδ with ‖x− x′‖2 ≤
√
η

10 , for Ωδ defined in (I.6), we have ‖Tx − Tx′‖TV ≤
1
2 .

Lemma 330 (Isoperimetry). Density π̂ and set Ωδ defined in (10.22), (I.6) satisfy (I.7) with ψ =

8µ−
1
2 .

We note that the parameters of Algorithm 63 and the set Ωδ in (I.6) satisfy all assumptions of

Lemmas 328, 329, and 330. By combining these results in the context of Proposition 80, we see that

the random walk satisfies the bound for all v ∈ (0, 1
2]:

ΦΩδ(v) ≥

√
ηµ

220 · 100
· log

(
1

v

)
.

Plugging this conductance lower bound, the high-probability guarantee of Ωδ by Lemma 327, and

the warm start bound of Lemma 328 into Proposition 79, we have the following conclusion.

Corollary 75 (Mixing time of ideal Sample-Joint-Dist). Assume that calls to Y-Oracle are exact

in the implementation of Sample-Joint-Dist. Then, for any error parameter δ, and

K :=
226 · 100

ηµ
log

(
d log(16κ)

4δ

)
,

the distribution of xK has total variation at most δ
2 from π̂.

Complexity of Sample-Joint-Dist

We first state a guarantee on the subroutine Y-Oracle, which we prove in Appendix I.3.4.

Lemma 331 (Y-Oracle guarantee). For δ ∈ [0, 1], define Rδ as in (I.6), and let η = 1
32Lκd log(16κ/δ) .

For any x with ‖x− x∗‖2 ≤
√
κd log(16κ/δ) ·Rδ, Algorithm 3 (Y-Oracle) draws an exact sample y

from the density proportional to exp
(
−f(y)− 1

2η ‖y − x‖
2
2

)
in an expected 2 iterations.

We also state a result due to [128], which bounds the mixing time of 1-step Metropolized HMC

for well-conditioned distributions; this handles the case when ‖x− x∗‖2 is large in Algorithm 3.

Proposition 81 (Theorem 1, [128]). Let π be a distribution on Rd whose negative log-density is

convex and has condition number bounded by a constant. Then, Metropolized HMC from an explicit

starting distribution mixes to total variation δ to the distribution π in O(d log(dδ)) iterations.

Proposition 46. Sample-Joint-Dist outputs a point with distribution within δ total variation

distance from the x-marginal of π̂. The expected number of gradient queries per iteration is constant.

APPENDIX I. DEFERRED PROOFS FROM CHAPTER 10 830

Proof. Under an exact Y-Oracle, Corollary 75 shows the output distribution of Sample-Joint-Dist

has total variation at most δ
2 from π̂. Next, the resulting distribution of the subroutine Y-Oracle

is never larger than δ/(2Kd log(dκδ)) in total variation distance away from an exact sampler. By

running for K steps, and using the coupling characterization of total variation, it follows that this

can only incur additional error δ/(2d log(dκδ)), proving correctness (in fact, the distribution is always

at most O((d log(dκ/δ))−1) away in total variation from an exact Y-Oracle).

Next, we prove the guarantee on the expected gradient evaluations per iteration. Lemma 331

shows whenever the current iterate xk has ‖x− x∗‖2 ≤
√
κd log(16κ/δ) · Rδ, the expected number

of gradient evaluations is constant, and moreover Proposition 81 shows that the number of gradient

evaluations is never larger than O(d log(dκδ)), where we use that the condition number of the log-

density in (10.24) is bounded by a constant. Therefore, it suffices to show in every iteration 0 ≤
k ≤ K, the probability ‖xk − x∗‖2 >

√
κd log(16κ/δ) · Rδ is O((d log(dκ/δ))−1). By the warmness

assumption in Lemma 328, and the concentration bound in Fact 28, the probability x0 does not

satisfy this bound is negligible (inverse exponential in κd2 log(κ/δ)). Since warmness is monotonically

decreasing with an exact sampler,1 and the accumulated error due to inexactness of Y-Oracle is at

most O((d log(dκ/δ))−1) through the whole algorithm, this holds for all iterations.

I.3 Mixing time ingredients

We now prove facts which are used in the mixing time analysis of Sample-Joint-Dist. Throughout

this section, as in the specification of Sample-Joint-Dist, f and g are functions with properties as

in (10.20), and share a minimizer x∗.

I.3.1 Warm start

We show that we obtain a warm start for the distribution π̂ in algorithm Sample-Joint-Dist via

one call to the restricted Gaussian oracle for g, by proving Lemma 328.

Lemma 328 (Warm start). For η ≤ 1
Lκd , πstart defined in (10.23) is a 2(1 +κ)

d
2 -warm start for π̂.

Proof. By the definitions of π̂ and πstart in (10.22), (10.23), we wish to bound everywhere the

quantity

dπstart

dπ̂
(x) =

Zπ̂
Zstart

·
exp

(
−L2 ‖x− x

∗‖22 −
ηL2

2 ‖x− x
∗‖22 − g(x)

)
∫
y

exp
(
−f(y)− g(x)− 1

2η ‖y − x‖
2
2 −

ηL2

2 ‖x− x∗‖
2
2

)
dy
. (I.8)

1This fact is well-known in the literature, and a simple proof is that if a distribution is warm, then taking one step
of the Markov chain induces a convex combination of warm point masses, and is thus also warm.

APPENDIX I. DEFERRED PROOFS FROM CHAPTER 10 831

Here, Zπ̂ is as in Definition 61, and we let Zstart denote the normalization constant of πstart, i.e.

Zstart :=

∫
x

exp

(
−L

2
‖x− x∗‖22 −

ηL2

2
‖x− x∗‖22 − g(x)

)
dx.

Regarding the first term of (I.8), the earlier derivation (I.4) showed∫
y

exp

(
−f(y)− g(x)− 1

2η
‖y − x‖22 −

ηL2

2
‖x− x∗‖22

)
dy ≤ (2πη)

d
2 exp (−f(x)− g(x)) .

Then, integrating, we can bound the ratio of the normalization constants

Zπ̂
Zπstart

≤
∫
x
(2πη)

d
2 exp (−f(x)− g(x)) dx∫

x
exp

(
−L2 ‖x− x∗‖

2
2 −

ηL2

2 ‖x− x∗‖
2
2 − g(x)

)
dx

≤

∫
x
(2πη)

d
2 exp

(
−f(x∗)− µ

2 ‖x− x
∗‖22 − g(x)

)
dx∫

x
exp

(
−L2 ‖x− x∗‖

2
2 −

µ
2 ‖x− x∗‖

2
2 − g(x)

)
dx

≤ (2πη)
d
2 exp (−f(x∗))

(
1 +

L

µ

) d
2

.

(I.9)

The second inequality followed from f is µ-strongly convex and ηL2 ≤ µ by assumption. The last

inequality followed from Proposition 82, where we used µ
2 ‖x− x

∗‖22 + g(x) is µ-strongly convex.

Next, to bound the second term of (I.8), notice first that

exp
(
−L2 ‖x− x

∗‖22 −
ηL2

2 ‖x− x
∗‖22 − g(x)

)
∫
y

exp
(
−f(y)− g(x)− 1

2η ‖y − x‖
2
2 −

ηL2

2 ‖x− x∗‖
2
2

)
dy

=
exp

(
−L2 ‖x− x

∗‖22
)

∫
y

exp
(
−f(y)− 1

2η ‖y − x‖
2
2

)
dy
.

It thus suffices to lower bound exp
(
L
2 ‖x− x

∗‖22
) ∫

y
exp

(
−f(y)− 1

2η ‖y − x‖
2
2

)
dy. We have

exp

(
L

2
‖x− x∗‖22

)∫
y

exp

(
−f(y)− 1

2η
‖y − x‖22

)
dy

≥ exp

(
−f(x) +

L

2
‖x− x∗‖22

)∫
y

exp

(
−〈∇f(x), y − x〉 −

(
1

2η
+
L

2

)
‖y − x‖22

)
dy

= exp

(
−f(x) +

L

2
‖x− x∗‖22

)(
2πη

1 + Lη

) d
2

exp

(
η

2(1 + Lη)
‖∇f(x)‖22

)
≥ exp(−f(x∗))

(
2πη

1 + Lη

) d
2

(I.10)

The first and third steps followed from L-smoothness of f , and the second applied the Gaussian

APPENDIX I. DEFERRED PROOFS FROM CHAPTER 10 832

integral (Fact 27). Combining the bounds in (I.9) and (I.10), (I.8) becomes

dπstart

dπ̂
(x) ≤

(
1 +

L

µ

) d
2

(1 + Lη)
d
2 ≤ 2(1 + κ)

d
2 ,

where x ∈ Rd was arbitrary, which completes the proof.

I.3.2 Transitions of nearby points

Here, we prove Lemma 329. Throughout this section, Tx is the density of xk, according to the steps

in Lines 6 and 7 of Sample-Joint-Dist (Algorithm 63) starting at xk−1 = x. We also define Px
to be the density of yk, by just the step in Line 6. We first make a simplifying observation: by

Observation 1, for any two points x, x′, we have

‖Tx − Tx′‖TV ≤ ‖Px − Px′‖TV .

Thus, it suffices to understand ‖Px − Px′‖TV for nearby x, x′ ∈ Ωδ. Our proof of Lemma 329

combines two pieces: (1) bounding the ratio of normalization constants Zx, Zx′ of Px and Px′ for

nearby x, x′ in Lemma 334 and (2) the structural result Proposition 83. To bound the normalization

constant ratio, we state two helper lemmas. Lemma 332 characterizes facts about the minimizer of

f(y) +
1

2η
‖y − x‖22 . (I.11)

Lemma 332. Let f be convex with minimizer x∗, and yx minimize (I.11) for a given x. Then,

1. ‖yx − yx′‖2 ≤ ‖x− x′‖2.

2. For any x, ‖yx − x∗‖2 ≤ ‖x− x∗‖2.

3. For any x with ‖x− x∗‖2 ≤ R, ‖x− yx‖2 ≤ ηLR.

Proof. By optimality conditions in the definition of yx,

η∇f(yx) = x− yx.

Fix two points x, x′, and let xt := (1− t)x+ tx′. Letting Jx(yx) be the Jacobian matrix of yx,

d

dt
η∇f(yxt) =

d

dt
(xt − yxt) =⇒ η∇2f(yxt)Jx(yxt)(x

′ − x) = (I− Jx(yxt))(x
′ − x)

=⇒ Jx(yxt)(x
′ − x) = (I + η∇2f(yxt))

−1(x′ − x).

APPENDIX I. DEFERRED PROOFS FROM CHAPTER 10 833

We can then compute

yx′ − yx =

∫ 1

0

d

dt
yxtdt =

∫ 1

0

Jx(yxt)(x
′ − x)dt =

∫ 1

0

(I + η∇2f(yxt))
−1(x′ − x)dt.

By triangle inequality and convexity of f , the first claim follows:

‖yx′ − yx‖2 ≤
∫ 1

0

∥∥(I + η∇2f(yxt))
−1
∥∥

2
‖x′ − x‖2 dt ≤ ‖x

′ − x‖2 .

The second claim follows from the first by yx∗ = x∗. The third claim follows from the second via

‖x− yx‖2 = η ‖∇f(yx)‖2 ≤ ηL ‖yx − x
∗‖2 ≤ ηLR.

Next, Lemma 333 states well-known bounds on the integral of a well-conditioned function h.

Lemma 333. Let h be a Lh-smooth, µh-strongly convex function and let y∗h be its minimizer. Then

(
2πL−1

h

) d
2 exp (−h(y∗h)) ≤

∫
y

exp (−h(y)) ≤
(
2πµ−1

h

) d
2 exp (−h(y∗h)) .

Proof. By smoothness and strong convexity,

exp

(
−h(y∗h)− Lh

2
‖y − y∗h‖

2
2

)
≤ exp(−h(y)) ≤ exp

(
−h(y∗h)− µh

2
‖y − y∗h‖

2
2

)
.

The result follows by Gaussian integrals, i.e. Fact 27.

We now define the normalization constants of Px and Px′ :

Zx =

∫
y

exp

(
−f(y)− 1

2η
‖y − x‖22

)
dy,

Zx′ =

∫
y

exp

(
−f(y)− 1

2η
‖y − x′‖22

)
dy.

(I.12)

We apply Lemma 332 and Lemma 333 to bound the ratio of Zx and Zx′ .

Lemma 334. Let f be µ-strongly convex and L-smooth. Let x, x′ ∈ Ωδ, for Ωδ defined in (I.6), and

let ‖x− x′‖2 ≤ ∆. Then, the normalization constants Zx and Zx′ in (I.12) satisfy

Zx
Zx′
≤ 1.05 exp

(
3LR∆ +

L∆2

2

)
.

APPENDIX I. DEFERRED PROOFS FROM CHAPTER 10 834

Proof. First, applying Lemma 333 to Zx and Zx′ yields that the ratio is bounded by

Zx
Zx′
≤

exp
(
−f(yx)− 1

2η ‖yx − x‖
2
2

)(
2π
(
µ+ 1

η

)−1
) d

2

exp
(
−f(yx′)− 1

2η ‖yx′ − x‖
2
2

)(
2π
(
L+ 1

η

)−1
) d

2

≤ 1.05 exp

(
f(yx′)− f(yx) +

1

2η

(
‖yx′ − x′‖

2
2 − ‖yx − x‖

2
2

))
.

Here, we used the bound for η−1 ≥ 32Ld that

(
L+ 1

η

µ+ 1
η

)d/2
≤ 1.05.

Regarding the remaining term, recall x, x′ both belong to Ωδ, and ‖x− x′‖2 ≤ ∆. We have

f(yx′)− f(yx) +
1

2η

(
‖yx′ − x′‖

2
2 − ‖yx − x‖

2
2

)
≤ 〈∇f(yx), yx′ − yx〉+

L

2
‖yx′ − yx‖22 +

1

2η
〈yx′ − x′ + yx − x, yx′ − yx + x− x′〉

≤ LR∆ +
L∆2

2
+

1

2η
(‖yx − x‖2 + ‖yx′ − x′‖2) (‖yx′ − yx‖2 + ‖x′ − x‖2)

≤ LR∆ +
L∆2

2
+

2ηLR

2η
(‖yx′ − yx‖2 + ‖x′ − x‖2) ≤ 3LR∆ +

L∆2

2
.

The first inequality was smoothness and expanding the difference of quadratics. The second was by

‖∇f(yx)‖2 ≤ L ‖yx − x∗‖2 ≤ LR and ‖yx′ − yx‖2 ≤ ∆, where we used the first and second parts of

Lemma 332; we also applied Cauchy-Schwarz and triangle inequality. The third used the third part of

Lemma 332. Finally, the last inequality was by the first part of Lemma 332 and ‖x′ − x‖2 ≤ ∆.

We now are ready to prove Lemma 329.

Lemma 329 (Transitions of nearby points). Suppose ηL ≤ 1, ηL2R2
δ ≤ 1

2 , and 400d2η ≤ R2
δ . For a

point x, let Tx be the density of xk after sampling according to Lines 6 and 7 of Algorithm 63 from

xk−1 = x. For x, x′ ∈ Ωδ with ‖x− x′‖2 ≤
√
η

10 , for Ωδ defined in (I.6), we have ‖Tx − Tx′‖TV ≤
1
2 .

Proof. First, by Observation 1, it suffices to show ‖Px − Px′‖TV ≤
1
2 . Pinsker’s inequality states

‖Px − Px′‖TV ≤
√

1

2
dKL (Px,Px′),

APPENDIX I. DEFERRED PROOFS FROM CHAPTER 10 835

where dKL is KL-divergence, so it is enough to show dKL (Px,Px′) ≤ 1
2 . Notice that

dKL (Px,Px′) = log

(
Zx′

Zx

)
+

∫
y

Px(y) log

 exp
(
−f(y)− 1

2η ‖y − x‖
2
2

)
exp

(
−f(y)− 1

2η ‖y − x′‖
2
2

)
 dy.

By Lemma 334, the first term satisfies, for ∆ :=
√
η

10 ,

log

(
Zx′

Zx

)
≤ 3LR∆ +

L∆2

2
+ log(1.05).

To bound the second term, we have

∫
y

Px(y) log

 exp
(
−f(y)− 1

2η ‖y − x‖
2
2

)
exp

(
−f(y)− 1

2η ‖y − x′‖
2
2

)
 dy =

1

2η

∫
y

Px(y)
(
‖y − x′‖22 − ‖y − x‖

2
2

)
dy

=
1

2η

∫
y

Px(y) 〈x− x′, 2 (y − x) + (x− x′)〉 dy

≤ ∆2

2η
+

∆

η

∥∥∥∥∫
y

yPx(y)dy − x
∥∥∥∥

2

.

Here, the second line was by expanding and the third line was by ‖x− x′‖2 ≤ ∆ and Cauchy-

Schwarz. By Proposition 83,
∥∥∥∫y yPx(y)dy − x

∥∥∥
2
≤ 2ηLR, where by assumption the parameters

satisfy the conditions of Proposition 83. Then, combining the two bounds, we have

dKL (Px,Px′) ≤ 3LR∆ +
L∆2

2
+

∆2

2η
+ 2LR∆ + log(1.05) = 5LR∆ +

L∆2

2
+

∆2

2η
+ log(1.05).

When ∆ =
√
η

10 , ηL ≤ 1, and ηL2R2 ≤ 1
2 , we have the desired

dKL (Px,Px′) ≤
√
ηLR

2
+
Lη

200
+

1

200
+ log(1.05) ≤ 1

2
.

I.3.3 Isoperimetry

In this section, we prove Lemma 330, which asks to show that π̂Ωδ satisfies a log-isoperimetric

inequality (I.7). Here, we define π̂Ωδ to be the conditional distribution of the π̂ x-marginal on set

Ωδ. We recall this means that for any partition S1, S2, S3 of Ωδ,

π̂Ωδ(S3) ≥ 1

2ψ
d(S1, S2) ·min (π̂Ωδ(S1), π̂Ωδ(S2)) ·

√
log

(
1 +

1

min (π̂Ωδ(S1), π̂Ωδ(S2))

)
.

APPENDIX I. DEFERRED PROOFS FROM CHAPTER 10 836

The following fact was shown in [128].

Lemma 335 ([128], Lemma 11). Any µ-strongly logconcave distribution π satisfies the log-isoperimetric

inequality (I.7) with ψ = µ−
1
2 .

Observe that πΩδ , the restriction of π to the convex set Ωδ, is µ-strongly logconcave by the

definition of π (10.20), so it satisfies a log-isoperimetric inequality. We now combine this fact with

the relative density bounds Lemma 326 to prove Lemma 330.

Lemma 330 (Isoperimetry). Density π̂ and set Ωδ defined in (10.22), (I.6) satisfy (I.7) with ψ =

8µ−
1
2 .

Proof. Fix some partition S1, S2, S3 of Ωδ, and without loss of generality let π̂Ωδ(S1) ≤ π̂Ωδ(S2).

First, by applying Corollary 74, which shows dπ
dπ̂ (x) ∈ [1

2 , 2] everywhere in Ωδ, we have the bounds

1

2
πΩδ(S1) ≤ π̂Ωδ(S1) ≤ 2πΩδ(S1),

1

2
πΩδ(S2) ≤ π̂Ωδ(S2) ≤ 2πΩδ(S2), and π̂Ωδ(S3) ≥ 1

2
πΩδ(S3).

Therefore, we have the sequence of conclusions

π̂Ωδ(S3) ≥ 1

2
πΩδ(S3)

≥
d(S1, S2)

√
µ

4
·min (πΩδ(S1), πΩδ(S2)) ·

√
log

(
1 +

1

min (πΩδ(S1), πΩδ(S2))

)

≥
d(S1, S2)

√
µ

8
· π̂Ωδ(S1) ·

√
log

(
1 +

1

2π̂Ωδ(S1)

)

≥
d(S1, S2)

√
µ

16
· π̂Ωδ(S1) ·

√
log

(
1 +

1

π̂Ωδ(S1)

)
.

Here, the second line was by applying Lemma 335 to the µ-strongly logconcave distribution πΩδ ,

and the final line used
√

log(1 + α) ≤ 2
√

log(1 + α
2) for all α > 0.

I.3.4 Correctness of Y-Oracle

In this section, we show how we can sample y efficiently in the alternating scheme of the algo-

rithm Sample-Joint-Dist, within an extremely high probability region. Specifically, for any x with

‖x− x∗‖2 ≤
√
κd log(16κ/δ) ·Rδ, where Rδ is defined in (I.6), we give a method for implementing

draw y ∝ exp

(
−f(y)− 1

2η
‖y − x‖22

)
dy.

The algorithm is Algorithm 3, which is a simple rejection sampling scheme.

APPENDIX I. DEFERRED PROOFS FROM CHAPTER 10 837

Algorithm 3 Y-Oracle(f, x, η, δ)

Input: L-smooth, µ-strongly convex f : Rd → R with minimizer x∗, η > 0, δ ∈ [0, 1], x ∈ Rd
Output: If ‖x− x∗‖2 ≤

√
κd log(16κ/δ) · Rδ, return exact sample from distribution with density

∝ exp(−f(y)− 1
2η ‖y − x‖

2
2) (see (I.6) for definition of Rδ). Otherwise, return sample within δ TV

from distribution with density ∝ exp(−f(y) − 1
2η ‖y − x‖

2
2) if ‖x− x∗‖2 ≤

√
κd log(16κ/δ) · Rδ

then
while true do

Draw y ∼ N (x− η∇f(x), ηI) τ ∼ Unif[0, 1] if τ ≤ exp(f(x) + 〈∇f(x), y − x〉 − f(y)) then
Return: y

Return: Sample x within TV δ from density ∝ exp(−f(y)− 1
2η ‖y − x‖

2
2) using [128]

We recall that we gave guarantees on rejection sampling procedures in Lemma 185 (an “exact”

version of Lemma 324 and Corollary 73). We now prove Lemma 331 via a direct application of

Lemma 185.

Lemma 331 (Y-Oracle guarantee). For δ ∈ [0, 1], define Rδ as in (I.6), and let η = 1
32Lκd log(16κ/δ) .

For any x with ‖x− x∗‖2 ≤
√
κd log(16κ/δ) ·Rδ, Algorithm 3 (Y-Oracle) draws an exact sample y

from the density proportional to exp
(
−f(y)− 1

2η ‖y − x‖
2
2

)
in an expected 2 iterations.

Proof. For ‖x− x∗‖2 ≤
√
κd log(16κ/δ) ·Rδ, Y-Oracle is a rejection sampling scheme with

p(y) = exp

(
−f(y)− 1

2η
‖y − x‖22

)
, p̂(y) = exp

(
−f(x)− 〈∇f(x), y − x〉 − 1

2η
‖y − x‖22

)
.

It is clear that p(y) ≤ p̂(y) everywhere by convexity of f , so we may choose C = 1. To bound the

expected number of iterations and obtain the desired conclusion, Lemma 185 requires a bound on

∫
y

exp
(
−f(x)− 〈∇f(x), y − x〉 − 1

2η ‖y − x‖
2
2

)
dy∫

y
exp

(
−f(y)− 1

2η ‖y − x‖
2
2

)
dy

, (I.13)

the ratio of the normalization constants of p̂ and p. First, by Fact 27,∫
y

exp

(
−f(x)− 〈∇f(x), y − x〉 − 1

2η
‖y − x‖22

)
dy = exp

(
−f(x) +

η

2
‖∇f(x)‖22

)
(2πη)

d
2 .

Next, by smoothness and Fact 27 once more,∫
y

exp

(
−f(y)− 1

2η
‖y − x‖22

)
dy ≥

∫
y

exp

(
−f(x)− 〈∇f(x), y − x〉 − 1 + ηL

2η
‖y − x‖22

)
dy

= exp

(
−f(x) +

η

2(1 + ηL)
‖∇f(x)‖22

)(
2πη

1 + ηL

) d
2

.

APPENDIX I. DEFERRED PROOFS FROM CHAPTER 10 838

Taking a ratio, the quantity in (I.13) is bounded above by

exp

((
η

2
− η

2(1 + ηL)

)
‖∇f(x)‖22

)
(1 + ηL)

d
2 ≤ 1.5 exp

(
η2L

2(1 + ηL)
‖∇f(x)‖22

)
≤ 1.5 exp

(
η2L3

2
·
(

16κd2 log2(16κ/δ)

µ

))
≤ 2.

The first inequality was (1 + ηL)
d
2 ≤ 1.5, the second used smoothness and the assumed bound on

‖x− x∗‖2, and the third again used our choice of η.

I.4 Structural results

Here, we prove two structural results about distributions whose negative log-densities are small

perturbations of a quadratic, which obtain tighter concentration guarantees compared to naive

bounds on strongly logconcave distributions. They are used in obtaining our bounds in Section I.3

(and for the warm start bounds in Section 10.4), but we hope both the statements and proof

techniques are of independent interest to the community. Our first structural result is a bound on

normalization constant ratios, used throughout the paper.

Proposition 82. Let f : Rd → R be µ-strongly convex with minimizer x∗, and let λ > 0. Then,

∫
exp(−f(x))dx∫

exp
(
−f(x)− 1

2λ ‖x− x∗‖
2
2

)
dx
≤
(

1 +
1

µλ

) d
2

.

Proof. Define the function

R(α) :=

∫
exp

(
−f(x)− 1

2λα ‖x− x
∗‖22
)
dx∫

exp
(
−f(x)− 1

2λ ‖x− x∗‖
2
2

)
dx

.

Let dπα(x) be the density proportional to exp
(
−f(x)− 1

2λα ‖x− x
∗‖22
)
dx. We compute

d

dα
R(α) =

∫ exp
(
−f(x)− 1

2λα ‖x− x
∗‖22
)

∫
exp

(
−f(x)− 1

2λ ‖x− x∗‖
2
2

)
dx

1

2λα2
‖x− x∗‖22 dx

=
R(α)

2λα2

∫ exp
(
−f(x)− 1

2λα ‖x− x
∗‖22
)
‖x− x∗‖22∫

exp
(
−f(x)− 1

2λα ‖x− x∗‖
2
2

)
dx

dx

=
R(α)

2λα2

∫
‖x− x∗‖22 dπα(x) ≤ R(α)

2α
· d

µλα+ 1
.

Here, the last inequality was by Fact 30, using the fact that the function f(x) + 1
2λα ‖x− x

∗‖22 is

APPENDIX I. DEFERRED PROOFS FROM CHAPTER 10 839

µ+ 1
λα -strongly convex. Moreover, note that R(1) = 1, and

d

dα
log

(
α

µλα+ 1

)
=

1

α
− µλ

µλα+ 1
=

1

µλα2 + α
.

Solving the differential inequality

d

dα
log(R(α)) =

dR(α)

dα
· 1

R(α)
≤ d

2
· 1

µλα2 + α
,

we obtain the bound for any α ≥ 1 (since log(R(1)) = 0)

log(R(α)) ≤ d

2
log

(
µλα+ α

µλα+ 1

)
=⇒ R(α) ≤

(
µλα+ α

µλα+ 1

) d
2

≤
(

1 +
1

µλ

) d
2

.

Taking a limit α→∞ yields the conclusion.

Our second structural result uses a similar proof technique to show that the mean of a bounded

perturbation f of a Gaussian is not far from its mode, as long as the gradient of the mode is small.

We remark that one may directly apply strong logconcavity, i.e. a variant of Fact 30, to obtain a

weaker bound by roughly a
√
d factor, which would result in a loss of Ω(d) in the guarantees of

Theorem 69. This tighter analysis is crucial in our improved mixing time result.

Before stating the bound, we apply Fact 29 to the convex functions h(x) = (θ>x)2 and h(x) =

‖x‖42 to obtain the following conclusions which will be used in the proof of Proposition 83.

Corollary 76. Let π be a µ-strongly logconcave density. Then,

1. Eπ[(θ>(x− Eπ[x]))2] ≤ µ−1, for all unit vectors θ.

2. Eπ[‖x− Eπ[x]‖42] ≤ 3d2µ−2.

Proposition 83. Let f : Rd → R be L-smooth and convex with minimizer x∗, let x ∈ Rd with

‖x− x∗‖2 ≤ R, and let dπη(y) be the density proportional to exp
(
−f(y)− 1

2η ‖y − x‖
2
2

)
dy. Suppose

that η ≤ min
(

1
2L2R2 ,

R2

400d2

)
. Then,

∥∥Eπη [y]− x
∥∥

2
≤ 2ηLR.

Proof. Define a family of distributions πα for α ∈ [0, 1], with

dπα(y) ∝ exp

(
−α (f(y)− f(x)− 〈∇f(x), y − x〉)− f(x)− 〈∇f(x), y − x〉 − 1

2η
‖y − x‖22

)
dy.

APPENDIX I. DEFERRED PROOFS FROM CHAPTER 10 840

In particular, π1 = πη, and π0 is a Gaussian with mean x− η∇f(x). We define ȳα := Eπα [y], and

y∗α := argminy

{
α (f(y)− f(x)− 〈∇f(x), y − x〉) + f(x) + 〈∇f(x), y − x〉+

1

2η
‖y − x‖22

}
.

Define the function D(α) := ‖ȳα − x‖2, such that we wish to bound D(1). First, by smoothness

D(0) = ‖Eπ0
[y]− x‖2 = ‖η∇f(x)‖2 ≤ ηLR.

Next, we observe
d

dα
D(α) =

〈
ȳα − x
‖ȳα − x‖2

,
dȳα
dα

〉
≤
∥∥∥∥dȳαdα

∥∥∥∥
2

.

In order to bound
∥∥∥dȳαdα ∥∥∥

2
, fix a unit vector θ. We have

〈
dȳα
dα

, θ

〉
=

d

dα

〈∫
(y − x)dπα(y), θ

〉
=

∫
〈y − x, θ〉 (f(x) + 〈∇f(x), y − x〉 − f(y))dπα(y)

≤

√∫
(〈y − x, θ〉)2dπα(y)

√∫
(f(x) + 〈∇f(x), y − x〉 − f(y))2dπα(y)

≤

√∫
(〈y − x, θ〉)2dπα(y)

√∫
L2

4
‖y − x‖42 dπα(y).

(I.14)

The third line was Cauchy-Schwarz and the last line used smoothness and convexity, i.e.

−L
2
‖y − x‖22 ≤ f(x) + 〈∇f(x), y − x〉 − f(y) ≤ 0.

We now bound these terms. First,∫
(〈y − x, θ〉)2dπα(y) ≤ 2

∫
(〈y − ȳα, θ〉)2dπα(y) + 2

∫
(〈ȳα − x, θ〉)2dπα(y)

≤ 2η + 2 ‖ȳα − x‖22 = 2η + 2D(α)2.

(I.15)

Here, we applied the first part of Corollary 76, as πα is η−1-strongly logconcave, and the definition

of D(α). Next, using for any a, b ∈ Rd, ‖a+ b‖42 ≤ (‖a‖2 + ‖b‖2)4 ≤ 16 ‖a‖42 + 16 ‖b‖42, we have∫
L2

4
‖y − x‖42 dπ

α(y) ≤
∫

4L2 ‖y − ȳα‖42 dπ
α(y) +

∫
4L2 ‖x− ȳα‖42 dπ

α(y)

≤ 12L2d2η2 + 4L2D(α)4.

(I.16)

APPENDIX I. DEFERRED PROOFS FROM CHAPTER 10 841

Here, we used the second part of Corollary 76. Maximizing (I.14) over θ, and applying (I.15), (I.16),

d

dα
D(α) ≤

∥∥∥∥dȳαdα
∥∥∥∥

2

≤
√

8L2(η +D(α)2)(3d2η2 +D(α)4)

≤ 4L(
√
η +D(α)) ·max(2ηd,D(α)2). (I.17)

Assume for contradiction that D(1) > 2ηLR, violating the conclusion of the proposition. By con-

tinuity of D, there must have been some ᾱ ∈ (0, 1) where D(ᾱ) = 2ηLR, and for all 0 ≤ α < ᾱ,

D(α) < 2ηLR. By the mean value theorem, there then exists 0 ≤ α̂ ≤ ᾱ such that

dD(α̂)

dα
=
D(ᾱ)−D(0)

ᾱ
> ηLR.

On the other hand, by our assumption that 2ηL2R2 ≤ 1, for any d ≥ 1 it follows that

2ηd ≥ 4η2L2R2 > D(α̂)2,
√

2η ≥ 2ηLR > D(α̂).

Then, plugging these bounds into (I.17) and using
√
η +D(α̂) ≤ 5

2

√
η as

√
2 ≤ 3

2 ,

d

dα
D(α̂) ≤ 4L · 5

2

√
η · 2ηd = 20

√
η
d

R
· ηLR ≤ ηLR.

We used η ≤ R2

400d2 in the last inequality. This is a contradiction, implying D(1) ≤ 2ηLR.

I.5 Equivalence of HMC and Metropolis-adjusted Langevin

dynamics

We briefly remark on the equivalence of Metropolized HMC and the Metropolis-adjusted Langevin

dynamics algorithm (MALA), a well-studied algorithm since its introduction in [76]. This equivalence

was also commented on in [128]. The algorithm can be seen as a filtered discretization of the

continuous-time Langevin dynamics,

dxt = −∇f(xt)dt+
√

2dWt,

where Wt is Brownian motion. In short, the Metropolized HMC update is

v ∼ N (0, I), x̃← x+ ηv − η2

2
∇f(x), accept with probability min

{
1,

exp(−H(x̃, ṽ))

exp(−H(x, v))

}
.

APPENDIX I. DEFERRED PROOFS FROM CHAPTER 10 842

Similarly, the MALA update with step size h is

x̃ ∼ N (x−h∇f(x), 2hI), accept with probability min

{
1,

exp(−f(x̃)− ‖x− x̃+ h∇f(x̃)‖22 /4h)

exp(−f(x)− ‖x̃− x+ h∇f(x)‖22 /4h)

}
.

It is clear that in HMC the distribution of x̃ is

x̃ ∼ N
(
x− η2

2
∇f(x), η2I

)
,

so it suffices to show for h = η2/2,

‖x̃− x+ h∇f(x)‖22 − ‖x− x̃+ h∇f(x̃)‖22
4h

=
1

2

(
‖v‖22 − ‖ṽ‖

2
2

)
.

Indeed, the right hand side simplifies to

η

2
〈∇f(x̃) +∇f(x), v〉 − η2

8
‖∇f(x̃) +∇f(x)‖22 ,

and the left hand side is

1

2
〈∇f(x̃) +∇f(x), x̃− x〉+

h

4

(
‖∇f(x)‖22 − ‖∇f(x̃)‖22

)
=

1

2

〈
∇f(x̃) +∇f(x), ηv − η2

2
∇f(x)

〉
+
η2

8

(
‖∇f(x)‖22 − ‖∇f(x̃)‖22

)
.

Comparing coefficients shows the equivalence.

I.6 Gradient concentration

In this section, we give a bound on how well the norm of the gradient ‖∇f(x)‖ concentrates when

f is smooth and x ∼ dπ∗(x)/dx ∝ exp(−f(x)). First, we recall the following “Hessian-weighted”

variant of the Poincaré inequality, which first appeared in [95].

Theorem 94 (Hessian Poincaré). For probability density dπ∗(x)/dx ∝ exp(−f(x)), and continu-

ously differentiable function g : Rd → R with bounded variance with respect to π∗,

Varπ∗ [g] ≤
∫
Rd

〈(
∇2f(x)

)−1∇g(x),∇g(x)
〉
dπ∗(x).

An immediate corollary of Theorem 94 is that the Poincaré constant of a µ-strongly logconcave

distribution is at most µ−1. While it does not appear to have been previously stated in the literature,

our concentration bound can be viewed as a simple application of an argument of Herbst which

reduces concentration to an isoperimetric inequality such as Theorem 94; an exposition of this

APPENDIX I. DEFERRED PROOFS FROM CHAPTER 10 843

technique can be found in [341]. We now state the concentration result.

Theorem 95 (Gradient norm concentration). If twice-differentiable f : Rd → R is L-smooth and

convex, then for dπ∗(x)/dx ∝ exp(−f(x)), and all c > 0,

Pr
π∗

[
‖∇f(x)‖ ≥ Eπ∗ [‖∇f‖] + c

√
L log d

]
≤ 3d−c.

Proof. Let G(x) := ‖∇f(x)‖, and let g(x) := exp(1
2λG(x)). Clearly g is continuously differentiable.

Moreover, suppose first for simplicity that f is strongly convex; then the existence of the variance

of g follows from the well-known fact that f has sub-Gaussian tails (e.g. [210], Lemma 1) and

Lipschitzness of its gradient, from which the sublevel sets of the gradient norm grow more slowly

than the decay of ‖x− x∗‖2. The final conclusion has no dependence on the strong concavity of f ,

and we can extend this to arbitrary convex functions by regularizing by a small amount of quadratic

regularizer (which only affects smoothness) and taking a limit as the regularizer amount vanishes.

We now apply Theorem 94, which implies (noting that the gradient of ‖∇f‖ is ∇2f ∇f‖∇f‖)

Eπ∗ [exp(λG)]− Eπ∗
[
exp

(
λG

2

)]2

≤ λ2

4
Eπ∗

[〈
(∇2f)

∇f
‖∇f‖

,
∇f
‖∇f‖

〉
exp(λG)

]
≤ Lλ2

4
Eπ∗ [exp(λG)] .

In the last inequality we used smoothness. Letting H(λ) := Eπ∗ [exp(λG)], for λ < 2√
L

,

H(λ) ≤ 1

1− Lλ2

4

H

(
λ

2

)2

.

Using this recursively, we have

H(λ) ≤
∞∏
k=0

(
1

1− Lλ2

4k+1

)2k

lim
`→∞

H

(
λ

`

)`
.

There are two things to estimate on the right hand side. First, for sufficiently large `,

Eπ∗
[
exp

(
λG

`

)]`
≈
(

1 + Eπ∗
[
λG

`

])`
≈ exp (λEπ∗ [G]) .

Second, letting C = Lλ2

4 < 1, [88] showed that

∞∏
k=0

(
1

1− C
4k

)2k

≤ 1 +
√
C

1−
√
C
.

APPENDIX I. DEFERRED PROOFS FROM CHAPTER 10 844

For completeness, we show this in Appendix I.2. Altogether, we have that for all λ < 2√
L

,

Eπ∗ [exp(λG)] ≤
1 + 1

2

√
Lλ

1− 1
2

√
Lλ

exp (λEπ∗ [G]) .

By Markov’s inequality on the exponential, we thus conclude that

Pr
π∗

[G ≥ Eπ∗ [G] + r] ≤ exp(−λr)
1 + 1

2

√
Lλ

1− 1
2

√
Lλ

.

Finally, letting λ = 1√
L

and r = c
√
L log d,

Pr
π∗

[
‖∇f‖ ≥

√
Ld+ c

√
L log d

]
≤ 3d−c.

As an immediate corollary, we obtain the following.

Corollary 77. If twice-differentiable f : Rd → R is L-smooth and strongly convex, then ∀c > 0,

Pr
π∗

[
‖∇f‖ ≥

√
Ld+ c

√
L log d

]
≤ 3d−c.

Proof. It suffices to show that

Eπ∗ [‖∇f‖] ≤
√
Ld. (I.18)

This was observed in [152, 521]; we adapt a proof here. Observe that because

∇ · (∇f(x)π∗(x)) = ∆f(x)π∗(x)− 〈∇f(x),∇f(x)〉π(x),

where ∇· is divergence and ∆ is the Laplacian operator, integrating both sides and noting that the

boundary term vanishes,

Eπ∗
[
‖∇f‖2

]
= Eπ∗ [∆f] ≤ Ld.

The last equality used smoothness of f . (I.18) then follows from concavity of the square root.

We remark that for densities dπ∗ where a log-Sobolev variant of the inequality in Theorem 94

holds, we can sharpen the bound in Corollary 77 to O(d−c
2

).

Definition 63 (Hessian log-Sobolev). We say density dπ∗/dx ∝ exp(−f(x)) satisfies a Hessian

log-Sobolev inequality if for all continuously differentiable g : Rd → R, and for

Entπ∗ [g] :=

(∫
g(x) log (g(x)) dπ∗(x)

)
−
(∫

g(x)dπ∗(x)

)
log

(∫
g(x)dπ∗(x)

)
,

APPENDIX I. DEFERRED PROOFS FROM CHAPTER 10 845

we have

Entπ∗
[
g2
]
≤ 2

∫
Rd

〈(
∇2f(x)

)−1∇g(x),∇g(x)
〉
dπ∗(x).

In general, this is a much more restrictive condition than Theorem 94; some sufficient conditions

are given in [89]. We now show an improved concentration result under a Hessian LSI; the proof

follows Herbst’s argument, a framework developed in [341].

Theorem 96 (Gradient norm concentration under LSI). Suppose f is L-smooth and strongly convex,

and dπ∗(x)/dx ∝ exp(−f(x)) satisfies a Hessian log-Sobolev inequality. Then for all c > 0,

Pr
π∗

[
‖∇f(x)‖ ≥ Eπ∗ [‖∇f‖] + c

√
2L log d

]
≤ d−c

2

.

Proof. Denote G := ‖∇f‖, where we note ∇G = (∇2f)∇f
‖∇f‖ . Let H(λ) := Eπ∗ [exp(λG)], such that

H ′(λ) = Eπ∗ [G exp(λG)]. Then, for g2 = exp(λG),

H(λ) = Eπ∗
[
g2
]
, λH ′(λ) = Eπ∗

[
g2 log g2

]
.

This in turn implies via the LSI that

λH ′(λ)−H(λ) logH(λ) = Eπ∗
[
g2 log g2

]
− Eπ∗

[
g2
]

logEπ∗
[
g2
]
≤ 2Eπ∗

[
‖∇g‖2(∇2f)−1

]
. (I.19)

By smoothness and the definition of g = exp(1
2λG), we may bound the right hand side:

Eπ∗
[
‖∇g‖2(∇2f)−1

]
=
λ2

4
Eπ∗

[
‖∇G‖2(∇2f)−1 exp(λG)

]
≤ λ2L

4
H(λ). (I.20)

In the last inequality we used our calculation of ∇G, and ∇2f � LId. Now, consider the function

K(λ) = 1
λ logH(λ). We handle the definition of K(0) by a limiting argument (and log(1 + x) ≈ x):

K(0) = lim
λ→0

1

λ
logEπ∗

[
eλG

]
=
H(λ)−H(0)

λ
= H ′(0) = Eπ∗ [G] .

We compute

K ′(λ) = − 1

λ2
logH(λ) +

H ′(λ)

λH(λ)
=
λH ′(λ)−H(λ) logH(λ)

λ2H(λ)
.

This, combined with (I.19) and (I.20) imply K ′(λ) ≤ L
2 . Therefore, by integrating, we have

K(λ) ≤ Eπ∗ [G] +
Lλ

2
⇒ H(λ) = exp(λK(λ)) ≤ exp

(
λEπ∗ [G] +

Lλ2

2

)
.

APPENDIX I. DEFERRED PROOFS FROM CHAPTER 10 846

Finally, we have concentration:

Pr
π∗

[G ≥ Eπ∗ [G] + r] = Pr
π∗

[exp(λG) ≥ exp(λEπ∗ [G] + λr)] ≤ exp

(
−λr +

Lλ2

2

)
,

where the last statement is by Markov. Choosing r = c
√

2L log d, λ = r/L yields the conclusion.

This sharpening is desirable for reasons related to the warmness of starting distributions for

sampling from π∗. However, the “Hessian log-Sobolev” inequality is strictly stronger than Theo-

rem 94, and does not hold for general strongly logconcave distributions [89]. Correspondingly, the

concentration arguments derivable from Poincaré inequalities appear to be weaker [341]: we find

exploring the tightness of Corollary 77 to be an interesting open question.

I.7 Necessity of fixing a scale

We give a simple argument showing if the step size η of the HMC algorithm does not depend on the

“scale” of the problem, namely the eigenvalues of the function Hessian (as opposed to scale-invariant

quantities, e.g. the condition number κ and the dimension), then the task of proving lower bounds

becomes much more trivial. In particular, we can adaptively pick a scale of the problem in response

to the fixed η. This justifies the additional requirement in Theorems 71, 72, 73 and 74 of the fixed

scale [1, κ], which we remark is a strengthening of an analogous scale-free lower bound.

Concretely, suppose we wished to prove the statement of Theorem 74 but only on functions with

condition number κ (without specifying a range of eigenvalues). Then, for fixed η, K, consider

f(x) =
λ

2
x2, where λ :=

2
(
1− cos

(
π
K

))
η2

.

Clearly, f : R→ R has condition number 1 ≤ κ for any κ. Then, the proof of Proposition 52 applies

to show that the HMC Markov chain cannot leave any symmetric set, because the coefficients

encounter extremal points or zeroes of the Chebyshev polynomials.

I.8 HMC lower bounds beyond κ
√
d

Here, we analyze the behavior of HMC on the hard function (10.44). We will use this construction

to demonstrate that when the number of steps K is small, we cannot improve either the relaxation

time (Section I.8.1) or the mixing time (Section I.8.2) of MALA by more than roughly a O(K)

factor.

APPENDIX I. DEFERRED PROOFS FROM CHAPTER 10 847

I.8.1 Relaxation time lower bound for small K

We first give a bound on the acceptance probability (10.14) for general HMC Markov chain. We

expand the term −H(xK , vK) +H(x0, v0) and extend the result given by Lemma 203.

Lemma 336. For the iterates given by Fact 34, write x̃j := x0 + ηjv0 for 0 ≤ j ≤ K − 1. Then,

for a κ-smooth function f ,

−H(xK , vK) +H(x0, v0) ≤
K−1∑
j=0

(
−f(x̃j+1) + f(x̃j) +

1

2
〈ηv0,∇f(x̃j+1) +∇f(x̃j)〉

)
+ηK ‖v0‖2 max

0≤j≤K
‖∇f(xj)−∇f(x̃j)‖2 +

1

2
η2K2 max

0≤j1,j2≤K
‖∇f(x̃K)−∇f(xj2)‖2 ‖∇f(xj1)‖2

+
1

2
η2K2 max

0≤j1,j2,j3≤K
‖∇f(xj3)‖2 ‖∇f(xj1)−∇f(xj2)‖2 .

APPENDIX I. DEFERRED PROOFS FROM CHAPTER 10 848

Proof. Expanding H (x0, v0)−H (xK , vK) according to the definition of H, xK and vK ,

H (x0, v0)−H (xK , vK)

=− f(xK) + f(x0)−

∥∥∥v0 − η
2∇f(x0)− η

∑K−1
j=1 ∇f(xj)− η

2∇f(xK)
∥∥∥2

2

2
+
‖v0‖22

2

=− f(xK) + f(x̃K)− f(x̃K) + f(x0) +

〈
v0,

η

2
∇f(x0) + η

K−1∑
j=1

∇f(xj) +
η

2
∇f(xK)

〉

− 1

2

∥∥∥∥∥∥η2∇f(x0) + η

K−1∑
j=1

∇f(xj) +
η

2
∇f(xK)

∥∥∥∥∥∥
2

2

=− f(xK) + f(x̃K) +

K−1∑
j=0

(−f(x̃j+1) + f(x̃j)) +

〈
ηv0,

1

2
∇f(x̃0) +

K−1∑
j=1

∇f(x̃j) +
1

2
∇f(x̃K)

〉

− 1

2

∥∥∥∥∥∥η2∇f(x0) + η

K−1∑
j=1

∇f(xj) +
η

2
∇f(xK)

∥∥∥∥∥∥
2

2

+

〈
ηv0,

1

2
∇f(x0) +

K−1∑
j=1

∇f(xj) +
1

2
∇f(xK)

−
1

2
∇f(x̃0) +

K−1∑
j=1

∇f(x̃j) +
1

2
∇f(x̃K)

〉

=

K−1∑
j=0

(
−f(x̃j+1) + f(x̃j) +

1

2
〈ηv0,∇f(x̃j+1) +∇f(x̃j)〉

)

− f(xK) + f(x̃K)− 1

2

∥∥∥∥∥∥η2∇f(x0) + η

K−1∑
j=1

∇f(xj) +
η

2
∇f(xK)

∥∥∥∥∥∥
2

2

+

〈
ηv0,

1

2
∇f(x0) +

K−1∑
j=1

∇f(xj) +
1

2
∇f(xK)

−
1

2
∇f(x̃0) +

K−1∑
j=1

∇f(x̃j) +
1

2
∇f(x̃K)

〉 .
(I.21)

Now we bound the last two lines in the decomposition (I.21). For the second-to-last line of (I.21),

APPENDIX I. DEFERRED PROOFS FROM CHAPTER 10 849

by convexity of f and the Cauchy-Schwarz inequality,

− f(xK) + f(x̃K)− 1

2

∥∥∥∥∥∥η2∇f(x0) + η

K−1∑
j=1

∇f(xj)−
η

2
∇f(xK)

∥∥∥∥∥∥
2

2

≤

〈
∇f(x̃K),

1

2
Kη2∇f(x0) + η2

K−1∑
j=1

(K − j)∇f(xj)

〉
− 1

2

∥∥∥∥∥∥η2∇f(x0) + η

K−1∑
j=1

∇f(xj) +
η

2
∇f(xK)

∥∥∥∥∥∥
2

2

≤1

2
η2K2 max

0≤j1,j2,j3≤K

(
∇f(x̃K)>∇f(xj1)−∇f(xj2)>∇f(xj3)

)
≤1

2
η2K2

(
max

0≤j1,j2≤K
‖∇f(x̃K)−∇f(xj2)‖2 ‖∇f(xj1)‖2 + max

0≤j1,j2,j3≤K
‖∇f(xj3)‖2 ‖∇f(xj1)−∇f(xj2)‖2

)
.

(I.22)

In the third line above, we used that the total “number of gradient inner products” for both terms

is 1
2η

2K2, and took the largest such inner product difference.

Finally, for the last line of (I.21), by the Cauchy-Schwarz inequality,

〈
ηv0,

1

2
∇f(x0) +

K−1∑
j=1

∇f(xj) +
1

2
∇f(xK)

−
1

2
∇f(x̃0) +

K−1∑
j=1

∇f(x̃j) +
1

2
∇f(x̃K)

〉

≤ηK ‖v0‖2 max
0≤j≤K

‖∇f(xj)−∇f(x̃j)‖2 .

(I.23)

Combining (I.21), (I.22) and (I.23) proves the desired claim.

We define a hard function fhard : Rd → R that is κ-smooth and 1-strongly convex (note it is the

same hard function as in Section 10.10, under the change of variable h = η2

2). We will show it is

hard to sample from the density proportional to exp(−fhard) when K is small.

fhard(x) :=
∑
i∈[d]

fi(xi), where fi(c) =

1
2c

2 i = 1

κ
3 c

2 − κη2

6 cos
(√

2c
η

)
2 ≤ i ≤ d

. (I.24)

Lemma 337. For η2 ≤ 1, let x̃j := x0 + ηjv0 for 0 ≤ j ≤ K − 1 and v0 ∼ N (0, I). Let R(j) be the

random variable with given by R(j) =
∑d
i=1R

(j)
i where

R
(j)
i = −fi([x̃j+1]i) + fi([x̃j]i) +

1

2
η[v0]i · (∇fi([x̃j+1]i) +∇fi([x̃j]i)).

Then,

Ev0∼N (0,1)

K−1∑
j=0

R(j)

 ≤ −0.02κη2
d∑
i=2

cos

√
2[x0]i
η

. (I.25)

APPENDIX I. DEFERRED PROOFS FROM CHAPTER 10 850

and

Pr

K−1∑
j=0

R(j) − E

K−1∑
j=0

R(j)

 ≥ 10η2Kκ
√
d log d

 ≤ 1

d5
. (I.26)

Proof. In this proof, all expectations E are taken over v0 ∼ N (0, I), so we omit them. For i = 1,

E

K−1∑
j=0

R
(j)
i

 = E

−1

2
([x0]1 + ηK[v0]1)2 +

1

2
[x0]21 +

1

2

K−1∑
j=0

η[v0]1(2[x0]1 + η(2j + 1)[v0]1)

= E

[
−1

2
[x0]21 −

1

2
η2K2[v0]21 − ηK[x0]1[v0]1 +

1

2
[x0]21 +

1

2
η2K2[v0]21 + ηK[x0]1[v0]1

]
= 0.

We bound each coordinate 2 ≤ i ≤ d separately.

E

K−1∑
j=0

R
(j)
i

=E

K−1∑
j=0

−fi([x̃j+1]i) + fi([x̃j]i) +
1

2
η[v0]i · (∇fi([x̃j+1]i) +∇fi([x̃j]i))

=− κ

3
E
[
([x0]i + ηK[v0]i)

2 − [x0]2i

]
+

1

3
ηκE

[v0]i ·

2[x0]i + η

K−1∑
j=0

(2j + 1)[v0]i

+
κη2

6
E

K−1∑
j=0

cos

√
2 ([x0]i + η(j + 1)[v0]i)

η
− cos

√
2 ([x0]i + ηj[v0]i)

η

+

√
2η2κ

12
E

[v0]i

K−1∑
j=0

(
sin

√
2 ([x0]i + ηj[v0]i)

η
+ sin

√
2 ([x0]i + η(j + 1)[v0]i)

η

)
=− κη2

6

K−1∑
j=0

exp(−j2)− exp(−(j + 1)2)− j exp(−j2)− (j + 1) exp(−(j + 1)2) cos

√
2[x0]i
η

The last line used the computation

E

[
[v0]i sin

√
2 ([x0]i + ηj[v0]i)

η

]
=
√

2jexp(−j2) cos

√
2[x0]i
η

,

E

[
cos

√
2 ([x0]i + ηj[v0]i)

η

]
= exp(−j2) cos

√
2[x0]i
η

.

Next, we bound
∑K−1
j=0

(
exp(−j2)− exp(−(j + 1)2)− j exp(−j2)− (j + 1) exp(−(j + 1)2)

)
. For j =

0, 1 − 2
exp(1) ≥ 0.264. For j = 1, the negative terms have −3 exp(−4) ≥ −0.06, and the positive

APPENDIX I. DEFERRED PROOFS FROM CHAPTER 10 851

terms can only help this inequality. For the remaining terms,

K−1∑
j=2

(
exp(−j2)− exp(−(j + 1)2)− j exp(−j2)− (j + 1) exp(−(j + 1)2)

)
≥
K−1∑
j=2

(
−j exp(−j2)− (j + 1) exp(−(j + 1)2)

)
≥ −2

K∑
j=2

(
j exp(−j2)

)
≥ −2

2

exp(4)

1

1− 2 exp(−5)
≥ −0.075.

The last inequality used the ratio between two consecutive terms is bounded by j+1
j exp(j2 − (j +

1)2) ≤ 2 exp(−5). Summing over d coordinates proves (I.25).

Next, we prove the concentration property of
∑K−1
j=0 R(j). Let x̃j,s = x̃j + sηv0, for s ∈ [0, 1] and

j = 0, ...,K − 1. By Lemma 197, we have

K−1∑
j=0

R(j) =

K−1∑
j=0

−η2

∫ 1

0

(
1

2
− s
)
v>0 ∇2f(x̃j,s)v0ds.

For coordinate 1 ≤ i ≤ d,
∣∣∣η2
∫ 1

0

(
1
2 − s

)
f ′′i ([xj,s]i)ds

∣∣∣ ≤ η2κ
2 by smoothness. Then, the random

variables
∑K−1
j=0 R

(j)
i − E

[∑K−1
j=0 R

(j)
i

]
for 1 ≤ i ≤ d are sub-exponential with parameter η2κK

2 (for

coordinates where the coefficient is negative, note the negation of a sub-exponential random variable

is still sub-exponential). Hence, by Fact 33,

Pr

∑
i∈[d]

(
K−1∑
k=0

R
(j)
i − E

[
K−1∑
k=0

R
(j)
i

])
≥ 10η2Kκ

√
d log d

 ≤ 1

d5
.

Now, we build a bad set Ωhard with lower bounded measure that starting from a point x0 ∈ Ωhard,

such that with high probability, −E
[∑K−1

j=0 R(j)
]

is very negative. Let h = 1
2η

2 so that we may use

the results from Section 10.8. We use the bad set Ωhard defined in (10.45).

Ωhard =

{
x
∣∣∣ |x1| ≤ 2,∀2 ≤ i ≤ d,∃ki ∈ Z, |ki| ≤ b

5

π
√
hκ
c, such that

− 9

20
π
√
h+ 2πki

√
h ≤ xi ≤

9

20
π
√
h+ 2πki

√
h

}
.

We restate Lemma 200 here, which lower bounds π∗(Ωhard) and bounds ‖∇f(x)‖2 for x ∈ Ωhard.

Lemma 200. Let h ≤ 1
10000π2κ . Let π∗ have log-density −fhard (10.44). Then, π∗(Ωhard) ≥

APPENDIX I. DEFERRED PROOFS FROM CHAPTER 10 852

exp(−d). Moreover, for all x ∈ Ωhard, ‖∇f(x)‖2 ≤ 10
√
κd.

We can further show the following, which is used to bound the remaining terms in Lemma 336.

Lemma 338. Let x0 ∈ Ωhard, ηK ≤ 1
100
√
κ log d

and d ≥ 8. Let let xj for 1 ≤ j ≤ K − 1

be given by the iterates in Fact 34 and x̃K = x0 + ηKv0.Then, with probability at least 1 − 1
d5

over random v0 ∼ N (0, I), ‖v0‖2 ≤ 4
√
d log d and for all 0 ≤ j ≤ K, ‖∇f(xj)‖2 ≤ 11

√
κd and

‖∇f(x̃K)‖2 ≤ 11
√
κd.

Proof. We first derive a bound on v0 ∼ N (0, I). By a standard Gaussian tail bound, for d ≥ 8, with

probability at least 1− 1
d5 , |[v0]i| ≤ 4 log d for all 1 ≤ i ≤ d. Then, ‖v0‖2 ≤

√
16d(log d)2 = 4

√
d log d.

Now, we prove the bound on ‖xj − x0‖2 and ‖∇f(xj)‖2 using induction. First, ‖∇f(x0)‖ ≤ 11
√
dκ

holds by Lemma 200. Assume for induction ‖∇f(xk)‖2 ≤ 11
√
dκ for 1 ≤ k < j. Then,

‖xj − x0‖2 ≤

∥∥∥∥∥ηjv0 −
η2j

2
∇f(x0)− η2

j−1∑
k=1

(j − k)∇f(xk)

∥∥∥∥∥
2

≤ 4ηj
√
d log d+ η2j2 · 11

√
κd ≤

√
d

κ
.

The last inequality used the assumption ηK ≤ 1
100
√
κ log d

. Since f is κ-smooth, we have

‖∇f(xj)‖2 ≤ ‖∇f(x0)‖2 + κ ‖xj − x0‖2 ≤ 10
√
κd+ κ

√
d

κ
≤ 11

√
κd.

This completes the induction step. Finally, we have

‖∇f(x̃K)‖2 ≤ ‖∇f(x0)‖2 + κ ‖ηKv0‖2 ≤ 10
√
κd+ 4ηKκ

√
d log d ≤ 11

√
κd,

where we used ηK ≤ 1
100
√
κ log d

.

Lemma 339. Let η and K satisfy K ≤
√
d

10000
√

log d
, and ηK3 ≤ 1

100000
√
κ log d

. For any x0 ∈ Ωhard,

let (xK , vK) be given by the iterates in Fact 34 and v0 ∼ N (0, I). With probability at least 1− 2
d5 ,

−H(xK , vK) +H(x0, v0) ≤ −Ω
(
η2κd

)
.

Proof. We first remark that the bound on ηK3 implies we may apply Lemma 200 and Lemma 338.

Next, for x0 ∈ Ωhard, cos
√

2[x0]i
η is bounded away from 0 for all 2 ≤ i ≤ d. By Lemma 337, when

K ≤
√
d

10000
√

log d
, with probability at least 1 − 1

d5 ,
∑K−1
j=0 R(j) ≤ −0.002η2κd (the expectation term

APPENDIX I. DEFERRED PROOFS FROM CHAPTER 10 853

dominates). By Lemma 338, with probability at least 1− 1
d5 , the other terms in Lemma 336 have

ηK ‖v0‖2 max
0≤j≤K

‖∇f(xj)−∇f(x̃j)‖2 +
1

2
η2K2 max

0≤j1,j2≤K
‖∇f(x̃K)−∇f(xj2)‖2 ‖∇f(xj1)‖2

+
1

2
η2K2 max

0≤j1,j2,j3≤K
‖∇f(xj3)‖2 ‖∇f(xj1)−∇f(xj2)‖2

≤ 4ηK
√
d log d · κη2

K ‖∇f(x0)‖2 +
∑

j∈[K−1]

(K − j) ‖∇f(xj)‖2

+η2K2 · 11

√
κd · κ

ηK ‖v0‖2 + η2K ‖∇f(x0)‖2 + η2
∑

j∈[K−1]

(K − j) ‖∇f(xj)‖2

≤ 44η3K3κ1.5d log d+ 44η3K3κ1.5d log d+ 121η4K4κ2d ≤ 0.001η2κd.

The last inequality used the assumption η ≤ 1
100000K3

√
κ log d

. Combining the above bounds with

Lemma 336 yields the claim.

Proposition 84. For η2K = O
(√

log d

κ
√
d

)
and K = O

(
d0.099

)
, there is a target density on Rd whose

negative log-density is κ smooth, such that relaxation time of HMC is Ω
(
κd
K2

)
.

Proof. It is straightforward to check that such a range of η and K satisfies the assumptions of

Lemma 339. Applying Lemma 339 with the hard function fhard, the remainder of the proof follows

analogously to that of Theorem 74.

We give a brief discussion of the implications of Proposition 84. For η2K = ω(
√

log d

κ
√
d

), the proof of

Theorem 74 rules out a polynomial relaxation time. In the remaining range, Proposition 84 implies

that for small K = O
(
d0.099

)
, the most we can improve the relaxation time of MALA (Theorem 72)

by taking multiple steps in HMC is by a K2 factor. Since each iteration takes K gradients, this is

roughly an improvement of K in the query complexity, and strengthens Theorem 74 for small K.

I.8.2 Mixing time lower bound for small K

In this section, we first use prior results to narrow down the range of η we consider (assuming K is

small). We then generalize the ideas of Section 10.9, our MALA mixing lower bound, to this setting.

Mixing time lower bound for large η. Suppose K = O
(
d0.099

)
throughout this section. The argu-

ments of Section 10.10, specifically Proposition 52 and Lemma 209, imply mixing time lower bounds

for all ηK = Ω(1√
κ

) (using the “boosting constants” argument of Section 10.10.2 for sufficiently

large κ as necessary). For ηK = O(1√
κ

), the proof of Theorem 74 further implies mixing time lower

bounds for all η2K = ω(
√

log d

κ
√
d

). Hence, we can assume ηK = O(1√
κ

) and η2K = O(
√

log d

κ
√
d

).

Next, under the further assumption that K = O
(
d0.099

)
, it is easy to check under the specified

assumptions on η and K, the preconditions of Lemma 339 are met. This implies that we can rule

APPENDIX I. DEFERRED PROOFS FROM CHAPTER 10 854

out η2 = ω(log d
κd) for polynomial-time mixing. Thus, in the following discussion we assume

K = O
(
d0.099

)
, η2 = O

(
log d

κd

)
. (I.27)

Mixing time lower bound for small η. Let π∗ = N (0, I) be the standard d-dimensional multivari-

ate Gaussian. We will let π0 be the marginal distribution of π∗ on the set

Ω :=

{
x | ‖x‖22 ≤

1

2
d

}
.

Recall from Lemma 195 that π0 is a exp(d)-warm start. Our main proof strategy will be to show

that for small η and K as in (I.27), after T = O(κd
K2 log3 d

) iterations, with constant probability both

of the following events happen: no rejections occur throughout the Markov chain, and ‖xt,K‖22 ≤
9
10d

holds for all t ∈ [T]. Combining these two facts will demonstrate our total variation lower bound.

Lemma 340. Let {xt,k, vt,k}0≤t<T,0≤k≤K be the sub-iterates generated by the HMC Markov chain

with step size η2 = O
(

log d
κd

)
and η2K2 ≤ 1, for T = O(κd

K2 log3 d
) and x0 ∼ π0; we denote the actual

HMC iterates by {xt}0≤t<T . With probability at least 99
100 , both of the following events occur:

1. Throughout the Markov chain, ‖xt‖2 ≤ 0.9
√
d.

2. Throughout the Markov chain, the Metropolis filter never rejected.

Proof. Let h = 1
2η

2. We inductively bound the failure probability of the above events in every

iteration by 0.01
T , which will yield the claim via a union bound. Take some iteration t+ 1, and note

that by triangle inequality, and assuming all prior iterations did not reject,

‖xt+1,K‖2 ≤ ‖x0,0‖2 + ηK

∥∥∥∥∥
t∑

s=0

vs,0

∥∥∥∥∥+ η2K

t∑
s=0

K∑
k=1

‖xs,k‖2 ≤ ‖x0,0‖2 + 0.9η2K2T
√
d+ ηK ‖Gt‖2

≤ 0.8
√
d+ ηK ‖Gt‖2 .

Here, we applied the inductive hypothesis on all ‖xs,k‖2, the initial bound ‖x0,0‖2 ≤
√

1
2d, and

that η2K2T = o(1) by assumption. We also defined Gt =
∑t
s=0 vt,0, where vt,0 is the random

Gaussian used by HMC in iteration k; note that by independence, Gt ∼ N (0, t + 1). By Fact 32,

with probability at least 1
200T , ‖Gt‖2 ≤ 2

√
Td, and hence 0.8

√
d+ ηK ‖Gt‖2 ≤ 0.9

√
d, as desired.

Next, we prove that with probability ≥ 1− 1
200T , step t does not reject. This concludes the proof

by union bounding over both events in iteration t, and then union bounding over all iterations. By

Corollary 53 and the calculation in Lemma 206, when η2K2 ≤ 1, the accept probability is

min

(
1, exp

(
h

4

((
2α− α2

)
‖xt,0‖22 − β

2 ‖vt,0‖22 − 2(1− α)β 〈xt,0, vt,0〉
)))

,

APPENDIX I. DEFERRED PROOFS FROM CHAPTER 10 855

for some α ∈
[
0.8hK2, hK2

]
and β ∈

[
0.8
√

2hK,
√

2hK
]
. We lower bound the argument of the

exponential as follows. With probability at least 1− d−5 ≥ 1− 1
400T , Facts 31 and 32 imply both of

the events ‖vt,0‖22 ≤ 2d and 〈xt,0, vt,0〉 ≤ 10
√

log d ‖xt,0‖2 occur. Conditional on these bounds, we

compute (using 2α ≥ α2 and the assumption ‖xt‖2 ≤ 0.9
√
d)

(
2α− α2

)
‖xt,0‖22 − β

2 ‖g‖22 − 2(1− α)β 〈xt,0, g〉 ≥ −4hK2d− 40
√
hK
√
d log d ≥ −O(K2 log d).

Hence, the acceptance probability is at least

exp
(
−O

(
η2K2 log d

))
≥ 1− 1

400T
,

by our choice of T with Tη2K2 log d = o(1), concluding the proof.

Proposition 85. The HMC Markov chain with step size η2 = O
(

log d
κd

)
and η2K2 ≤ 1 requires

Ω(κd
K2 log3 d

) iterations to reach total variation distance 1
e to π∗, starting from π0.

Proof. The proof is identical to Proposition 51, where we use Lemma 340 instead of Lemma 202.

Bibliography

[1] Mart́ın Abadi. Tensorflow: learning functions at scale. In Proceedings of the 21st ACM

SIGPLAN International Conference on Functional Programming, ICFP 2016, Nara, Japan,

September 18-22, 2016, page 1, 2016.

[2] Jacob D. Abernethy and Elad Hazan. Faster convex optimization: Simulated annealing with

an efficient universal barrier. In Proceedings of the 33nd International Conference on Machine

Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016, pages 2520–2528, 2016.

[3] Jacob D. Abernethy, Kevin A. Lai, Kfir Y. Levy, and Jun-Kun Wang. Faster rates for convex-

concave games. In 31st Annual Conference on Computational Learning Theory (COLT), pages

1595–1625, 2018.

[4] Jacob D. Abernethy, Kevin A. Lai, and Andre Wibisono. Last-iterate convergence rates for

min-max optimization. CoRR, abs/1906.02027, 2019.

[5] Ittai Abraham, David Durfee, Ioannis Koutis, Sebastian Krinninger, and Richard Peng. On

fully dynamic graph sparsifiers. In Irit Dinur, editor, IEEE 57th Annual Symposium on Foun-

dations of Computer Science, FOCS 2016, 9-11 October 2016, Hyatt Regency, New Brunswick,

New Jersey, USA, pages 335–344. IEEE Computer Society, 2016.

[6] Dimitris Achlioptas. Database-friendly random projections: Johnson-lindenstrauss with binary

coins. J. Comput. Syst. Sci., 66(4):671–687, 2003.

[7] Dimitris Achlioptas and Frank McSherry. On spectral learning of mixtures of distributions. In

International Conference on Computational Learning Theory, pages 458–469. Springer, 2005.

[8] Deeksha Adil, Rasmus Kyng, Richard Peng, and Sushant Sachdeva. Iterative refinement for

p-norm regression. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete

Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pages 1405–1424,

2019.

856

BIBLIOGRAPHY 857

[9] Alekh Agarwal, Sahand Negahban, and Martin J Wainwright. Fast global convergence of

gradient methods for high-dimensional statistical recovery. The Annals of Statistics, pages

2452–2482, 2012.

[10] Naman Agarwal, Sham M. Kakade, Rahul Kidambi, Yin Tat Lee, Praneeth Netrapalli, and

Aaron Sidford. Leverage score sampling for faster accelerated regression and ERM. In Algo-

rithmic Learning Theory, ALT 2020, pages 22–47, 2020.

[11] Pankaj K. Agarwal and R. Sharathkumar. Approximation algorithms for bipartite matching

with metric and geometric costs. In Symposium on Theory of Computing, STOC 2014, New

York, NY, USA, May 31 - June 03, 2014, pages 555–564, 2014.

[12] Kook Jin Ahn and Sudipto Guha. Linear programming in the semi-streaming model with

application to the maximum matching problem. Inf. Comput., 222:59–79, 2013.

[13] Kook Jin Ahn and Sudipto Guha. Access to data and number of iterations: Dual primal

algorithms for maximum matching under resource constraints. ACM Trans. Parallel Comput.,

4(4):17:1–17:40, 2018.

[14] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Analyzing graph structure via lin-

ear measurements. In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on

Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012, pages 459–467, 2012.

[15] Abhishek Aich and P Palanisamy. On application of omp and cosamp algorithms for doa esti-

mation problem. In 2017 International Conference on Communication and Signal Processing

(ICCSP), pages 1983–1987. IEEE, 2017.

[16] Ahmet Alacaoglu and Yura Malitsky. Stochastic variance reduction for variational inequality

methods. arXiv e-prints, abs/2102.08352, 2021.

[17] Zeyuan Allen-Zhu. Katyusha: The first direct acceleration of stochastic gradient methods. J.

Mach. Learn. Res., 18:221:1–221:51, 2017.

[18] Zeyuan Allen Zhu. Katyusha: the first direct acceleration of stochastic gradient methods. In

Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC

2017, Montreal, QC, Canada, June 19-23, 2017, pages 1200–1205, 2017.

[19] Zeyuan Allen-Zhu, Yin Tat Lee, and Lorenzo Orecchia. Using optimization to obtain a width-

independent, parallel, simpler, and faster positive sdp solver. In Proceedings of the twenty-

seventh annual ACM-SIAM symposium on Discrete algorithms, pages 1824–1831. Society for

Industrial and Applied Mathematics, 2016.

BIBLIOGRAPHY 858

[20] Zeyuan Allen-Zhu and Yuanzhi Li. Follow the compressed leader: Faster online learning

of eigenvectors and faster MMWU. In Proceedings of the 34th International Conference on

Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, pages 116–125,

2017.

[21] Zeyuan Allen Zhu, Zhenyu Liao, and Lorenzo Orecchia. Spectral sparsification and regret min-

imization beyond matrix multiplicative updates. In Proceedings of the Forty-Seventh Annual

ACM on Symposium on Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17,

2015, pages 237–245, 2015.

[22] Zeyuan Allen-Zhu, Zhenyu Liao, and Yang Yuan. Optimization algorithms for faster compu-

tational geometry. In 43rd International Colloquium on Automata, Languages, and Program-

ming, pages 53:1–53:6, 2016.

[23] Zeyuan Allen Zhu and Lorenzo Orecchia. Nearly-linear time positive LP solver with faster

convergence rate. In Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory

of Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015, pages 229–236, 2015.

[24] Jason Altschuler, Francis Bach, Alessandro Rudi, and Jonathan Niles-Weed. Massively scalable

sinkhorn distances via the nyström method. In Advances in Neural Information Processing

Systems, pages 4427–4437, 2019.

[25] Jason Altschuler, Jonathan Weed, and Philippe Rigollet. Near-linear time approximation

algorithms for optimal transport via sinkhorn iteration. In Advances in Neural Information

Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017,

4-9 December 2017, Long Beach, CA, USA, pages 1964–1974, 2017.

[26] Nima Anari, Callum Burgess, Kevin Tian, and Thuy-Duong Vuong. Improved sampling-to-

counting reductions in high-dimensional expanders and faster parallel determinantal sampling.

CoRR, abs/2203.11190, 2022.

[27] ED Andersen, C Roos, T Terlaky, T Trafalis, and JP Warners. The use of low-rank updates

in interior-point methods. Numerical Linear Algebra and Optimization, pages 1–12, 1996.

[28] Alexandr Andoni, Aleksandar Nikolov, Krzysztof Onak, and Grigory Yaroslavtsev. Parallel

algorithms for geometric graph problems. In Symposium on Theory of Computing, STOC

2014, New York, NY, USA, May 31 - June 03, 2014, pages 574–583, 2014.

[29] Alexandr Andoni, Clifford Stein, and Peilin Zhong. Parallel approximate undirected shortest

paths via low hop emulators. In Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani,

Gautam Kamath, and Julia Chuzhoy, editors, Proccedings of the 52nd Annual ACM SIGACT

Symposium on Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages

322–335. ACM, 2020.

BIBLIOGRAPHY 859

[30] Richard André-Jeannin. A generalization of morgan-voyce polynomials. Fibonacci Quarterly,

32(3), 1994.

[31] Frank J Anscombe. Rejection of outliers. Technometrics, 2(2):123–146, 1960.

[32] Mart́ın Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial

networks. In Proceedings of the 34th International Conference on Machine Learning, ICML

2017, Sydney, NSW, Australia, 6-11 August 2017, pages 214–223, 2017.

[33] Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update method: a

meta-algorithm and applications. Theory Comput., 8(1):121–164, 2012.

[34] Sanjeev Arora and Satyen Kale. A combinatorial, primal-dual approach to semidefinite pro-

grams. J. ACM, 63(2):12:1–12:35, 2016.

[35] Sanjeev Arora and Ravi Kannan. Learning mixtures of separated nonspherical gaussians. The

Annals of Applied Probability, 15(1A):69–92, 2005.

[36] Sanjeev Arora, Satish Rao, and Umesh V. Vazirani. Expander flows, geometric embeddings

and graph partitioning. J. ACM, 56(2):5:1–5:37, 2009.

[37] Sepehr Assadi, MohammadHossein Bateni, Aaron Bernstein, Vahab S. Mirrokni, and Cliff

Stein. Coresets meet EDCS: algorithms for matching and vertex cover on massive graphs. In

Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA

2019, San Diego, California, USA, January 6-9, 2019, pages 1616–1635, 2019.

[38] Sepehr Assadi and Soheil Behnezhad. Beating two-thirds for random-order streaming match-

ing. In Nikhil Bansal, Emanuela Merelli, and James Worrell, editors, 48th International Collo-

quium on Automata, Languages, and Programming, ICALP 2021, July 12-16, 2021, Glasgow,

Scotland (Virtual Conference), volume 198 of LIPIcs, pages 19:1–19:13. Schloss Dagstuhl -

Leibniz-Zentrum für Informatik, 2021.

[39] Sepehr Assadi, Arun Jambulapati, Yujia Jin, Aaron Sidford, and Kevin Tian. Semi-streaming

bipartite matching in fewer passes and optimal space. In Joseph (Seffi) Naor and Niv Buch-

binder, editors, Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms,

SODA 2022, Virtual Conference / Alexandria, VA, USA, January 9 - 12, 2022, pages 627–669.

SIAM, 2022.

[40] Sepehr Assadi, Sanjeev Khanna, and Yang Li. On estimating maximum matching size in graph

streams. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete

Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 1723–

1742, 2017.

BIBLIOGRAPHY 860

[41] Sepehr Assadi, Sanjeev Khanna, Yang Li, and Grigory Yaroslavtsev. Maximum matchings

in dynamic graph streams and the simultaneous communication model. In Proceedings of

the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016,

Arlington, VA, USA, January 10-12, 2016, pages 1345–1364, 2016.

[42] Sepehr Assadi, Cliff Liu, and Robert E. Tarjan. An auction algorithm for bipartite matching

in streaming and massively parallel computation models. In 4th Symposium on Simplicity in

Algorithms, SOSA@SODA 2021, January 2021, 2021.

[43] Sepehr Assadi and Ran Raz. Near-quadratic lower bounds for two-pass graph streaming

algorithms. In 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS

2020, Durham, NC, USA, November 16-19, 2020, pages 342–353. IEEE, 2020.

[44] Pranjal Awasthi. Communication. Personal, September 2021.

[45] Pranjal Awasthi and Or Sheffet. Improved spectral-norm bounds for clustering. In Approxi-

mation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, pages

37–49. Springer, 2012.

[46] Pranjal Awasthi and Aravindan Vijayaraghavan. Towards learning sparsely used dictionaries

with arbitrary supports. In Mikkel Thorup, editor, 59th IEEE Annual Symposium on Foun-

dations of Computer Science, FOCS 2018, Paris, France, October 7-9, 2018, pages 283–296.

IEEE Computer Society, 2018.

[47] Mohammad Gheshlaghi Azar, Rémi Munos, and Hilbert J Kappen. Minimax pac bounds on

the sample complexity of reinforcement learning with a generative model. Machine learning,

91(3):325–349, 2013.

[48] Dmitry Babichev, Dmitrii Ostrovskii, and Francis Bach. Efficient primal-dual algorithms for

large-scale multiclass classification. arXiv preprint arXiv:1902.03755, 2019.

[49] Francis Bach. Polynomial magic i: Chebyshev polynomials. https://francisbach.com/

chebyshev-polynomials/, 2019.

[50] Michel Baes, Michael Bürgisser, and Arkadi Nemirovski. A randomized mirror-prox method for

solving structured large-scale matrix saddle-point problems. SIAM J. Optimization, 23(2):934–

962, 2013.

[51] Jack Baker, Paul Fearnhead, Emily B Fox, and Christopher Nemeth. Control variates for

stochastic gradient mcmc. Statistics and Computing, 29(3):599–615, 2019.

[52] Dominique Bakry, Ivan Gentil, and Michel Ledoux. Analysis and Geometry of Markov Diffu-

sion Operators. Springer, 2014.

BIBLIOGRAPHY 861

[53] Ainesh Bakshi and Adarsh Prasad. Robust linear regression: Optimal rates in polynomial

time. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing,

STOC 2021, 2021.

[54] Sivaraman Balakrishnan, Simon S Du, Jerry Li, and Aarti Singh. Computationally efficient

robust sparse estimation in high dimensions. In Conference on Learning Theory, pages 169–

212, 2017.

[55] Palaniappan Balamurugan and Francis R. Bach. Stochastic variance reduction methods for

saddle-point problems. In Advances in Neural Information Processing Systems, 2016.

[56] Maria-Florina Balcan, Avrim Blum, and Santosh Vempala. A discriminative framework for

clustering via similarity functions. In Proceedings of the fortieth annual ACM symposium on

Theory of computing, pages 671–680, 2008.

[57] Afonso S Bandeira, Edgar Dobriban, Dustin G Mixon, and William F Sawin. Certifying the

restricted isometry property is hard. IEEE transactions on information theory, 59(6):3448–

3450, 2013.

[58] Boaz Barak, Fernando GSL Brandao, Aram W Harrow, Jonathan Kelner, David Steurer, and

Yuan Zhou. Hypercontractivity, sum-of-squares proofs, and their applications. In Proceedings

of the forty-fourth annual ACM symposium on Theory of computing, pages 307–326, 2012.

[59] Richard G Baraniuk, Volkan Cevher, Marco F Duarte, and Chinmay Hegde. Model-based

compressive sensing. IEEE Transactions on information theory, 56(4):1982–2001, 2010.

[60] David Barber. Bayesian reasoning and machine learning. Cambridge University Press, 2012.

[61] M Barkhagen, NH Chau, É Moulines, M Rásonyi, S Sabanis, and Y Zhang. On stochastic

gradient langevin dynamics with dependent data streams in the logconcave case. arXiv preprint

arXiv:1812.02709, 2018.

[62] Marco Barreno, Blaine Nelson, Anthony D. Joseph, and J. D. Tygar. The security of machine

learning. Mach. Learn., 81(2):121–148, 2010.

[63] Raef Bassily, Adam D. Smith, and Abhradeep Thakurta. Private empirical risk minimization:

Efficient algorithms and tight error bounds. In 55th IEEE Annual Symposium on Foundations

of Computer Science, FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014, pages 464–

473. IEEE Computer Society, 2014.

[64] Heinz H. Bauschke, Jérôme Bolte, and Marc Teboulle. A descent lemma beyond lipschitz gra-

dient continuity: First-order methods revisited and applications. Math. Oper. Res., 42(2):330–

348, 2017.

BIBLIOGRAPHY 862

[65] Amir Beck. First-Order Methods in Optimization. Society for Industrial and Applied Mathe-

matics, 2017.

[66] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear

inverse problems. SIAM J. Imaging Sciences, 2(1):183–202, 2009.

[67] Ruben Becker, Andreas Karrenbauer, Sebastian Krinninger, and Christoph Lenzen. Near-

optimal approximate shortest paths and transshipment in distributed and streaming models.

In Andréa W. Richa, editor, 31st International Symposium on Distributed Computing, DISC

2017, October 16-20, 2017, Vienna, Austria, volume 91 of LIPIcs, pages 7:1–7:16. Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, 2017.

[68] Stephen Becker, Jérôme Bobin, and Emmanuel J Candès. Nesta: A fast and accurate first-

order method for sparse recovery. SIAM Journal on Imaging Sciences, 4(1):1–39, 2011.

[69] Soheil Behnezhad, Mahsa Derakhshan, Hossein Esfandiari, Elif Tan, and Hadi Yami. Brief

announcement: Graph matching in massive datasets. In Proceedings of the 29th ACM Sym-

posium on Parallelism in Algorithms and Architectures, SPAA 2017, Washington DC, USA,

July 24-26, 2017, pages 133–136, 2017.

[70] Pierre C Bellec. The noise barrier and the large signal bias of the lasso and other convex

estimators. arXiv preprint arXiv:1804.01230, 2018.

[71] Michele Benzi and Miroslav Tûma. A comparative study of sparse approximate inverse pre-

conditioners. Applied Numerical Mathematics, 30(2):305–340, 1999.

[72] Aaron Bernstein. Improved bounds for matching in random-order streams. In 47th Interna-

tional Colloquium on Automata, Languages, and Programming, ICALP 2020, July 8-11, 2020,

Saarbrücken, Germany (Virtual Conference), pages 12:1–12:13, 2020.

[73] Aaron Bernstein, Maximilian Probst Gutenberg, and Thatchaphol Saranurak. Deterministic

decremental reachability, scc, and shortest paths via directed expanders and congestion bal-

ancing. In 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020,

Durham, NC, USA, November 16-19, 2020, pages 1123–1134, 2020.

[74] Espen Bernton. Langevin monte carlo and JKO splitting. In Conference On Learning Theory,

COLT 2018, Stockholm, Sweden, 6-9 July 2018, pages 1777–1798, 2018.

[75] Dimitris Bertsimas and Santosh S. Vempala. Solving convex programs by random walks. J.

ACM, 51(4):540–556, 2004.

[76] Julian Besag. Comments on “representations of knowledge in complex systems” by u. grenan-

der and mi miller. Journal of the Royal Statistical Society, Series B, 56:591–592, 1994.

BIBLIOGRAPHY 863

[77] Aditya Bhaskara, Aravinda Kanchana Ruwanpathirana, and Maheshakya Wijewardena. Prin-

cipal component regression with semirandom observations via matrix completion. In Interna-

tional Conference on Artificial Intelligence and Statistics, pages 2665–2673. PMLR, 2021.

[78] Vijay Bhattiprolu, Mrinalkanti Ghosh, Venkatesan Guruswami, Euiwoong Lee, and Madhur

Tulsiani. Approximability of p→ q matrix norms: generalized Krivine rounding and hypercon-

tractive hardness. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete

Algorithms, pages 1358–1368. SIAM, 2019.

[79] Peter J Bickel, Ya’acov Ritov, and Alexandre B Tsybakov. Simultaneous analysis of lasso and

dantzig selector. The Annals of statistics, 37(4):1705–1732, 2009.

[80] Joris Bierkens, Paul Fearnhead, Gareth Roberts, et al. The zig-zag process and super-efficient

sampling for bayesian analysis of big data. The Annals of Statistics, 47(3):1288–1320, 2019.

[81] Battista Biggio, Blaine Nelson, and Pavel Laskov. Poisoning attacks against support vector

machines. In Proceedings of the 29th International Conference on Machine Learning, ICML

2012, Edinburgh, Scotland, UK, June 26 - July 1, 2012, 2012.

[82] Jose H. Blanchet, Arun Jambulapati, Carson Kent, and Aaron Sidford. Towards optimal

running times for optimal transport. CoRR, abs/1810.07717, 2018.

[83] Jose H. Blanchet and Yang Kang. Distributionally robust groupwise regularization estimator.

In Proceedings of The 9th Asian Conference on Machine Learning, ACML 2017, Seoul, Korea,

November 15-17, 2017., pages 97–112, 2017.

[84] Avrim Blum. Machine learning: My favorite results, directions, and open problems. In 44th

Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings., pages 2–2.

IEEE, 2003.

[85] Avrim Blum and Joel Spencer. Coloring random and semi-random k-colorable graphs. Journal

of Algorithms, 19(2):204–234, 1995.

[86] Thomas Blumensath and Mike E Davies. Iterative hard thresholding for compressed sensing.

Applied and computational harmonic analysis, 27(3):265–274, 2009.

[87] Thomas Blumensath and Mike E Davies. Normalized iterative hard thresholding: Guaranteed

stability and performance. IEEE Journal of selected topics in signal processing, 4(2):298–309,

2010.

[88] Sergey G Bobkov and Michel Ledoux. Poincaré’s inequalities and talagrand’s concentra-

tion phenomenon for the exponential distribution. Probability Theory and Related Fields,

107(3):383–400, 1997.

BIBLIOGRAPHY 864

[89] Sergey G Bobkov and Michel Ledoux. From brunn-minkowski to brascamp-lieb and to loga-

rithmic sobolev inequalities. GAFA, Geometric and Functional Analysis, 10:1028–1052, 2000.

[90] Nicolas Bonneel, Michiel van de Panne, Sylvain Paris, and Wolfgang Heidrich. Displacement

interpolation using lagrangian mass transport. ACM Trans. Graph., 30(6):158:1–158:12, 2011.

[91] Digvijay Boob, Saurabh Sawlani, and Di Wang. Faster width-dependent algorithm for mixed

packing and covering lps. In Advances in Neural Information Processing Systems 32: Annual

Conference on Neural Information Processing Systems 2019, NeurIPS 2019, 8-14 December

2019, Vancouver, BC, Canada, pages 15253–15262, 2019.

[92] Léon Bottou, Frank E. Curtis, and Jorge Nocedal. Optimization methods for large-scale

machine learning. SIAM Rev., 60(2):223–311, 2018.

[93] Nawaf Bou-Rabee and Andreas Eberle. Mixing time guarantees for unadjusted hamiltonian

monte carlo. CoRR, abs/2105.00887, 2021.

[94] Nawaf Bou-Rabee and Martin Hairer. Nonasymptotic mixing of the mala algorithm. IMA

Journal of Numerical Analysis, 33(1):80–110, 2012.

[95] Herm Jan Brascamp and Elliott H Lieb. On extensions of the brunn-minkowski and prékopa-

leindler theorems, including inequalities for log concave functions, and with an application to

the diffusion equation. Journal of Functional Analysis, 22(4):366–389, 1976.

[96] Nicolas Brosse, Alain Durmus, Eric Moulines, and Marcelo Pereyra. Sampling from a log-

concave distribution with compact support with proximal langevin monte carlo. In Proceedings

of the 30th Conference on Learning Theory, COLT 2017, Amsterdam, The Netherlands, 7-10

July 2017, pages 319–342, 2017.

[97] S. Charles Brubaker and Santosh S. Vempala. Isotropic PCA and affine-invariant clustering.

In 49th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2008, October

25-28, 2008, Philadelphia, PA, USA, pages 551–560, 2008.

[98] Sébastien Bubeck. Convex optimization: Algorithms and complexity. Foundations and Trends

in Machine Learning, 8(3-4):231–357, 2015.

[99] Sébastien Bubeck and Nicolò Cesa-Bianchi. Regret analysis of stochastic and nonstochastic

multi-armed bandit problems. Foundations and Trends in Machine Learning, 5(1):1–122, 2012.

[100] Sébastien Bubeck, Michael B. Cohen, Yin Tat Lee, and Yuanzhi Li. An homotopy method

for lp regression provably beyond self-concordance and in input-sparsity time. In Proceedings

of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los

Angeles, CA, USA, June 25-29, 2018, pages 1130–1137, 2018.

BIBLIOGRAPHY 865

[101] Sébastien Bubeck, Ronen Eldan, and Joseph Lehec. Sampling from a log-concave distribution

with projected langevin monte carlo. Discret. Comput. Geom., 59(4):757–783, 2018.

[102] Sébastien Bubeck, Qijia Jiang, Yin Tat Lee, Yuanzhi Li, and Aaron Sidford. Complexity of

highly parallel non-smooth convex optimization. In Advances in Neural Information Processing

Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS

2019, December 8-14, 2019, Vancouver, BC, Canada, pages 13900–13909, 2019.

[103] Emmanuel J Candès, Xiaodong Li, Yi Ma, and John Wright. Robust principal component

analysis? Journal of the ACM (JACM), 58(3):1–37, 2011.

[104] Emmanuel J Candes and Justin K Romberg. Signal recovery from random projections. In

Computational Imaging III, volume 5674, pages 76–86. International Society for Optics and

Photonics, 2005.

[105] Emmanuel J Candes, Justin K Romberg, and Terence Tao. Stable signal recovery from in-

complete and inaccurate measurements. Communications on Pure and Applied Mathematics:

A Journal Issued by the Courant Institute of Mathematical Sciences, 59(8):1207–1223, 2006.

[106] Emmanuel J Candes and Terence Tao. Near-optimal signal recovery from random projections:

Universal encoding strategies? IEEE transactions on information theory, 52(12):5406–5425,

2006.

[107] Yu Cao, Jianfeng Lu, and Lihan Wang. Complexity of randomized algorithms for underdamped

langevin dynamics. CoRR, abs/2003.09906, 2020.

[108] Yair Carmon, John C. Duchi, Aaron Sidford, and Kevin Tian. A rank-1 sketch for matrix

multiplicative weights. In Conference on Learning Theory, COLT 2019, 25-28 June 2019,

Phoenix, AZ, USA, pages 589–623, 2019.

[109] Yair Carmon, Arun Jambulapati, Qijia Jiang, Yujia Jin, Yin Tat Lee, Aaron Sidford, and

Kevin Tian. Acceleration with a ball optimization oracle. In Advances in Neural Information

Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020,

NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[110] Yair Carmon, Arun Jambulapati, Yujia Jin, and Aaron Sidford. Thinking inside the ball:

Near-optimal minimization of the maximal loss. CoRR, abs/2105.01778, 2021.

[111] Yair Carmon, Yujia Jin, Aaron Sidford, and Kevin Tian. Variance reduction for matrix games.

In Advances in Neural Information Processing Systems 32 (NeurIPS), pages 11377–11388,

2019.

BIBLIOGRAPHY 866

[112] Yair Carmon, Yujia Jin, Aaron Sidford, and Kevin Tian. Coordinate methods for matrix

games. In 61st Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages

283–293, 2020.

[113] Bob Carpenter, Andrew Gelman, Matthew D. Hoffman, Daniel Lee, Ben Goodrich, Michael

Betancourt, Marcus Brubaker, Jiqiang Guo, Peter Li, and Allen Riddell. Stan: A probabilistic

programming language. Journal of Statistical Software, 76(1), 2017.

[114] N. Cesa-Bianchi, A. Conconi, and C. Gentile. On the generalization ability of on-line learning

algorithms. IEEE Transactions on Information Theory, 50(9):2050–2057, 2004.

[115] Deeparnab Chakrabarty and Sanjeev Khanna. Better and simpler error analysis of the

sinkhorn-knopp algorithm for matrix scaling. In 1st Symposium on Simplicity in Algorithms,

SOSA 2018, January 7-10, 2018, New Orleans, LA, USA, pages 4:1–4:11, 2018.

[116] Antonin Chambolle and Thomas Pock. A first-order primal-dual algorithm for convex problems

with applications to imaging. Journal of mathematical imaging and vision, 40(1):120–145,

2011.

[117] Yi-Jun Chang, Martin Farach-Colton, Tsan-sheng Hsu, and Meng-Tsung Tsai. Streaming

complexity of spanning tree computation. In Christophe Paul and Markus Bläser, editors, 37th

International Symposium on Theoretical Aspects of Computer Science, STACS 2020, March

10-13, 2020, Montpellier, France, volume 154 of LIPIcs, pages 34:1–34:19. Schloss Dagstuhl -

Leibniz-Zentrum für Informatik, 2020.

[118] Moses Charikar, Jacob Steinhardt, and Gregory Valiant. Learning from untrusted data. In

Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pages

47–60, 2017.

[119] Niladri Chatterji, Nicolas Flammarion, Yian Ma, Peter Bartlett, and Michael Jordan. On the

theory of variance reduction for stochastic gradient monte carlo. In International Conference

on Machine Learning, pages 764–773, 2018.

[120] Niladri S. Chatterji, Peter L. Bartlett, and Philip M. Long. Oracle lower bounds for stochastic

gradient sampling algorithms. CoRR, abs/2002.00291, 2020.

[121] Tatjana Chavdarova, Gauthier Gidel, François Fleuret, and Simon Lacoste-Julien. Reducing

noise in GAN training with variance reduced extragradient. In Advances in Neural Information

Processing Systems 32 (NeurIPS), pages 391–401, 2019.

[122] Jeff Cheeger. A lower bound for the smallest eigenvalue of the laplacian. In Proceedings of the

Princeton conference in honor of Professor S. Bochner, pages 195–199, 1969.

BIBLIOGRAPHY 867

[123] Changyou Chen, Wenlin Wang, Yizhe Zhang, Qinliang Su, and Lawrence Carin. A convergence

analysis for a class of practical variance-reduction stochastic gradient mcmc. arXiv preprint

arXiv:1709.01180, 2017.

[124] Li Chen, Rasmus Kyng, Yang P Liu, Richard Peng, Maximilian Probst Gutenberg, and

Sushant Sachdeva. Maximum flow and minimum-cost flow in almost-linear time. arXiv preprint

arXiv:2203.00671, 2022.

[125] Lijie Chen, Gillat Kol, Dmitry Paramonov, Raghuvansh R. Saxena, Zhao Song, and Huacheng

Yu. Almost optimal super-constant-pass streaming lower bounds for reachability. In Samir

Khuller and Virginia Vassilevska Williams, editors, STOC ’21: 53rd Annual ACM SIGACT

Symposium on Theory of Computing, Virtual Event, Italy, June 21-25, 2021, pages 570–583.

ACM, 2021.

[126] Sitan Chen, Frederic Koehler, Ankur Moitra, and Morris Yau. Classification under misspecifi-

cation: Halfspaces, generalized linear models, and connections to evolvability. arXiv preprint

arXiv:2006.04787, 2020.

[127] Yuansi Chen. An almost constant lower bound of the isoperimetric coefficient in the kls

conjecture. CoRR, abs/2011.13661, 2021.

[128] Yuansi Chen, Raaz Dwivedi, Martin J. Wainwright, and Bin Yu. Fast mixing of metropolized

hamiltonian monte carlo: Benefits of multi-step gradients. CoRR, abs/1905.12247, 2019.

[129] Zongchen Chen and Santosh S. Vempala. Optimal convergence rate of hamiltonian monte carlo

for strongly logconcave distributions. In Approximation, Randomization, and Combinatorial

Optimization. Algorithms and Techniques, APPROX/RANDOM 2019, September 20-22, 2019,

Massachusetts Institute of Technology, Cambridge, MA, USA, pages 64:1–64:12, 2019.

[130] Xiang Cheng, Niladri S. Chatterji, Peter L. Bartlett, and Michael I. Jordan. Underdamped

langevin MCMC: A non-asymptotic analysis. In Conference On Learning Theory, COLT 2018,

Stockholm, Sweden, 6-9 July 2018, pages 300–323, 2018.

[131] Yu Cheng, Ilias Diakonikolas, and Rong Ge. High-dimensional robust mean estimation in

nearly-linear time. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete

Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pages 2755–2771,

2019.

[132] Yu Cheng, Ilias Diakonikolas, Rong Ge, and David Woodruff. Faster algorithms for high-

dimensional robust covariance estimation. arXiv preprint arXiv:1906.04661, 2019.

[133] Yu Cheng and Rong Ge. Non-convex matrix completion against a semi-random adversary. In

Conference On Learning Theory, pages 1362–1394. PMLR, 2018.

BIBLIOGRAPHY 868

[134] Yeshwanth Cherapanamjeri, Efe Aras, Nilesh Tripuraneni, Michael I. Jordan, Nicolas Flam-

marion, and Peter L. Bartlett. Optimal robust linear regression in nearly linear time. CoRR,

abs/2007.08137, 2020.

[135] Yeshwanth Cherapanamjeri, Nicolas Flammarion, and Peter L. Bartlett. Fast mean estimation

with sub-gaussian rates. In Conference on Learning Theory, COLT 2019, 25-28 June 2019,

Phoenix, AZ, USA, pages 786–806, 2019.

[136] Yeshwanth Cherapanamjeri, Sidhanth Mohanty, and Morris Yau. List decodable mean esti-

mation in nearly linear time. In 61st IEEE Annual Symposium on Foundations of Computer

Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages 141–148, 2020.

[137] Sinho Chewi, Chen Lu, Kwangjun Ahn, Xiang Cheng, Thibaut Le Gouic, and Philippe Rigol-

let. Optimal dimension dependence of the metropolis-adjusted langevin algorithm. CoRR,

abs/2012.12810, 2020.

[138] Rajesh Chitnis, Graham Cormode, Hossein Esfandiari, MohammadTaghi Hajiaghayi, Andrew

McGregor, Morteza Monemizadeh, and Sofya Vorotnikova. Kernelization via sampling with

applications to finding matchings and related problems in dynamic graph streams. In Proceed-

ings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA

2016, Arlington, VA, USA, January 10-12, 2016, pages 1326–1344, 2016.

[139] Paul Christiano, Jonathan A. Kelner, Aleksander Madry, Daniel A. Spielman, and Shang-

Hua Teng. Electrical flows, laplacian systems, and faster approximation of maximum flow

in undirected graphs. In Proceedings of the 43rd ACM Symposium on Theory of Computing,

STOC 2011, San Jose, CA, USA, 6-8 June 2011, pages 273–282, 2011.

[140] Kenneth L. Clarkson, Elad Hazan, and David P. Woodruff. Sublinear optimization for machine

learning. In 51th Annual IEEE Symposium on Foundations of Computer Science, pages 449–

457, 2010.

[141] Kenneth L Clarkson and David P Woodruff. Low rank approximation and regression in input

sparsity time. In Proceedings of the 45th annual ACM symposium on Symposium on theory of

computing, pages 81–90. ACM, 2013.

[142] Michael Cohen, Jelena Diakonikolas, and Lorenzo Orecchia. On acceleration with noise-

corrupted gradients. In Proceedings of the 35th International Conference on Machine Learning,

ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, pages 1018–1027, 2018.

[143] Michael B. Cohen, Yin Tat Lee, Gary L. Miller, Jakub Pachocki, and Aaron Sidford. Geometric

median in nearly linear time. In Daniel Wichs and Yishay Mansour, editors, Proceedings of the

48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge,

MA, USA, June 18-21, 2016, pages 9–21. ACM, 2016.

BIBLIOGRAPHY 869

[144] Michael B. Cohen, Yin Tat Lee, and Zhao Song. Solving linear programs in the current matrix

multiplication time. J. ACM, 68(1):3:1–3:39, 2021.

[145] Michael B. Cohen, Aleksander Madry, Dimitris Tsipras, and Adrian Vladu. Matrix scaling

and balancing via box constrained newton’s method and interior point methods. In 58th IEEE

Annual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA,

October 15-17, 2017, pages 902–913, 2017.

[146] Michael B Cohen, Jelani Nelson, and David P Woodruff. Optimal approximate matrix product

in terms of stable rank. In 43rd International Colloquium on Automata, Languages, and

Programming (ICALP 2016). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.

[147] Michael B. Cohen, Aaron Sidford, and Kevin Tian. Relative lipschitzness in extragradient

methods and a direct recipe for acceleration. In 12th Conference on Innovations in Theoretical

Computer Science (ITCS), pages 62:1–62:18, 2021.

[148] Patrick L Combettes and Valérie R Wajs. Signal recovery by proximal forward-backward

splitting. Multiscale Modeling & Simulation, 4(4):1168–1200, 2005.

[149] Ben Cousins and Santosh S. Vempala. Gaussian cooling and o*(n3)
algorithms for volume

and gaussian volume. SIAM J. Comput., 47(3):1237–1273, 2018.

[150] Benjamin Cousins and Santosh Vempala. Bypassing kls: Gaussian cooling and an oˆ*(n3)

volume algorithm. In Proceedings of the forty-seventh annual ACM symposium on Theory of

computing, pages 539–548, 2015.

[151] Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In Advances

in neural information processing systems, pages 2292–2300, 2013.

[152] Arnak S. Dalalyan. Further and stronger analogy between sampling and optimization:

Langevin monte carlo and gradient descent. In Proceedings of the 30th Conference on Learning

Theory, COLT 2017, Amsterdam, The Netherlands, 7-10 July 2017, pages 678–689, 2017.

[153] Arnak S Dalalyan. Theoretical guarantees for approximate sampling from smooth and log-

concave densities. Journal of the Royal Statistical Society: Series B (Statistical Methodology),

3(79):651–676, 2017.

[154] Arnak S Dalalyan, Mohamed Hebiri, and Johannes Lederer. On the prediction performance

of the lasso. Bernoulli, 23(1):552–581, 2017.

[155] Arnak S Dalalyan and Avetik Karagulyan. User-friendly guarantees for the langevin monte

carlo with inaccurate gradient. Stochastic Processes and their Applications, 129(12):5278–5311,

2019.

BIBLIOGRAPHY 870

[156] Arnak S. Dalalyan and Lionel Riou-Durand. On sampling from a log-concave density using

kinetic langevin diffusions. CoRR, abs/1807.09382, 2018.

[157] G. B. Dantzig. Linear Programming and Extensions. Princeton University Press, Princeton,

NJ, 1953.

[158] Jacques Dark and Christian Konrad. Optimal lower bounds for matching and vertex cover

in dynamic graph streams. In 35th Computational Complexity Conference, CCC 2020, July

28-31, 2020, Saarbrücken, Germany (Virtual Conference), pages 30:1–30:14, 2020.

[159] Sanjoy Dasgupta. Learning mixtures of gaussians. In 40th Annual Symposium on Foundations

of Computer Science (Cat. No. 99CB37039), pages 634–644. IEEE, 1999.

[160] Sanjoy Dasgupta and Anupam Gupta. An elementary proof of a theorem of johnson and

lindenstrauss. Random Struct. Algorithms, 22(1):60–65, 2003.

[161] Constantinos Daskalakis, Andrew Ilyas, Vasilis Syrgkanis, and Haoyang Zeng. Training GANs

with optimism. In International Conference on Learning Representations, 2019.

[162] Alexandre d’Aspremont. Smooth optimization with approximate gradient. SIAM J. Optim.,

19(3):1171–1183, 2008.

[163] Alexandre d’Aspremont. Subsampling algorithms for semidefinite programming. Stochastic

Systems, 1(2):209–436, 2011.

[164] Ingrid Daubechies, Michel Defrise, and Christine De Mol. An iterative thresholding algo-

rithm for linear inverse problems with a sparsity constraint. Communications on Pure and

Applied Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences,

57(11):1413–1457, 2004.

[165] Mark A Davenport, Marco F Duarte, Yonina C Eldar, and Gitta Kutyniok. Introduction to

compressed sensing., 2012.

[166] Mark A Davenport, Deanna Needell, and Michael B Wakin. Signal space cosamp for sparse

recovery with redundant dictionaries. IEEE Transactions on Information Theory, 59(10):6820–

6829, 2013.

[167] Aaron Defazio. A simple practical accelerated method for finite sums. In Daniel D. Lee,

Masashi Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and Roman Garnett, editors, Ad-

vances in Neural Information Processing Systems 29 (NeurIPS), pages 676–684, 2016.

[168] Aaron Defazio, Francis R. Bach, and Simon Lacoste-Julien. SAGA: A fast incremental gradient

method with support for non-strongly convex composite objectives. In Advances in Neural

Information Processing Systems 27 (NeurIPS), pages 1646–1654, 2014.

BIBLIOGRAPHY 871

[169] Erik Demaine. Lecture 19. Class notes, MIT 6.851: Advanced Data Structures, scribed by

Justin Holmgren, Jing Jian, Maksim Stepaneko, Mashhood Ishaque, 2012.

[170] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-

scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern

recognition, pages 248–255. Ieee, 2009.

[171] Jules Despersin and Guillaume Lecué. Robust subgaussian estimation of a mean vector in

nearly linear time. CoRR, abs/1906.03058, 2019.

[172] Olivier Devolder, François Glineur, and Yurii E. Nesterov. First-order methods of smooth

convex optimization with inexact oracle. Math. Program., 146(1-2):37–75, 2014.

[173] Ilias Diakonikolas, Themis Gouleakis, and Christos Tzamos. Distribution-independent pac

learning of halfspaces with massart noise. arXiv preprint arXiv:1906.10075, 2019.

[174] Ilias Diakonikolas, Russell Impagliazzo, Daniel Kane, Rex Lei, Jessica Sorrell, and Christos

Tzamos. Boosting in the presence of massart noise. arXiv preprint arXiv:2106.07779, 2021.

[175] Ilias Diakonikolas, Gautam Kamath, Daniel Kane, Jerry Li, Ankur Moitra, and Alistair Stew-

art. Robust estimators in high-dimensions without the computational intractability. SIAM J.

Comput., 48(2):742–864, 2019.

[176] Ilias Diakonikolas, Gautam Kamath, Daniel Kane, Jerry Li, Jacob Steinhardt, and Alistair

Stewart. Sever: A robust meta-algorithm for stochastic optimization. In Proceedings of the

36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach,

California, USA, pages 1596–1606, 2019.

[177] Ilias Diakonikolas, Gautam Kamath, Daniel M Kane, Jerry Li, Ankur Moitra, and Alistair

Stewart. Being robust (in high dimensions) can be practical. In Proceedings of the 34th

International Conference on Machine Learning-Volume 70, pages 999–1008. JMLR. org, 2017.

[178] Ilias Diakonikolas, Gautam Kamath, Daniel M Kane, Jerry Li, Ankur Moitra, and Alistair

Stewart. Robustly learning a gaussian: Getting optimal error, efficiently. In Proceedings of

the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2683–2702.

SIAM, 2018.

[179] Ilias Diakonikolas, Daniel Kane, and Daniel Kongsgaard. List-decodable mean estimation via

iterative multi-filtering. In Advances in Neural Information Processing Systems 33: Annual

Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,

2020, virtual, 2020.

BIBLIOGRAPHY 872

[180] Ilias Diakonikolas, Daniel Kane, Daniel Kongsgaard, Jerry Li, and Kevin Tian. List-decodable

mean estimation in nearly-pca time. In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N.

Dauphin, Percy Liang, and Jennifer Wortman Vaughan, editors, Advances in Neural Infor-

mation Processing Systems 34: Annual Conference on Neural Information Processing Systems

2021, NeurIPS 2021, December 6-14, 2021, virtual, pages 10195–10208, 2021.

[181] Ilias Diakonikolas, Daniel Kane, Daniel Kongsgaard, Jerry Li, and Kevin Tian. Clustering

mixture models in almost-linear time via list-decodable mean estimation. In Proceedings of

the 54th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2022, 2022.

[182] Ilias Diakonikolas and Daniel M Kane. Recent advances in algorithmic high-dimensional robust

statistics. arXiv preprint arXiv:1911.05911, 2019.

[183] Ilias Diakonikolas and Daniel M Kane. Hardness of learning halfspaces with massart noise.

arXiv preprint arXiv:2012.09720, 2020.

[184] Ilias Diakonikolas, Daniel M Kane, Vasilis Kontonis, Christos Tzamos, and Nikos Zari-

fis. Threshold phenomena in learning halfspaces with massart noise. arXiv preprint

arXiv:2108.08767, 2021.

[185] Ilias Diakonikolas, Daniel M Kane, and Alistair Stewart. Statistical query lower bounds for

robust estimation of high-dimensional gaussians and gaussian mixtures. In 2017 IEEE 58th

Annual Symposium on Foundations of Computer Science (FOCS), pages 73–84. IEEE, 2017.

[186] Ilias Diakonikolas, Daniel M. Kane, and Alistair Stewart. List-decodable robust mean esti-

mation and learning mixtures of spherical gaussians. In Proceedings of the 50th Annual ACM

SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June

25-29, 2018, pages 1047–1060, 2018.

[187] Ilias Diakonikolas, Daniel M Kane, and Christos Tzamos. Forster decomposition and learning

halfspaces with noise. arXiv preprint arXiv:2107.05582, 2021.

[188] Ilias Diakonikolas, Weihao Kong, and Alistair Stewart. Efficient algorithms and lower bounds

for robust linear regression. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium

on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pages

2745–2754, 2019.

[189] Ilias Diakonikolas, Vasilis Kontonis, Christos Tzamos, and Nikos Zarifis. Learning halfspaces

with massart noise under structured distributions. In Conference on Learning Theory, pages

1486–1513. PMLR, 2020.

[190] Ilias Diakonikolas, Jongho Park, and Christos Tzamos. Relu regression with massart noise.

arXiv preprint arXiv:2109.04623, 2021.

BIBLIOGRAPHY 873

[191] Jelena Diakonikolas, Maryam Fazel, and Lorenzo Orecchia. Width-independence beyond linear

objectives: Distributed fair packing and covering algorithms. CoRR, abs/1808.02517, 2018.

[192] Jelena Diakonikolas and Lorenzo Orecchia. Accelerated extra-gradient descent: A novel ac-

celerated first-order method. In 9th Innovations in Theoretical Computer Science Conference,

ITCS 2018, January 11-14, 2018, Cambridge, MA, USA, pages 23:1–23:19, 2018.

[193] Jelena Diakonikolas and Lorenzo Orecchia. The approximate duality gap technique: A unified

theory of first-order methods. SIAM Journal on Optimization, 29(1):660–689, 2019.

[194] Yihe Dong, Samuel Hopkins, and Jerry Li. Quantum entropy scoring for fast robust mean

estimation and improved outlier detection. In Advances in Neural Information Processing

Systems, pages 6065–6075, 2019.

[195] David L Donoho. Compressed sensing. IEEE Transactions on information theory, 52(4):1289–

1306, 2006.

[196] David L Donoho and Philip B Stark. Uncertainty principles and signal recovery. SIAM Journal

on Applied Mathematics, 49(3):906–931, 1989.

[197] Radu-Alexandru Dragomir, Adrien Taylor, Alexandre d’Aspremont, and Jérôme Bolte.

Optimal complexity and certification of bregman first-order methods. arXiv e-prints,

abs/1911.08510, 2019.

[198] Yoel Drori, Shoham Sabach, and Marc Teboulle. A simple algorithm for a class of nonsmooth

convex-concave saddle-point problems. Operations Research Letters, 43(2):209–214, 2015.

[199] Vladimir Druskin and Leonid Knizhnerman. Error bounds in the simple lanczos procedure for

computing functions of symmetric matrices and eigenvalues. U.S.S.R. Computational Mathe-

matics and Mathematical Physics, 31(7):970–983, 1991.

[200] Vladimir Druskin and Leonid Knizhnerman. Krylov subspace approximation of eigenpairs and

matrix functions in exact and computer arithmetic. Numerical Linear Algebra with Applica-

tions, 2(3):205–217, 1995.

[201] Simon S. Du, Jianshu Chen, Lihong Li, Lin Xiao, and Dengyong Zhou. Stochastic variance re-

duction methods for policy evaluation. In 34th International Conference on Machine Learning

(ICML), pages 1049–1058, 2017.

[202] Kumar Avinava Dubey, Sashank J Reddi, Sinead A Williamson, Barnabas Poczos, Alexander J

Smola, and Eric P Xing. Variance reduction in stochastic gradient langevin dynamics. In

Advances in neural information processing systems, pages 1154–1162, 2016.

BIBLIOGRAPHY 874

[203] John Duchi, Shai Shalev-Shwartz, Yoram Singer, and Tushar Chandra. Efficient projections

onto the l 1-ball for learning in high dimensions. In Proceedings of the 25th international

conference on Machine learning, pages 272–279. ACM, 2008.

[204] David Durfee, Yu Gao, Gramoz Goranci, and Richard Peng. Fully dynamic spectral vertex

sparsifiers and applications. In Moses Charikar and Edith Cohen, editors, Proceedings of the

51st Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019, Phoenix, AZ,

USA, June 23-26, 2019, pages 914–925. ACM, 2019.

[205] Alain Durmus, Szymon Majewski, and Blazej Miasojedow. Analysis of langevin monte carlo

via convex optimization. J. Mach. Learn. Res., 20:73:1–73:46, 2019.

[206] Alain Durmus and Éric Moulines. High-dimensional bayesian inference via the unadjusted

langevin algorithm. Bernoulli, 25(4A):2854–2882, 2019.

[207] Alain Durmus, Umut Simsekli, Eric Moulines, Roland Badeau, and Gaël Richard. Stochastic

gradient richardson-romberg markov chain monte carlo. In Advances in Neural Information

Processing Systems, pages 2047–2055, 2016.

[208] Pavel Dvurechensky, Alexander Gasnikov, and Alexey Kroshnin. Computational optimal trans-

port: Complexity by accelerated gradient descent is better than by sinkhorn’s algorithm. In

Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stock-

holmsmässan, Stockholm, Sweden, July 10-15, 2018, pages 1366–1375, 2018.

[209] Pavel E. Dvurechensky and Alexander V. Gasnikov. Stochastic intermediate gradient method

for convex problems with stochastic inexact oracle. J. Optim. Theory Appl., 171(1):121–145,

2016.

[210] Raaz Dwivedi, Yuansi Chen, Martin J. Wainwright, and Bin Yu. Log-concave sampling:

Metropolis-hastings algorithms are fast! In Conference On Learning Theory, COLT 2018,

Stockholm, Sweden, 6-9 July 2018, pages 793–797, 2018.

[211] Cynthia Dwork, Kunal Talwar, Abhradeep Thakurta, and Li Zhang. Analyze gauss: optimal

bounds for privacy-preserving principal component analysis. In David B. Shmoys, editor,

Symposium on Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June 03,

2014, pages 11–20. ACM, 2014.

[212] Martin E. Dyer, Alan M. Frieze, and Ravi Kannan. A random polynomial time algorithm for

approximating the volume of convex bodies. J. ACM, 38(1):1–17, 1991.

[213] Sebastian Eggert, Lasse Kliemann, Peter Munstermann, and Anand Srivastav. Bipartite

matching in the semi-streaming model. Algorithmica, 63(1-2):490–508, 2012.

BIBLIOGRAPHY 875

[214] Yonina C Eldar and Gitta Kutyniok. Compressed sensing: theory and applications. Cambridge

university press, 2012.

[215] Peyman Mohajerin Esfahani and Daniel Kuhn. Data-driven distributionally robust optimiza-

tion using the wasserstein metric: performance guarantees and tractable reformulations. Math.

Program., 171(1-2):115–166, 2018.

[216] Hossein Esfandiari, Mohammad Taghi Hajiaghayi, Vahid Liaghat, Morteza Monemizadeh,

and Krzysztof Onak. Streaming algorithms for estimating the matching size in planar graphs

and beyond. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete

Algorithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015, pages 1217–1233, 2015.

[217] Cong Fang, Chris Junchi Li, Zhouchen Lin, and Tong Zhang. SPIDER: near-optimal non-

convex optimization via stochastic path-integrated differential estimator. In Advances in Neu-

ral Information Processing Systems, 2018.

[218] Alireza Farhadi, Mohammad Taghi Hajiaghayi, Tung Mai, Anup Rao, and Ryan A. Rossi.

Approximate maximum matching in random streams. In Proceedings of the 2020 ACM-SIAM

Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8,

2020, pages 1773–1785, 2020.

[219] Uriel Feige and Joe Kilian. Heuristics for semirandom graph problems. Journal of Computer

and System Sciences, 63(4):639–671, 2001.

[220] Uriel Feige and Robert Krauthgamer. Finding and certifying a large hidden clique in a semi-

random graph. Random Structures & Algorithms, 16(2):195–208, 2000.

[221] Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang. On

graph problems in a semi-streaming model. Theor. Comput. Sci., 348(2-3):207–216, 2005.

[222] Olivier Fercoq and Peter Richtárik. Accelerated, parallel, and proximal coordinate descent.

SIAM Journal on Optimization, 25(4):1997–2023, 2015.

[223] Mário AT Figueiredo and Robert D Nowak. An em algorithm for wavelet-based image restora-

tion. IEEE Transactions on Image Processing, 12(8):906–916, 2003.

[224] Manuela Fischer, Slobodan Mitrovic, and Jara Uitto. Deterministic (1+ε)-approximate max-

imum matching with poly(1/ε) passes in the semi-streaming model. CoRR, abs/2106.04179,

2021.

[225] G. E. Forsythe and E. G. Straus. On best conditioned matrices. Proceedings of the American

Mathematical Society, 6(3):340–345, 1955.

BIBLIOGRAPHY 876

[226] Simon Foucart. Hard thresholding pursuit: an algorithm for compressive sensing. SIAM

Journal on Numerical Analysis, 49(6):2543–2563, 2011.

[227] Roy Frostig, Rong Ge, Sham M. Kakade, and Aaron Sidford. Un-regularizing: approximate

proximal point and faster stochastic algorithms for empirical risk minimization. In 32nd

International Conference on Machine Learning (ICML), pages 2540–2548, 2015.

[228] Buddhima Gamlath, Sagar Kale, Slobodan Mitrovic, and Ola Svensson. Weighted matchings

via unweighted augmentations. In Proceedings of the 2019 ACM Symposium on Principles of

Distributed Computing, PODC 2019, Toronto, ON, Canada, July 29 - August 2, 2019, pages

491–500, 2019.

[229] Xuefeng Gao, Mert Gürbüzbalaban, and Lingjiong Zhu. Global convergence of stochastic

gradient hamiltonian monte carlo for non-convex stochastic optimization: Non-asymptotic

performance bounds and momentum-based acceleration. arXiv preprint arXiv:1809.04618,

2018.

[230] Yu Gao, Yang P. Liu, and Richard Peng. Fully dynamic electrical flows: Sparse maxflow faster

than goldberg-rao. In 62nd IEEE Annual Symposium on Foundations of Computer Science,

FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages 516–527. IEEE, 2021.

[231] Dan Garber and Elad Hazan. Sublinear time algorithms for approximate semidefinite pro-

gramming. Math. Program., 158(1-2):329–361, 2016.

[232] Dan Garber, Elad Hazan, and Tengyu Ma. Online learning of eigenvectors. In Proceedings of

the 32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July

2015, pages 560–568, 2015.

[233] Ankit Garg, Leonid Gurvits, Rafael Mendes de Oliveira, and Avi Wigderson. Operator scaling:

Theory and applications. Found. Comput. Math., 20(2):223–290, 2020.

[234] Ankit Garg and Rafael Oliveira. Recent progress on scaling algorithms and applications.

Bulletin of EATCS, 2(125), 2018.

[235] Rong Ge, Holden Lee, and Jianfeng Lu. Estimating normalizing constants for log-concave

distributions: algorithms and lower bounds. In Proccedings of the 52nd Annual ACM SIGACT

Symposium on Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages

579–586, 2020.

[236] Aude Genevay, Marco Cuturi, Gabriel Peyré, and Francis R. Bach. Stochastic optimization

for large-scale optimal transport. In Advances in Neural Information Processing Systems 29:

Annual Conference on Neural Information Processing Systems 2016, December 5-10, 2016,

Barcelona, Spain, pages 3432–3440, 2016.

BIBLIOGRAPHY 877

[237] Gauthier Gidel, Tony Jebara, and Simon Lacoste-Julien. Frank-Wolfe algorithms for saddle

point problems. In Proceedings of the 20th International Conference on Artificial Intelligence

and Statistics, 2017.

[238] András Gilyén, Seth Lloyd, and Ewin Tang. Quantum-inspired low-rank stochastic regression

with logarithmic dependence on the dimension. arXiv preprint arXiv:1811.04909, 2018.

[239] Wayne Goddard. Part 2: Greedy algorithms, dynamic programming, graph algorithms. In-

troduction to Algorithms, 2004.

[240] Ashish Goel, Michael Kapralov, and Sanjeev Khanna. On the communication and streaming

complexity of maximum bipartite matching. In Proceedings of the Twenty-Third Annual ACM-

SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012,

pages 468–485, 2012.

[241] Michel X. Goemans and David P. Williamson. Improved approximation algorithms for max-

imum cut and satisfiability problems using semidefinite programming. J. ACM, 42(6):1115–

1145, 1995.

[242] Andrew V. Goldberg and Satish Rao. Beyond the flow decomposition barrier. J. ACM,

45(5):783–797, 1998.

[243] Andrew V. Goldberg and Robert Endre Tarjan. Finding minimum-cost circulations by can-

celing negative cycles. J. ACM, 36(4):873–886, 1989.

[244] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil

Ozair, Aaron C. Courville, and Yoshua Bengio. Generative adversarial networks. Commun.

ACM, 63(11):139–144, 2020.

[245] Gramoz Goranci. Dynamic graph algorithms and graph sparsification: New techniques and

connections. CoRR, abs/1909.06413, 2019.

[246] Gramoz Goranci, Monika Henzinger, and Pan Peng. The power of vertex sparsifiers in dy-

namic graph algorithms. In Kirk Pruhs and Christian Sohler, editors, 25th Annual European

Symposium on Algorithms, ESA 2017, September 4-6, 2017, Vienna, Austria, volume 87 of

LIPIcs, pages 45:1–45:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.

[247] Gramoz Goranci, Monika Henzinger, and Pan Peng. Dynamic Effective Resistances and Ap-

proximate Schur Complement on Separable Graphs. In Yossi Azar, Hannah Bast, and Grzegorz

Herman, editors, 26th Annual European Symposium on Algorithms (ESA 2018), volume 112

of Leibniz International Proceedings in Informatics (LIPIcs), pages 40:1–40:15, Dagstuhl, Ger-

many, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

BIBLIOGRAPHY 878

[248] Gramoz Goranci, Harald Räcke, Thatchaphol Saranurak, and Zihan Tan. The expander hier-

archy and its applications to dynamic graph algorithms. In Dániel Marx, editor, Proceedings

of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference,

January 10 - 13, 2021, pages 2212–2228. SIAM, 2021.

[249] Rachel A. Gordon. Regression Analysis for the Social Sciences. Routledge, 2010.

[250] Fabrizio Grandoni, Stefano Leonardi, Piotr Sankowski, Chris Schwiegelshohn, and Shay

Solomon. (1+ ε)-approximate incremental matching in constant deterministic amortized time.

In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA

2019, San Diego, California, USA, January 6-9, 2019, pages 1886–1898, 2019.

[251] A. Greenbaum and G. H. Rodrigue. Optimal preconditioners of a given sparsity pattern. BIT

Numerical Mathematics, 29(4):610–634, 1989.

[252] William H. Greene. Econometric analysis. Prentice Hall, 1990.

[253] Michael D. Grigoriadis and Leonid G. Khachiyan. A sublinear-time randomized approximation

algorithm for matrix games. Operation Research Letters, 18(2):53–58, 1995.

[254] Marcus J. Grote and Thomas Huckle. Parallel preconditioning with sparse approximate in-

verses. SIAM Journal on Scientific Computing, 18(3):838–853, 1997.

[255] Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric Algorithms and Com-

binatorial Optimization, volume 2 of Algorithms and Combinatorics. Springer, 1988.

[256] Ming Gu and Stanley C. Eisenstat. A divide-and-conquer algorithm for the symmetric trida-

gional eigenproblem. SIAM Journal on Matrix Analysis and Applications, 16(1):172–191, 1995.

[257] Osman Güler. New proximal point algorithms for convex minimization. SIAM J. Optim.,

2(4):649–664, 1992.

[258] Manoj Gupta. Maintaining approximate maximum matching in an incremental bipartite graph

in polylogarithmic update time. In 34th International Conference on Foundation of Software

Technology and Theoretical Computer Science, FSTTCS 2014, December 15-17, 2014, New

Delhi, India, pages 227–239, 2014.

[259] Manoj Gupta and Richard Peng. Fully dynamic (1 + ε)-approximate matchings. In 54th

Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26-29 October,

2013, Berkeley, CA, USA, pages 548–557, 2013.

[260] Neha Gupta and Aaron Sidford. Exploiting numerical sparsity for efficient learning: faster

eigenvector computation and regression. In Advances in Neural Information Processing Sys-

tems, pages 5269–5278, 2018.

BIBLIOGRAPHY 879

[261] Venkatesan Guruswami and Krzysztof Onak. Superlinear lower bounds for multipass graph

processing. In Proceedings of the 28th Conference on Computational Complexity, CCC 2013,

K.lo Alto, California, USA, 5-7 June, 2013, pages 287–298, 2013.

[262] Maximilian Probst Gutenberg and Christian Wulff-Nilsen. Fully-dynamic all-pairs shortest

paths: Improved worst-case time and space bounds. In Shuchi Chawla, editor, Proceedings of

the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT,

USA, January 5-8, 2020, pages 2562–2574. SIAM, 2020.

[263] Frank R. Hampel, Elvezio M. Ronchetti, Peter J. Rousseeuw, and Werner A. Stahel. Ro-

bust Statistics: the Approach based on Influence Functions. Wiley Series in Probability and

Mathematical Statistics, 1986.

[264] Kathrin Hanauer, Monika Henzinger, and Christian Schulz. Recent advances in fully dynamic

graph algorithms. CoRR, abs/2102.11169, 2021.

[265] Filip Hanzely, Peter Richtarik, and Lin Xiao. Accelerated bregman proximal gradient methods

for relatively smooth convex optimization. arXiv e-prints, abs/1808.03045, 2018.

[266] Moritz Hardt. The zen of gradient descent. http://blog.mrtz.org/2013/09/07/the-zen-of-

gradient-descent.html, 2013. Accessed: 2018-07-30.

[267] Gilles Hargé. A convex/log-concave correlation inequality for gaussian measure and an appli-

cation to abstract wiener spaces. Probability theory and related fields, 130(3):415–440, 2004.

[268] Elad Hazan. Introduction to online convex optimization. Foundations and Trends in Opti-

mization, 2(3–4):157–325, 2016.

[269] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. A deterministic almost-

tight distributed algorithm for approximating single-source shortest paths. In Daniel Wichs

and Yishay Mansour, editors, Proceedings of the 48th Annual ACM SIGACT Symposium on

Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages 489–498.

ACM, 2016.

[270] Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Saranurak.

Unifying and strengthening hardness for dynamic problems via the online matrix-vector mul-

tiplication conjecture. In Proceedings of the Forty-Seventh Annual ACM on Symposium on

Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015, pages 21–30,

2015.

[271] J. Hiriart-Urruty and C. Lemaréchal. Convex Analysis and Minimization Algorithms I.

Springer, New York, 1993.

BIBLIOGRAPHY 880

[272] Marlis Hochbruck and Alexander Ostermann. Exponential integrators. Acta Numerica, 19:209–

286, 2010.

[273] Matthew D. Hoffman and Andrew Gelman. The no-u-turn sampler: adaptively setting path

lengths in hamiltonian monte carlo. J. Mach. Learn. Res., 15(1):1593–1623, 2014.

[274] John E. Hopcroft and Richard M. Karp. An n5/2 algorithm for maximum matchings in

bipartite graphs. SIAM J. Comput., 2(4):225–231, 1973.

[275] Samuel B Hopkins and Jerry Li. Mixture models, robustness, and sum of squares proofs. In

Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, pages

1021–1034, 2018.

[276] Ya-Ping Hsieh, Ali Kavis, Paul Rolland, and Volkan Cevher. Mirrored langevin dynamics.

In Advances in Neural Information Processing Systems 31: Annual Conference on Neural

Information Processing Systems 2018, NeurIPS 2018, 3-8 December 2018, Montréal, Canada,

pages 2883–2892, 2018.

[277] Yu-Guan Hsieh, Franck Iutzeler, Jérôme Malick, and Panayotis Mertikopoulos. On the con-

vergence of single-call stochastic extra-gradient methods. In Advances in Neural Information

Processing Systems 32 (NeurIPS), pages 6936–6946, 2019.

[278] Peter J Huber. Robust estimation of a location parameter. The Annals of Mathematical

Statistics, pages 73–101, 1964.

[279] Peter J Huber. Robust statistics, volume 523. John Wiley & Sons, 2004.

[280] Prateek Jain, Ambuj Tewari, and Purushottam Kar. On iterative hard thresholding methods

for high-dimensional m-estimation. In NIPS, 2014.

[281] Rahul Jain, Zhengfeng Ji, Sarvagya Upadhyay, and John Watrous. QIP = PSPACE. J. ACM,

58(6):30:1–30:27, 2011.

[282] Rahul Jain and Penghui Yao. A parallel approximation algorithm for positive semidefinite

programming. In IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS

2011, Palm Springs, CA, USA, October 22-25, 2011, pages 463–471, 2011.

[283] Rahul Jain and Penghui Yao. A parallel approximation algorithm for mixed packing and

covering semidefinite programs. CoRR, abs/1201.6090, 2012.

[284] Arun Jambulapati, Yujia Jin, Aaron Sidford, and Kevin Tian. Regularized box-simplex games

and dynamic decremental bipartite matching. In 49th International Colloquium on Automata,

Languages, and Programming (ICALP 2022), 2022.

BIBLIOGRAPHY 881

[285] Arun Jambulapati, Yin Tat Lee, Jerry Li, Swati Padmanabhan, and Kevin Tian. Positive

semidefinite programming: Mixed, parallel, and width-independent. In Proceedings of the

52nd Annual ACM SIGACT Symposium on Theory of Computing, 2020.

[286] Arun Jambulapati, Yin Tat Lee, Jerry Li, Swati Padmanabhan, and Kevin Tian. Positive

semidefinite programming: Mixed, parallel, and width-independent. CoRR, abs/2002.04830v3,

2021.

[287] Arun Jambulapati, Jerry Li, Christopher Musco, Aaron Sidford, and Kevin Tian. Fast and

near-optimal diagonal preconditioning. CoRR, abs/2008.01722, 2021.

[288] Arun Jambulapati, Jerry Li, Tselil Schramm, and Kevin Tian. Robust regression revisited:

Acceleration and improved estimation rates. In Marc’Aurelio Ranzato, Alina Beygelzimer,

Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan, editors, Advances in Neural

Information Processing Systems 34: Annual Conference on Neural Information Processing

Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pages 4475–4488, 2021.

[289] Arun Jambulapati, Jerry Li, and Kevin Tian. Robust sub-gaussian principal component anal-

ysis and width-independent schatten packing. In Advances in Neural Information Processing

Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS

2020, December 6-12, 2020, virtual, 2020.

[290] Arun Jambulapati, Yang P. Liu, and Aaron Sidford. Parallel reachability in almost linear

work and square root depth. In David Zuckerman, editor, 60th IEEE Annual Symposium on

Foundations of Computer Science, FOCS 2019, Baltimore, Maryland, USA, November 9-12,

2019, pages 1664–1686. IEEE Computer Society, 2019.

[291] Arun Jambulapati, Kirankumar Shiragur, and Aaron Sidford. Efficient structured matrix

recovery and nearly-linear time algorithms for solving inverse symmetric m-matrices. CoRR,

abs/1812.06295, 2018.

[292] Arun Jambulapati and Aaron Sidford. Ultrasparse ultrasparsifiers and faster laplacian system

solvers. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA

2021, Virtual Conference, January 10 - 13, 2021, pages 540–559, 2021.

[293] Arun Jambulapati, Aaron Sidford, and Kevin Tian. A direct tilde{O}(1/epsilon) iteration

parallel algorithm for optimal transport. In Advances in Neural Information Processing Sys-

tems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019,

8-14 December 2019, Vancouver, BC, Canada, pages 11355–11366, 2019.

[294] Mark Jerrum. Large cliques elude the metropolis process. Random Struct. Algorithms,

3(4):347–360, 1992.

BIBLIOGRAPHY 882

[295] He Jia, Aditi Laddha, Yin Tat Lee, and Santosh S. Vempala. Reducing isotropy and volume

to KLS: an o(n3ψ2) volume algorithm. CoRR, abs/2008.02146, 2020.

[296] Haotian Jiang, Yin Tat Lee, Zhao Song, and Sam Chiu-wai Wong. An improved cutting plane

method for convex optimization, convex-concave games, and its applications. In Konstantin

Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath, and Julia Chuzhoy, ed-

itors, Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing,

STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages 944–953. ACM, 2020.

[297] Chi Jin, Praneeth Netrapalli, and Michael I Jordan. Minmax optimization: Stable limit points

of gradient descent ascent are locally optimal. arXiv preprint arXiv:1902.00618, 2019.

[298] Yujia Jin and Aaron Sidford. Principal component projection and regression in nearly linear

time through asymmetric SVRG. In Advances in Neural Information Processing Systems 32:

Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December

8-14, 2019, Vancouver, BC, Canada, pages 3863–3873, 2019.

[299] Yujia Jin, Aaron Sidford, and Kevin Tian. Sharper rates for separable minimax and finite sum

optimization via primal-dual extragradient methods. CoRR, abs/2202.04640, 2022.

[300] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive vari-

ance reduction. In Advances in Neural Information Processing Systems 26 (NeurIPS), pages

315–323, 2013.

[301] Richard Jordan, David Kinderlehrer, and Felix Otto. The variational formulation of the fokker-

planck equation. SIAM Journal on Mathematical Analysis, 29(1):1–17, 1998.

[302] Anatoli Juditsky, Arkadi Nemirovski, and Claire Tauvel. Solving variational inequalities with

stochastic mirror-prox algorithm. Stochastic Systems, 1(1):17–58, 2011.

[303] Sham M. Kakade, Shai Shalev-Shwartz, and Ambuj Tewari. Applications of strong convexity–

strong smoothness duality to learning with matrices. arXiv e-prints, abs/0910.0610, 2009.

[304] Adam Tauman Kalai and Santosh S. Vempala. Efficient algorithms for online decision prob-

lems. J. Comput. Syst. Sci., 71(3):291–307, 2005.

[305] Sagar Kale and Sumedh Tirodkar. Maximum matching in two, three, and a few more passes

over graph streams. In Approximation, Randomization, and Combinatorial Optimization.

Algorithms and Techniques, APPROX/RANDOM 2017, August 16-18, 2017, Berkeley, CA,

USA, pages 15:1–15:21, 2017.

[306] Donggu Kang and James Payor. Flow rounding. CoRR, abs/1507.08139, 2015.

BIBLIOGRAPHY 883

[307] Ravindran Kannan, Hadi Salmasian, and Santosh S. Vempala. The spectral method for general

mixture models. SIAM J. Comput., 38(3):1141–1156, 2008.

[308] Michael Kapralov. Better bounds for matchings in the streaming model. In Proceedings of

the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, New

Orleans, Louisiana, USA, January 6-8, 2013, pages 1679–1697, 2013.

[309] Michael Kapralov. Space lower bounds for approximating maximum matching in the edge

arrival model. In Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms,

SODA 2021, 2021.

[310] Michael Kapralov, Sanjeev Khanna, and Madhu Sudan. Approximating matching size from

random streams. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Dis-

crete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages 734–751,

2014.

[311] Michael Kapralov, Yin Tat Lee, Cameron Musco, Christopher Musco, and Aaron Sidford.

Single pass spectral sparsification in dynamic streams. In 55th IEEE Annual Symposium on

Foundations of Computer Science, FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014,

pages 561–570, 2014.

[312] Michael Kapralov, Slobodan Mitrovic, Ashkan Norouzi-Fard, and Jakab Tardos. Space efficient

approximation to maximum matching size from uniform edge samples. In Proceedings of the

2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA,

January 5-8, 2020, pages 1753–1772, 2020.

[313] David R. Karger. Better random sampling algorithms for flows in undirected graphs. In Pro-

ceedings of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, 25-27 January

1998, San Francisco, California., pages 490–499, 1998.

[314] David R. Karger and Matthew S. Levine. Random sampling in residual graphs. In Proceed-

ings on 34th Annual ACM Symposium on Theory of Computing, May 19-21, 2002, Montréal,

Québec, Canada, pages 63–66, 2002.

[315] Sushrut Karmalkar, Adam R. Klivans, and Pravesh Kothari. List-decodable linear regression.

In Advances in Neural Information Processing Systems 32: Annual Conference on Neural

Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,

Canada, pages 7423–7432, 2019.

[316] Narendra Karmarkar. A new polynomial-time algorithm for linear programming. In Proceed-

ings of the sixteenth annual ACM symposium on Theory of computing, pages 302–311. ACM,

1984.

BIBLIOGRAPHY 884

[317] Jonathan Kelner, Frederic Koehler, Raghu Meka, and Dhruv Rohatgi. On the power of pre-

conditioning in sparse linear regression. arXiv preprint arXiv:2106.09207, 2021.

[318] Jonathan A. Kelner, Yin Tat Lee, Lorenzo Orecchia, and Aaron Sidford. An almost-linear-

time algorithm for approximate max flow in undirected graphs, and its multicommodity gen-

eralizations. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete

Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages 217–226, 2014.

[319] Jonathan A. Kelner, Jerry Li, Allen Liu, Aaron Sidford, and Kevin Tian. Semi-random sparse

recovery in nearly-linear time. CoRR, abs/2203.04002, 2022.

[320] Peter Kiss. Deterministic dynamic matching in worst-case update time. In Mark Braverman,

editor, 13th Innovations in Theoretical Computer Science Conference, ITCS 2022, January

31 - February 3, 2022, Berkeley, CA, USA, volume 215 of LIPIcs, pages 94:1–94:21. Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

[321] Adam R. Klivans, Pravesh K. Kothari, and Raghu Meka. Efficient algorithms for outlier-

robust regression. In Conference On Learning Theory, COLT 2018, Stockholm, Sweden, 6-9

July 2018, pages 1420–1430, 2018.

[322] Philip A. Knight, Daniel Ruiz, and Bora Uçar. A symmetry preserving algorithm for matrix

scaling. SIAM Journal on Matrix Analysis and Applications, 35(3):931–955, 2014.

[323] O Kolossoski and Renato DC Monteiro. An accelerated non-Euclidean hybrid proximal

extragradient-type algorithm for convex-concave saddle-point problems. Optimization Methods

and Software, 32(6):1244–1272, 2017.

[324] Vladimir Koltchinskii and Stanislav Minsker. l1-penalization in functional linear regression

with subgaussian design. Journal de l’Ecole polytechnique-Mathématiques, 1:269–330, 2014.

[325] Christian Konrad. Maximum matching in turnstile streams. In Algorithms - ESA 2015 - 23rd

Annual European Symposium, Patras, Greece, September 14-16, 2015, Proceedings, pages 840–

852, 2015.

[326] Christian Konrad. A simple augmentation method for matchings with applications to stream-

ing algorithms. In 43rd International Symposium on Mathematical Foundations of Computer

Science, MFCS 2018, August 27-31, 2018, Liverpool, UK, pages 74:1–74:16, 2018.

[327] Christian Konrad, Frédéric Magniez, and Claire Mathieu. Maximum matching in semi-

streaming with few passes. In Approximation, Randomization, and Combinatorial Optimiza-

tion. Algorithms and Techniques - 15th International Workshop, APPROX 2012, and 16th

International Workshop, RANDOM 2012, Cambridge, MA, USA, August 15-17, 2012. Pro-

ceedings, pages 231–242, 2012.

BIBLIOGRAPHY 885

[328] Tsvi Kopelowitz, Seth Pettie, and Ely Porat. Higher lower bounds from the 3sum conjecture.

In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms,

SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 1272–1287, 2016.

[329] G. M. Korpelevich. An extragradient method for finding saddle points and for other problems.

Ekonomika i Matematicheskie Metody, 12(4):747–756, 1976.

[330] Pravesh K Kothari, Jacob Steinhardt, and David Steurer. Robust moment estimation and

improved clustering via sum of squares. In Proceedings of the 50th Annual ACM SIGACT

Symposium on Theory of Computing, pages 1035–1046, 2018.

[331] Ioannis Koutis, Gary L. Miller, and Richard Peng. Approaching optimality for solving SDD

linear systems. In 51th Annual IEEE Symposium on Foundations of Computer Science, FOCS

2010, October 23-26, 2010, Las Vegas, Nevada, USA, pages 235–244, 2010.

[332] Dmitry Kovalev, Alexander V. Gasnikov, and Peter Richtárik. Accelerated primal-dual gra-

dient method for smooth and convex-concave saddle-point problems with bilinear coupling.

arXiv e-prints, abs/2112.15199, 2021.

[333] Dmitry Kovalev, Adil Salim, and Peter Richtárik. Optimal and practical algorithms for smooth

and strongly convex decentralized optimization. In Advances in Neural Information Processing

Systems 33 (NeurIPS), pages 18342–18352, 2020.

[334] Hendrik Anthony Kramers. Brownian motion in a field of force and the diffusion model of

chemical reactions. Physica, 7(4):284–304, 1940.

[335] Gitta Kutyniok. Theory and applications of compressed sensing. GAMM-Mitteilungen,

36(1):79–101, 2013.

[336] Nathaniel Lahn, Deepika Mulchandani, and Sharath Raghvendra. A graph theoretic additive

approximation of optimal transport. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelz-

imer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Advances in Neural

Information Processing Systems 32: Annual Conference on Neural Information Processing

Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pages 13813–

13823, 2019.

[337] Kevin A Lai, Anup B Rao, and Santosh Vempala. Agnostic estimation of mean and covariance.

In 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS), pages

665–674. IEEE, 2016.

[338] Guanghui Lan, Zhize Li, and Yi Zhou. A unified variance-reduced accelerated gradient method

for convex optimization. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence

BIBLIOGRAPHY 886

d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Advances in Neural Information

Processing Systems 32 (NeurIPS), pages 10462–10472, 2019.

[339] Cornelius Lanczos. An iteration method for the solution of the eigenvalue problem of linear

differential and integral operators. Journal of Research of the National Bureau of Standards,

45(4), 1950.

[340] Béatrice Laurent and Pascal Massart. Adaptive estimation of a quadratic functional by model

selection. The Annals of Statistics, 28(5):1302–1338, 2000.

[341] Michel Ledoux. Concentration of measure and logarithmic Sobolev inequalities. Seminaire de

probabilities XXXIII, 1999.

[342] Yin Tat Lee. Lecture 8: Stochastic methods and applications. Class notes, UW CSE 599:

Interplay between Convex Optimization and Geometry, 2018.

[343] Yin Tat Lee, Satish Rao, and Nikhil Srivastava. A new approach to computing maximum

flows using electrical flows. In Symposium on Theory of Computing Conference, STOC’13,

Palo Alto, CA, USA, June 1-4, 2013, pages 755–764, 2013.

[344] Yin Tat Lee, Ruoqi Shen, and Kevin Tian. Logsmooth gradient concentration and tighter

runtimes for metropolized hamiltonian monte carlo. In Conference on Learning Theory, COLT

2020, 2020.

[345] Yin Tat Lee, Ruoqi Shen, and Kevin Tian. Lower bounds on metropolized sampling meth-

ods for well-conditioned distributions. In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N.

Dauphin, Percy Liang, and Jennifer Wortman Vaughan, editors, Advances in Neural Infor-

mation Processing Systems 34: Annual Conference on Neural Information Processing Systems

2021, NeurIPS 2021, December 6-14, 2021, virtual, pages 18812–18824, 2021.

[346] Yin Tat Lee, Ruoqi Shen, and Kevin Tian. Structured logconcave sampling with a restricted

gaussian oracle. In Mikhail Belkin and Samory Kpotufe, editors, Conference on Learning

Theory, COLT 2021, 15-19 August 2021, Boulder, Colorado, USA, volume 134 of Proceedings

of Machine Learning Research, pages 2993–3050. PMLR, 2021.

[347] Yin Tat Lee and Aaron Sidford. Efficient accelerated coordinate descent methods and faster

algorithms for solving linear systems. In 54th Annual IEEE Symposium on Foundations of

Computer Science (FOCS), pages 147–156, 2013.

[348] Yin Tat Lee and Aaron Sidford. Path finding methods for linear programming: Solving

linear programs in õ(vrank) iterations and faster algorithms for maximum flow. In 55th IEEE

Annual Symposium on Foundations of Computer Science, FOCS 2014, Philadelphia, PA, USA,

October 18-21, 2014, pages 424–433, 2014.

BIBLIOGRAPHY 887

[349] Yin Tat Lee and Aaron Sidford. Efficient inverse maintenance and faster algorithms for linear

programming. In IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS

2015, Berkeley, CA, USA, 17-20 October, 2015, pages 230–249, 2015.

[350] Yin Tat Lee, Aaron Sidford, and Sam Chiu-wai Wong. A faster cutting plane method and

its implications for combinatorial and convex optimization. In Venkatesan Guruswami, editor,

IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS 2015, Berkeley,

CA, USA, 17-20 October, 2015, pages 1049–1065. IEEE Computer Society, 2015.

[351] Yin Tat Lee, Zhao Song, and Santosh S. Vempala. Algorithmic theory of odes and sampling

from well-conditioned logconcave densities. CoRR, abs/1812.06243, 2018.

[352] Yin Tat Lee, Zhao Song, and Qiuyi Zhang. Solving empirical risk minimization in the current

matrix multiplication time. In Conference on Learning Theory, COLT 2019, 25-28 June 2019,

Phoenix, AZ, USA, pages 2140–2157, 2019.

[353] Yin Tat Lee and He Sun. An sdp-based algorithm for linear-sized spectral sparsification. In

Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC

2017, Montreal, QC, Canada, June 19-23, 2017, pages 678–687, 2017.

[354] David Asher Levin, Yuval Peres, and Elizabeth Wilmer. Markov Chains and Mixing Times.

American Mathematical Society, 2009.

[355] Shlomo Levy and Peter K Fullagar. Reconstruction of a sparse spike train from a portion of

its spectrum and application to high-resolution deconvolution. Geophysics, 46(9):1235–1243,

1981.

[356] Adrian Lewis. Convex analysis on the hermitian matrices. SIAM Journal on Optimization,

6(0):164–177, 1996.

[357] Adrian Lewis and Hristo S. Sendov. Twice differentiable spectral functions. SIAM Journal on

Matrix Analysis and Applications, 23(0):368–386, 2001.

[358] Jason Li. Faster parallel algorithm for approximate shortest path. In Konstantin Makarychev,

Yury Makarychev, Madhur Tulsiani, Gautam Kamath, and Julia Chuzhoy, editors, Proccedings

of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, Chicago,

IL, USA, June 22-26, 2020, pages 308–321. ACM, 2020.

[359] Jerry Li and Guanghao Ye. Robust gaussian covariance estimation in nearly-matrix multipli-

cation time. In Advances in Neural Information Processing Systems 33: Annual Conference

on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual,

2020.

BIBLIOGRAPHY 888

[360] Jerry Zheng Li. Principled approaches to robust machine learning and beyond. PhD thesis,

Massachusetts Institute of Technology, 2018.

[361] Jun Z. Li, Devin M. Absher, Hua Tang, Audrey M. Southwick, Amanda M. Casto, Sohini

Ramachandran, Howard M. Cann, Gregory S. Barsh, Marcus Feldman, Luigi L. Cavalli-Sforza,

and Richard M. Myers. Worldwide human relationships inferred from genome-wide patterns

of variation. Science, 319:1100–1104, 2008.

[362] Mu Li, Gary L. Miller, and Richard Peng. Iterative row sampling. In 54th Annual IEEE

Symposium on Foundations of Computer Science, FOCS 2013, 26-29 October, 2013, Berkeley,

CA, USA, pages 127–136, 2013.

[363] Henry Lin. Reducing directed max flow to undirected max flow. Unpublished Manuscript,

2009.

[364] Hongzhou Lin, Julien Mairal, and Zäıd Harchaoui. A universal catalyst for first-order optimiza-

tion. In Advances in Neural Information Processing Systems 28 (NeurIPS), pages 3384–3392,

2015.

[365] Tianyi Lin, Nhat Ho, and Michael I Jordan. On the acceleration of the sinkhorn and greenkhorn

algorithms for optimal transport. arXiv preprint arXiv:1906.01437, 2019.

[366] Tianyi Lin, Chi Jin, and Michael I. Jordan. Near-optimal algorithms for minimax optimization.

In 33rd Annual Conference on Computational Learning Theory (COLT), pages 2738–2779,

2020.

[367] Nathan Linial, Alex Samorodnitsky, and Avi Wigderson. A deterministic strongly polynomial

algorithm for matrix scaling and approximate permanents. In Proceedings of the Thirtieth

Annual ACM Symposium on the Theory of Computing, Dallas, Texas, USA, May 23-26, 1998,

pages 644–652, 1998.

[368] S. Cliff Liu, Zhao Song, and Hengjie Zhang. Breaking the n-pass barrier: A streaming algorithm

for maximum weight bipartite matching. CoRR, abs/2009.06106, 2020.

[369] Oren E. Livne and Gene H. Golub. Scaling by binormalization. Numerical Algorithms,

35(1):97–120, 2004.

[370] László Lovász and Santosh Vempala. Simulated annealing in convex bodies and an o*(n4)

volume algorithm. Journal of Computer and System Sciences, 72(2):392–417, 2006.

[371] László Lovász and Santosh S. Vempala. Fast algorithms for logconcave functions: Sampling,

rounding, integration and optimization. In 47th Annual IEEE Symposium on Foundations of

Computer Science (FOCS 2006), 21-24 October 2006, Berkeley, California, USA, Proceedings,

pages 57–68, 2006.

BIBLIOGRAPHY 889

[372] László Lovász and Santosh S. Vempala. Hit-and-run from a corner. SIAM J. Comput.,

35(4):985–1005, 2006.

[373] László Lovász and Santosh S. Vempala. The geometry of logconcave functions and sampling

algorithms. Random Struct. Algorithms, 30(3):307–358, 2007.

[374] Haihao Lu. “relative-continuity” for non-lipschitz non-smooth convex optimization using

stochastic (or deterministic) mirror descent. INFORMS Journal on Optimization, pages 288–

303, 2019.

[375] Haihao Lu, Robert M. Freund, and Yurii E. Nesterov. Relatively smooth convex optimization

by first-order methods, and applications. SIAM J. Optim., 28(1):333–354, 2018.

[376] Aleksander Madry. Fast approximation algorithms for cut-based problems in undirected

graphs. In 51th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2010,

October 23-26, 2010, Las Vegas, Nevada, USA, pages 245–254, 2010.

[377] Aleksander Madry. Navigating central path with electrical flows: From flows to matchings,

and back. In 54th Annual IEEE Symposium on Foundations of Computer Science, FOCS

2013, 26-29 October, 2013, Berkeley, CA, USA, pages 253–262, 2013.

[378] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian

Vladu. Towards deep learning models resistant to adversarial attacks. In 6th International

Conference on Learning Representations (ICLR), 2018.

[379] Michael W. Mahoney, Satish Rao, Di Wang, and Peng Zhang. Approximating the solution to

mixed packing and covering lps in parallel o~(epsilonˆ{-3}) time. In 43rd International Col-

loquium on Automata, Languages, and Programming, ICALP 2016, July 11-15, 2016, Rome,

Italy, pages 52:1–52:14, 2016.

[380] Konstantin Makarychev, Yury Makarychev, and Aravindan Vijayaraghavan. Approximation

algorithms for semi-random partitioning problems. In Proceedings of the forty-fourth annual

ACM symposium on Theory of computing, pages 367–384, 2012.

[381] Arian Maleki and David L Donoho. Optimally tuned iterative reconstruction algorithms for

compressed sensing. IEEE Journal of Selected Topics in Signal Processing, 4(2):330–341, 2010.

[382] Stéphane G Mallat and Zhifeng Zhang. Matching pursuits with time-frequency dictionaries.

IEEE Transactions on signal processing, 41(12):3397–3415, 1993.

[383] Oren Mangoubi and Aaron Smith. Mixing of hamiltonian monte carlo on strongly log-concave

distributions 2: Numerical integrators. In The 22nd International Conference on Artificial

Intelligence and Statistics, AISTATS 2019, 16-18 April 2019, Naha, Okinawa, Japan, pages

586–595, 2019.

BIBLIOGRAPHY 890

[384] Oren Mangoubi and Nisheeth K. Vishnoi. Dimensionally tight bounds for second-order hamil-

tonian monte carlo. In Advances in Neural Information Processing Systems 31: Annual Con-

ference on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018,

Montréal, Canada, pages 6030–6040, 2018.

[385] Jelena Marasevic, Clifford Stein, and Gil Zussman. A fast distributed stateless algorithm for

alpha-fair packing problems. In 43rd International Colloquium on Automata, Languages, and

Programming, ICALP 2016, July 11-15, 2016, Rome, Italy, pages 54:1–54:15, 2016.

[386] Pascal Massart and Élodie Nédélec. Risk bounds for statistical learning. The Annals of

Statistics, 34(5):2326–2366, 2006.

[387] Andrew McGregor. Finding graph matchings in data streams. In Approximation, Randomiza-

tion and Combinatorial Optimization, Algorithms and Techniques, 8th International Workshop

on Approximation Algorithms for Combinatorial Optimization Problems, APPROX 2005 and

9th InternationalWorkshop on Randomization and Computation, RANDOM 2005, Berkeley,

CA, USA, August 22-24, 2005, Proceedings, pages 170–181, 2005.

[388] Andrew McGregor. Graph stream algorithms: a survey. SIGMOD Rec., 43(1):9–20, 2014.

[389] Andrew McGregor and Sofya Vorotnikova. A simple, space-efficient, streaming algorithm for

matchings in low arboricity graphs. In 1st Symposium on Simplicity in Algorithms, SOSA

2018, January 7-10, 2018, New Orleans, LA, USA, pages 14:1–14:4, 2018.

[390] Michela Meister and Gregory Valiant. A data prism: Semi-verified learning in the small-alpha

regime. In Conference On Learning Theory, pages 1530–1546. PMLR, 2018.

[391] Panayotis Mertikopoulos, Bruno Lecouat, Houssam Zenati, Chuan-Sheng Foo, Vijay Chan-

drasekhar, and Georgios Piliouras. Optimistic mirror descent in saddle-point problems: Going

the extra (gradient) mile. In 7th International Conference on Learning Representations, ICLR

2019, New Orleans, LA, USA, May 6-9, 2019, 2019.

[392] Gérard Meurant. The Lanczos and Conjugate Gradient Algorithms: From Theory to Finite

Precision Computations. Society for Industrial and Applied Mathematics, 2006.

[393] Marvin Minsky and Seymour Papert. Perceptrons—an introduction to computational geometry.

MIT Press, 1987.

[394] Konstantin Mishchenko, Dmitry Kovalev, Egor Shulgin, Peter Richtárik, and Yura Malitsky.

Revisiting stochastic extragradient. arXiv preprint arXiv:1905.11373, 2019.

BIBLIOGRAPHY 891

[395] Hesameddin Mohammadi, Meisam Razaviyayn, and Mihailo R. Jovanovic. Performance of

noisy nesterov’s accelerated method for strongly convex optimization problems. In 2019 Amer-

ican Control Conference, ACC 2019, Philadelphia, PA, USA, July 10-12, 2019, pages 3426–

3431, 2019.

[396] Ankur Moitra. What does robustness say about algorithms. ICML ’17 Tutorial, 2017.

[397] Ankur Moitra, Amelia Perry, and Alexander S Wein. How robust are reconstruction thresholds

for community detection? In Proceedings of the forty-eighth annual ACM symposium on

Theory of Computing, pages 828–841, 2016.

[398] Aryan Mokhtari, Asuman Ozdaglar, and Sarath Pattathil. A unified analysis of extra-gradient

and optimistic gradient methods for saddle point problems: Proximal point approach. arXiv

preprint arXiv:1901.08511, 2019.

[399] Cleve B. Moler and Charles Van Loan. Nineteen dubious ways to compute the exponential of

a matrix, twenty-five years later. SIAM Review, 45(1):3–49, 2003.

[400] Renato D. C. Monteiro and Benar Fux Svaiter. An accelerated hybrid proximal extragradient

method for convex optimization and its implications to second-order methods. SIAM J. Optim.,

23(2):1092–1125, 2013.

[401] Wenlong Mou, Nicolas Flammarion, Martin J. Wainwright, and Peter L. Bartlett. An efficient

sampling algorithm for non-smooth composite potentials. CoRR, abs/1910.00551, 2019.

[402] Wenlong Mou, Yi-An Ma, Martin J. Wainwright, Peter L. Bartlett, and Michael I. Jordan.

High-order langevin diffusion yields an accelerated MCMC algorithm. CoRR, abs/1908.10859,

2019.

[403] Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

[404] Cameron Musco and Christopher Musco. Randomized block krylov methods for stronger

and faster approximate singular value decomposition. In Advances in Neural Information

Processing Systems 28: Annual Conference on Neural Information Processing Systems 2015,

December 7-12, 2015, Montreal, Quebec, Canada, pages 1396–1404, 2015.

[405] Cameron Musco, Christopher Musco, and Aaron Sidford. Stability of the lanczos method

for matrix function approximation. In Artur Czumaj, editor, Proceedings of the Twenty-Ninth

Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA,

January 7-10, 2018, pages 1605–1624. SIAM, 2018.

[406] Tigran Nagapetyan, Andrew B Duncan, Leonard Hasenclever, Sebastian J Vollmer, Lukasz

Szpruch, and Konstantinos Zygalakis. The true cost of stochastic gradient langevin dynamics.

arXiv preprint arXiv:1706.02692, 2017.

BIBLIOGRAPHY 892

[407] Hongseok Namkoong and John C Duchi. Stochastic gradient methods for distributionally

robust optimization with f-divergences. In Advances in Neural Information Processing Systems,

pages 2208–2216, 2016.

[408] Danupon Nanongkai, Thatchaphol Saranurak, and Christian Wulff-Nilsen. Dynamic minimum

spanning forest with subpolynomial worst-case update time. In Chris Umans, editor, 58th

IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA,

USA, October 15-17, 2017, pages 950–961. IEEE Computer Society, 2017.

[409] Radford M Neal. Mcmc using hamiltonian dynamics. Handbook of Markov chain Monte Carlo,

2(11):2, 2011.

[410] Deanna Needell and Joel A Tropp. Cosamp: Iterative signal recovery from incomplete and

inaccurate samples. Applied and computational harmonic analysis, 26(3):301–321, 2009.

[411] Deanna Needell and Roman Vershynin. Signal recovery from incomplete and inaccurate mea-

surements via regularized orthogonal matching pursuit. IEEE Journal of selected topics in

signal processing, 4(2):310–316, 2010.

[412] Sahand N Negahban, Pradeep Ravikumar, Martin J Wainwright, and Bin Yu. A unified frame-

work for high-dimensional analysis of m-estimators with decomposable regularizers. Statistical

science, 27(4):538–557, 2012.

[413] Christopher Nemeth and Paul Fearnhead. Stochastic gradient markov chain monte carlo. arXiv

preprint arXiv:1907.06986, 2019.

[414] A. Nemirovski and D.B̃. Yudin. Problem Complexity and Method Efficiency in Optimization.

Wiley, 1983.

[415] Arkadi Nemirovski. Prox-method with rate of convergence O(1/t) for variational inequali-

ties with lipschitz continuous monotone operators and smooth convex-concave saddle point

problems. SIAM Journal on Optimization, 15(1):229–251, 2004.

[416] Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alexander Shapiro. Robust stochas-

tic approximation approach to stochastic programming. SIAM Journal on optimization,

19(4):1574–1609, 2009.

[417] Yurii Nesterov. A method for solving a convex programming problem with convergence rate

O(1/k2). Doklady AN SSSR, 269:543–547, 1983.

[418] Yurii Nesterov. Introductory Lectures on Convex Optimization: A Basic Course, volume I.

Springer, 2003.

BIBLIOGRAPHY 893

[419] Yurii Nesterov. Smooth minimization of non-smooth functions. Math. Program., 103(1):127–

152, 2005.

[420] Yurii Nesterov. Dual extrapolation and its applications to solving variational inequalities and

related problems. Math. Program., 109(2-3):319–344, 2007.

[421] Yurii Nesterov. Smoothing technique and its applications in semidefinite optimization. Math-

ematical Programming, Series A, 110:245–259, 2007.

[422] Yurii Nesterov. Primal-dual subgradient methods for convex problems. Math. Program.,

120(1):261–283, 2009.

[423] Yurii Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems.

SIAM Journal on Optimization, 22(2):341–362, 2012.

[424] Yurii Nesterov and Arkadi Nemirovski. Interior-Point Polynomial Algorithms in Convex Pro-

gramming. Society for Industrial and Applied Mathematics, 1994.

[425] Yurii E. Nesterov and Sebastian U. Stich. Efficiency of the accelerated coordinate descent

method on structured optimization problems. SIAM J. Optim., 27(1):110–123, 2017.

[426] John Von Neumann. Zur theorie der gesellschaftsspiele. Mathematische Annalen, 100:295–320,

1928.

[427] Jiazhong Nie, Wojciech Kotlowski, and Manfred K. Warmuth. Online PCA with optimal

regrets. In Sanjay Jain, Rémi Munos, Frank Stephan, and Thomas Zeugmann, editors, Algo-

rithmic Learning Theory - 24th International Conference, ALT 2013, Singapore, October 6-9,

2013. Proceedings, volume 8139 of Lecture Notes in Computer Science, pages 98–112. Springer,

2013.

[428] F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W.

Clark, B. V. Saunders B. R. Mille and, H. S. Cohl, and eds. M. A. McClain. Nist digital library

of mathematical functions, 2020.

[429] Lorenzo Orecchia, Sushant Sachdeva, and Nisheeth K. Vishnoi. Approximating the expo-

nential, the lanczos method and an õ(m)-time spectral algorithm for balanced separator. In

Proceedings of the 44th Symposium on Theory of Computing Conference, STOC 2012, New

York, NY, USA, May 19 - 22, 2012, pages 1141–1160, 2012.

[430] Felix Otto and Cédric Villani. Generalization of an inequality by talagrand and links with the

logarithmic sobolev inequality. Journal of Functional Analysis, 173(2):361–400, 2000.

[431] Yuyuan Ouyang and Yangyang Xu. Lower complexity bounds of first-order methods for convex-

concave bilinear saddle-point problems. Mathematical Programming, 2019.

BIBLIOGRAPHY 894

[432] Balamurugan Palaniappan and Francis R. Bach. Stochastic variance reduction methods for

saddle-point problems. In Advances in Neural Information Processing Systems 29 (NeurIPS),

pages 1408–1416, 2016.

[433] Victor Y. Pan and Zhao Q. Chen. The complexity of the matrix eigenproblem. In Proceedings

of the 31st Annual ACM SIGACT Symposium on Theory of Computing, STOC 1999, 1999.

[434] Victor M. Panaretos and Yoav Zemel. Amplitude and phase variation of point processes.

Annals of Statistics, 44(2):771–812, 2016.

[435] Neal Parikh and Stephen P. Boyd. Proximal algorithms. Found. Trends Optim., 1(3):127–239,

2014.

[436] Peristera Paschou, Jamey Lewis, Asif Javed, and Petros Drineas. Ancestry informative markers

for fine-scale individual assignment to worldwide populations. J Med Genet., 47(12):835–847,

2010.

[437] Yagyensh Chandra Pati, Ramin Rezaiifar, and Perinkulam Sambamurthy Krishnaprasad. Or-

thogonal matching pursuit: Recursive function approximation with applications to wavelet

decomposition. In Proceedings of 27th Asilomar conference on signals, systems and comput-

ers, pages 40–44. IEEE, 1993.

[438] Seth Patinkin. Method, apparatus, and system for clustering and classification, August 30

2011. US Patent 8,010,466.

[439] Ami Paz and Gregory Schwartzman. A (2 + ε)-approximation for maximum weight matching

in the semi-streaming model. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Sym-

posium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January

16-19, pages 2153–2161, 2017.

[440] Karl Pearson. Contributions to the mathematical theory of evolution. Philosophical Transac-

tions of the Royal Society of London, 185:71–110, 1894.

[441] Richard Peng. Approximate undirected maximum flows in O(mpolylog(n)) time. In Proceed-

ings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA

2016, Arlington, VA, USA, January 10-12, 2016, pages 1862–1867, 2016.

[442] Richard Peng, Kanat Tangwongsan, and Peng Zhang. Faster and simpler width-independent

parallel algorithms for positive semidefinite programming. CoRR, abs/1201.5135, 2016.

[443] Marcelo Pereyra. Proximal markov chain monte carlo algorithms. Stat. Comput., 26(4):745–

760, 2016.

BIBLIOGRAPHY 895

[444] Marcelo Alejandro Pereyra, Philip Schniter, Emilie Chouzenoux, Jean-Christophe Pesquet,

Jean-Yves Tourneret, Alfred O. Hero, and Steve McLaughlin. A survey of stochastic simulation

and optimization methods in signal processing. IEEE Journal on Selected Topics in Signal

Processing, 10(2):224–241, 2015.

[445] Giorgio Pini and Giuseppe Gambolati. Is a simple diagonal scaling the best preconditioner for

conjugate gradients on supercomputers? Advances in Water Resources, 13(3):147–153, 1990.

[446] Luisa F Polania, Rafael E Carrillo, Manuel Blanco-Velasco, and Kenneth E Barner. Exploiting

prior knowledge in compressed sensing wireless ecg systems. IEEE journal of Biomedical and

Health Informatics, 19(2):508–519, 2014.

[447] Adarsh Prasad, Arun Sai Suggala, Sivaraman Balakrishnan, and Pradeep Ravikumar. Robust

estimation via robust gradient estimation. Journal of the Royal Statistical Society, Series B

(Methodological), 82(3):601–627, 2020.

[448] Zhaonan Qu, Yinyu Ye, and Zhengyuan Zhou. Diagonal preconditioning: Theory and algo-

rithms. arXiv:2003.07545, 2020.

[449] Zheng Qu and Peter Richtárik. Coordinate descent with arbitrary sampling I: algorithms and

complexity. Optimization Methods and Software, 31(5):829–857, 2016.

[450] Kent Quanrud. Approximating optimal transport with linear programs. In 2nd Symposium

on Simplicity in Algorithms, SOSA@SODA 2019, January 8-9, 2019 - San Diego, CA, USA,

pages 6:1–6:9, 2019.

[451] Hamed Rahimian and Sanjay Mehrotra. Distributionally robust optimization: A review. arXiv

e-prints, abs/1908.05659, 2019.

[452] Alexander Rakhlin and Karthik Sridharan. Optimization, learning, and games with predictable

sequences. In Advances in Neural Information Processing Systems 26: 27th Annual Conference

on Neural Information Processing Systems 2013. Proceedings of a meeting held December 5-8,

2013, Lake Tahoe, Nevada, United States, pages 3066–3074, 2013.

[453] Garvesh Raskutti, Martin J Wainwright, and Bin Yu. Restricted eigenvalue properties for

correlated gaussian designs. The Journal of Machine Learning Research, 11:2241–2259, 2010.

[454] Oded Regev and Aravindan Vijayaraghavan. On learning mixtures of well-separated gaussians.

In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), pages

85–96. IEEE, 2017.

[455] Peter Richtárik and Martin Takáč. On optimal probabilities in stochastic coordinate descent

methods. Optimization Letters, 10(6):1233–1243, 2016.

BIBLIOGRAPHY 896

[456] Philippe Rigollet and Jan-Christian Hütter. High-Dimensional Statistics. 2017.

[457] Gareth O Roberts and Richard L Tweedie. Exponential convergence of langevin distributions

and their discrete approximations. Bernoulli, 2(4):341–363, 1996.

[458] R.T̃yrell Rockafellar. Convex Analysis. Princeton University Press, 1970.

[459] R Tyrell Rockafellar. Monotone operators and the proximal point algorithm. SIAM journal

on control and optimization, 14(5):877–898, 1976.

[460] R Tyrrell Rockafellar. Monotone operators associated with saddle-functions and minimax

problems. Nonlinear functional analysis, 18(part 1):397–407, 1970.

[461] Noah A. Rosenberg, Jonathan K. Pritchard, James L. Weber, Howard M. Cann, Kenneth K.

Kidd, Lev A. Zhivotovsky, and Marcus W. Feldman. Genetic structure of human populations.

Science, 298:2381–2385, 2002.

[462] Mark Rudelson and Roman Vershynin. Sparse reconstruction by convex relaxation: Fourier

and gaussian measurements. In 2006 40th Annual Conference on Information Sciences and

Systems, pages 207–212. IEEE, 2006.

[463] Mark Rudelson and Roman Vershynin. The smallest singular value of a random rectangular

matrix. Communications on Pure and Applied Mathematics, 62(12):1707–1739, 2009.

[464] Daniel Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, and Zheng Wen. A tutorial

on thompson sampling. Found. Trends Mach. Learn., 11(1):1–96, 2018.

[465] Yousef Saad. Analysis of some krylov subspace approximations to the matrix exponential

operator. SIAM Journal on Numerical Analysis, 29(1):209–228, 1992.

[466] Sushant Sachdeva and Nisheeth K. Vishnoi. Faster algorithms via approximation theory.

Foundations and Trends in Theoretical Computer Science, 9(2):125–210, 2014.

[467] Adil Salim, Dmitry Koralev, and Peter Richtárik. Stochastic proximal langevin algorithm:

Potential splitting and nonasymptotic rates. In Advances in Neural Information Processing

Systems, pages 6653–6664, 2019.

[468] Piotr Sankowski. Maximum weight bipartite matching in matrix multiplication time. Theor.

Comput. Sci., 410(44):4480–4488, 2009.

[469] Fadil Santosa and William W Symes. Linear inversion of band-limited reflection seismograms.

SIAM Journal on Scientific and Statistical Computing, 7(4):1307–1330, 1986.

[470] Shibani Santurkar, Dimitris Tsipras, and Aleksander Madry. Breeds: Benchmarks for subpop-

ulation shift. arXiv preprint arXiv:2008.04859, 2020.

BIBLIOGRAPHY 897

[471] Ludwig Schmidt. Algorithms above the noise floor. PhD thesis, Massachusetts Institute of

Technology, 2018.

[472] Mark W. Schmidt, Nicolas Le Roux, and Francis R. Bach. Minimizing finite sums with the

stochastic average gradient. Math. Program., 162(1-2):83–112, 2017.

[473] Shai Shalev-Shwartz. Online learning: Theory, algorithms, and applications. PhD thesis,

Hebrew University, 2007.

[474] Shai Shalev-Shwartz et al. Online learning and online convex optimization. Foundations and

Trends in Machine Learning, 4(2):107–194, 2012.

[475] Shai Shalev-Shwartz and Ambuj Tewari. Stochastic methods for `1-regularized loss minimiza-

tion. Journal of Machine Learning Research, 12:1865–1892, 2011.

[476] Shai Shalev-Shwartz and Yonatan Wexler. Minimizing the maximal loss: How and why. In

ICML, pages 793–801, 2016.

[477] Shai Shalev-Shwartz and Tong Zhang. Stochastic dual coordinate ascent methods for regular-

ized loss. J. Mach. Learn. Res., 14(1):567–599, 2013.

[478] Shai Shalev-Shwartz and Tong Zhang. Accelerated proximal stochastic dual coordinate ascent

for regularized loss minimization. Math. Program., 155(1-2):105–145, 2016.

[479] R. Sharathkumar and Pankaj K. Agarwal. A near-linear time ε-approximation algorithm for

geometric bipartite matching. In Proceedings of the 44th Symposium on Theory of Computing

Conference, STOC 2012, New York, NY, USA, May 19 - 22, 2012, pages 385–394, 2012.

[480] Ruoqi Shen and Yin Tat Lee. The randomized midpoint method for log-concave sampling. In

Advances in Neural Information Processing Systems, pages 2100–2111, 2019.

[481] Ruoqi Shen, Kevin Tian, and Yin Tat Lee. Composite logconcave sampling with a restricted

gaussian oracle. CoRR, abs/2006.05976, 2020.

[482] Jonah Sherman. Nearly maximum flows in nearly linear time. In 54th Annual IEEE Symposium

on Foundations of Computer Science, FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA,

pages 263–269, 2013.

[483] Jonah Sherman. Area-convexity, l∞ regularization, and undirected multicommodity flow. In

Hamed Hatami, Pierre McKenzie, and Valerie King, editors, 49th Annual ACM Symposium

on Theory of Computing (STOC), pages 452–460. ACM, 2017.

[484] Zhan Shi, Xinhua Zhang, and Yaoliang Yu. Bregman divergence for stochastic variance reduc-

tion: Saddle-point and adversarial prediction. In Advances in Neural Information Processing

Systems, 2017.

BIBLIOGRAPHY 898

[485] Ralph E. Showalter. Monotone operators in banach space and nonlinear partial differential

equations. Mathematical Surveys and Monographs, 49:162–163, 1997.

[486] Aaron Sidford and Kevin Tian. Coordinate methods for accelerating `∞ regression and faster

approximate maximum flow. In 59th Annual IEEE Symposium on Foundations of Computer

Science, FOCS 2018, 7-9 October, 2018, Paris, France, 2018.

[487] Aaron Sidford, Mengdi Wang, Xian Wu, and Yinyu Ye. Variance reduced value iteration and

faster algorithms for solving markov decision processes. In Proceedings of the Twenty-Ninth

Annual ACM-SIAM Symposium on Discrete Algorithms, pages 770–787. Society for Industrial

and Applied Mathematics, 2018.

[488] Daniel Dominic Sleator and Robert Endre Tarjan. A data structure for dynamic trees. J.

Comput. Syst. Sci., 26(3):362–391, 1983.

[489] Gary Smith. Essential Statistics, Regression, and Econometrics. Academic Press, 2012.

[490] Justin Solomon, Fernando de Goes, Gabriel Peyré, Marco Cuturi, Adrian Butscher, Andy

Nguyen, Tao Du, and Leonidas J. Guibas. Convolutional wasserstein distances: efficient opti-

mal transportation on geometric domains. ACM Trans. Graph., 34(4):66:1–66:11, 2015.

[491] Daniel A Spielman and Shang-Hua Teng. Nearly-linear time algorithms for graph partitioning,

graph sparsification, and solving linear systems. In Proceedings of the 36th Annual ACM

SIGACT Symposium on Theory of Computing, volume 4, 2004.

[492] Jacob Steinhardt. Robust Learning: Information Theory and Algorithms. PhD thesis, Stanford

University, 2018.

[493] Jacob Steinhardt, Moses Charikar, and Gregory Valiant. Resilience: A criterion for learning

in the presence of arbitrary outliers. arXiv preprint arXiv:1703.04940, 2017.

[494] Jacob Steinhardt, Pang Wei Koh, and Percy Liang. Certified defenses for data poisoning

attacks. In Advances in Neural Information Processing Systems 30: Annual Conference on

Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA,

pages 3517–3529, 2017.

[495] Jacob Steinhardt, Gregory Valiant, and Moses Charikar. Avoiding imposters and delinquents:

Adversarial crowdsourcing and peer prediction. In Advances in Neural Information Processing

Systems, pages 4439–4447, 2016.

[496] Fedor Stonyakina, Alexander Tyurin, Alexander Gasnikov, Pavel Dvurechensky, Artem Aga-

fonov, Darina Dvinskikh, Dmitry Pasechnyuk, Sergei Artamonov, and Victorya Piskunova.

Inexact relative smoothness and strong convexity for optimization and variational inequalities

by inexact model. arXiv e-prints, abs/2001.09013, 2020.

BIBLIOGRAPHY 899

[497] Thomas Strohmer and Roman Vershynin. A randomized solver for linear systems with ex-

ponential convergence. In Approximation, Randomization, and Combinatorial Optimization.

Algorithms and Techniques, 9th International Workshop on Approximation Algorithms for

Combinatorial Optimization Problems, APPROX 2006 and 10th International Workshop on

Randomization and Computation, RANDOM 2006, Barcelona, Spain, August 28-30 2006,

Proceedings, pages 499–507, 2006.

[498] Thomas Strohmer and Roman Vershynin. A randomized Kaczmarz algorithm with exponential

convergence. Journal of Fourier Analysis and Applications, 15(2):262, 2009.

[499] Conghui Tan, Tong Zhang, Shiqian Ma, and Ji Liu. Stochastic primal-dual method for empir-

ical risk minimization with o(1) per-iteration complexity. In Advances in Neural Information

Processing Systems, 2018.

[500] Robert Endre Tarjan. Data structures and network algorithms, volume 44 of CBMS-NSF

regional conference series in applied mathematics. SIAM, 1983.

[501] Kiran Koshy Thekumparampil, Niao He, and Sewoong Oh. Lifted primal-dual method for bi-

linearly coupled smooth minimax optimization. In 25th International Conference on Artificial

Intelligence and Statistics (AISTATS), 2022.

[502] Kiran Koshy Thekumparampil, Prateek Jain, Praneeth Netrapalli, and Sewoong Oh. Projec-

tion efficient subgradient method and optimal nonsmooth frank-wolfe method. In Advances in

Neural Information Processing Systems 33: Annual Conference on Neural Information Pro-

cessing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[503] Kevin Tian, Weihao Kong, and Gregory Valiant. Learning populations of parameters. In

Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N.

Vishwanathan, and Roman Garnett, editors, Advances in Neural Information Processing Sys-

tems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9,

2017, Long Beach, CA, USA, pages 5778–5787, 2017.

[504] Kevin Tian, Teng Zhang, and James Zou. Cover: Learning covariate-specific vector representa-

tions with tensor decompositions. In Jennifer G. Dy and Andreas Krause, editors, Proceedings

of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan,

Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research,

pages 4933–4942. PMLR, 2018.

[505] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal

Statistical Society. Series B (Methodological), 58(1):267–288, 1996.

BIBLIOGRAPHY 900

[506] Sumedh Tirodkar. Deterministic algorithms for maximum matching on general graphs in the

semi-streaming model. In 38th IARCS Annual Conference on Foundations of Software Tech-

nology and Theoretical Computer Science, FSTTCS 2018, December 11-13, 2018, Ahmedabad,

India, pages 39:1–39:16, 2018.

[507] Vladislav Tominin, Yaroslav Tominin, Ekaterina Borodich, Dmitry Kovalev, Alexander Gas-

nikov, and Pavel Dvurechensky. On accelerated saddle-point problems with composite struc-

ture. arXiv e-prints, abs/2103.09344v2, 2021.

[508] Brandon Tran, Jerry Li, and Aleksander Madry. Spectral signatures in backdoor attacks. In

Advances in Neural Information Processing Systems, pages 8000–8010, 2018.

[509] Lloyd N. Trefethen. Approximation Theory and Approximation Practice. Society for Industrial

and Applied Mathematics, USA, 2012.

[510] Joel A Tropp and Anna C Gilbert. Signal recovery from random measurements via orthogonal

matching pursuit. IEEE Transactions on information theory, 53(12):4655–4666, 2007.

[511] Koji Tsuda, Gunnar Rätsch, and Manfred K. Warmuth. Matrix exponentiated gradient up-

dates for on-line learning and bregman projection. Journal of Machine Learning Research,

6:995–1018, 2005.

[512] John W Tukey. A survey of sampling from contaminated distributions. Contributions to

probability and statistics, pages 448–485, 1960.

[513] John W Tukey. Mathematics and the picturing of data. In Proceedings of the International

Congress of Mathematicians, Vancouver, 1975, volume 2, pages 523–531, 1975.

[514] Sara Van de Geer and Johannes Lederer. The lasso, correlated design, and improved or-

acle inequalities. In From Probability to Statistics and Back: High-Dimensional Models and

Processes–A Festschrift in Honor of Jon A. Wellner, pages 303–316. Institute of Mathematical

Statistics, 2013.

[515] Jan van den Brand. A deterministic linear program solver in current matrix multiplication

time. In Shuchi Chawla, editor, Proceedings of the 2020 ACM-SIAM Symposium on Discrete

Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 259–278. SIAM,

2020.

[516] Jan van den Brand, Yin Tat Lee, Yang P. Liu, Thatchaphol Saranurak, Aaron Sidford, Zhao

Song, and Di Wang. Minimum cost flows, mdps, and `1-regression in nearly linear time

for dense instances. In STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of

Computing, Virtual Event, Italy, June 21-25, 2021, pages 859–869, 2021.

BIBLIOGRAPHY 901

[517] Jan van den Brand, Yin Tat Lee, Aaron Sidford, and Zhao Song. Solving tall dense linear pro-

grams in nearly linear time. In Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani,

Gautam Kamath, and Julia Chuzhoy, editors, Proccedings of the 52nd Annual ACM SIGACT

Symposium on Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages

775–788. ACM, 2020.

[518] A. van der Sluis. Condition numbers and equilibration of matrices. Numerische Mathematik,

14(1):14–23, 1969.

[519] Santosh Vempala. Geometric random walks: A survey. MSRI Combinatorial and Computa-

tional Geometry, 52:573–612, 2005.

[520] Santosh Vempala and Grant Wang. A spectral algorithm for learning mixture models. Journal

of Computer and System Sciences, 68(4):841–860, 2004.

[521] Santosh S. Vempala and Andre Wibisono. Rapid convergence of the unadjusted langevin al-

gorithm: Isoperimetry suffices. In Advances in Neural Information Processing Systems 32:

Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, 8-14 De-

cember 2019, Vancouver, BC, Canada, pages 8092–8104, 2019.

[522] Roman Vershynin. High-Dimensional Probability, An Introduction with Applications in Data

Science. 2016.

[523] François-Xavier Vialard. An elementary introduction to entropic regularization and proximal

methods for numerical optimal transport, 2019.

[524] Eric Vittinghoff, David V. Glidden, Stephen C. Shiboski, and Charles E. McCulloch. Re-

gression Methods in Biostatistics: Linear, Logistic, Survival, and Repeated Measures Models.

Springer, 2005.

[525] John Von Neumann and Oskar Morgenstern. Theory of games and economic behavior (com-

memorative edition). Princeton university press, 1944.

[526] Michael D. Vose. A linear algorithm for generating random numbers with a given distribution.

IEEE Transactions on software engineering, 17(9):972–975, 1991.

[527] David Wajc. Rounding dynamic matchings against an adaptive adversary. In Proccedings of

the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, Chicago,

IL, USA, June 22-26, 2020, pages 194–207, 2020.

[528] A. J. Walker. An efficient method for generating discrete random variables with general

distributions. ACM Transactions on Mathematical Software, 3(3):253–256, 1977.

BIBLIOGRAPHY 902

[529] Jialei Wang and Lin Xiao. Exploiting strong convexity from data with primal-dual first-order

algorithms. In 34th International Conference on Machine Learning (ICML), pages 3694–3702,

2017.

[530] Jun-Kun Wang and Jacob D. Abernethy. Acceleration through optimistic no-regret dynamics.

In Advances in Neural Information Processing Systems 31 (NeurIPS), pages 3828–3838, 2018.

[531] Mengdi Wang. Primal-dual π learning: Sample complexity and sublinear run time for ergodic

markov decision problems. CoRR, abs/1710.06100, 2017.

[532] Mengdi Wang. Randomized linear programming solves the markov decision problem in nearly

linear (sometimes sublinear) time. Math. Oper. Res., 45(2):517–546, 2020.

[533] Yuanhao Wang and Jian Li. Improved algorithms for convex-concave minimax optimization.

In Advances in Neural Information Processing Systems 33 (NeurIPS), pages 4800–4810, 2020.

[534] Manfred K. Warmuth and Dima Kuzmin. Randomized PCA algorithms with regret bounds

that are logarithmic in the dimension. In Advances in Neural Information Processing Sys-

tems 19, Proceedings of the Twentieth Annual Conference on Neural Information Processing

Systems, Vancouver, British Columbia, Canada, December 4-7, 2006, pages 1481–1488, 2006.

[535] Manfred K. Warmuth and Dima Kuzmin. Online variance minimization. Machine Learning,

87(1):1–32, 2012.

[536] Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics.

In Proceedings of the 28th international conference on machine learning (ICML-11), pages

681–688, 2011.

[537] Andre Wibisono. Proximal langevin algorithm: Rapid convergence under isoperimetry. CoRR,

abs/1911.01469, 2019.

[538] S lawomir T Wierzchoń and Mieczys law A K lopotek. Modern algorithms of cluster analysis.

Springer, 2018.

[539] Blake E. Woodworth and Nati Srebro. Tight complexity bounds for optimizing composite

objectives. In Advances in Neural Information Processing Systems 29 (NeurIPS), pages 3639–

3647, 2016.

[540] Stephen J Wright. Coordinate descent algorithms. Mathematical Programming, 151(1):3–34,

2015.

[541] Neal E. Young. Sequential and parallel algorithms for mixed packing and covering. In 42nd

Annual Symposium on Foundations of Computer Science, FOCS 2001, 14-17 October 2001,

Las Vegas, Nevada, USA, pages 538–546, 2001.

BIBLIOGRAPHY 903

[542] Yao-Liang Yu. The strong convexity of von neumann’s entropy. http://www.cs.cmu.edu/

~yaoliang/mynotes/sc.pdf, 2013.

[543] A. Yurtsever, M. Udell, J. A. Tropp, and V. Cevher. Sketchy decisions: Convex low-rank matrix

optimization with optimal storage. In International Conference on Artificial Intelligence and

Statistics (AISTATS), pages 1188–1196, 2017.

[544] Chicheng Zhang and Yinan Li. Improved algorithms for efficient active learning halfspaces

with massart and tsybakov noise. arXiv preprint arXiv:2102.05312, 2021.

[545] Junyu Zhang, Minyi Hong, and Shuzhong Zhang. On lower iteration complexity bounds for

the saddle point problems. arXiv e-prints, abs/1912.07481, 2019.

[546] Yuchen Zhang, Martin J Wainwright, and Michael I Jordan. Optimal prediction for sparse

linear models? lower bounds for coordinate-separable m-estimators. Electronic Journal of

Statistics, 11(1):752–799, 2017.

[547] Yuchen Zhang and Lin Xiao. Stochastic primal-dual coordinate method for regularized em-

pirical risk minimization. J. Mach. Learn. Res., 18:84:1–84:42, 2017.

[548] Zhimin Zhang, Shoushui Wei, Dingwen Wei, Liping Li, Feng Liu, and Chengyu Liu. Compar-

ison of four recovery algorithms used in compressed sensing for ecg signal processing. In 2016

Computing in Cardiology Conference (CinC), pages 401–404. IEEE, 2016.

[549] Kaiwen Zhou, Qinghua Ding, Fanhua Shang, James Cheng, Danli Li, and Zhi-Quan Luo. Direct

acceleration of SAGA using sampled negative momentum. In 22nd International Conference

on Artificial Intelligence and Statistics (AISTATS), pages 1602–1610. PMLR, 2019.

[550] Banghua Zhu, Jiantao Jiao, and Jacob Steinhardt. Robust estimation via generalized quasi-

gradients. CoRR, abs/2005.14073, 2020.

[551] Zeyuan Allen Zhu and Elad Hazan. Optimal black-box reductions between optimization objec-

tives. In Advances in Neural Information Processing Systems 29 (NeurIPS), pages 1606–1614,

2016.

[552] Zeyuan Allen Zhu, Yuanzhi Li, Rafael Mendes de Oliveira, and Avi Wigderson. Much faster

algorithms for matrix scaling. In 58th IEEE Annual Symposium on Foundations of Computer

Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017, pages 890–901, 2017.

[553] Zeyuan Allen Zhu, Zheng Qu, Peter Richtárik, and Yang Yuan. Even faster accelerated co-

ordinate descent using non-uniform sampling. In 33rd International Conference on Machine

Learning (ICML), pages 1110–1119, 2016.

BIBLIOGRAPHY 904

[554] Difan Zou, Pan Xu, and Quanquan Gu. Subsampled stochastic variance-reduced gradient

langevin dynamics. In International Conference on Uncertainty in Artificial Intelligence, 2018.

[555] Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic net. Journal

of the Royal Statistical Society. Series B (Statistical Methodology), 67(2):301–320, 2005.

